文档库 最新最全的文档下载
当前位置:文档库 › 地下室外墙结构设计与分析

地下室外墙结构设计与分析

地下室外墙结构设计与分析
地下室外墙结构设计与分析

地下室外墙结构设计与分析

【摘要】地下室外墙设计与荷载取值、回填土厚度,地下水压力和计算模型等有很大的关系。本文针对地下室外墙不同边界条件及受荷情况通过静力分析提供相应的计算简图,并提出地下室外墙设计时应注意的事项。

【关键词】地下室外墙;土压力;水压力;计算模型简图;裂缝控制

(一)前言

地下室外墙是结构设计中经常遇到的问题,设计的是否合理,是否经济是我们需要思考的问题。挡土墙设计是属于岩土工程问题还是结构工程问题,目前无明确结论,结构工程设计中也无法避免挡土墙的设计问题。本文就在结构设计角度阐述挡土墙的设计要求。(二)地下室外墙设计要求

《地下工程防水技术规范》要求地下室防水混凝土结构厚度不应小于250mm,地下工程防水混凝土迎水面钢筋保护层厚度要求不应小于50mm。并应进行裂缝宽度的计算,裂缝宽度不得大于0.2mm,并不得贯通。对于地下结构进行裂缝宽度验算时,可考虑基础及地下室外墙建筑外防水的作用,按一类环境确定基础及地下室外墙外表面的混凝土裂缝控制标准,裂缝宽度可控制在0.3mm。

地下室外墙的混凝土标号过高,易产生收缩裂缝,应根据环境类别和计算确定混凝土标号。地下室外墙当有防水要求时其抗渗等级由最大水头和墙厚度之比确定,但任何情况下都不低于0.6mpa。另

地下室设计中常见问题及对策

地下室设计中常见问题及对策措施 简介:目前城市建设中建造了大量的地下室及地下车库,由于涉及到工期和投入的建设费用,设计中与地下室相关的不少问题也逐渐变得突出起来。地下室按其使用功能可分为普通、人防和平战三类,这里仅对普通地下室设计中遇到的常见问题进行分析,并给出对策措施,以供工程设计参考。 关键字:地下室结构设计 1抗震要求 地下室如果设计不当,对整体抗震性能会产生较大影响,根据南京市施工图审查要点,对于半地下室的埋深要求应大于地下室外地面以上的高度,才能不计其层数,总高度才能从室外地面算起。地下室的墙柱与上部结构的墙柱要协调统一。地下室顶板室内外板面标高变化处,当标高变化超过梁高范围时则形成错层,未采取措施不应作为上部结构的嵌固部位,规范明确规定作为上部结构嵌固部位的地下室楼层的顶楼盖应采用梁板结构,地下室顶板为无梁楼盖时不应作为上部结构嵌固部位。结构计算应往下算至满足嵌固端要求的地下室楼层或底板,但剪力墙底部加强区层数应从地面往上算,并应包括地下层。 存在的常见问题如:半地下室埋深不够,房屋层数包括半地下室层已达8层,层数和总高度超过要求,违反GB50011-2001第7.1.2条。地下室抗震等级为三级,而上部结构为二级,按GB50011-2001第6.1.3条地下室也应为二级等问题。 2荷载取值与组合 地下室外墙受弯及受剪计算时,土压力引起的效应为永久荷载效应,可变荷载效应控制的组合时,土压力的荷载分项系数取1.2;永久荷载效应控制的组合时,其荷载分项系数取1.35。对于地面活荷载,同样应乘侧压力系数,许多设计中计算不对。地下室底板的强度计算时,根据《建筑结构荷载规范》(GB50009-2001)第3.2.5条板、覆土的自重的荷载分项系数取1.0。抗浮计算时,板、覆土的自重的荷载分项系数应取为0.9。地下室外墙的土压力应为静止土压力,根据土性的不同分别采用不同的计算方法,粘性土采用水土合算,砂性土采用水土分算。 如果地下室顶部没有房屋,是空旷场地,其荷载是否要考虑平时消防车荷载或大于消防车的可能荷载,实际中比较取起控制作用的荷载作为设计依据。另如某工程设计在-1.55m标高处一层平面是地下室顶板,活载只考虑4.5KN/m2,未计覆土荷载,消防车荷载。地下车库活载取值6.0KN/m2,不满足GB50009-2001第4.1.1条,未考虑消防车荷载,或者施工过程中和使用过程中可能出现的载重车荷载,与消防车荷载比较取大值。 3外墙计算模型 地下室外墙配筋计算:有的工程外墙配筋计算中,凡外墙带扶壁柱的,不区别扶壁柱尺寸大小,一律按双向板计算配筋,而扶壁柱按地下室结构整体电算分析结果配筋,又未按外墙双向板传递荷载验算扶壁柱配筋。按外墙与扶壁柱变形协调的原理,其外墙竖向受力筋配筋不足、扶壁柱配筋偏少、外墙的水平分布筋有富余量。建议:除了垂直于外墙方向有钢筋混凝土内隔墙相连的外墙板块或外墙扶壁柱截面尺寸较大(如高层建筑外框架柱之间) 外墙板块按双向板计算配筋外,其余的外墙宜按竖向单向板计算配筋为妥。竖向荷载(轴力)较小的外墙扶壁桩,其内外侧主筋也应予以适当加强。外墙的水平分布筋要根据扶壁柱截面尺寸大小,可适当另配外侧附加短水平负筋予以加强,外墙转角处也同此予以适当加强。 地下室外墙计算时底部为固定支座(即底板作为外墙的嵌固端),侧壁底部弯矩与相邻的底板弯矩大小一样,底板的抗弯能力不应小于侧壁,其厚度和配筋量应匹配,这方面问题在地下车道中最为典型,车道侧壁为悬臂构件,底板的抗弯能力不应小于侧壁底部。地下室底板标高变化处也经常发现类似问题:标高变化处仅设一梁,梁宽甚至小于底板厚度,梁内仅靠两侧箍筋传递板的支座弯矩难以满足要求。地面层开洞位置(如楼梯间)外墙顶部无楼板支撑,

