文档库 最新最全的文档下载
当前位置:文档库 › 三角形的四心和特殊三角形

三角形的四心和特殊三角形

三角形的四心和特殊三角形
三角形的四心和特殊三角形

三角形的“四心”

三角形是最重要的基本平面图形,很多较复杂的图形问题可以化归为三角形的问题.

如图1 ,在三角形ABC V 中,有三条边,,AB BC CA ,三个

角,,A B C 行?,三个顶点,,A B C ,在三角形中,角平分线、中

线、高(如图 2)是三角形中的三种重要线段.

三角形的三条中线相交于一点,这个交点称为三角形的重心.三角形的重心在三角形的内部,恰好是每条中线的三等分点.

例1 求证三角形的三条中线交于一点,且被该交点分成的两段长度之比为2:1. 已知 D 、E 、F 分别为ABC V 三边BC 、CA 、AB 的中点, 求证 AD 、BE 、CF 交于一点,且都被该点分成2:1. 证明 连结DE ,设AD 、BE 交于点G ,

Q D 、E 分别为BC 、AE 的中点,则DE //AB ,且

1

2

D E A B =

, GDE \V ∽GAB V ,且相似比为1:2, 2,2AG GD BG GE \==.

设AD 、CF 交于点'G ,同理可得,'2','2'.AG G D CG G F == 则G 与'G 重合,

\ AD 、BE 、CF 交于一点,且都被该点分成2:1.

三角形的三条角平分线相交于一点,是三角形的内心. 三角形的内心在三角形的内部,它到三角形的三边的距离相等. 例 2 已知ABC V 的三边长分别为,,BC a AC b AB c ===,I 为ABC V 的内心,且I 在ABC V 的边BC AC AB 、、上的射影分别

为D E F 、、,求证:2

b c a

AE AF +-==

. 证明 作ABC V 的内切圆,则D E F 、、分别为内切圆在

三边上的切点,

,AE AF Q 为圆的从同一点作的两条切线,AE AF \=, 同理,BD =BF ,CD =CE .

22b c a AF BF AE CE BD CD

AF AE AF AE

\+-=+++--=+==

即2

b c a

AE AF +-==.

例3 若三角形的内心与重心为同一点,求证:这个三角形为正三角形. 已知 O 为三角形ABC 的重心和内心

.

图2 1

求证 三角形ABC 为等边三角形.

证明 如图,连AO 并延长交BC 于D .

Q O 为三角形的内心,故AD 平分BAC D,

AB BD

AC DC

\

=

(角平分线性质定理) Q O 为三角形的重心,D 为BC 的中点,即BD =DC . 1AB AC

\=,即AB AC =. 同理可得,AB =BC .

ABC \V 为等边三角形.

三角形的三条高所在直线相交于一点,该点称为三角形的垂心.锐角三角形的垂心一定在三角形的内部,直角三角形的垂心为他的直角顶点,钝角三角形的垂心在三角形的外部.(如图)

例4 求证:三角形的三条高交于一点.

已知 ABC V 中,,AD BC D BE AC E ^^于于,AD 与BE 交于H 点.

求证 C H A B ^.

证明 以CH 为直径作圆,

,,90,o AD BC BE AC HDC HEC

^^\??Q

D E \、在以CH 为直径的圆上, FCB DEH \??.

同理,E 、D 在以AB 为直径的圆上,可得BED BAD ??.

BCH BAD \??,

又ABD V 与CBF V 有公共角B D,90o

CFB ADB \??,即CH AB ^.

过不共线的三点A 、B 、C 有且只有一个圆,该圆是三角形ABC 的外接圆,圆心O 为三角形的外心.三角形的外心到三个顶点的距离相等,是各边的垂直平分线的交点. 练习

1.求证:若三角形的垂心和重心重合,求证:该三角形为正三角形.

2. (1) 若三角形ABC 的面积为S ,且三边长分别为a b c 、、,则三角形的内切圆的半径是___________;

(2)若直角三角形的三边长分别为a b c 、、(其中c 为斜边长),则三角形的内切圆的半径是___________. 并请说明理由.

(二十四)几种特殊的三角形

等腰三角形底边上三线(角平分线、中线、高线)合一.因而在等腰三角形ABC 中,三角形的内心I 、重心G 、垂心H 必然在一条直线上. 例5 在ABC 中,3, 2.AB AC BC ===求 (1)ABC 的面积ABC

S

及AC 边上的高BE ;

(2)ABC 的内切圆的半径r ; (3)ABC 的外接圆的半径R . 解 (1)如图,作AD BC ⊥于D . ,AB AC D =∴为BC 的中点,

1

22

ABC AD S ∴==∴=??= 又1

,2

ABC S AC BE =?

解得3BE =.

(2)如图,I 为内心,则I 到三边的距离均为r , 连,,IA IB IC ,

ABC IAB IBC IAC S S S S =++,

即111

222AB r BC r CA r =?+?+?,

解得r =(3)ABC 是等腰三角形, ∴外心O 在AD 上,连BO ,

则Rt OBD 中,,OD AD R =-222

,OB BD OD =+

222)1,R R ∴=+

解得8

R =

在直角三角形ABC 中,A D为直角,垂心为直角顶点A , 外心O 为斜边BC 的中点,内心I 在三角形的内部,且内切圆的半径为

2

b c a

+-(其中,,a b c 分别为三角形的三边BC ,CA ,AB 的长),为什么?

该直角三角形的三边长满足勾股定理:

222AC AB BC +=.

例6 如图,在ABC V 中,AB =AC ,P 为BC 上任意一点.求证:22

AP AB PB PC =-?. 证明:过A 作AD BC ^于D . 在Rt ABD V 中,222AD AB BD =-. 在Rt APD V 中,222AP AD DP =-.

22222()().AP AB BD DP AB BD DP BD DP \=-+=-+-

,,AB AC AD BC BD DC =^\=Q .

BD DP CD DP PC \-=-=.

22AP AB PB PC \=-?.

正三角形三条边长相等,三个角相等,且四心(内心、重心、垂心、外心)合一,该点称为正三角形的中心.

