文档库 最新最全的文档下载
当前位置:文档库 › 配位化学讲义 第七章 L配合物反应动力学

配位化学讲义 第七章 L配合物反应动力学

配位化学讲义 第七章 L配合物反应动力学
配位化学讲义 第七章 L配合物反应动力学

配位化学讲义第七章 L配合物反应动力学

第七章配合物反应动力学

研究范围:取代、氧化还原、异构化、加成与消除、配体上进行的反应

第一节:取代反应动力学

定义:配离子中一个配体被另一个自由配体取代的反应。

例:L5M-X+Y L5M-Y+X

一、取代的反应机理

1、离解机理(SN1机理)

a.L5M-X = L5M+Y(配位数下

降6 5)

b.L 5M+Y=L5M-Y

速率方程:d[L5M-Y]/dt = k[L5M-X]

速率与Y浓度无关,是对[L5M-X]的一级反应。

2、缔合机理(SN2机理)

a、L5M-X+Y = L5MXY(配位数升高6 7)

b、L5MXY = L5M-Y + X

d[L5M-Y]/dt = k[L5M-X][Y]

属于二级反应。

* SN1和SN2是两种极限情況。

二.活性与惰性配合物及理论解释

1、活性与惰性配合物

1)定义:配体可被快速取代的配合物,称为活性配合物;配体取代缓慢的配合物,称为惰性配合物

2)与热力学稳定常数的关系

活性与惰性是动力学上的概念,不可与稳定性混为一谈。

过渡态

Ea

反应物

H

产物

反应坐标

2、理论解释

1)价键理论

A、外轨型配合物是活性的(如sp3d2杂化配合物);

B、内轨型配合物,如(n-1)d轨

道中有空轨道,则是活性的,否则是惰性的。

d2sp3内轨型的配合物:

(n-1)d ns np

↑↓↑↓↑↓↑↓↑↓↑↓sp3d2外轨型配合物:

↑↓↑↓↑↓↑↓↑↓↑↓

ns np nd

解释:若按SN2机理反应,容易理解。

外轨型配合物:空nd 轨道与

sp3d2轨道能量接近。

内轨型配合物:

(1)若(n-1)d有空轨道;

(2)若无(n-1)d空轨道:

价键理论之不足之处:

a.只能作定性划分;

b.认为d8组态Ni2+八面体配合

物(外轨型)为活性,实验表明

为惰性;

c.无法解释Cr3+(d3)和Co3+

(d6)八面体配合物比Mn3+(d4)和Fe3+(d5)更为惰性的实验事

实。

2)晶体场理论

反应物过渡态

SN1 八面体-----四方锥(CN=5)

SN2 八面体-----五角双锥(CN=7)

晶体场活化能:

CFAE=CFSE(过渡态)—CFSE (反应物)

过渡态

CFSE(过渡态)

Ea

Ea'

反应物

CFSE(反应物)

产物

反应坐标

若CFAE≤0,活性;

CFAE >0,惰性。

由于CFAE与过渡态构型有关,因此可用来判定SN1还是SN2机理(数据见下页表格)。

晶体场活化能

(CFAE)(Dq)

强场(低自旋)弱场(高自旋)

d n

四方锥(SN1)五角双锥(SN2)四方锥(SN1)五角双锥(SN2)

d00 0 0 0

d1-0.57 - 1.28 - 0.57 - 1.28

d2-1.14 - 2.56 -1.14 - 2.56

d3 2.00 4.26 2.00 4.26

d4 1.43 2.98 -3.14 1.07

d50.86 1.70 0 0

d6 4.00 8.52 - 0.57 -1.28

d7-1.14 5.34 -1.14 - 2.56

d8 2.00 4.26 2.00 4.26

d9 -3.14 1.07 - 3.14 1.07

d100 0 0 0

A、d0、d1、d2、d10及弱场下的d5、d6、d7八面体配合物的CFAE≤0,是活性配合物。

B、d8构型八面体配合物的CFAE>0,应为惰性配合物。

C、强场下,CFAE的顺序为:d6>d3>d4>d5,实际情况符合这一顺序。

应指出,CFAE只是活化能中的一小部分。

三、八面体配合物的取代反应。

1、酸性水解

pH<3时:

[Co(NH3)5X]2+ + H2O = [Co(NH3)5(H2O)]3+ + X-

d[Co(NH3)5(H2O)]/dt=k A[Co(N H3)5X]

*[H2O]=55.5M

(1)发现[Co(NH3)5X]2+(X=Cl-、Br-、

NO3-)的酸性水解反应过渡焓保持

恒定。

过渡态

H T

反应物

产物

反应坐标

(2) 发现下列反应

[Co(LL)2Cl2]++ H2O = [Co(LL)2(H2O)Cl]2+ + Cl-

* LL=H2N-(CH2)n-NH2,(乙二胺、丙

二胺、丁二胺)的速率随(LL)体积增

大而增大,这支持SN1机理。

结论:八面体配合物的酸性水解大多为SN1机理,但SN2不能排除。

2、碱性水解

[Co(NH3)5Cl]2++ OH- = [Co(NH3)5OH]2+ + Cl-

d[Co(NH3)5(OH)]/dt = k B[Co(NH3)5Cl][OH]

由此可推测为SN2机理。

但发现,[Co(py)4Cl2]+碱性水解速率很小,且与OH-浓度无关。这与SN2机理矛盾。

于是提出下列SN1 CB(conjugate base)机理:

k1

[Co(NH3)5Cl]2++ OH- [Co(NH3)4(NH2)Cl]+ + H2O (快)

k-1

k2

[Co(NH3)4(NH2)Cl]+

[Co(NH3)4(NH2)]2+ + Cl-(慢)

[Co(NH3)4(NH2)]2++ H2O [Co(NH3)5OH]2+(快)

采用稳态近似:

d[Co(NH3)4(NH2)Cl]/dt =

k1[Co(NH3)5Cl][OH]

-k-1[Co(NH3)4(N H2)Cl][H2O]

-k2[Co(NH3)4(N H2)Cl]=0

[Co(NH3)4(NH2)Cl] = k1[Co(NH3)5Cl][OH]/(k-1[H2O]+k2)