小区地下车库结构设计说明

小区地下车库结构设计一章编制依据及工程概况 第一节编制依据

四.主要图集、规范、规程、标准 4.1图集 4.2规范、规程、标准

国家国

五.企业管理文件

第二节工程概况 一.工程总概况 1. 1.建筑概况 (1). 本工程为小区地下车库1,工程位于辽宁省东戴河新区山海同湾小区内,工程场地开阔。工程总建筑面积为9881平方米,地下1层,层高为3.6m。 (2).该工程按半地下车库进行设计,设置2个汽车坡道和5个踏步楼梯。建筑耐火等级为一级。地下防水设防等级:Ⅰ级。建筑主要结构形式:现浇钢筋混凝土框架剪力墙结构。建筑结构耐久年限:3类,50年。抗震设防烈度:6 度。基础类型;独立基础。 2.结构概况: (1).本工程拟建场地地形基本平坦,场地类别Ⅰ类,场地内不存在影响整体稳定性的不良地质作用。基础根据相邻楼房的勘察报告进行设计。据相邻楼房的勘察报告,勘察范围内未见地下水,可不考虑抗浮水位。拟建场地可不考虑地震液化影响。建议的地基基础承载力:天然地基,基础持力层为②层强风化花花岗岩持力层。 (2).车库结构形式为钢筋混凝土全现浇框架剪力墙结构,基础为独立基础。建筑抗震设防类别为丙类,建筑结构安全等级为二级;所在地区抗震设防烈度为6度;设计基本地震加速度为0.05g;设计地震分组为第三组;建筑场地类别为Ⅰ类;场地标准冻深:1.10m,地面粗糙程度:B类,本工程设计使用年限为 50年,地基基础设计等级:二级。 3.现场情况: (1).现场整体地势较平坦。 (2).现场位于小区院内,现场设置两个出入口分别设于现场东北角和西南角,现场周边交通条件较为便利。 (3).现场周围属于正在建设中小区,工程建设过程中,扰民和民扰问题影响比较小。 (4).工人居住区和办公区均设在场外。 (5).施工现场电源、水源条件:现场电源及水源均从12#楼西南侧甲方给

浅析建筑工程地下室结构设计与探讨

浅析建筑工程地下室结构设计与探讨 摘要:近年来,随着我国城市化发展进程加快,以及城市实际容纳人口总量的 高速增长,绝大部分建筑工程的地表建筑所容纳的人口数量有限,无法满足城市 的发展与实际需求。此外,伴随着城市用地的紧张,部分建筑工程将设备管理间 等功能区域放置于地下结构区域,因此当前我国绝大部分建筑工程普遍附带地下 室建筑。但与此同时,我国建筑行业对于建筑工程地下室结构设立原则与设计要 点缺乏深入了解与系统规划,因此本文对这一问题开展以下深入探讨。 关键词:建筑工程;地下室;结构设计;探讨 建筑工程的地下室主要指,在地面水平高度以下的建筑结构,也泛指水平高 度低于建筑物室外地面以下的房间。在建筑中,地下室建筑主要承担着容纳更多 人口、地下停车区域、防空安全区域以及设备杂物储存管理间等应用职责,并在 整体层面上提高了建筑工程的建设性价比与企业的经济效益。但在当前我国部分 建筑工程地下室结构设计、地下室建筑竣工交付使用阶段中,部分所设计的建筑 工程地下室结构方案缺乏合理性,并因此受到建筑工程土壤深层地下水的强烈腐蚀、渗透作用。此外,在出现建筑工程地下室结构设计方案缺乏合理性问题时, 也会衍生建筑工程抗震稳定性能下降等诸多问题,其重要性不言而喻。 一、在建筑工程地下室结构设计工作开展过程中,主要存在的设计难点分析 首先,相较于建筑的其他设计工作而言,地下室结构设计工作的开展需要设 计人员具有全面性设计理念与极高的专业素养。例如在建筑工程地下室结构设计 工作开展过程中,设计人员将不但需要充分考虑到地下室结构设计方案的抗潮性、抗渗透性,还需要考虑到在地下室结构设计方案的整体结构强度系数、稳定性、 抗震性、防火性等多方面建筑性能,并构建配套的地下室通风、排水等配套系统。 其次,在建筑工程地下室结构设计工作开展过程中,设计人员也需要考虑到 其他因素对于地下室结构设计方案科学合理性的干扰影响问题。例如在建筑工程 土壤底层所分布的地下水出现水位高度上升问题时,会对建筑工程地下室结构稳 定性造成较强程度的干扰影响,并在严重情况下导致建筑工程地下室整体结构出 现上浮、挪动问题。而在建筑地下室受到燃气泄露爆炸、地震等事故与不可抗力 因素干扰影响时,也会对地下室整体结构造成较强冲击,并以此为诱因降低整体 建筑的结构强度系数、抗震性等诸多性能。因此在建筑工程地下室结构设计工作 开展过程中,设计人员也需要适当提高地下室结构设计方案的稳定性、防爆性等 性能,从而避免上述问题的出现,而这也进一步提高了建筑工程地下室结构设计 工作的难度系数。 二、在开展建筑工程地下室结构设计工作时,设计人员需要注重的设计要点 与问题事项分析 (一)在开展建筑工程地下室平面结构的设计工作时,设计人员需要注重的 设计要点与问题事项 首先,设计人员需要从实际层面着手,开展建筑工程地下室结构设计工作。 例如,设计人员需要在建筑工程地表建筑的主体结构分布情况、施工区域占地面积、建筑工程抗震性能施工标准等信息数据与实际施工情况的基础上,才能开展 针对性的建筑工程地下室平面结构设计工作。 其次,在这一设计阶段中,设计人员也需要遵循优先级结构设计原则。例如

地下室外墙设计方案【最新版】

地下室外墙设计方案 为了满足抗渗要求,地下室外墙(以下简称外墙)的厚度一般不应小于250mm,混凝土强度等级常用C20~C30。 1.荷载:竖向荷载有上部及各层地下室顶板传来的荷载和外墙自重;水平荷载有室外地坪活荷载、侧向土压力、地下水压力、人防等效静荷载。 (1)室外地坪活荷载:一般民用建筑的室外地面(包括可能停放消防车的室外地面),活荷载可取5kN/m2。有特殊较重荷载时,按实际情况确定。(京院技措2.0.6) 地面活荷载对外墙产生的压力为沿墙高度方向的均布荷载Px, Px=qx.Ka= qx/3, qx为地面活荷载 (2)水压力:水位高度可按最近3~5年的最高水位确定,不包括上层滞水。(京院技措3.1.8) (3)土压力:a. 当地下室采用大开挖方式,无护坡桩或连续墙支护时,地下室外墙承受的土压力宜取静止土压力,土压力系数K0,对

一般固结土可取K0=1-sinφ(φ为土的有效内摩擦角),一般情况可取0.5。(京院技措2.0.16) b. 当地下室施工采用护坡桩或连续墙支护时,地下室外墙土压力计算中可以考虑基坑支护与地下室外墙的共同作用,或按静止土压力乘以折减系数0.66近似计算,Ka=0.5x0.66=0.33,相当于主动土压力。(京院技措2.0.16) c. 地下水位以下土的容重,可近似取11kn/m2。(京院技措2.0.5) 实际上,风荷载和地震区地面运动使土压力超过静态土压力而有所增加,但其对外墙平面外产生的内力较小,可以不予考虑。 2.荷载设计值:以前的算法地面活荷载取1.4外,其他包括水压力均取1.2。现依据《建筑结构荷载规范,当活荷载占总荷载之比值不大于20%时,γG=1.35, γQ=1.40,ΨC=0.7,综合分析后外墙各项荷载分项系数均取1.30。 3.计算简图: (1)地下室无横墙或横墙间距大于层高2倍时,其底部与刚度很大的基础底板或基础梁相连,可认为是嵌固端;顶部的支座条件应视主