例7 已知等边三角形ABC 和点P ,设点P 到三边AB ,AC ,BC 的距离分别为 123,,h h h ,三角形ABC 的高为h ,“若点P 在一边BC 上,此时30h =,可得结论:

123h h h h ++=.”

请直接应用以上信息解决下列问题: 当(1)点P 在ABC V 内(如图b ),(2)点在ABC V 外(如图c),这两种情况时,上述结论是否还成立?若成立,请给予证明;若不成立,123,,h h h 与h 之间有什么样的关系,请给出你的猜想(不必证明). 解 (1)当点P 在ABC V 内时,

法一 如图,过P 作''B C 分别交,,AB AM AC 于

',','B M C ,

由题设知'AM PD PE =+, 而'AM AM PF =-,

故PD PE PF AM ++=,即123h h h h ++=. 法二 如图,连结,

ABC PAB PAC PBC S S S S =++V V V V Q , 1111

2222

BC AM AB PD AC PE BC PF \????, 又AB BC AC ==,

图3.2-15

AM PD PE PF \=++,即123h h h h ++=.

(2)当点P 在ABC V 外如图位置时,123h h h h ++=不成立,猜想:123h h h h +-=.

注意:当点P 在ABC V 外的其它位置时,还有可能得到其它的结论,123h h h h -+=,123h h h h --=(如

图3.2-18,想一想为什么?)等.

在解决上述问题时,“法一”中运用了化归的数学思想方法,“法二”中灵活地运用了面积的方法. 练习:

1. 直角三角形的三边长为3,4,x ,则x =________.

2. 等腰三角形有两个内角的和是100°,则它的顶角的大小是_________.

3.

已知直角三角形的周长为3,斜边上的中线的长为1,求这个三角形的面积.

4. 证明:等腰三角形底边上任意一点到两腰的距离之和为一个常量.

习题

A 组

1. 三角形三边长分别是6、8、10,那么它最短边上的高为 。

2. 如果等腰三角形底边上的高等于腰长的一半,那么这个等腰三角形的顶角等于

_________.

3. 已知:,,a b c 是ABC 的三条边,7,10a b ==,那么c 的取值范围是_________。

4. 若三角形的三边长分别为1

8a 、、,且a 是整数,则a 的值是_________。 5.如图,等边ABC 的周长为12,CD 是边AB 上的中线,E 是CB 延长线上一点,且BD =BE ,则CDE 的周长为()

A

.6+ B

.18+

C

.6+ D

.18+6.如图,在ABC 中,2C ABC A ∠=∠=∠,BD 是边AC 上的高,求DBC ∠的度数。

7.如图,,90,o

Rt ABC C M ∠=是AB 的中点,AM =AN ,MN//AC ,求证:MN=AC 。

B 组

1. 如图,在ABC 中,AD 平分BAC ∠,AB +BD =AC .求:B C ∠∠的

值。

2. 如图,在正方形ABCD 中,F 为DC 的中点,E 为BC 上一点,且

1

4

EC BC =

,求证:90o EFA ?.

3.如图,把ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则A ∠与12∠+∠之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是() A .12A ∠=∠+∠ B .212A ∠=∠+∠ C .312A ∠=∠+∠ D .32(12)A ∠=∠+∠

4.如图,在等腰Rt ABC 中90o

C ∠=,

D 是斜边AB 上任一点,A

E CD ⊥于E ,B

F CD ⊥交CD 的延长线于F ,CH AB ⊥于H ,交AE 于

G .求证:BD =CG .

(专题精选)初中数学三角形全集汇编及答案

(专题精选)初中数学三角形全集汇编及答案 一、选择题 1.如图,正方体的棱长为6cm ,A 是正方体的一个顶点,B 是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A 爬到点B 的最短路径是( ) A .9 B .310 C .326+ D .12 【答案】B 【解析】 【分析】 将正方体的左侧面与前面展开,构成一个长方形,用勾股定理求出距离即可. 【详解】 解:如图,AB=22(36)3310++= . 故选:B . 【点睛】 此题求最短路径,我们将平面展开,组成一个直角三角形,利用勾股定理求出斜边就可以了. 2.如图,在?ABCD 中,E 为边AD 上的一点,将△DEC 沿CE 折叠至△D ′EC 处,若∠B =48°,∠ECD =25°,则∠D ′EA 的度数为( )

A.33°B.34°C.35°D.36° 【答案】B 【解析】 【分析】 由平行四边形的性质可得∠D=∠B,由折叠的性质可得∠D'=∠D,根据三角形的内角和定理可得∠DEC,即为∠D'EC,而∠AEC易求,进而可得∠D'EA的度数. 【详解】 解:∵四边形ABCD是平行四边形,∴∠D=∠B=48°, 由折叠的性质得:∠D'=∠D=48°,∠D'EC=∠DEC=180°﹣∠D﹣∠ECD=107°, ∴∠AEC=180°﹣∠DEC=180°﹣107°=73°, ∴∠D'EA=∠D'EC﹣∠AEC=107°﹣73°=34°. 故选:B. 【点睛】 本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键. 3.等腰三角形两边长分别是 5cm 和 11cm,则这个三角形的周长为() A.16cm B.21cm 或 27cm C.21cm D.27cm 【答案】D 【解析】 【分析】 分两种情况讨论:当5是腰时或当11是腰时,利用三角形的三边关系进行分析求解即可.【详解】 解:当5是腰时,则5+5<11,不能组成三角形,应舍去; 当11是腰时,5+11>11,能组成三角形,则三角形的周长是5+11×2=27cm. 故选D. 【点睛】 本题主要考查了等腰三角形的性质, 三角形三边关系,掌握等腰三角形的性质, 三角形三边关系是解题的关键. 4.下列长度的三根小木棒能构成三角形的是() A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 【答案】D 【解析】 【详解】 A.因为2+3=5,所以不能构成三角形,故A错误; B.因为2+4<6,所以不能构成三角形,故B错误; C.因为3+4<8,所以不能构成三角形,故C错误; D.因为3+3>4,所以能构成三角形,故D正确.