反应速率:

d[Co(NH3)5(OH)]/dt = k2[Co(NH3)4(NH2)Cl]

=

k1k2[Co(NH3)5Cl][OH]/(k-1[H2O]+k2)

=

K[Co(NH3)5Cl][OH]

K=k1k2/(k-1[H2O]+k2)

速率控制步骤是原始配合物共轭碱的离解,因此称为SN1 CB机理。

四、平面正方形配合物的取代反应

1、反应动力学与机理

一般认为按SN2机理进行取代反应。

PtL3X + Y = PtL3Y + X

所观测速率方程为

d[PtL3Y]/dt = k Y[PtL3X][Y] + ks[PtL3X]

反应途径:

L3PtXY

L3PtY + X

+Y

k Y

-S

L3PtX

+S

k S -X +Y

L3PtXS

L3PtS L3PtYS

配合物取代反应速率(25℃)t1/2(min)

[PtCl4]2-+H2O=[PtCl3(H2O)]-+Cl-

300

cis-[Pt(NH3)2Cl2]+H2O=[Pt(NH3)2(H2O) Cl]++Cl-300

2、反位效应(trans effect)

1)定义:反位效应是指离去基团反位上的配体对它的取代反应速率的影响,属于动力学范畴。

对Pt2+配合物取代反应,反位效应次序如下:

CN—~ CO ~ C2H4 > H- ~ [SC(NH2)] ~ PR3 ~ SR2 > CH3- > C6H5- ~ NO2- ~ I- ~ SCN- > Br- > Cl- > 胺~ 氨> OH- > H2O

*尚未找到一个对一切金属配合物

通用的反位效应次序。

2)应用(制备配合物)

第二节配合物的氧化还原反应机理

内容:讨论两个配合物之间的氧化还原反应。

1、外界反应机理。

第七章配合物反应动力学

第七章配合物反应动力学 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

第七章配合物反应动力学 研究范围:取代、氧化还原、异构化、加成与消除、配体上进行的 反应 第一节配合物的反应类型 1、取代反应 [Cu(H2O>6]2+ + NH3 [Cu(NH3>4(H2O>2]2+ + H2Ob5E2RGbCAP [Mo(CO>6] + bipy [Mo(CO>4bipy] [Cr(H2O>6]3+ + Cl? [Cr(H2O>5Cl]2+ + H2O 2、氧化还原反应 [Os(bipy>3]2++ [Mo(CN>6]3?[Os(bipy>3]3+ + [Mo(CN>6]4?p1EanqFDPw 3、异构化反应 cis-[CoCl2(en>2]+ trans-[CoCl2(en>2]+ [Co(-ONO>(NH3>5]2+ [Co(-NO2>(NH3>5]2+ 4、加成和消除反应 [IrICl(CO>(PPh3>2] + H2 [IrIIIClH2(CO>(PPh3>2]DXDiTa9E3d [PtIICl2(NH3>2] + Cl2 [PtIVCl4(NH3>2] cis-[PtIVHCl2Me(PEt3>2] cis-[PtIICl2(PEt3>2] + CH4RTCrpUDGiT 5、配体的反应

第二节取代反应动力学 定义:配离子中一个配体被另一个自由配体取代的反应。 例:L5M-X+Y L5M-Y+X 一、取代的反应机理 1、SN1和SN2机理 <1)离解机理

第二章反应动力学基础.

2 反应动力学基础 2.1在一体积为4L 的恒容反应器中进行A 的水解反应,反应前 A 的含量为12.23%(重量),混合物的密度为1g/mL ,反应物A 的分子量为88。在等温常压 解:利用反应时间与组分A 的浓度变化数据,作出C A ~t 的关系曲线,用镜面法求得t=3.5h 时该点的切线,即为水解速率。 切线的斜率为 0.760.125/.6.1 α-==-mol l h 由(2.6)式可知反应物的水解速率为 0.125/.-==dC A r mol l h A dt 2.2在一管式反应器中常压300℃等温下进行甲烷化反应: 2423+→+CO H CH H O 催化剂体积为10ml ,原料气中CO 的含量为3%,其余为N 2,H 2气体,改变进口原料气流量Q 0解:是一个流动反应器,其反应速率式可用(2.7)式来表示 00000(1)(1)-= =-=-=-A A R A A A A A A A A dF r dV F F X Q C X dF Q C dX 故反应速率可表示为: 000 0(/)==A A A A A R R dX dX r Q C C dV d V Q 用X A ~V R /Q 0作图,过V R /Q 0=0.20min 的点作切线,即得该条件下的dX A /d(V R /Q 0)值α。 0.650.04 1.79 0.34 α-== 故CO 的转化速率为 40030.10130.03 6.3810/8.31410573--? ===???A A P C mol l RT

430 0 6.3810 1.79 1.1410/.min (/)--==??=?A A A R dX r C mol l d V Q 2.3已知在Fe-Mg 催化剂上水煤气变换反应的正反应动力学方程为: 20.850.4 /-=?w CO CO r k y y kmol kg h 式中y CO 和y CO2为一氧化碳及二氧化碳的瞬间摩尔分率,0.1MPa 压力及700K 时反应速率常数k W 等于0.0535kmol/kg.h 。如催化剂的比表面积为30m 2/g ,堆密度为1.13g/cm 3,试计算: (1) 以反应体积为基准的速率常数k V 。 (2) 以反应相界面积为基准的速率常数k g 。 (3) 以分压表示反应物系组成时的速率常数k g 。 (4) 以摩尔浓度表示反应物系组成时的速率常数k C 。 解:利用(2.10)式及(2.28)式可求得问题的解。注意题中所给比表面的单位换算成m 2/m 3。 33230.450.45 33 0.45(1) 1.13100.053560.46/.6(2) 1.7810/.3010 11(3)()()0.05350.15080.1013..()8.3110700(4)()(0.05350.333(0.1)ρρρρ-==??=-= = =???==?=??==?=v b w b b g w w v b n p w n c w k k kmol m h k k k kmol m h a kmol k k P kg h MPa m RT k k P km 0.45)().kmol ol kg h 2.4在等温下进行液相反应A+B →C+D ,在该条件下的反应速率方程为: 1.50.5 0.8/min =?A A B r C C mol l 若将A 和B 的初始浓度均为3mol/l 的原料混合进行反应,求反应4min 时A 的 转化率。 解:由题中条件知是个等容反应过程,且A 和B 的初始浓度均相等,即为1.5mol/l ,故可把反应速率式简化,得 1.50.5222 00.80.80.8(1)===-A A B A A A r C C C C X 由(2.6)式可知 00 (1)?? ???? --==-=A A A A A A d C X dC dX r C dt dt dt 代入速率方程式 22 00.8(1)=-A A A A dX C C X dt 化简整理得 00.8(1)=-A A A dX C dt X 积分得 00.81= -A A A X C t X 解得X A =82.76%。