大底盘多塔结构地下室设计要点

大底盘多塔楼高层建筑、地下商场、地下车库建筑以及大跨空间、多层地下结构的出现,在目前住宅小区建设以及大型公建项目中都占有非常重要的地位,其面积可达总竣工建筑面积的10%。大底盘高层建筑由于上部结构塔楼相对大底盘地下结构刚度大,荷载不均匀,基底反力不均匀,基础底板的均匀变形,设计不当会引起基础开裂。除此,之外,大底盘高层建筑地下室结构还有一些关键设计需要重点关注。 一、大底盘高层建筑地下室结构类型及设计要点说明 根据地下室层数及地下室与主楼连接方式通常可分为5种结构类型,我们以地下车库结构为例说明,即与主楼断开单层地下车库、与主楼断开双层地下车库、与主楼相连单层地下车库、与主楼相连双层地下车库、地上一层、地下一层大平台式车库五种。 (1)与主楼断开单层车库 一种是车库与主楼完全脱开,仅以通道相连。另一种是车库和主楼各为单体,结构计算相对简单。设计时应注意车库埋深大于主楼基础埋深时,应尽量使主楼外墙与车库外墙净距增加。如无条件时,车库与主楼间应设有效支护,并交代先施工车库后施工主楼,车库基坑开挖时不应使主楼基底土受到扰动。【7度设防】车库一般为丙类建筑,抗震等级为四级[1]。 7度Ⅰ、Ⅱ类场地丙类建筑不需进行地震作用计算。中柱最小总配筋率应增加 0.2%。 (2)与主楼断开双层车库 一种是车库与主楼完全脱开,仅以通道相连。另一种车库和主楼各位单体,结构计算相对简单。车库自重远不足以抗浮,车库底板配筋基本由水浮力控制。设计时应注意在设计前摸清主楼边界与车库边界关系。确定主楼基础埋深时,应考虑主楼与车库边界距离,保证施工的可行性。注明基础施工顺序: 先车库后主楼。

(3)与主楼相连单层车库 车库与多栋主楼相连形成大底盘。设计时应注意嵌固部位设在主楼地下室顶板时,应注意主楼顶板与车库顶板高差不能太大(最好≤ 0.8m)。嵌固部位设在基底时,上部结构应按多塔模型复核构件配筋。车库柱配筋应考虑 0.2Q0剪力调整。主楼顶板与车库顶板间应设加腋,便于传递地震力。主楼相关范围内抗震等级应同主楼抗震等级。 (4)与主楼相连双层车库 双层车库与多栋主楼相连形成大底盘。 (5)地上一层、地下一层大平台式车库 主要特点: 车库分地下一层,地上一层。地上车库周边一般设置沿街商铺。小区景观设在地上车库顶板上。主楼范围在地下、地上一层、大平台均有入口大堂。主楼范围在大平台处底部架空。设计时为避免地面二层以上形成多塔结构,大平台层应合理分缝,避开景观水池、避开小区变用户变、防止塔楼偏置。主楼剪力墙布置应充分考虑架空层及大堂的效果。±0.0处楼板无覆土且不设缝形成超长结构,应采取防裂措施。 二、大底盘多塔结构地下室设计要点 1、嵌固部位的位置与地下室抗震等级的关联 主楼± 0.0结构板作为嵌固部位时,主楼地下一层相关范围的抗震等级应按上部结构采用,地下一层以下抗震构造措施的抗震等级可逐层降低一级,但不应低于四级;地下室中超出上部主楼相关范围且无上部结构的部分,其抗震等级可根据具体情况采用三级或四级。具体条文参见《高层建筑混凝土结构技术规程》第

浅谈建筑工程地下室结构设计分析

浅谈建筑工程地下室结构设计分析 摘要:受建筑结构以及经济发展等多个方面的影响,在进行地下室的工程建设 时要着重关注地下室的结构设计工作,随着我国经济的不断发展和科学技术的成熟,我国的建筑领域也达到了更高的发展领域。而部分企业为了寻求经济与社会 效益,在进行地下室建设时不断的增加地下室的层数以及面积。地下室的建筑是 总的建筑工程的一个重要组成部分,他在某种程度上,对于建筑工程的总体质量 具有十分重要的影响。同时,地下室因为结构、位置以及地下环境的特殊以及复 杂性,因此,在修建过程中会面临诸多的挑战。本文主要分析了地下室在进行设 计时应该注意的要点,希望可以以此对地下室结构设计工作者提供一些参考。 关键句:建筑工程;地下室;结构设计;分析 1进行合理的建筑物选址 选择良好的建筑地址可以有效的防止自然灾害。因此,选择合适的地下室建 筑地址对于建筑工程设计来说十分的重要。在开展建筑工程设计之前,设计工作 者首先要做的就是对周边环境进行考察,在进行地下室的建筑工程时,一定要避 开泥石流、滑坡等地质灾害频发的地区,要进行合理的选址,最佳的地段应该是 平坦开拓的平原地区。选择平原地区的主要原因是,平原地势平坦,在发生地震、洪水等自然灾害时有利于人们及时的脱险,另一个原因是可以为建筑工程的稳定 性提供最基本的保障。另外,坚硬的土壤对于建筑工程具有保护作用,因此,地 下室的修建工作可以选择在较为坚硬的土壤上进行,它可以有效的防止地震等自 然灾害给人们的居住环境造成危害,从而对人们的人身安全以及建筑工程的稳定 提供保障。 2地下室的建造应考虑抗震设计 抗震设计主要是为了在出现地震这种自然灾害的时候,建筑工程的抗震设计 可以将危害与损失降到最低。在进行建筑工程的设计研发过程中,最应该重视的 就是地基的稳固。这个道理人人都懂,因为支撑起整个建筑工程的就是地基,因此,地基所具备的抗震能力对于整的工程建筑来说是至关重要的。另外为了使整 个建筑工程具有较强的抗震能力,在进行地下室结构的设计与建造过程中应该充 分的利用相对规则的几何图形,之所以选择几何图形作为地基的建设基础,主要 是因为相对规则的几何体具有十分稳定的结构,而运用这种稳定的结构来进行地 下室的修建工作,不仅是因为它可以有效的提高地下室的稳定性,更重要的是它 可以有效的防止地下室的变形的坍塌,从而为整个建筑工程打下一个良好又稳固 的地基。同时,要对地下室修建过程中的薄弱角落设计以及受力设计高度的重视 起来,要时刻关注细节方面的处理。在进行地下室修建过程中,一旦忽视这些小 的方面的处理,就会直接影响建筑工程的抗震能力,甚至有可能对整个建筑工程 带来十分严重的后果。我国还针对建筑工程的修建提出了明确的抗震设计要求, 并且提出了相关的标准。因此,建筑工程设计人员在进行建筑工程的设计与实施 工作时,要严格按照国家的相关规定来进行建筑操作,要将建筑的高度、密度等 多个因素都考虑在内。还要注重建筑工程的竖向结构,对其进行重视的主要原因 是竖向的结构可以支撑起整个建筑工程的重量,因此,在进行地下室的修建工作时,应该格外的重视竖向结构,从而有效减少地震发生时建筑物倾斜或者到倒塌 的现象。