三角形“四心” 与向量的完美结合(精.选)

三角形的“四心”与向量的完美结合 三角形重心、垂心、外心、内心向量形式的充要条件的向量形式 一. 知识点总结 1)O 是ABC ?的重心?=++; 若O 是ABC ?的重心,则 ABC AOB AOC BOC S 31 S S S ????= == 故0OC OB OA =++; 1()3 PG PA PB PC =++u u u r u u u r u u u r u u u r ?G 为ABC ?的重心. 2)O 是ABC ?的垂心?OA OC OC OB OB OA ?=?=?; 若O 是ABC ?(非直角三角形)的垂心, 则 C tan B tan A tan S S S AOB AOC BOC ::::=??? 故0OC C tan OB B tan OA A tan =++ 3)O 是ABC ?的外心?|OC ||OB ||OA |==(或2 2 2 ==) 若O 是ABC ?的外心 则 C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=???:::: 故C 2sin B 2sin A 2sin =++ 4)O 是内心ABC ?的充要条件是 ( =- ?=- ?=- ? 引进单位向量,使条件变得更简洁。如果记,,的单位向量为321e ,e ,e ,则刚才O 是ABC ?内 心的充要条件可以写成 0)e e ()e e ()e e (322131=+?=+?=+? O 是ABC ?内心的充要条件也可以是0OC c OB b OA a =++ 若O 是ABC ?的内心,则 c b a S S S AOB AOC BOC ::::=??? 故 C sin B sin A sin c b a =++=++或; ||||||0AB PC BC PA CA PB P ++=?u u u r u u u r u u u r u u u r u u u r u u u r r ABC ?的内心;

三角形四心的向量性质

三角形“四心”的向量性质及其应用 一、三角形的重心的向量表示及应用 命题一 已知A B C ,,是不共线的三点,G 是ABC △内一点,若 GA GB GC ++=0.则G 是ABC △的重心. 证明:如图1所示,因为GA GB GC ++=0, 所以 ()GA GB GC =-+. 以GB ,GC 为邻边作平行四边形BGCD , 则有GD GB GC =+, 所以GD GA =-. 又因为在平行四边形BGCD 中,BC 交GD 于点E , 所以BE EC =,GE ED =. 所以AE 是ABC △的边BC 的中线. 故G 是ABC △的重心. 点评:①解此题要联系重心的定义和向量加法的意义;②把平面几何知识和向量知识结合起来解决问题是解此类问题的常用方法. 例1 如图2所示,ABC △的重心为G O ,为坐标原点,OA =a ,=OB b , =OC c ,试用a b c ,,表示OG . 解:设AG 交BC 于点M ,则M 是BC 的中点, ?? ? ??=-=-=-GC OG c GB OG b GA OG a GC GB GA OG c b a ++=-++∴ 而03=-++∴OG c b a 图2

3 c b a OG ++= ∴ 点评:重心问题是三角形的一个重要知识点,充分利用重心性质及向量加、减运算的几何意义是解决此类题的关键. 变式:已知D E F ,,分别为ABC △的边BC AC AB ,,的中点.则 AD BE CF ++=0. 证明:如图的所示, ??? ? ? ???? -=-=-=GC CF GB BE GA AD 232323 )(23 GC GB GA CF BE AD ++-=++∴ 0=++GC GB GA AD BE CF ∴++=0.. 变式引申:如图4,平行四边形ABCD 的中心为O ,P 为该平面上任意一点, 则1 ()4 PO PA PB PC PD =+++. 证明:1()2PO PA PC =+,1()2 PO PB PD =+, 1()4 PO PA PB PC PD ∴=+++. 点评:(1)证法运用了向量加法的三角形法则,证法2运用了向量加法的平行四边形法则.(2)若P 与O 重合,则上式变为OA OB OC OD +++=0. 二、三角形的外心的向量表示及应用 命题二:已知G 是ABC △内一点,满足MC MB MA ==,则点M 为△ABC 的外心。 例2 已知G 、M 分别为不等边△ABC 的重心与外心,点A ,B 的坐标分别为A (-1,0),B (1,0),且GM ∥AB ,(1)求点C 的轨迹方程;(2)若直线l 过 图3

(易错题精选)初中数学三角形经典测试题及答案

(易错题精选)初中数学三角形经典测试题及答案 一、选择题 1.如图,在ABC ?中,90C =o ∠,30B ∠=o ,以A 为圆心,任意长为半径画弧分别交 AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12 MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( ) ①AD 是BAC ∠的平分线;②ADC 60∠=o ;③点D 在AB 的垂直平分线上;④:1:3DAC ABC S S ??= A .1 B .2 C .3 D .4 【答案】D 【解析】 【分析】 根据题干作图方式,可判断AD 是∠CAB 的角平分线,再结合∠B=30°,可推导得到△ABD 是等腰三角形,根据这2个判定可推导题干中的结论. 【详解】 题干中作图方法是构造角平分线,①正确; ∵∠B=30°,∠C=90°,AD 是∠CAB 的角平分线 ∴∠CAD=∠DAB=30° ∴∠ADC=60°,②正确 ∵∠DAB=∠B=30° ∴△ADB 是等腰三角形 ∴点D 在AB 的垂直平分线上,③正确 在Rt △CDA 中,设CD=a ,则AD=2a 在△ADB 中,DB=AD=2a ∵1122DAC S CD AC a CD ?=??=?,13(CD+DB)22 BAC S AC a CD ?=??=? ∴:1:3DAC ABC S S ??=,④正确 故选:D 【点睛】 本题考查角平分线的画法及性质、等腰三角形的性质,解题关键是熟练角平分线的绘制方法.