第二章 化学反应动力学基础(答案)

第二章 反应动力学基础 一、填空题 1. 生成主产物的反应称为 主反应 ,其它的均为 副反应 。 2. 化学反应的总级数为n ,如用浓度表示的速率常数为C K ,用逸度表示的速率常数f K ,则C K =n f K 。 3. 化学反应的总级数为n ,如用浓度表示的速率常数为C K ,用气体摩尔分率表示的速率常数y K , 则C K = n p RT ???? ?? y K 。 4. 化学反应速率式为βαB A C A C C K r =-,用浓度表示的速率常数为C K ,假定符合理想气体状态方程,如用压力表示的速率常数P K ,则C K =____)()(βα+RT ___P K 。 5. 反应A + B → C ,已知115.0-=s k ,则反应级数n= 1 。 6. 反应3A → P ,已知s l mol k ?=/15.0,则反应级数n=___0____。 7. 活化能的大小直接反映了 反应速率 对温度的敏感程度。 8. 对于一非恒容均相化学反应B A B A αα?,反应组分A 的化学反应速率=-A r Vdt dn r A A -=- 。( V d t dn r A A -=-、 Vdt dn r B A -=-、dt dC r A A -=-、dt dC r B A -=-) 9. 气相反应A + B → 3P + S 进料时无惰性气体,A 与B 以1∶1摩尔比进料,则膨胀因子A δ=____2___。 10. 气相反应3A + B → P + S 进料时无惰性气体,A 与B 以2∶1摩尔比进料,则膨胀因子A δ=___-2/3____ 11. 在一间歇恒容反应器中进行如下平行反应12k k A P A S ??→??→,P 为目的产物,已知0A c 的单位为[]/mol L ,1k 的单位为1s -????,2k 的单位为[]/L mol s ?,活化能12E E >。则R A = )(221A A C k C k +- 。目的产物P 的瞬时选择性P S = 1212A A A k c k c k c + ,为了提高P S ,A c 要控制得较 低 ,T 要控制得较 高 。

化学反应动力学习题

化学动力学基础(习题课) 1. 某金属的同位素进行β放射,经14d(1d=1天后,同位素的活性降低6.85%。求此同位素的蜕变常数和半衰期;要分解 90.0%,需经多长时间? 解:设反应开始时物质的质量为100%,14d后剩余未分解者为100%-6.85%,则 代入半衰期公式得 一、是非题 下列各题中的叙述是否正确?正确的选“√”,错误的选“×”。 √× 1.反应速率系数k A与反应物A的浓度有关。 √× 2.反应级数不可能为负值。 √× 3.对二级反应来说,反应物转化同一百分数时,若反应物的初始浓度愈低,则所需时间愈短。 √× 4.对同一反应,活化能一定,则反应的起始温度愈低,反应的速率系数对温度的变化愈 敏感。 √× 5. Arrhenius活化能的定义是。

√× 6.若反应A?Y,对A为零级,则A的半衰期。 二、选择题 选择正确答案的编号: 某反应,A → Y,其速率系数k A=6.93min-1,则该反应物A的浓度从1.0mol×dm-3变到0.5 mol×dm-3所需时间是: (A)0.2min;(B)0.1min;(C)1min;(D)以上答案均不正确。 某反应,A → Y,如果反应物A的浓度减少一半,它的半衰期也缩短一半,则该反应的级数 为: (A)零级;(B)一级;(C)二级;(D)以上答案均不正确。 三、填空题 在以下各小题的“ 1.某化学反应经证明是一级反应,它的速率系数在298K时是k=( 2.303/3600)s-1,c0=1mol×dm-3。 (A)该反应初始速率u0为 (B)该反应的半衰期t1/2 (C)设反应进行了1h,在这一时刻反应速率u1为 2.只有一种反应物的二级反应的半衰期与反应的初始浓度的关系为 3.反应A → B+D中,反应物A初始浓度c A,0=1mol×dm-3,初速度u A,0=0.01mol×dm-3×s-1,假定该反 应为二级,则其速度常数k A为t1/2为。 4.某反应的速率系数k=4.62′10-2min-1,则反应的半衰期为 5.反应活化能E a=250kJ×mol-1,反应温度从300K升高到310K时,速率系数k增加

化学动力学基础(一、二)习题

化学动力学基础(一、二)习题

化学动力学基础(一、二)习题 一、选择题: 1、某反应的速率常数k=0.0462分-1,又知初始浓度为0.1mol.dm-3,则该反应的半衰期为: (A) 1/(6.93×10-2×0.12) (B) 15分(C) 30分(D) 1/(4.62×102×0.1)分 答案:(B) 2、某一级反应, 当反应物的浓度降为起始浓度的1%时,需要t1秒, 若将反应物的浓度提高一倍, 加快反应速率, 当反应物浓度降低为起始浓度的1%时, 需时为t2, 则: (A ) t1﹥t2(B) t1=t2 (C) t1﹤t2(D) 不能确定二者关系 答案:(B) 3、某反应物反应掉7/8所需的时间恰好是它反应掉1/2所需时间的3倍, 则该反应的级数是: (A) 零级(B) 一级反应(C) 三级反应(D) 二级反应 答案:(B )