地下车库的结构设计

地下车库的结构设计 在普通地下车库设计中,合理选取结构类型和符合实际的计算模型是合理设计和准确计算的前提;合理设计地基基础是结构安全经济的重要指标;防渗漏防开裂技术则是保证建筑物正常使用的重要措施。本文就以上问题进行了探讨,供结构设计者参考。 【关键词】地下车库;独立柱基; 防水板;裂缝控制 1. 前言 目前,城市建设特别是住宅小区的建设中,地下车库越来越多,在地下车库设计中,如何使结构设计更科学、合理,如何采用新技术显得尤为重要和迫切。 2. 结构布置与计算 2.1 柱网、梁板体系的合理布局。 目前,车库顶板常用的结构型式有无梁楼盖,无粘结预应力无梁楼盖、双向密肋及预应力双向密肋楼盖、主次梁楼盖等。当为方形柱网或接近方形柱网时,可采用前四种楼盖,各种楼盖的经济跨度如下:普通钢筋混凝土无梁楼盖为4.5m~7.2m;无粘结预应力无梁楼盖为7.2m~10.5m;普通双向密肋楼盖为9m~12m;预应力双向密肋楼盖为12m~21m。当为矩形柱网时,以短跨为主梁,长跨为次梁,且短跨与长跨比小于0.75比较经济,一般常用的主次梁跨度比为0.65~0.70,这样主次梁截面高度能协调一致,做到梁底平齐,从而能保证楼盖得结构高度最小。注意这里所说的双向密肋不是指与柱连接的都是大截面尺寸的“框架梁”开间内为井字梁的传统的结构型式,而是将柱顶网格填实成与梁同高的实心板,这样柱上实心板带承担大部分荷载,并直接将荷载传给柱子,而且实心板能有效地加大这些梁的刚度。另外能提供更大的空间高度和最大限度的减小板厚。 2.2 挡土墙的设计与计算。 地下车库的外墙应按挡土墙进行设计。挡土墙的内力与侧向土压力、水压力、垂直荷载以及边界条件有关。当垂直荷载较大时,垂直荷载作用引起的挡土墙内力将占很大比重,垂直荷载不可忽略,不能只考虑水平荷载,这时如要取得较精确的内力,应取封闭刚架结构模型来分析。当垂直荷载较小时,可以根据边界条件作简化计算,支承条件应按相对刚度比而定。有的工程外墙配筋计算中,凡外墙带扶壁柱的,不区别扶壁柱尺寸大小,一律按双向板计算配筋,而扶壁柱按地下室结构整体电算分析结果配筋,又未按外墙双向板传递荷载验算扶壁柱配筋。按外墙与扶壁柱变形协调的原理,其外墙竖向受力筋配筋不足、扶壁柱配筋偏少、而外墙的水平分布筋则偏于保守。只有垂直于外墙方向有钢筋混凝土内隔墙相连的外墙板块或外墙扶壁柱截面尺寸较大时,外墙板块按双向板计算配筋外,其余的外墙宜按竖向单向板计算配筋为妥。挡土墙

独立基础加防水板地下室外墙的设计

独立基础加防水板 地下室外墙的设计 审定:李绪华 审核:苑清山 编制:覃嘉仕 北京京诚华宇建筑设计研究院有限公司 结构所 二○○九年八月 第一部分:独立基础加防水板 独立基础加防水板的基础形式,近年来在民用建筑的单层与多层地下室结构以及荷载不大的小高层结构中应用十分广泛,本文仅就施工图中常用的设计方法,结合我院工程的具体应用情况,对其中的技术细节进行交流,为其她设计提供参考。 一.独立基础加防水板的由来及概念 在大面积地下车库中,柱距通常在6m~9m之间,我院的工程常用柱网为8、4m×8、4m。因跨度较大,采用整体筏板不经济,对上部结构的荷载传递也缺乏针对性,通常采用独立基础加防水板这种基础方案。 独立基础加防水板,即在柱下采用独立基础,为实现防水的目的,在独立基础之间设较薄的板,此板仅起地下室地坪板与防水的作用,不承担地基反力。如此除可降低造价外,还可加大独立基础的沉降,以取得与主楼地基变形的协调。 有地下室且有防水要求时,如地基承载力较高,可采用独立基础加防水

板的形式。 独立基础加防水板基本形式如下图 若地基承载力较低,则可考虑采用筏形基础,筏形基础可选用有梁式或 无梁式。若筏形基础仍无法满足地基承载力要求,或就是存在较大的净浮力,设计应根据地基承载力情况与抗浮要求来综合考虑就是否采用桩基。则基础形式变为独立承台加防水板,如烟台世茂地下室、南京河西新城区莲花村中低价房地下室等。 因抗浮问题比较复杂,涉及到荷载取值、配重经济性、基坑降水、施 工顺序、抗浮桩设计、不均匀沉降控制等诸多因素,本文主要就天然地基的独立基础加防水板加以论述。 二.地基承载力 根据建筑资料确定基础板顶标高,预估基础厚度,查阅岩土工程勘察报 告,确定基础底板所在地基持力层就是否满足基底压力的要求。 地基承载力的修正计算公式见《建筑地基基础设计规范》5、2、4条, (3)(0.5)a ak b d m f f b d ηγηγ=+-+- (5、2、4) 《北京地区建筑地基基础勘察设计规范》中地基承载力修正公式为