2.AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F .S △ABC =7,DE=2,AB=4,则AC 长是( ) A .4 B .3 C .6 D .2 【答案】B 【解析】 【分析】 首先由角平分线的性质可知DF=DE=2,然后由S △ABC =S △ABD +S △ACD 及三角形的面积公式得出结果. 【详解】 解:AD 是△ABC 中∠BAC 的平分线, ∠EAD=∠FAD DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F , ∴DF=DE , 又∵S △ABC =S △ABD +S △ACD ,DE=2,AB=4, 11742222 AC ∴=??+?? ∴AC=3. 故答案为:B 【点睛】 本题主要考查了角平分线的性质,熟练掌握角平分线的性质、灵活运用所学知识是解题的关键. 3.△ABC 中,∠A :∠B :∠C =1:2:3,最小边BC =4cm ,则最长边AB 的长为( )cm A .6 B .8 C 5 D .5 【答案】B 【解析】 【分析】 根据已知条件结合三角形的内角和定理求出三角形中角的度数,然后根据含30度角的直角三角形的性质进行求解即可. 【详解】 设∠A =x , 则∠B =2x ,∠C =3x , 由三角形内角和定理得∠A+∠B+∠C =x+2x+3x =180°, 解得x =30°,

高中数学三角形四心性质及例题

三角形“四心”向量形式的充要条件应用 1) O 是 ABC 的重心 OA OB OC 0; 2) O 是 ABC 的垂心 OA OB OB OC OC OA 若O 是 ABC (非直角三角形 )的垂心, 故 tan AOA tan BOB tan COC 0 2 2 2 3) O 是 ABC 的外心 |OA | |OB| |OC | (或OA OB OC ) 若O 是 ABC 的外心 则 S BOC :S AOC :S AOB sin BOC :sin AOC :sin AOB sin2A : sin 2B : sin2C 故 sin 2A OA sin 2BOB sin 2COC 4) O 是内 心 ABC 的充要条件是 OA (|A AB B | AC ) OB ( BA AC |BA | |B B C C|) OC (|C CA A | |C C B B |) 0 AB,BC,CA 的单位向量为 e 1 ,e 2 , e 3 ,则刚才 O 是 ABC 内心的 充 要 条件 可 OA (e 1 e 3) OB (e 1 e 2 ) OC (e 2 e 3) 0 O 是 ABC 内心的充要条件也可以是 aOA bOB cOC 0 若O 是 ABC 的内心,则 S BOC : S AOC : S AOB a :b :c 引进单位向量, 使条件变得更简洁。如果 记 sin B OB sin COC ; 以写成 故 aOA bOB cOC 0或 sin AOA ABC 的内心; 若O 是 ABC 的重心,则 S BOC S AOC S AOB 3S ABC 故 OA PG 31(PA PB PC) OB OC 0; G 为 ABC 的重心 . 则 S BOC : S AOC : S AOB tan A :tan B : tan C

与三角形四心相关的向量结论

与三角形“四心”相关的向量结论 濮阳市华龙区高中 张杰 随着新课程对平面几何推理与证明的引入,三角形的相关问题在高考中的比重有所增加。平面向量作为平面几何的解题工具之一,与三角形的结合就显得尤为自然,因此对三角形的相关性质的向量形式进行探讨,就显得很有必要。本文通过对一道高考模拟题的思考和探究,得到了与三角形“四心”相关的向量结论。希望在得出结论的同时,能引起一些启示。 问题:设点O 在ABC ?内部,且有03=++OC OB OA ,则BOC ?与AOC ?的面积的比值是____. 分析:∵03=++OC OB OA 设OD OB =3,则0=++OC OD OA , 则点O 为ADC ?的重心.∴ACD AOD COA DOC S S S S ????= ==31. 而 AOC COD BOC S S S ???==3131, ∴3 1:=??COA BOC S S . 探究:实际上,可以将上述结论加以推广,即可得此题的本源。 结论: 设O 点在ABC ?内部,若()+∈=++R r n m OC r OB n OA m ,,0,则r n m S S S A O B C O A B O C ::::=?? 证明: 已知O 点在ABC ?内部,且()+∈=++R r n m OC r OB n OA m ,,0 设:OF OC r OE OB n OD OA m ===,,,则点O 为△DEF 的重心, 又EOF BOC S nr S ??=1,DOF AOC S mr S ??=1,DOE AOB S mn S ??=1, ∴r n m S S S AO B CO A BO C ::::=?? 说明: 此结论说明当点O 在ABC ?内部时,点O 把ABC ?所分成的三个小三角形的面积之比等于从此点出发分别指向与三个小三角形相对应的顶点的三个向量所组成的线性关系式前面的系数之比。 应用举例:设点O 在ABC ?内部,且40OA OB OC ++= ,则ABC ?的面积与OBC ?的面积之比是: A .2:1 B .3:1 C .4:3 D .3:2 分析:由上述结论易得:1:1:4::=??AO B CO A BO C S S S ,所以2:34:6:==?O BC ABC S S ,故选D 当把这些点特定为三角形的“四心”时,我们就能得到有关三角形“四心”的一组统一的向量形式。 引申:设O 点在ABC ?内部,且角C B A ,,所对应的边分别为c b a ,, 结论1:若O 为ABC ?重心,则0=++OC OB OA 分析:重心在三角形的内部,且重心把ABC ?的面积三等分. 结论2 :O 为ABC ?内心,则0=++OC c OB b OA a 分析:内心在三角形的内部,且易证S △BOC :S △COA :S △AOB =c b a :: 结论3: O 为ABC ?的外心,则02sin 2sin 2sin =++OC C OB B OA A 分析: 易证S △BOC :S △COA :S △AOB =sin2A :sin2B :sin2C.

最新初中数学三角形经典测试题含答案

最新初中数学三角形经典测试题含答案 一、选择题 1.如图,90ACB ∠=?,AC CD =,过D 作AB 的垂线,交AB 的延长线于E ,若2AB DE =,则BAC ∠的度数为( ) A .45° B .30° C .22.5° D .15° 【答案】C 【解析】 【分析】 连接AD ,延长AC 、DE 交于M ,求出∠CAB=∠CDM ,根据全等三角形的判定得出△ACB ≌△DCM ,求出AB=DM ,求出AD=AM ,根据等腰三角形的性质得出即可. 【详解】 解:连接AD ,延长AC 、DE 交于M , ∵∠ACB=90°,AC=CD , ∴∠DAC=∠ADC=45°, ∵∠ACB=90°,DE ⊥AB , ∴∠DEB=90°=∠ACB=∠DCM , ∵∠ABC=∠DBE , ∴∠CAB=∠CDM , 在△ACB 和△DCM 中 CAB CDM AC CD ACB DCM ∠=∠??=??∠=∠? ∴△ACB ≌△DCM (ASA ), ∴AB=DM , ∵AB=2DE , ∴DM=2DE , ∴DE=EM ,