4、反应A→B(Ⅰ);A→D(Ⅱ), 已知反应Ⅰ的活化能E1大于反应Ⅱ的活化能E2, 以下措施中哪一种不能改变获得B和D的比例: (A)提高反应温度(B) 降低反应温度 (C) 延长反应时间(D) 加入适当的催化剂 答案:C 5、由基元步骤构成的复杂反应:2A→2B+C A+C→2D,以C物质的浓度变化表示反应速率的速率方程(已知:-dC A/dt=K A1C A2-K A2C B2C c+K A3C A C C ) 则 (A)dC c/dt=K A1C A2-K A2C B2C c+K A3C A C C (B)dC c/dt=1/2K A1C A2-1/2K A2C B2C c+1/2K A3C A C C (C)dC c/dt=2K A1C A2-2K A2C B2C c+2K A3C A C C (D)dC D/dt=-K A3C A C C 答案:(B) 6、反应Ⅰ, 反应物初始浓度C0’, 半衰期t1/2’, 速率常数K1, 反应Ⅱ, 反应物初始浓度C0”, 半衰期t1/2”, 速率常数K2,

反应动力学资料

几种废水的湿式氧化动力学参数 沸水种类氧化剂动力学参数 (kJ/mol)温度/K 氧压力/MPa 浓度 /gL-1 造纸黑液O 2 Ea=54.5-50.1, m=1,n=0 433-463 1.5-2.2 1.5 乙酸空气Ea=100.5, m=0,n=0.65 448-473 5-13 5-20 苯酚O 2 Ea=547-44, m=1,n=0 448-483 0.4 0-0.78 乙酸空气Ea=100, m=0.5,n=0.5 373-473 0.5-2 4.8-6. 6 丁酸O 2 Ea=59, m=0.35,n=0.68 453-493 0.69-1.4 5.01 煤气化废水O 2 Ea=47.9, m=0,n=0.25 463-523 0.98-3.4 23 甲醛废水H 2O 2 Ea=53, m=1.30,n=0.17 433-473 - 1.36 乳化液废水O 2 Ea=47.8, m=1.98,n=0.31 433-513 (0.5-1.5)P O2 5.1 化学反应动力学是研究化学反应速率和反应机理的学科。它的基本任务是研究反应的速率及各种因素对反应速率的影响;探讨反应的机理,即反应物分子经历了怎样的具体途径,才变成产物分子的。 化学分应动力学的发展 1.19世纪60年代,古德堡和瓦格提出浓度对反应速率的影响规律 2.1889年,阿仑尼乌斯提出温度对反应速率的影响规律; 3.1916 –1918年,路易斯提出简单碰撞理论; 4.1930 –1935年,艾琳、鲍兰义提出活化络合物理论; 5.20世纪60年代,反应速率理论进入分子水平,发展成为微观反应动力学; 化学反应的反应速率及速率方程:速率方程又称为动力学方程表示一个化学反应的反应速率与浓度等参数间的关系式称为微分式;表示浓度与时间等参数间的关系式,称为积分式。反应速率被定义为若某反应的计量方程: 反应速率=反应量/{(反应时间)(反应区)} 反应速率的单位取决于反应量、反应区和反应时间的单位。均相液相反应过程的反应区是液相反应体积,反应速率单位往往以kmol/(m3?h)表示。 反应速率的测定 1.化学方法:用化学分析或仪器分析法来测定不同时刻反应物或产物的浓度。 2.物理方法:测量与某种反应组分浓度呈单值关系的一些物理量随时间的变化,然后折算成不

配合物的反应动力学

第五章配合物的反应动力学 化学反应动力学研究的内容包括反应速率和反应机理。研究配合反应动力学主要有两个目的:一是为了把具有实用意义的化学反应最大效率地投入生产,必须研究这一反应所遵循的动力学方程和反应机理,从而获得必要的认识,以利于设计工艺设备和流程。二是希望通过化学反应动力学的研究,寻找化学变化时从作用物到产物过程中所发生的各步反应模式,在广泛实验基础上概括化学微观变化时所服从的客观规律性。 化学反应可能以各种不同的速率发生,有些反应慢得无法测定其变化,而另有一些反应则又太快,是人们难以测量其速率。根据不同的反应速率,可选用不同的实验技术来研究。适合于一般反应的实验方法有:直接化学分析法,分光光度法,点化学方法或同位素示踪法。五十年代以来,应用快速放映动力学的测定方法来研究配合物,大大扩充了配合物动力学的研究领域,目前已发展了二十多种快速实验技术,如横流法、淬火法、核磁共振和弛豫法等等。其中有些方法可以测量半衰期达到10-10秒的速度,接近于分子的扩散速度。 在化学反应中,通常发生旧的化学键的断裂核心的化学键的形成,因而从反应物到生成物的过程中,通常要发生反应物分子的靠近,分子间碰撞,原子改变位置,电子转移直到生成新的化合物,这种历程的完整说明叫做反应机理。反应机理是在广泛的实验基础上概括出的化学反应微观变化时所服从的客观规律性。它不是一成不变的,当新的信息被揭露或当新的概念在新科学领域得到发展的时候,反应机理也会随之变化。研究反应机理可以采用许多手段,如反应速率方程、活化热力学参数、同位素示踪法等。 有关配合物反应的类型很多,有配合物中金属离子的氧化还原反应、取代反应,配合物中配体得宠排(消旋化作用和异构化作用)以及配体所进行的各种反应、配位催化等。本章主要介绍配合物取代反应和盐化还原反应的动力学特性。 第一节配合物的取代反应 取代反应是配合物中金属-配体键的断裂和代之以新的金属-配体键的生成的一种反应。这种反应在配位化学中是极为普遍和重要的,是制备许多配合物的一个重要方法。对于不同配位数的配合物发生取代反应的情况也不完全相同。配位数为4和6的配合物取代反应研究得比较充分,在讨论具体取代反应前,先介绍几个有关的名词。 一、取代反应中的几个名词的说明 1.活化配合物和中间化合物 过渡态理论认为,反应物与一个设想的所谓活化配合物之间达到平衡,而这一活化配合物在整个反应中以同样的反应速率常数分解成产品,形成活化配合物所需的总能量是活化能。从反应物到产物所经过的能量最高点称过渡态。而活化配合物和过渡态是有区别的,过渡态是一个能态,活化配合物是设想在这一能态下存在的一个化合物。另外,有一些反应,从反应物到产物之间会生成一种中间化合物。如图5-1所示。 从反应物到产物之间生成了一个中间化合物,它是客观存在的一个化合物,在许多反应体系中能把它分离出来,或采用间接方法推断出来。 2.活化配合物和惰性配合物 配合物的取代反应速率差别很大,快的反应瞬间完成,慢的反应要几天,甚至几个月,所以在动力学上,将一个配离子中的某一配体能迅速被另一配体所取代的配合物称为活性配合物,而如果配体发生取代反应的速率很慢称为惰性配合物。但活性配合物和惰性配合物之间也没有明显的分界线,需要用一个标准来衡量。目前国际上采用H.Taube所建议的标准:即在反应温度为25℃,各反应物浓度均为0.1mol·L-1的条