地下室结构设计难点分析

地下室结构设计难点分析 地下室工程涉及的专业极为复杂,在建筑的地下室结构设计时,需综合考虑防火、使用功能、人防要求、设备用房及管道、坑道、排水、通风、采光等各专业的配合。对于具有大底盘地下室的高层建筑群体而言,塔楼部分一般在使用阶段不会存在抗浮问题,但裙房及纯地下室部分经常会有抗浮不满足要求的问题。而且由于实际地下室抗浮设计中往往只考虑正常使用极限状态,对施工过程和洪水期重视不足,因而也会造成施工过程中由于抗浮不够而出现局部破坏,加上地下室防水工程是一项系统性工程,涉及设计、施工、材料选择等诸多方面因素,因此造成了地下室结构设计难点繁多,一般包括结构平面设计、抗震设计、地下室抗浮、抗渗设计、外墙结构设计。 1、结构平面设计 在高层建筑的地下室结构设计时,需综合考虑防火、使用功能、人防要求、设备用房及管道、坑道、排水、通风、采光等各专业的配合。例如地下室的长度超过设计规定长度时,需要与结构专业配合,确定是否设置变形缝,通常应尽可能少设或不设变形缝,因为设置变形缝会使得变形缝处的防水处理变得复杂。设计人员可以通过设置后浇带和合理使用混凝外加剂或地上设缝、地下不设缝等方式,达到不设缝的目的。若地下室过长依靠设置后浇带的方法难以解决,设计人员应合理地调整平面将地下室分割成几个小地下室,中间用较窄的通道相连,以满足使用及管道相连的要求,而将变形缝设置在通道处,这样可以使接缝较少且处于受力较小处,便于补救。在结构设计时应

合理地设置采光通风井,若高层建筑采光通风井位置设计不当,例如在侧壁外作附加通长采光井,而采光井外壁又不能与地下室顶板整体连接,会造成地下室保证结构稳定功能的丧失,不能有效地将上部的地震及风力作用传至侧壁及地面,不能满足高层建筑的埋深要求。 2、外墙结构设计 2.1、基础设计 在进行地下室基础设计之前一定要做好工程地质的勘查工作,基础设计可以采用预应力管桩基础,为了能够满足沉降的要求,要加强岩层的承载能力,所以基于这一个要求,持力层应该要采用强风化岩和中风化岩层。 2.2、顶板设计 (1)如果有的地下室顶板有设置园林景观的,覆土的厚度一定要建立在充分考虑设备管线高度和保护土层的基础上,经过全面的考虑才对顶板上园林景观覆土厚度和部分室内的覆土。 (2)主楼室内个别地下室顶板的承载力应该在施工阶段进行验算,所以在楼板荷载力计算的时候应该要充分考虑施工荷载,适宜制定为5kN/m2。 (3)具体的地下室顶板园林景观荷载条件除了覆土的重量,还需要结合道路和部分附属设施产生的荷载。 (4)另外有的地下室首层是人防地下室,针对这一个特点,人防的地下室还要额外考虑爆动荷载的因素,人防地下室的爆动荷载比

【结构设计】地下室结构设计要点和易错总结

地下室结构设计要点和易错总结 1、暗梁当楼面梁使用. 这是最常见的错误.暗梁之所以不能当楼面梁是因为其刚度不够,荷载不能按自己设想的方式传递,即楼面荷载-板-暗梁-柱的传递方式几乎是不可能的.这样将大大低估板的内力.根据内力按最短距离传递的原则,用暗梁代替梁只有在板受集中力时, 在集中力处沿板的最短方向(双向板沿两个垂直方向)设置暗梁,可以认为集中力由暗梁承受以满足抗弯强度和裂缝要求,此时板的计算跨度绝对不能按支承于暗梁来考虑.但很多时候,这种做法也没有必要,直接加大板的受力钢筋即可,除非因抗剪(冲切)需要箍筋而使用暗梁. 2、与上一个问题相对应的是,在刚度发生较大突变(增加)处,应视为梁. 典型的问题是不同高程的板之间出现的错台,错台本身平面外刚度比较大,而板的平面外刚度较小,不管你是否愿意,板上的荷载都要传递到错台上,因此应当按梁来设计,尤其是抗剪钢筋应满足要求.地下通道、车站遇到的这种情况较多,其荷载又比较大,但大多数人对错台的处理却非常草率,这很令人担忧.

3、框架结构形成事实上的铰接. 最常见的是梁刚度比柱大的多,使柱对梁的约束作用较弱,形成事实上的铰.这样减少了超静定次数,于抗震不利,也难以形成“强柱弱梁”.日本坂神地震时,地铁车站柱的破坏相当严重,也提醒我们不能忽视这个问题. 地铁车站顶底板可看作筏板,其梁的刚度当然大于柱,但中板处不宜将梁的刚度做得较大. 另外,地下工程如通道、涵洞、地铁车站等,有时不小心也容易作成刚度较大的顶底板和刚度较小的侧墙,这样横剖面就形成铰接的四边形,两侧墙土压力相差较大时很容易失稳,也不利于抗震. 4、板墙受力钢筋置于分布钢筋的内侧. 很多人总把分布钢筋想象成类似梁的箍筋,因此配筋不小心就这样倒置.分布钢筋的作用在于固定受力钢筋位置,传递受力及防止温度收缩裂缝,它不需要象梁柱箍筋那样外包以防止钢筋受压向外鼓出,更重要的是,板墙截面高度较小,为增加有效高度发挥受力筋作用,一般情况下应当外置受力钢筋.某些特殊情况,如地下连续墙,由于施工方便原因可牺牲板有效高度,将受力钢筋内置. 5、在紧靠柱的位置框架梁上搭梁.

人防地下室结构设计经验总结 人防地下室结构设计规范

人防地下室结构设计经验总结人防地下室结构设计规范广东建材2009年第11期建筑设计与装饰 人防地下室结构设计经验 卓毅刚 摘 (广州市人防建筑设计研究院有限公司) 要:本文较系统的结合规范介绍了人防地下事结构设计特点和设计原则,对人防地下室结构设 计中的主要构件进行了设计分析,并对设计中应注意的几个问题进行了探讨,供同行参考。 关键词:人防地下室;结构设计;经验;经济性 随着经济建设的迅速发展,高层、超高层建筑在全国各大中等城市拔地而起,地下停车库、地下商场等地下建筑物的大量兴建,人防工程建设逐步走向与城市建设相结合的道路。特别在经济发达的地区

和城市,繁华的商业地段成为地下空间开发的热点和焦点,其地下空间的利用离不了以防灾救灾为目的的人防工程。本文就人防工程中最常见的低抗力等级人防地下室(核5,常5级以下)为例子,进行结构设计经验总结。 1材料 人防地下室在有人防荷载参与结构计算过程中,应注意乘以材料强度综合调整系数Yd。详见GB50038-2005《人民防空地下室设计规范》(以下简称《人防规范》)4.2条。 1.1混凝土 人防地下室选用混凝土的强度等级一般为C30C35。笔者不建议选用C40以上的混凝土,原因有二:(1)C40--一C55混凝土中受拉钢筋的最小配筋率为0.3,而C25~C35混凝土中受拉钢筋的最小配筋率为0.25。由于人防地下室考虑防辐射及密闭防毒作用,墙体及顶板较厚,所以对于低抗力等级的人防地下室,结构设计计算中会出现较多构造钢筋就能满足受力要求的情况。故在抗力等级及平时荷载不大的情况下,采用强度等级低于C40的混凝土,可降低工程的含钢量,其经济性是显而易见的。(2)人防