∵DE ⊥AB , ∴AD=AM , 114522.522 BAC DAE DAC ??∴∠=∠= ∠=?= 故选:C . 【点睛】 本题考查了全等三角形的性质和判定,等腰直角三角形,等腰三角形的性质和判定等知识点,能根据全等求出AB=DM 是解此题的关键. 2.如图,在矩形ABCD 中, 3,4,AB BC ==将其折叠使AB 落在对角线AC 上,得到折痕,AE 那么BE 的长度为( ) A .1 B .2 C .32 D .85 【答案】C 【解析】 【分析】 由勾股定理求出AC 的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x ,则CE=4x -,利用勾股定理,即可求出x 的值,得到BE 的长度. 【详解】 解:在矩形ABCD 中,3,4AB BC ==, ∴∠B=90°, ∴22345AC =+=, 由折叠的性质,得AF=AB=3,BE=EF , ∴CF=5-3=2, 在Rt △CEF 中,设BE=EF=x ,则CE=4x -, 由勾股定理,得:2222(4)x x +=-, 解得:32x = ; ∴32 BE =. 故选:C . 【点睛】

平面向量四心问题(最全)

平面向量四心问题 近年来,对于三角形的“四心”问题的考察时有发生,尤其是和平面向量相结合来考察很普遍,难度上偏向中等,只要对于这方面的知识准备充分,就能应付自如.下面就平面向量和三角形的“四心”问题的类型题做一阐述: 一、重心问题 三角形“重心”是三角形三条中线的交点,所以“重 心”就在中线上. 例1 已知O是平面上一定点,A,B,C是平面上不 共线的三个点,动点P 满足:, 则P的轨迹一定通过△ABC 的() A外心B内心 C 重心 D 垂心 解析:如图1,以AB,AC为邻边构造平行四边形ABCD,E为对角线的交点,根据向量平行四边形法则,因为, 所以,上式可化为,E在直线AP上,因为AE为的中线,所以选C. 点评:本题在解题的过程中将平面向量的有关运算与平行四边形的对角线互相平分及三角形重心性质等相关知识巧妙结合. 二、垂心问题 三角形“垂心”是三角形三条高的交点,所以“垂心”就在高线上.

例2 P是△ABC所在平面上一点,若,则P是△ABC的( ). A.外心 B.内心 C.重心 D.垂心 解析:由. 即. 则, 所以P为的垂心. 故选D. 点评:本题考查平面向量有关运算,及“数量积为零,则两向量所在直线垂直”、三角形垂心定义等相关知识.将三角形垂心的定义与平面向量有关运算及“数量积为零,则两向量所在直线垂直” 等相关知识巧妙结合. 三、内心问题 三角形“内心”是三角形三条内角平分线的交点,所以“内心”就在内角平分线线上. 例3 已知P是△ABC所在平面内的一动点,且点P满足 ,则动点P一定过△ABC的〔〕. A、重心 B、垂心 C、外心 D、内心

讲义---平面向量与三角形四心的交汇

讲义---平面向量与三角形四心的交汇 一、四心的概念介绍 (1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。 二、四心与向量的结合 (1)?=++O 是ABC ?的重心. 证法1:设),(),,(),,(),,(332211y x C y x B y x A y x O ?=++???=-+-+-=-+-+-0)()()(0)()()(321321y y y y y y x x x x x x ??? ????++=++=?33 321 321y y y y x x x x ?O 是ABC ?的重心. 证法2:如图 [ OC OB OA ++ 2=+= ∴2= ∴D O A 、、三点共线,且O 分AD 为2:1 ∴O 是ABC ?的重心 (2)??=?=?OA OC OC OB OB OA O 为ABC ?的垂心. 证明:如图所示O 是三角形ABC 的垂心,BE 垂直AC ,AD 垂直BC , D 、E 是垂 足.0)(=?=-??=?CA OB OC OA OB OC OB OB OA AC OB ⊥? 同理⊥,⊥ ?O 为ABC ?的垂心 : (3)设a ,b ,c 是三角形的三条边长,O 是?ABC 的内心 O c b a ?=++为ABC ?的内心. 证明:b c 、 分别为 方向上的单位向量, ∴ b c +平分BAC ∠, ( λ=∴b c +),令c b a bc ++= λ ∴ c b a bc ++= (b c +) 化简得0)(=++++AC c AB b OA c b a B C D

经典初中数学三角形专题训练及例题解析

知 识点梳理 考点一、三角形 1、三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 2、三角形的分类. ?????钝角三角形直角三角形锐角三角形 ??? ????) (等边三角形等腰三角形不等边三角形 3、三角形的三边关系: 三角形任意两边之和大于第三边,任意两边之差小于第三边. 4、三角形的重要线段 ①三角形的中线:顶点与对边中点的连线,三条中线交点叫重心 ②三角形的角平分线:内角平分线与对边相交,顶点和交点间的线段,三个角的角平分线的交点叫内心 ③三角形的高:顶点向对边作垂线,顶点和垂足间的线段.三条高的交点叫垂心(分锐角三角形,钝角三角形和直角三角形的交点的位置不同) 5、三角形具有稳定性 6、三角形的内角和定理及性质 定理:三角形的内角和等于180°. 推论1:直角三角形的两个锐角互补。 推论2:三角形的一个外角等于不相邻的两个内角的和。 推论3:三角形的一个外角大于与它不相邻的任何一个内角。 7、多边形的外角和恒为360° 8、多边形及多边形的对角线 ①正多边形:各个角都相等,各条边都相等的多边形叫做正多边形. ②凸凹多边形:画出多边形的任何一条边所在的直线,若整个图形都在这条直线的同一侧,这样的多边形称为凸多边形;,若整个多边形不都在这条直线的同一侧,称这样的多边形为凹多边形。 ③多边形的对角线的条数: A.从n 边形的一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。 三角形 (按角分) 三角形 (按边分)