化学反应动力学基础-学生整理版

5202 反应 2O 3→ 3O 2的速率方程为 - d[O 3]/d t = k [O 3]2[O 2]-1 , 或者 d[O 2]/d t = k '[O 3]2[O 2]-1,则速率常数 k 和 k ' 的关系是: ( ) (A) 2k = 3k ' (B) k = k ' (C) 3k = 2k ' (D) -k /2 = k '/3 5203 气相反应 A + 2B ─→ 2C ,A 和 B 的初始压力分别为 p A 和 p B ,反应开始时 并无 C ,若 p 为体系的总压力,当时间为 t 时,A 的分压为: ( ) (A) p A - p B (B) p - 2p A (C) p - p B (D) 2(p - p A ) - p B 5204 对于反应 2NO 2= 2NO + O 2,当选用不同的反应物和产物来表示反应速率时,其相互关系为:( ) (A) -2d[NO 2]/d t = 2d[NO]/d t = d[O 2]/d t (B) - d[NO 2]/2d t = d[NO]/2d t = d[O 2]/d t = d ξ /d t (C) - d[NO 2]/d t = d[NO]/d t = d[O 2]/d t (D) - d[NO 2]/2d t = d[NO]/2d t = d[O 2]/d t = 1/V d ξ /d t 5207 气相基元反应 2A k 1 B 在一恒容的容器中进行,p 0为 A 的初始压力, p t 为时间 t 时反应 体系总压,此反应速率方程 d p t / d t = 。 - k (2p t - p 0)2 5208 有一反应 mA → nB 是一简单反应,其动力学方程为 -d c A / d t = kc A m , c A 的单位为 mol ·dm -3, 时间单位为 s ,则: (1) k 的单位为 ___________ mol 1- m ·dm 3( m -1)·s -1 (2) 以d c B /d t 表达的反应速率方程和题中给的速率方程关系为 B A A A 1d 1d 'd d m m c c k c k c n t m t m =-== 5209 反应 2N 2O 5─→ 4NO 2+ O 2 在328 K 时,O 2(g)的生成速率为0.75×10-4 mol ·dm -3·s -1。 如 其间任一中间物浓度极低, 难以测出, 则该反应的总包反应速率为 _______________mol ·dm -3·s -1, N 2O 5 之消耗速率为__________ mol ·dm -3·s -1,NO 2之生成速率为_______________mol ·dm -3·s -1 。0.75×10-4, 1.50×10-4, 3.00×10-4 5210 O 3分解反应为 2O 3─→3O 2 ,在一定温度下, 2.0 dm 3容器中反应。实验测出O 3每秒消耗1.50× 10-2 mol, 则反应速率为_______________mol ·dm -3·s -1氧的生成速率为_______________mol ·dm -3·s -1, d ξ /d t 为_______________ 0.75×10-2, 2.25×10-2, 1.50×10-2.。 5211 2A +B =2C 已知反应某一瞬间, r A =12.72 mol ·dm -3·h -1, 则 r B = , r C =_____________r B =6.36 mol ·dm -3·h -1, r C =12.72mol ·dm -3·h -1 5212分别用反应物和生成物表示反应A +3B =2C 的反应速率, 并写出它们间关系为: 。 r A =13r B =12 r C 5222 有关基元反应的描述在下列诸说法中哪一个是不正确的: ( ) (A) 基元反应的级数一定是整数 (B) 基元反应是“态-态”反应的统计平均结果 (C) 基元反应进行时无中间产物,一步完成 (D) 基元反应不一定符合质量作用定律 5223 400 K 时,某气相反应的速率常数k p = 10-3(kPa)-1·s -1,如速率常数用 k C 表示,则 k C 应为: (A) 3.326 (mol ·dm -3)-1·s -1 k C = k p (RT ) (B) 3.0×10-4 (mol ·dm -3)-1·s -1 (C) 3326 (mol ·dm -3)-1·s -1 (D) 3.0×10-7 (mol ·dm -3)-1·s -1 5224 如果反应 2A + B = 2D 的速率可表示为:

动力学基础资料解析

1.2.2 化学动力学方程 定量描述反应速率与影响反应速率因素之间的关系式称为化学动力学方程。影响反应速率的因素有反应温度、组成、压力、溶剂的性质、催化剂的性质等。然而对于绝大多数的反应,影响的最主要因素是反应物的浓度和反应温度。因而化学动力学方程一般都可以写成: ),(T c f r i =± (1-12) 式中 i r ——组分i 的反应速率,)./(3h m kmol ; c ——反应物料的浓度向量,3/m kmol ; T ——反应温度,K 。 式(1-12)表示反应速率与温度及浓度的关系,称为化学反应动力学表达式,或称化学动力学方程。对一个由几个组分组成的反应系统,其反应速率与各个组分的浓度都有关系。当然,各个反应组分的浓度并不都是相互独立的,它们受化学计量方程和物料衡算关系的约束。 在恒温条件下,化学动力学方程可写成: ),,( B A i c c kf r =± (1-13) 式中 ,,B A c c ——A 、B 、…组分的浓度,3/m kmol ; k ——反应速率常数,].)/[(131h m kmol n n --; 在非恒温时,化学动力学方程可写成: ),,()(' B A i c c f T f r =± (1-14) 式中)('T f k =,其值与组分的浓度无关。反应速率常数是温度的函数,其关系式可用阿累尼乌斯(Arrhenius)方程表示: )exp(0RT E A k -= (1-15) 式中:0A ——指前因子,也称频率因子,].)/[(131h m kmol n n --; E ——反应活化能,kmol kJ /; R ——气体通用常数,[)/(314.8K kmol kJ R ?=]; 各组分浓度对反应速率的影响表示为),,( B A c c f ,具体表示形式由实验确