地下室外墙在设计中几点注意事项

地下室外墙在设计中的几点注意事项摘要:关于地下室的设计在实际工程中会遇到很多问题,特别是地下室外墙需要考虑的因素比较多,比如计算模型的选取、承受的荷载取值与传递、外墙的保护层厚度以及外墙钢筋和外墙抗裂性的问题。 关键词:地下室外墙计算模型荷载取值 abstract:in the actual project , the design of the basement will encounter many problems, especially the basement wall need to consider more factors, such as the calculation model selection, the loads value and pass the protective layer thickness of the external walls and external walls of steel and external wall crack resistance problem. keywords: basementthe calculation model of external wallload value 中图分类号:s611文献标识码:a 文章编号: 目前,人们的居住水平越来越好,楼房建设发展的越来越迅速,高层建筑越来越多,城市化规模越来越明显,地下空间的利用越来越重要。建造最多的就是地下室,地下室可作为车库、储藏间、自行车库或是设备用房使用,这样避免了在地面上建仓库或自行车棚,增加小区绿化和公共场地面积,节约了土地面积的使用率,对

地下室结构设计

地下室结构设计问题探讨 摘要:结合工程实例,从安全技术以及经济的优化角度,对地下室结构设计的计算方法以及构造措施等进行深入分析,结合笔者的多年设计体会,提出地下室结构设计的一些设计要点,希望为同类工程设计提供指导性的借鉴。 小清新:地下室;结构设;地下室底板;地下室顶板 1地下室结构平面设计 地下室工程涉及的专业极为复杂,高层建筑的地下室结构设计,需综合考虑防火、使用功能、人防要求、设备用房及管道、坑道、排水、通风、采光等各专业的配合。例如地下室的长度超过设计规定的长度时,需要与结构专业配合,确定是否设置变形缝,通常应尽可能少设或不设变形缝,因为设置变形缝会使得变形缝处的防水处理变得复杂。设计人员可以通过设置后浇带和合理使用混凝土外加剂或地上设缝、地下不设缝等方式,达到不设缝的目的。若地下室过长,依靠设置后浇带的方法难以解决,设计时可合理地调整平面,通过分割地下室,用较窄的通道相连,以满足使用及管道相连的要求,而将变形缝设置在通道处,这样可以使接缝较少且处于受力较小处,便于补救。在结构设计时应合理地设置采光通风井,若采光井位置设计不当,也会影响地下室的结构稳定功能。 2 地下室外墙结构设计 地下室的外墙是结构设计的重点,应按水、土压力验算外墙抗裂。在设计时应注意以下要求: (1)荷载。地下室外墙所承受的荷载分为水平荷载和竖向荷载。竖向荷载包括上部及地下室结构的楼盖传重和自重,水平荷载包括室外地面活载、侧向土压力、地下水侧向压力和人防等效静荷载。在实际工程设计中,竖向荷载及风荷载或地震作用产生的内力一般不起控制作用,墙体配筋主要由垂直墙面的水平荷载产生的弯矩确定,而且通常不考虑与竖向荷载组合的压弯作用,仅按墙板弯曲计算弯曲的配筋。 (2)地下室外墙截面设计时,土压力引起的效应为永久荷载效应。地下室外墙承受的土压力宜取静止土压力,静止土压力宜由试验确定。当不具备试验条件时,砂土可取0.34~0.45,黏性土可取0.5~0.7。水位稳定的水压力按永久荷载考虑,分项系数可取1.2;水位急剧变化的水压力按可变荷载考虑,分项系数宜取1.3。有人防要求的地下室外墙的永久荷载分项系数,当其效应对结构不利时取1.2,有利时取1.0;抗爆等效静荷载分项系数取1.0。 (3)地下室外墙的配筋计算。实际设计时,配筋的计算,对于带扶壁柱的外墙,不是根据扶壁柱的尺寸大小进行计算,而是均按双向板计算配筋;扶壁柱则按地下室结构的整体电算分析结果进行配筋,不按外墙双向板传递荷载验算扶壁柱配筋。根据外墙与扶壁柱变形协调的原理,这种设计将使得外墙竖向受力筋配筋不足、扶壁柱配筋偏少、外墙的水平分布筋则有富余量。 (4)地下室底板标高的设计。地下室底板标高变化处仅设1根梁,梁宽甚至小于底板的厚度,梁内仅靠两侧箍筋传递板的支座弯矩难以满足要求。地面层开洞位置(如楼梯问)外墙顶部无楼板支撑,计算模型和配筋构造均应与实际相符。 3地下室防水设计 地下室防水设计是一项十分重要的工作,甚至是决定地下室设计成败的关键。在防水设计时,应根据工程的性质、使用要求和重要性等合理确定防水等级,根据防水等级确定防水层数。无论防水等级为几级,地下室混凝土都应采用结构自防水混凝土,防水混凝土的抗渗等级应根据水头高度与混凝土壁的厚度比确定,不得人为地自行降低。根据防水等级的要求,建筑的地下室仅设l 道防水混凝土是不能满足要求的,一般应做卷材防水。在选用防水卷材时,应考虑到地下室环境恶劣、无法更换的特点,尽量选用耐久性好的卷材。防水卷材在