边形共有 2)3 ( n n 条对角线。 9、边形的内角和公式及外角和 ①多边形的内角和等于(n-2)×180°(n≥3)。 ②多边形的外角和等于360°。 10、平面镶嵌及平面镶嵌的条件。 ①平面镶嵌:用形状相同或不同的图形封闭平面,把平面的一部分既无缝隙,又不重叠地全部覆盖。 ②平面镶嵌的条件:有公共顶点、公共边;在一个顶点处各多边形的内角和为360°。考点二、全等三角形 1、全等三角形的概念 能够完全重合的两个三角形叫做全等三角形。。 2、三角形全等的判定 三角形全等的判定定理: (1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”) (2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”) (3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。直角三角形全等的判定: 对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”) 3、全等变换 只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。 全等变换包括一下三种: (1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。 (2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。 (3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。考点三、等腰三角形 1、等腰三角形的性质 (1)等腰三角形的性质定理及推论: 定理:等腰三角形的两个底角相等(简称:等边对等角) 推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。 推论2:等边三角形的各个角都相等,并且每个角都等于60°。 2、三角形中的中位线

讲义平面向量与三角形四心的交汇

讲义---平面向量与三角形四心的交汇 一、四心的概念介绍 (1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。 二、四心与向量的结合 (1)?=++0OC OB OA O 是ABC ?的重心. 证法1:设),(),,(),,(),,(332211y x C y x B y x A y x O ?=++???=-+-+-=-+-+-0)()()(0)()()(321321y y y y y y x x x x x x ??? ????++=++=?33 321 321y y y y x x x x ?O 是ABC ?的重心. 证法2:如图 ++ 02=+=OD OA ∴OD AO 2= ∴D O A 、、三点共线,且O 分AD 为2:1 ∴O 是ABC ?的重心 (2)??=?=?OA OC OC OB OB OA O 为ABC ?的垂心. 证明:如图所示O 是三角形ABC 的垂心,BE 垂直AC ,AD 垂直BC , D 、E 是垂足.0)(=?=-??=?CA OB OC OA OB OC OB OB OA ⊥? 同理BC OA ⊥,AB OC ⊥ ?O 为ABC ?的垂心 (3)设a ,b ,c 是三角形的三条边长,O 是?ABC 的内心 O c b a ?=++为ABC ?的内心. 证明:b AC c AB 、 分别为 AC AB 、方向上的单位向量, ∴ b c +平分BAC ∠, ( λ=∴b c +),令c b a bc ++= λ B C D

初中数学三角形经典测试题及解析

初中数学三角形经典测试题及解析 一、选择题 1.如图,长方形ABCD沿AE折叠,使D点落在BC边上的F点处,∠BAF=600,那么∠DAE等于() A.45°B.30 °C.15°D.60° 【答案】C 【解析】 【分析】 先根据矩形的性质得到∠DAF=30°,再根据折叠的性质即可得到结果. 【详解】 解:∵ABCD是长方形, ∴∠BAD=90°, ∵∠BAF=60°, ∴∠DAF=30°, ∵长方形ABCD沿AE折叠, ∴△ADE≌△AFE, ∴∠DAE=∠EAF=1 2 ∠DAF=15°. 故选C. 【点睛】 图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量. 2.如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC的周长为() A.8cm B.10cm C.12cm D.14cm 【答案】B 【解析】 【分析】 根据“AAS”证明ΔABD≌ΔEBD .得到AD=DE,AB=BE,根据等腰直角三角形的边的关系,求

【详解】 ∵ BD 是∠ABC 的平分线, ∴ ∠ABD =∠EBD . 又∵ ∠A =∠DEB =90°,BD 是公共边, ∴ △ABD ≌△EBD (AAS), ∴ AD =ED ,AB =BE , ∴ △DEC 的周长是DE +EC +DC =AD +DC +EC =AC +EC =AB +EC =BE +EC =BC =10 cm. 故选B. 【点睛】 本题考查了等腰直角三角形的性质,角平分线的定义,全等三角形的判定与性质. 掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键. 3.下列长度的三根小木棒能构成三角形的是( ) A .2cm ,3cm ,5cm B .7cm ,4cm ,2cm C .3cm ,4cm ,8cm D .3cm ,3cm ,4cm 【答案】D 【解析】 【详解】 A .因为2+3=5,所以不能构成三角形,故A 错误; B .因为2+4<6,所以不能构成三角形,故B 错误; C .因为3+4<8,所以不能构成三角形,故C 错误; D .因为3+3>4,所以能构成三角形,故D 正确. 故选D . 4.如图,在ABC V 中,AB AC =,30A ∠=?,直线a b ∥,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 与点E ,若1145∠=?,则2∠的度数是( ) A .30° B .35° C .40° D .45° 【答案】C

立体几何中三角形的四心问题

立体几何中三角形的四心问题 一、外心问题(若PA=PB=PC,则O 为三角形ABC 的 外心) 例1.设P 是ΔABC 所在平面α外一点,若PA ,PB ,PC 与平面α所成的角都相等,那么P 在平面α内的射影是ΔABC 的( ) A.内心 B.外心 C.垂心 D.重心 如图所示,作PO ⊥平面α于O ,连OA 、OB 、OC ,那么∠PAO 、∠PBO 、∠PCO 分别是PA 、PB 、PC 与平面α所成的角,且已知它们都相等. ∴Rt ΔPAO ≌Rt ΔPBO ≌Rt ΔPCO. ∴OA =OB =OC ∴应选B. 例2. Rt △ABC 中,∠C =90°,BC =36,若平面ABC 外一点P 与平面A ,B ,C 三点等距离,且P 到平面ABC 的距离为80,M 为AC 的中点.(1)求证:PM ⊥AC ;(2)求P 到直线AC 的距离;(3)求PM 与平面ABC 所成角的正切值. 解析:点P 到△ABC 的三个顶点等距离,则P 在平面ABC 内的射影为△ABC 的外心,而△ABC 为直角三角形,其外心为斜边的中点. 证明 (1)∵PA =PC ,M 是AC 中点,∴PM ⊥AC 解 (2)∵BC =36,∴MH =18,又PH =80, ∴PM =8218802222=+=+MH PH ,即P 到直线AC 的距离为82; (3)∵PM=PB=PC ,∴P 在平面ABC 内的射线为△ABC 的外心, ∵∠C=90° ∴P 在平面ABC 内的射线为AB 的中点H 。 ∵PH ⊥平面ABC ,∴HM 为PM 在平面ABC 上的射影, 则∠PMH 为PM 与平面ABC 所成的角,∴tan ∠PMH =9 401880==MH PH 例3.斜三棱柱ABC —A 1B 1C 1的底面△ABC 中,AB=AC=10,BC=12,A 1到A 、B 、C 三点的距离都相等,且AA1=13,求斜三棱柱的侧面积。 解析:∵A 1A=A 1B=A 1C ∴ 点A 1在平面ABC 上的射影为△ABC 的外心,在∠BAC 平分线AD 上 ∵ AB=AC ∴ AD ⊥BC ∵ AD 为A 1A 在平面ABC 上的射影 ∴ BC ⊥AA 1 ∴ BC ⊥BB 1 ∴ BB 1C 1C 为矩形,S=BB 1×BC=156 取AB 中点E ,连A 1E ∵ A 1A=A 1B ∴ A 1E ⊥AB ∴ 12)2 AB (AA E A 2211=-= ∴ 1111120AA C C AA B B S S ==