最新2反应动力学基础汇总

2反应动力学基础

2 反应动力学基础 2.1在一体积为4L 的恒容反应器中进行A 的水解反应,反应前 A 的含量为12.23%(重量),混合物的密度为1g/mL ,反应物A 的分子量为88。在等温常压下不断取样分析,测的组分A 的浓度随时 试求反应时间为3.5h 的A 的水解速率。 解:利用反应时间与组分A 的浓度变化数据,作出C A ~t 的关系曲线,用镜面法求得t=3.5h 时该点的切线,即为水解速率。 切线的斜率为 0.760.125/.6.1α-==-mol l h 由(2.6)式可知反应物的水解速率为 0.125/.-= =dC A r mol l h A dt 2.2在一管式反应器中常压300℃等温下进行甲烷化反应: 2423+→+CO H CH H O 催化剂体积为10ml ,原料气中CO 的含量为3%,其余为N 2,H 2气体,0进行实验,测得出口CO 的转化率为: 试求当进口原料气体流量为50ml/min 时CO 的转化速率。 解:是一个流动反应器,其反应速率式可用(2.7)式来表示 00000(1)(1) -= =-=-=-A A R A A A A A A A A dF r dV F F X Q C X dF Q C dX 故反应速率可表示为: 000 0(/)==A A A A A R R dX dX r Q C C dV d V Q 用X A ~V R /Q 0作图,过V R /Q 0=0.20min 的点作切线,即得该条件下的dX A /d(V R /Q 0)值α。

0.650.04 1.79 0.34α-== 故CO 的转化速率为 40030.10130.03 6.3810/8.31410573--? ===???A A P C mol l RT 4300 6.3810 1.79 1.1410/.min (/)--==??=?A A A R dX r C mol l d V Q 2.3已知在Fe-Mg 催化剂上水煤气变换反应的正反应动力学方程为: 20.850.4 /-=?w CO CO r k y y kmol kg h 式中y CO 和y CO2为一氧化碳及二氧化碳的瞬间摩尔分率,0.1MPa 压力及700K 时反应速率常数k W 等于0.0535kmol/kg.h 。如催化剂的比表面积为30m 2/g ,堆密度为1.13g/cm 3,试计算: (1) (1) 以反应体积为基准的速率常数k V 。 (2) (2) 以反应相界面积为基准的速率常数k g 。 (3) (3) 以分压表示反应物系组成时的速率常数k g 。 (4) (4) 以摩尔浓度表示反应物系组成时的速率常数 k C 。 解:利用(2.10)式及(2.28)式可求得问题的解。注意题中所给比表面的单位换算成m 2/m 3。 3323 0.450.45 33 0.45(1) 1.13100.053560.46/.6(2) 1.7810/.3010 11(3)()()0.05350.1508 0.1013..()8.3110700(4)()(0.05350.333(0.1)ρρρρ-==??=-= = =???==?=??==?=v b w b b g w w v b n p w n c w k k kmol m h k k k kmol m h a kmol k k P kg h MPa m RT k k P km 0.45)().kmol ol kg h 2.4在等温下进行液相反应A+B →C+D ,在该条件下的反应速率方程为: 1.50.5 0.8/min =?A A B r C C mol l 若将A 和B 的初始浓度均为3mol/l 的原料混合进行反应,求反应4min 时A 的转化率。

化学反应动力学基础(一)-学生

5202 反应 2O 3→ 3O 2的速率方程为 - d[O 3]/d t = k [O 3]2[O 2]-1 , 或者 d[O 2]/d t = k '[O 3]2[O 2]-1,则速率常数 k 和 k ' 的关系是: ( ) (A) 2k = 3k ' (B) k = k ' (C) 3k = 2k ' (D) -k /2 = k '/3 5203 气相反应 A + 2B ─→ 2C ,A 和 B 的初始压力分别为 p A 和 p B ,反应开始时 并无 C ,若 p 为体系的总压力,当时间为 t 时,A 的分压为: ( ) (A) p A - p B (B) p - 2p A (C) p - p B (D) 2(p - p A ) - p B 5204 对于反应 2NO 2= 2NO + O 2,当选用不同的反应物和产物来表示反应速率时,其相互关系为:( ) (A) -2d[NO 2]/d t = 2d[NO]/d t = d[O 2]/d t (B) - d[NO 2]/2d t = d[NO]/2d t = d[O 2]/d t = d ξ /d t (C) - d[NO 2]/d t = d[NO]/d t = d[O 2]/d t (D) - d[NO 2]/2d t = d[NO]/2d t = d[O 2]/d t = 1/V d ξ /d t 5207 气相基元反应 2A k 1 B 在一恒容的容器中进行,p 0为 A 的初始压力, p t 为时间 t 时反应 体系总压,此反应速率方程 d p t / d t = 。 - k (2p t - p 0)2 5208 有一反应 mA → nB 是一简单反应,其动力学方程为 -d c A / d t = kc A m , c A 的单位为 mol ·dm -3, 时间单位为 s ,则: (1) k 的单位为 ___________ mol 1- m ·dm 3( m -1)·s -1 (2) 以d c B /d t 表达的反应速率方程和题中给的速率方程关系为 B A A A 1d 1d 'd d m m c c k c k c n t m t m =-== 5209 反应 2N 2O 5─→ 4NO 2+ O 2 在328 K 时,O 2(g)的生成速率为0.75×10-4 mol ·dm -3·s -1。 如其间任一中间物浓度极低, 难以测出, 则该反应的总包反应速率为 _______________mol ·dm -3·s -1, N 2O 5之消耗速率为__________ mol ·dm -3·s -1,NO 2之生成速率为_______________mol ·dm -3·s -1 。0.75×10-4, 1.50×10-4, 3.00×10-4 5210 O 3分解反应为 2O 3─→3O 2 ,在一定温度下, 2.0 dm 3容器中反应。实验测出O 3每秒消耗1.50×10-2 mol, 则反应速率为_______________mol ·dm -3·s -1氧的生成速率为_______________mol ·dm -3·s -1, d ξ /d t 为_______________ 0.75×10-2, 2.25×10-2, 1.50×10-2.。 5211 2A +B =2C 已知反应某一瞬间, r A =12.72 mol ·dm -3·h -1, 则 r B = , r C =_____________r B =6.36 mol ·dm -3·h -1, r C =12.72mol ·dm -3·h -1 5212分别用反应物和生成物表示反应A +3B =2C 的反应速率, 并写出它们间关系为: 。r A = 13r B =1 2 r C 5222 有关基元反应的描述在下列诸说法中哪一个是不正确的: ( ) (A) 基元反应的级数一定是整数 (B) 基元反应是“态-态”反应的统计平均结果 (C) 基元反应进行时无中间产物,一步完成 (D) 基元反应不一定符合质量作用定律 5223 400 K 时,某气相反应的速率常数k p = 10-3(kPa)-1·s -1,如速率常数用 k C 表示,则 k C 应为: (A) 3.326 (mol ·dm -3)-1·s -1 k C = k p (RT ) (B) 3.0×10-4 (mol ·dm -3)-1·s -1 (C) 3326 (mol ·dm -3)-1·s -1 (D) 3.0×10-7 (mol ·dm -3)-1·s -1 5224 如果反应 2A + B = 2D 的速率可表示为:

第二章 均相反应动力学基础

§2 均相反应的动力学基础 §2.1 基本概念和术语 若参于反应的各物质均处同一个相内进行化学反应则称为均相反应。 均相反应动力学:研究各种因素如温度、催化剂、反应物组成和压力等对反应速率、反应产物分布的影响,并确定表达这些影响因素与反应速率之间定量关系的速率方程。 §2.1.1 化学计量方程 化学计量方程:表示各反应物、生成物在反应过程中量的变化关系的方程。 一个由S 个组分参予的反应体系,其计量方程可写成: ∑==S i i i A 1 0α 式中:Ai 表示i 组分,i α为i 组分的计量系数。通常反应物的计量系数为负数,反应产物的计量系数为正值。 注意: 1.计量方程本身与反应的实际历程无关,仅表示由于反应引起的各个参予反应的物质之间量的变化关系。 2.规定在计量方程的计量系数之间不应含有除1以外的任何公因子。这是为了消除计量系数在数值上的不确定性。 单一反应:只用一个计量方程即可唯一给出各反应组分之间量的变化关系的反应体系。 复杂反应:必须用两个或多个计量方程方能确定各反应组分之间量的变化关系的反应体系 例如,合成氨反应的计量方程通常写成:32223NH H N ?+ 写成一般化的形式为:023322=+--NH H N 而错误的形式有:0462322=+--NH H N

§2.1.2 反应程度和转化率 反应程度是各组分在反应前后的摩尔数变化与其计量系数的比值,用符号ξ来表示,即: k k k i i i n n n n n n αααξ0 1 10 1-= -= =-= 或写成: i i i i n n ξα=-0 1.不论哪一个组分,其反应程度均是一致的,且恒为正值。 2.如果在一个反应体系中同时进行数个反应,各个反应各自有自己的反应程度,则任一反应组分i 的反应量应等于各个反应所作贡献的代数和,即: ∑==-M j j ij i i n n 1 0ξα 其中:M 为化学反应数,ij α为第j 个反应中组分I 的化学计量系数。 转化率是指某一反应物转化的百分率或分率,其定义为: 0k k k n n n x -= = 该反应物的起始量某一反应物的转化量 1.如果反应物不只一种,根据不同反应物计算所得的转化率数值可能 是不一样的,但它们反映的都是同一个客观事实。 关键组分:通常选择不过量的反应物(常常也是反应物中价值较高的组分)来计算转化率,这样的组分称为关键(着眼)给分。 2.单程转化率和全程转化率:某些反应系统原料通过反应器膈的转化率很低(化学平衡的限制或其它的原因),为了提高原料利用率以降低产品成本,往往将反应器出口物料中的反应产物分离出来,余下的物料再送回反应器入口,与新鲜原料一起进入反应器再反应,然后再分离、再循环等等。有两种含义不同的转化率,新鲜原料通过反应器一次所达到的转化率,叫单程转化率,可以理解为以反应器进口物料为基准的转化率;新鲜原料进入反应系统起到离开系统为止所达到的转化率,称为全程转化率,或者说是以新鲜原料为计算的转化率。

第二章均相反应动力学试题(带答案)