浅谈地下室结构抗浮设计问题分析

浅谈地下室结构抗浮设计问题分析 发表时间:2019-08-28T14:01:27.280Z 来源:《基层建设》2019年第16期作者:李坚 [导读] 摘要:近几年来,有不少地下室由于各种原因而造成工程事故,如某医院两层独立地下车库,在施工过程中,出现整体上浮;又如,某体育中心游泳馆,地下室上浮造成上部结构梁、板、柱产生大量裂缝;再如,某高层建筑地下室底板局部隆起高达350mm,柱间板出现45°破坏性裂缝等等问题经常性的发生,造成了严重的财产损失和经济损失。 广东建筑艺术设计院有限公司 510655 摘要:近几年来,有不少地下室由于各种原因而造成工程事故,如某医院两层独立地下车库,在施工过程中,出现整体上浮;又如,某体育中心游泳馆,地下室上浮造成上部结构梁、板、柱产生大量裂缝;再如,某高层建筑地下室底板局部隆起高达350mm,柱间板出现45°破坏性裂缝等等问题经常性的发生,造成了严重的财产损失和经济损失。本文就是针对这些事故的原因进行归纳和分析。 关键词:地下室;抗浮设计;抗水板 一、概述 随着国民经济的发展,城市建设的也得到迅速的发展。而城市土地资源的日益紧缺,建筑及城市交通逐步向地下发展。大商业建筑、高层及超高层建筑由于其功能和结构本身的需要,大多设置了地下室。随着建筑层数的日益增高,地下结构已向多层发展,其基坑支护、地下结构设计、地下室的施工及防水等日益成为建筑工程界关注的热点。由于地下室工程的施工环境特殊、隐蔽性大、涉及的工种多、施工复杂,也容易出现质量问题,因而对设计有一定的特殊要求。 二、地下室抗浮水位的合理选取 设防水位的确定对建筑物的安全和业主的投资有较大的影响。较多文献已指出岩土地基中的地下水浮力的确定,不能简单按静水压力公式计算,即地下水的水压力在垂直方向上并非随深度增加而线性增加。从《铁路桥涵设计规范》和《岩土工程手册》的规定中可以看出建筑物基础位于不同持力层时,浮力计算有差别。当位于粉土、粘土、砂土、碎石土和节理裂缝发育的岩石地基时,由于地层的透水性好,水浮力不应折减,而位于节理裂隙不发育的岩石地基时,甚至工程底板与岩石密贴时,可考虑水浮力的折减,甚至不考虑水浮力的作用。当建筑物位于黏土地基时,其浮力较难准确确定,应结合地区的实际经验考虑。 根据勘察单位提供的岩土工程勘察报告,确定地下室抗浮设防水位时,应根据设计规范中确定的原则:防水要求严格的地下室,其设防水位可按历年最高地下水位;对防水要求不严格的地下室其设防水位可参照近3~5年最高水位及勘查时的实测静止地下水位。 由此,如何合理确定抗浮水位的取值,应根据工程的特点、地理环境、地质情况及场地条件等因素,还有工程勘察报告中提供场区历年最高水位和近年的最高地下水位,并结合当地的工程经验综合考虑,确定建筑物的设防水位和抗浮设计水位,使设计做到经济、安全。 在建筑允许的情况下,尽可能提高基坑坑底的设计标高,间接降低抗浮设防水位。具体措施可采用平板式筏板,一般而言,平板式筏板基础的重量与“低板位”梁板式筏板基础上填覆土的重量基本相当,但后者的基础高度一般要比前者高。地下室楼盖提倡使用宽扁梁或无梁楼盖。宽扁梁的截面高度一般为跨度的1/16~1/22,宽扁梁的使用将有效地降低地下结构的层高,从而相对降低了抗浮设防水位。 三、地下室抗浮方案 目前针对地下室抗浮问题主要有增加自重法和设置抗拔桩这两种方案。 1、增加自重法方案 增加自重法包括地下室顶板压载、地下室底板加载及边墙加载等方法,增加地下结构物自身重量(即恒载),使其自身的重力始终大于地下水对结构物所产生的托浮力,确保结构物不上浮。这种方法的优点是:施工及设计较简单;缺点是:当结构物需要抵抗浮力较大时,由于需大量增加混凝土或相关配重材料用量,故费用增加较多。还可能影响对地下结构物室内使用净高。 1)顶部压载措施 顶部压载措施是将地下结构物顶板的混凝土加厚或增加其他压载材料,使自身重量(即恒载)增加以抵抗地下水的上浮力,但增加的混凝土却占去原有覆土的位置,所以增加的重量仅为混凝土与覆土重量之差。因为混凝土与覆土重量的差距不大,所以此法的效益不大,并且使地下结构与地表的距离拉近,由此减少了地下结构上方覆土厚度。此法一般用于埋深较浅、不需增加太厚压载物且其顶部有条件压载的地下结构物的抗浮,否则,其顶部有条件压载也会增加结构自身造价和基础造价,对规模较大、埋深较深的地下结构物的抗浮不宜采用此法作抗浮措施。 另外,当采用此法作抗浮措施时,施工时应避开雨季;因为刚封顶后地下室,还来不及做其他项目时,雨季使地下室处于其最不安全的时期。 2)底板加载措施 基板加载措施是将地下结构物底板的混凝土加厚,使自身重量增加以抵抗地下水的上浮力,但在增加混凝土的同时也增加了水的上浮力,所以它增加的重量是混凝土与水的重量之差。因为混凝土与水的重量差距远比混凝土与覆土的重量差距大,所以每增加单位体积的基底板混凝土,其抗浮效益比顶板压载法要大,但会提高工程造价,采用基板加载抗浮措施,不仅在地下室底板需浇筑大量的压载混凝土,在材料上造成极大的浪费,厚板给施工也带来非常大的困难和不便。因压载增加了地下室底板的厚度,造成地下室净空变小,给以后的使用带来不便。此方案造价很高既费钱又费工,此法一般用于埋深较浅、不需增加太厚混凝土的地下结构物的抗浮。 3)侧墙加载措施 侧墙加载措施是将地下结构物侧墙的混凝土加厚,这种做法虽然增加了水的上浮力,但也由此加宽了地下结构物上方覆土的范围。这种做法虽然也可得到较大的抗浮力,并且不需要加深基坑开挖,但开挖的范围却因此增宽,在地价昂贵的地区,经济效益也将因此折减。此法一般适用于不受场地限制、地价不贵地区的规模较小地下结构物的抗浮。 2、设置抗浮桩 目前,设置抗拔桩是在地下室抗浮设计中使用较为广泛的一种方法。但仔细分析,这种方法也有一定的局限性。因为地下室的抗浮设防水位是根据拟建场地历年最高水位,并结合近几年的水位变化情况提出来的,即使经过重新评估后确定的抗浮设防水位,也是按一定的统计规律得出的结论。显然,该方法确定的地下水位在一般的情况下是很难达到的;加之设计计算的不精确性,也使得抗拔桩都具有一定的安全储备,因此,“抗拔桩”实际上长期起着“抗压桩”的作用,这种“反作用”将阻碍有抗浮要求的地下室的合理沉降,而这种变化将会使不