向量与三角形四心的一些结论

【一些结论】:以下皆是向量 1 若P是△ABC的重心PA+PB+PC=0 2 若P是△ABC的垂心PA?PB=PB?PC=PA?PC(内积) 3 若P是△ABC的内心aPA+bPB+cPC=0(abc是三边) 4 若P是△ABC的外心|PA|2=|PB|2=|PC|2(AP就表示AP向量|AP|就是它的模) 5 AP=λ(AB/|AB|+AC/|AC|),λ∈[0,+∞) 则直线AP经过△ABC内心 6 AP=λ(AB/|AB|cosB+AC/|AC|cosC),λ∈[0,+∞) 经过垂心 7 AP=λ(AB/|AB|sinB+AC/|AC|sinC),λ∈[0,+∞)或AP=λ(AB+AC),λ∈[0,+ ∞) 经过重心 8.若aOA=bOB+cOC,则0为∠A的旁心,∠A及∠B,C的外角平分线的交点 【以下是一些结论的有关证明】 1.O是三角形内心的充要条件是aOA向量+bOB向量+cOC向量=0向量充分性:已知aOA向量+bOB向量+cOC向量=0向量,延长CO交AB于D,根据向量加法得:OA=OD+DA,OB=OD+DB,代入已知得:a(OD+DA)+b(OD+DB) +cOC=0,因为OD与OC共线,所以可设OD=kOC,上式可化为(ka+kb+c) OC+( aDA+bDB)=0向量,向量DA与DB共线,向量OC与向量DA、DB不共线,所以只能有:ka+kb+c=0,aDA+bDB=0向量,由aDA+bDB=0向量可知:DA与DB的长度之比为b/a,所以CD为∠ACB的平分线,同理可证其它的两条也是角平分线。必要性:已知O是三角形内心,设BO与AC相交于E,CO与

人教版初中数学三角形经典测试题含答案

人教版初中数学三角形经典测试题含答案 一、选择题 1.如图11-3-1,在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有() A.∠ADE=20°B.∠ADE=30°C.∠ADE=1 2 ∠ADC D.∠ADE= 1 3 ∠ADC 【答案】D 【解析】 【分析】 【详解】 设∠ADE=x,∠ADC=y,由题意可得, ∠ADE+∠AED+∠A=180°,∠A+∠B+∠C+∠ADC=360°,即x+60+∠A=180①,3∠A+y=360②, 由①×3-②可得3x-y=0, 所以 1 3 x y ,即∠ADE= 1 3 ∠ADC. 故答案选D. 考点:三角形的内角和定理;四边形内角和定理. 2.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=4,CD=5.把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()

A.13B.5C.22D.4 【答案】A 【解析】 试题分析:由题意易知:∠CAB=45°,∠ACD=30°. 若旋转角度为15°,则∠ACO=30°+15°=45°. ∴∠AOC=180°-∠ACO-∠CAO=90°. 在等腰Rt△ABC中,AB=4,则AO=OC=2. 在Rt△AOD1中,OD1=CD1-OC=3, 由勾股定理得:AD1=13. 故选A. 考点: 1.旋转;2.勾股定理. 3.如图,在△ABC中,AC=BC,D、E分别是AB、AC上一点,且AD=AE,连接DE并延长交BC的延长线于点F,若DF=BD,则∠A的度数为() A.30 B.36 C.45 D.72 【答案】B 【解析】 【分析】 由CA=CB,可以设∠A=∠B=x.想办法构建方程即可解决问题; 【详解】 解:∵CA=CB, ∴∠A=∠B,设∠A=∠B=x. ∵DF=DB, ∴∠B=∠F=x, ∵AD=AE, ∴∠ADE=∠AED=∠B+∠F=2x, ∴x+2x+2x=180°, ∴x=36°,

(完整版)平面向量与三角形四心问题.docx

平面向量基本定理与三角形四心 已知 O 是ABC 内的一点,BOC ,AOC , AOB 的面积分别为S A, S B, S C,求证:S A? OA S B? OB S C? OC 0 A 如图 2延长 OA 与 BC 边相交于点 D 则 O B C 图 1 BD S A BD S BOD S ABD S BOD S C DC S ACD S COD S ACD S COD S B OD DC OB BD OC BC BC A O S B OB S C OC S B S C S B S C B D C OD S BOD S COD S BOD S COD S A OA S BOA S COA S BOA S COA S B S C 图2 OD S A OA S B S C S A OA S B OB S C OC S C S B S B S C S B S C S A? OA S B? OB S C? OC 0 推论 O 是 ABC 内的一点,且 x?OA y?OB z?OC0 ,则S BOC: S COA: S AOB x : y : z