第二章 均相反应动力学 1. 均相反应是指___________________________________。(参与反应的物质均处于同一相) 2. a A + b B p P + sS 对于反应,则=P r _______)(A r -。(a p ) 3.着眼反应组分K 的转化率的定义式为_______。(0 0K K K K n n n -= χ ) 4.当计量方程中计量系数的代数和等于零时,这种反应称为_______,否则称为_______。(等 分子反应、非等分子反应) 5. 化学反应速率式为βα B A C A C C K r =- ,用浓度表示的速率常数为C K ,假定符合理想气体状 态方程,如用压力表示的速率常数P K ,则C K =_______P K 。( ) () (βα+RT ) 6. 化学反应的总级数为n ,如用浓度表示的速率常数为C K ,用逸度表示的速率常数f K ,则C K =_______ f K 。(n RT )() 7. 化学反应的总级数为n ,如用浓度表示的速率常数为C K ,用气体摩尔分率表示的速率常 数y K ,则C K =_______y K 。( n p RT ???? ??) 8.在构成反应机理的诸个基元反应中,如果有一个基元反应的速率较之其他基元反应慢得 多,他的反应速率即代表整个反应的速率,其他基元反应可视为处于_______。(拟平衡常态) 9.当构成反应机理的诸个基元反应的速率具有相同的数量级时,既不存在速率控制步骤时,可假定所有各步基元反应都处于_______。(拟定常态) 10. 活化能的大小直接反映了______________对温度的敏感程度。(反应速率) 11. 一个可逆的均相化学反应,如果正、逆两向反应级数为未知时,采用______________法来求反应级数。(初始速率法) 12.生成主产物的反应称为_______,其它的均为_______。(主反应、副反应) 13. 平行反应 A P (主) S (副) 均为一级不可逆反应,若主E >副E ,选择性S p 与_______无关, 仅是_______的函数。 (浓度、温度) 14. 如果平行反应A P (主) S (副) 均为一级不可逆反应,若主E >副E ,提高选择性P S 应 _______。(提高温度) 15. 一级连串反应A S P 在全混流釜式反应器中,则目的产物P 的最大浓 度= max ,P C ______、 = opt τ ______。(2 2 /112 0] 1) /[(+K K C A 、 2 11 K K )

均相反应动力学基础

第二章 均相反应的动力学基础 2.1 基本概念与术语 均相反应:是指在均一的液相或气相中进行的反应。 均相反应动力学是研究各种因素如温度、催化剂、反应物组成和压力等对反应速率反应产物分布的影响,并确定表达这些因素与反应速率间定量关系的速率方程。 2.1-1 化学计量方程 它是表示各反应物、生成物在反应过程的变化关系的方程。如 N 2+3H 2===2NH 3 一般形式为: 2NH 3- N 2-3H 2== 0 有S 个组分参与反应,计量方程: 02211=+++S S A A A ααα 或 ∑==S i i i A 1 α 式中: A i 表示i 组分 αi 为 i 组分的计量系数 反应物αi 为负数,产物为正值。 注意: 1. 化学计量方程仅是表示由于反应而引起的各个参与反应的物质之间量的变化关系,计量方程本身与反应的实际历程无关。 2. 乘以一非零的系数λ i 后,可得一个计量系数不同的新的计量方程: ∑==S i i i i A 1 αλ 3. 只用一个计量方程即可唯一的给出各反应组分之间的变化关系的 反应体系——单一反应;必须用两个(或多个)计量方程方能确定各反应组分在反应时量的变化关系的反应,成为复合反应。 CO+2H 2=CH 3OH CO+ 3H 2=CH 4+ H 2O 2.1-2 化学反应速率的定义 化学反应速率是以单位时间,单位反应容积内着眼(或称关键)组分K 的物质量摩尔数变化来定义K 组分的反应速率。 R S B A R S B A αααα+=+ ))((单位时间单位体积的摩尔数) (由于反应而消耗的A Vdt dn r A A =- =- dt dn V r A A 1- =- dt dn V r B B 1-=- dt dn V r S S 1= dt dn V r R R 1=

第五章 配合物反应动力学

第五章配合物反应动力学 研究范围:取代、氧化还原、异构化、加成与消除、配体上进行的反应 本章只讲述:取代反应和氧化还原反应 第一节:取代反应动力学 例:L5M-X+Y L5M-Y+X 一、取代的反应机理 1、离解机理(SN1机理,D) 慢 a.L5M-X = L5M+ X(配位数下降6 5) b.L5M+Y=L5M-Y 速率方程:d[L5M-Y]/dt = k[L5M-X] 速率与Y的浓度无关,是对[L5M-X]的一级反应 2、缔合机理(SN2机理,A) 慢 a、L5M-X+Y = L5MXY(配位数升高6 7) b、L5MXY = L5M-Y + X 反应速率:d[L5M-Y]/dt = k[L5M-X][Y] 动力学上属于二级反应。 * SN1和SN2是两种极限情況,大多数反应都是按照这两种极限情况的中间机理进行的。 3、交换机理(I) 离解机理是旧键断裂,缔合机理是新键形成,前者是先破后立,后者是先立后破,在实际的取代反应中旧键的断裂与新键的形成是同时发生的。取代反应最可能进行的方式是:取代的配体接近的同时,被取代的配体逐渐离去,即配合物发生取代反应时配位数没有变化,新键的生成和旧键断裂同时进行,彼此相互影响,这种机理称交换机理或称I机理。 I机理又可进一步分为I a和I d机理: I d机理是取代反应中离去配体的影响大于进入配体的影响。 I a机理是取代反应中进入配体的影响大于离去配体的影响。

D ML n X + Y ML n + X +Y ML n Y + X (1) (3) X (7) I ML n ML n X …… Y (4) Y ML n Y …… X (2) A X (6) MLn (5) Y D 机理:途径(1)→(3)→(7) A 机理:途径(1)→(2)→(5)→(6)→(7) I 机理:途径(1)→(2)→(4)→(6)→(7) 二、活性与惰性配合物及取代机理的理论解释 配离子发生配位体交换反应的能力, 是用动力学稳定性的概念来描述的, 配体交换反应进行得很快的配合物称为活性的配合物, 而那些交换反应进行得很慢或实际上观察不到交换的配合物则称为惰性配合物。 事实上, 这两类配合物之间并不存在明显的界限。 1、活性与惰性配合物 1)定义:配体可被快速取代的配合物,称为活性配合物;配体取代缓慢的配合物,称为惰性配合物 0.1M )在25℃时反应,t 1/2>1min ,称为惰性配合物;t 1/2<1min ,称为活性配合物。 2)与热力学稳定常数的关系 活性与惰性是动力学上的概念,不可与稳定性混为一谈。 惰性配合物也可能是热力学不稳定的配合物。 如:[Co(NH 3)6]3+,在室温的酸性水溶液中为一惰性配合物,H 2O 取代NH 3需几周时间,但 [Co(NH 3)6]3+ +6H 3O +=[Co(H 2O)6]3++6NH 4+ 反应平衡常数K=1025, 极不稳定。

相关文档