地下室外墙设计注意问题

地下室外墙设计应该注意的问题结构专业施工图审查中的常见问题 3. 地下室设计的问题: 3.1 地下室外墙配筋计算:有的工程外墙配筋计算中,凡外墙带扶壁柱(或者主体结构框架柱)的,不区别扶壁柱尺寸大小,一律按双向板计算配筋,而扶壁柱按地下室结构整体电算分析结果配筋,又未按外墙双向板传递荷载验算扶壁柱配筋。按外墙与扶壁柱变形协调的原理,其外墙竖向受力筋配筋不足、扶壁柱配筋偏少、外墙的水平分布筋有富余量。建议:除了垂直于外墙方向有钢筋砼内隔墙相连的外墙板块或外墙扶壁柱截面尺寸较大(如高层建筑外框架柱)之间外墙板块按双向板计算配筋外(此时框架柱尚应考虑外墙传来的水平荷载作用验算),其余的外墙宜按竖向单向板计算配筋为妥。竖向荷载(轴力)较小的外墙扶壁桩,其内外侧主筋也应予以适当加强。外墙的水平分布筋要根据扶壁柱截面尺寸大小,可适当另配外侧附加短水平负筋予以加强,外墙转角处也同此予以适当加强,考虑外墙水平钢筋受力时应注意满足最小配筋率要求。 3.2 地下室外墙嵌固端问题:地下室外墙计算时底部为固定支座(即底板作为外墙的嵌固端),侧壁底部弯矩与相邻的底板弯矩大小一样,底板的抗弯能力不应小于侧壁,其厚度和配筋量应匹配,这方面问题在地下车道中最为典型,车道侧壁为悬臂构件,底板的抗弯能力不应小于侧壁底部。地下室底板标高变化处也经常发现类似问题:标高变化处仅设一梁,梁宽甚至小于底板厚度,梁内仅靠两侧箍筋传递板的支座弯矩难以满足要求。 3.3 地下室外墙土压力计算:应取静止土压力(静止土压力系数可按地基基础规范GB50007条文说明取0.5左右),常见的问题:按主动土压力计算,且由于墙体外侧为回填土,土压力系数取值没什么依据。 3.4 地下室外墙保护层厚度:设计说明中保护层厚度取50mm,配筋和裂缝宽度计算时取值与说明不符。 3.5 地面层开洞位置外墙设计:地面层开洞位置(如楼梯间、地下车道)地下室外墙顶部无楼板支撑,为悬臂构件,计算模型的支座条件和配筋构造均应与实际相符。 3.6 地下室外墙抗裂性验算:有的工程漏掉抗裂性验算。外墙的厚度目前做得比较薄,外墙钢筋保护层比较厚,其裂缝宽度控制在0.2mm之内,往往配筋量由裂缝宽度验算控制。3.7 人防计算的问题:人防构件斜截面承载力计算时未考虑砼强度设计值折减系数,人防墙柱计算时未考虑砼轴心抗压强度设计值折减系数,违反强条。 3.8 人防构造问题:人防地下室采用较高砼强度等级时,最小配筋率大于砼规范的要求(如C40,Ⅱ级钢,砼规范最小配筋率为0.26%,人防规范最小配筋率为0.30%),很容易违反强条,双向受力的地下室内外墙水平钢筋也应满足最小配筋率要求。人防板、墙拉结筋遗漏造成违反强条也常见(未设拉结筋或者拉结钢筋间距大于500)。

结构地下室设计要点

《结构地下室设计要点》 (一). 地下室建筑材料要求:混凝土强度等级: 高层≥C30,多层≥C25;混凝土强度等级越高,水泥用量大,易产生裂缝;当地下室有防水要求时,地下室外墙的抗渗等级应由最大水头与墙厚之比确定,但任何情况下都不应低于0.6MPa。 (二). 保护层厚度及垫层: 《地下工程防水技术规范》(GB50108-2008)对防水混凝土结构规定,迎水面钢筋保护层厚度≥50mm;但实际操作有困难之处。一方面外墙截面有效厚度损失较大,另一方面外墙一般较厚,且拆模早,养护困难。施工单位为了避免开裂,在50mm厚保护层内附加Φ8@200构造筋,与外墙受力筋间距很小,垂直浇捣混凝土困难。 按〈混凝土结构设计规范〉50010-2010,外墙外侧环境类别为“二b”,内侧“二a”,据此,外侧保护层厚度25mm,内侧20mm。也是强制性条文。按〈混凝土结构设计规范〉执行。全国技术措施人防工程分册里也明确指出,当有外包柔性防水层时,迎水面保护层厚度可以取30,与混凝土规范规定的值近似。只有当无外防水时,才规定要取50。 防水混凝土结构底板混凝土垫层,强度等级≥C15,厚度≥100mm,在软弱土层中≥150mm。工程实践表明如果结构厚度或迎水面钢筋保护层厚度小于规范限值常常是引起渗漏水现象的常见原因。 (三).墙厚: 多高层≥250mm。地下室侧壁厚度取值主要取决于地下室深度。多高层≥250mm。地下室侧壁厚度取值主要取决于地下室深度,同时也要考虑到承受水压的最大水头H与相应壁厚t的比值,H/t的比值一般宜控制在25以内以取得较好的防水效果。普通地下室的侧壁厚度:一层地下室可取250—400mm;二层可取400—500mm;三层可取500—600mm。 (四). 力与配筋设计要点: 1. 在实际工程中,地下室外墙的配筋主要由垂直于墙面的水平荷载(包括室外地面活荷载产生的侧压力、地基土的侧压力、地下水压力等)控制,近似按受弯构件设计。地下室外墙在垂直于墙平面的地基土侧压力作用下,通常不会发生整体侧移,土压力类似于静止土压力,工程上一般取静止土压力系数Ka=0.5 来进行计算。当地下室施工采用护坡桩时,静止土压力系数可以乘以折减系数0.66 而取0.33。 2. 地下室外墙按支承条件可能是单向板,也可能是双向板,在实际工程中要对这些板块逐一进行计算是相当麻烦的,一般情况下也没必要这么做。工程中常用做法是,视地下室楼板和基础底板为地下室外墙的支点(地下室墙与底板为固接,与顶板为铰接),沿竖向取1m宽的外墙按单、双或多跨板(视地下室层数而定)来计算地下室外墙的弯矩配筋; (五). 荷载: 1.竖向荷载有上部及各层地下室顶板传来的荷载和外墙自重;水平荷载有室外地坪活荷载、侧向土压力、地下水压力、人防等效静荷载。 2.室外地坪活荷载:一般民用建筑的室外地面(包括可能停放消防车的室外地面),活荷载可取5kN/m2。有特殊较重荷载时,按实际情况确定。(京院技措2.0.6)----- Px=qx.Ka= qx/3, qx为地面活荷载,但工程上一般取静止土压力系数Ka=0.5 来进行计算 3. 水压力:水位高度可按最近3~5年的最高水位确定,不包括上层滞水。(京院技措3.1.8) 4. 土压力:a. 当地下室采用大开挖方式,无护坡桩或连续墙支护时,地下室外墙承受的土压力宜取静止土压力,土压力系数K0,对一般固结土可取K0=1-sinφ(φ为土的有效内摩擦角),一般情况可取0.5。(京

相关文档
相关文档 最新文档