有此定理可得三角形四心向量式O 是ABC 的重心 S BOC: S COA: S O 是ABC 的内心 S BOC: S COA: S O 是ABC 的外心 S BOC: S COA: S AOB AOB AOB 1:1:1OA OB OC0 a : b : c a ?OA b ?OB c ?OC0 sin 2A :sin 2B : sin 2C sin 2A ? OA sin 2B ? OB sin 2C ?OC0 O 是ABC 的垂心 S BOC: S COA: S AOB tan A: tan B : tan C tan A ?OA tan B ? OB tan C ?OC0 C O A D B 证明:如图 O 为三角形的垂心, tan A CD , tan B CD tan A: tan B DB : AD AD DB S BOC: S COA DB : AD S BOC: S COA tan A : tan B 同理得 S COA: S AOB tan B : tan C , S BOC: S AOB tan A : tan C S BOC: S COA: S AOB tan A: tan B : tan C 奔驰定理是三角形四心向量式的完美统一

初中数学相似三角形的经典综合题

初中数学相似三角形的性质与应用经典试题 一、知识体系: 1.相似三角形的性质 ①相似三角形的对应角相等; ②相似三角形的对应边成比例; ③相似三角形对应边上的高之比,对应边上的中线之比,对应角的角平分线之比都等于相似比; ④相似三角形的周长之比等于相似比。 ⑤相似三角形的面积之比等于相似比的平方(2 k )。 二、典型例题: 例1:若△ABC∽△A′B′C′,且,, 3 4AB A B ,△ABC 的周长为15cm ,则△A′B′C′的周长为( ) A .18 B .20 C .154 D .80 3 针对练习: 1.已知△ABC∽△DEF,且△ABC 的三边长为3、4、5,若△DEF 的周长为6,那么下列不可能是△DEF 一边长的是( ) A .1.5 B .2 C .2.5 D .3 2.一直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x ,那么x 的值为( ) A .7 B .5 C .7或5 D .无数个 例2:(2014江苏南京,3)若△ABC ∽△A′B′C′,相似比为1:2,则△ABC 与△A′B′C′的面积的比为( ) A .1:2 B .2:1 C .1:4 D .4:1 针对练习: 1.两相似三角形的最短边分别是5cm 和3cm ,它们的面积之差为322 cm ,那么小三角形的面积为( ) A .102 cm B .142 cm C .162 cm D .182 cm 2.如图,DE ∥BC ,若AD =1,BD =2,则△ADE 与四边形DBCE 面积之比是 ▲ 。 3.如图,平行四边形ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,CD =2DE ,若△DEF 的面积为a ,则平行四边形ABCD 的面积为 ▲ (用a 的代数式表示)。 4.如图,在四边形ABCD 中,E 是AD 上的一点,EC ∥AB ,EB ∥DC ,若△ABE 的面积为3,△ECD 的面积为1,则△BCE 的面积为 ▲ 。

平面向量中的三角形中“四心问题”

专题分析 平面向量中的三角形“四心” 江苏省启东中学 张 杰 在三角形中,“四心”是一组特殊的点,它们的向量表达形式具有许多重要的性质,在近年高考试题中,总会出现一些新颖别致的问题,不仅考查了向量等知识点,而且培养了学生分析问题、解决问题的能力。现就“四心”作如下介绍: 一.“四心”的概念与性质 1.重心:三角形三条中线的交点叫重心。它到三角形顶点距离与该点到对边中点距离之比为2:1;在向量表达形式中,设点G 是ABC ?所在平面内的一点,则当点G 是ABC ?的重心时,有0=++GC GB GA 或)(31++=(其中P 为平面内任意一点);反之,若0=++GC GB GA ,则点G 是ABC ?的重心;在向量的坐标表示中,若G 、A 、 B 、 C 分别是三角形的重心和三个顶点,且分别为G ),(y x 、A ),(11y x 、B ),(22y x 、C ),(33y x ,则有3321x x x x ++=,3 321y y y y ++=。 2.垂心:三角形三条高线的交点叫垂心。它与顶点的连线垂直于对边;在向量表达形式中,若H 是ABC ?的垂心,则?=?=?,或 2 22222+=+=+,反之,若 ?=?=?,则H 是ABC ?的垂心。 3.内心:三角形三条内角平分线的交点叫内心。内心就是三角形内切圆的圆心,它到三角形三边的距离相等;在向量表达形式中,若点I 是ABC ?的内心,则有 0||||||=?+?+?IC AB IB CA IA BC 或||||||AB AC BC ++(其中P 为平面内 任意一点),反之,若||||||=?+?+?,则点I 是ABC ?的内心。 4.外心:三角形三条中垂线的交点叫外心。外心就是三角形外接圆的圆心,它到三角形的三个顶点的距离相等;在向量表达形式中,若点O 是ABC ?的外心,则

平面向量题型三三角形“四心”与向量结合

题型三 三角形“四心”与向量结合 (一)平面向量与三角形内心 1、O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足 +=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ?的( ) (A )外心(B )内心(C )重心(D )垂心 2、已知△ABC ,P 为三角形所在平面上的一点,且点P 满足:0a PA b PB c PC ?+?+?=,则P 是三角形的( ) A 外心 B 内心 C 重心 D 垂心 3、在三角形ABC 中,动点P 满足:CP AB CB CA ?-=22 2 ,则P 点轨迹一定通过△ABC 的: ( ) A 外心 B 内心 C 重心 D 垂心 (二)平面向量与三角形垂心 “垂心定理” H 是△ABC 所在平面内任一点,HA HC HC HB HB HA ?=?=??点H 是△ABC 的垂心. 证明:由⊥?=??=-???=?00)(, 同理AB HC ⊥,⊥.故H 是△ABC 的垂心. (反之亦然(证略)) 4、已知△ABC ,P 为三角形所在平面上的动点,且动点P 满足: 0PA PC PA PB PB PC ?+?+?=,则P 点为三角形的 ( ) A 外心 B 内心 C 重心 D 垂心 5、点O 是三角形ABC 所在平面内的一点,满足?=?=?,则 点O 是ABC ?的 ( ) (A )三个内角的角平分线的交点 (B )三条边的垂直平分线的交点 (C )三条中线的交点 (D )三条高的交点 6、在同一个平面上有ABC ?及一点O满足关系式: 2 O A +2 BC =2 OB +2 CA = 2 OC +2 AB ,则O为ABC ?的 ( ) A 外心 B 内心 C 重心 D 垂心 (三)平面向量与三角形重心 “重心定理” G 是△ABC 所在平面内一点,++=0?点G 是△ABC 的重心. 证明 图中GE GC GB =+

相关文档