文档库 最新最全的文档下载
当前位置:文档库 › 数值分析课程设计实验报告

数值分析课程设计实验报告

数值分析课程设计实验报告
数值分析课程设计实验报告

数值分析课程设计实验报告

班级:软件111

姓名:吴明洲

学号:2011122590

一、计算水塔的水流量

1、将所给的数据中的时刻输入到表格中,如下图所示:

2、计算出每两个相邻的时刻之间的时间差(表格列B(n)= A(1)- A(n)),然后除以2(表格列C(n)(n)/2)得到相邻两个时刻的中间时刻:

3、将原始数据中的水位数据输入到该表格中:

然后求出各个时间段内用水的体积(表格列F(n)(1)(n)):

5、求中间时刻的用水率,即求该时间段(时刻差)内的平均用水量(表格列G(n)(n)(n)):

6、将中间时刻和中间时刻的用水率复制到另一张表中,以便处理(这时共产生22组数据):

到这里所有的数据处理已经结束。接下来是研究数据所包含的规律,根据数据提出适当的数学模型,拟合一条光滑的连续的曲线。

7、在中有拟合曲线的工具,所以我先用中的工具对这组数据进行了拟合

*画出散点图:

*确定横纵坐标的意义:

*形成散点图:

*通过添加趋势线,来拟合光滑曲线:

*得到拟合的函数曲线,以及表达式

在中就可以很方便的拟合出比较符合要求的曲线,并且可以得到函数表达式。

然后开始尝试利用编程解决这个问题,也就是说用编程的方法得到相同的函数表达式!

最小二乘法通常用于曲线拟合,所谓拟合是指已知某函数的若干离散函数值{f12,…},通过调整该函数中若干待定系数f(λ1, λ2,…,λ3), 使得该函数与已知点集的差别(最小二乘意义)最小。如果待定函数是线性,就叫线性拟合或者线性回归(主要在统计中),否则叫作非线性拟合或者非线性回归。表达式也可以是分段函数,这种情况下叫作样条拟合。

而插值是指已知某函数的在若干离散点上的函数值或者导数信息,通过求解该函数中待定形式的插值函数以及待定系数,使得该函数在给定离散点上满足约束。插值函数又叫作基函数,如果该基函数定义在整个定义域上,叫作全域基,否则叫作分域基。如果约束条件中只有函数值的约束,叫作插值,否则叫作插值。

从几何意义上将,拟合是给定了空间中的一些点,找到一个已知形式未知参数的连续曲面来最大限度地逼近这些点而插值是找到一个(或几个分片光滑的)连续曲面来穿过这些点。

可以看出利用最小二乘法拟合比较方便,我采用的函数形式为多项式函数,最高次为5。拟合部分代码执行结果如下:

经过比较,可以发现在误差允许的范围内通过拟合出来的函数和通过编程而拟合出来的多项式是相统一的。

然后再将该函数应用到中,利用程序代码所求出来的多项式,画出一条光滑连续的曲线,如果这条曲线和最上面在中,纯粹用拟合出来的曲线相同的话表明拟合成功!

1、按照递增的顺序,将从0-24的数据输入到中,如下图所示。并在第二列中输入公式:

0.00015*A2*A2*A2*A2*A2+0.012193*A2*A2*A2*A2-0.366317*A2*A2*A2+4.760591*

A2*A2-22.665987*A2+66.02523,

如下图所示。将数据填充完毕:

利用和上面的相同的方法,直接选择光滑的曲线图,而不是选择散点图:

然后就画出了一条曲线:

经过比较,可以知道在误差允许的范围内数学模型已经成功建立!

到这里该问题的数学模型已经建立好了(采用编程所得的结果进行建模和进一步的计算):

f(t)=

-0.00015t5+0.012193t4-0.366317t3+4.760591t2-22.66598766.025230 最后再通过编程计算任意时刻的用水率、一天的总用水量和水泵的工作功率:

任意时刻的用水率的算法简单,只要给出任意时间,根据上面的式子就可以求出;

一天的总用水量为上式在0-24内的积分

024

f(t)

=[-0.000025t6+0.0024386t5-0.09157925t4+1.58686367t3-11.3329935t2+6 6.02523]024

水泵的工作功率的计算方法是用一次的总泵水量除以泵水时间

水泵泵一次水泵水量为:

2**D*D*(h21)/4=2*3.1415926*17.4*17.4*(10.82-8.22)/4

泵水时间为:

21=(10.954-8.967)+(22.958-20.839)

所以水泵的工作功率为:

ρ(h21)/2T

其中ρ为水的密度(3),V为上面的体积(m3),g为重力单位(9.8)。

然后将程序加以修改,将上述的三个求解功能加进去就完成了本次设计。

最终源代码:

<>

<>

<>

();

();

();

([][][]);

()

{

i;

a[6];

x[22]={0.4605,1.382,2.396,3.41,4.4245,5.439,6.453,7.467,

8.4475,11.493,12.493,13.4145,14.4285,15.4425,16.3645,

17.3785,18.484,19.498,20.399,23.419,24.433,25.447};

y[22]={51.12036405,44.10152093,39.3445281,36.88021926,36.08693844,

33.01166479,34.61458483,35.33279747,38.44874,70.58616637,74.79205304,

70.74232197,60.78930702,62.99681227,58.99594462,55.73472518,55.68433211,

59.05993154,57.55529831,59.05993154,50.95438885,44.87523183};

(,22,5);

(0<=5)

("a[]\n"[i]);

("拟合多项式为:\(t)=()*t*t*t*t*()*t*t*t*()*t*t*()*t*()*()\n"[5][4][3][2][1][0]);

();

();

s;

(1)

{

<<"您是否还要查询某时刻的用水率():"<<;

>>s;

(s)

{

'Y':

();

;

'N':

;

}

('N')

;

}

}

( x[] y[] a[])

;

* [(1)*(2)];

();

( *[]);

(0<)

{

(0<)

{

*(*(2))=0;

(0<1)

*(*(2))([t]);

}

*(*(2)1)=0;

(0<1)

*(*(2)1)[j]*([j]);

}

(1);

c;

}

( * x[])

{

;

p;

(0<2)

{

;

(1<1)

((*(*(1)))>((*(*(1)))));

()

(<)

{

*(*(1));

*(*(1))=*(*(1));

*(*(1));

}

(1<1)

{

(*(*(1)))/(*(*(1)));

(<)

*(*(1))*(*(*(1)));

}

}

(1>=0)

{

(1>1)

(*(*(1)))[j]*(*(*(1)));

x[i]=*(*(1))/(*(*(1)));

}

}

( v)

{

1;

()a*;

a;

()

{

t;

<<"请输入任意一个时刻,程序将就算出该时刻的用水率"<<;

>>t;

0.00015*t*t*t*t*0.012193*t*t*t*0.366317*t*t*4.760591*t*22.665987*66.025230;

<

}

()

{

v;

0.000025*24*24*24*24*24*24+0.0024386*24*24*24*24*24-0.09157925*24*24*24*24+1. 58686367*24*24*24-11.3329935*24*24+66.02523*24;

<<"这个居民区的居民一天的用水量约为:"<

}

()

{

3.1415926*17.4*8.7*(10.82-8.22);

2*(10.954-8.967)+(22.958-20.839);

*9.8*(10.82-8.22);

<<"该水塔的水泵的工作功率为"<

}

程序运行结果:

二、家乡温度问题

四川省江油市2013年6月2号一天的温度如下表:

时间(h)0 1 2 3 4 5 6 7 8 9 10 11

温度(゜

C)

23 23 23 23 22 23 24 26 27 28 29 30 时间(h)12 13 14 15 16 17 18 19 20 21 22 23

温度(゜C)31 31 32 31 31 30 30 29 28 28 27 27

实际温度曲线如下:

调试数据:

1 23

2 23.003

3 23.0058

4 23.0082

5 23.0101

6 23.0113

7 23.0115

8 23.0107

9 23.0086

10 23.0051

11 23

12 22.9962

13 22.9916

14 22.9869

15 22.9832

16 22.9812

17 22.982

18 22.9863

19 22.9952

20 23.0095

21 23

22 23.012

23 23.0279

24 23.044

25 23.0572

26 23.0638

27 23.0605

28 23.0439

29 23.0106

30 22.957

31 23

32 22.9546

33 22.889

34 22.8099

35 22.7242

36 22.6386

37 22.56

38 22.495

39 22.4505

40 22.4334

41 22

42 21.9425

43 21.9202

44 21.9273

45 21.958

46 22.0067

47 22.0677

48 22.1351

49 22.2033

50 22.2665

51 22.3191

53 23.2542

54 23.3669

55 23.4757

56 23.5844

57 23.6974

58 23.8187

59 23.9524

60 24.1026

61 24.2734

62 24.1255

63 24.2711

64 24.4319

65 24.6033

66 24.7805

67 24.9587

68 25.1332

69 25.2993

70 25.4522

71 25.5871

72 26.1926

73 26.3654

74 26.5213

75 26.663

76 26.7935

77 26.9157

78 27.0324

79 27.1464

80 27.2607

81 27.378

82 27.075

83 27.1552

84 27.24

85 27.3286

86 27.4203

87 27.5144

88 27.6102

89 27.707

90 27.8041

91 27.9007

92 28.1074

93 28.2137

94 28.3188

96 28.5252

97 28.6266

98 28.7267

99 28.8255 100 28.923 101 29.0192 102 29.0953 103 29.19 104 29.285 105 29.3809 106 29.4787 107 29.5791 108 29.6829 109 29.7909 110 29.9038 111 30.0225 112 30.1114 113 30.2263 114 30.3414 115 30.4536 116 30.5598 117 30.6569 118 30.7417 119 30.811 120 30.8617 121 30.8907 122 31.058 123 31.0969 124 31.1225 125 31.1406 126 31.1569 127 31.1773 128 31.2074 129 31.2531 130 31.3202 131 31.4145 132 31.0286 133 31.0821 134 31.1525 135 31.232 136 31.3125 137 31.3861

138 31.4447 139 31.4804 140 31.4853 141 31.4513 142 32.0548 143 32.0709 144 32.0563 145 32.0194 146 31.968 147 31.9105 148 31.8548 149 31.8092 150 31.7816 151 31.7804 152 30.8953 153 30.8185 154 30.7631 155 30.7225 156 30.6903 157 30.66 158 30.625 159 30.5789 160 30.5151 161 30.4273 162 30.9919 163 30.959 164 30.9072 165 30.8425 166 30.7706 167 30.6976 168 30.6291 169 30.5713 170 30.5298 171 30.5106 172 29.9092 173 29.8415 174 29.7919 175 29.7555 176 29.7271 177 29.7017 178 29.6744 179 29.6401 180 29.5937

181 29.5303 182 29.9995 183 29.9791 184 29.9411 185 29.8876 186 29.821 187 29.7435 188 29.6572 189 29.5644 190 29.4673 191 29 192 28.8639 193 28.7301 194 28.6008 195 28.478 196 28.3638 197 28.2604 198 28.1699 199 28.0944 200 28.0361 201 28 202 27.9458 203 27.9083 204 27.8828 205 27.8645 206 27.8488 207 27.8309 208 27.8062 209 27.7699 210 27.7173 211 28 212 27.9807 213 27.9405 214 27.8839 215 27.8159 216 27.7409 217 27.6638 218 27.5893 219 27.5221 220 27.4669 221 27 222 26.9032 223 26.8257

224 26.7654

225 26.72

226 26.6875

227 26.6658

228 26.6526

229 26.6458

230 26.6433

三次样条函数模拟曲线:

代码:

<>

<>

;

# 24 定义()的最大的维数

点的结构

{

x;

y;

} ;

( )

{

("");

24; 插值点的数目:是24小时

;

[ +1];

h[ +1][ +1][ +1][ +1][ +1];

u[ +1][ +1][ +1];

;

<<"请输入零点到23点的温度!()已给出\n"输入插值点的数目输入插值点()0值和值

(0<)

数值分析课程设计

淮海工学院计算机工程学院课程设计报告书 课程名:《数值分析》 题目:数值分析课程设计 班级: 学号: 姓名:

数值分析课程设计 课程设计要求 1、研究第一导丝盘速度y与电流周波x的关系。 2、数据拟合问题运用样条差值方法求出温度变化的拟合曲线。 课程设计目的 1、通过编程加深对三次样条插值及曲线拟合的最小二乘法的理解; 2、学习用计算机解决工程问题,主要包括数据处理与分析。 课程设计环境 visual C++ 6.0 课程设计内容 课程设计题目1: 合成纤维抽丝工段中第一导丝盘的速度对丝的质量有很大的影响,第一丝盘的速度和电流周波有重要关系。下面是一组实例数据: 其中x代表电流周波,y代表第一导丝盘的速度 课程设计题目3: 在天气预报网站上获得你家乡所在城市当天24小时温度变化的数据,认真观察分析其变化趋势,在此基础上运用样条差值方法求出温度变化的拟合曲线。然后将该函数曲线打印出来并与原来的温度变化数据形成的曲线进行比较,给出结论。写出你研究的心得体会。 课程设计步骤 1、利用最小二乘法写出题1的公式和算法; 2、利用excel表格画出数据拟合后题1的图像; 3、在Visual C++ 6.0中编写出相应的代码; 4、搜索11月12日南通当地一天的温度变化数据; 5、在Visual C++ 6.0中编写出相应的代码; 6、利用excel表格画出数据拟合后题3的图像 课程设计结果 课程设计题目1 数值拟合

解:根据所给数据,在excel窗口运行: x=[49.2 50.0 49.3 49.0 49.0 49.5 49.8 49.9 50.2 50.2] y=[16.7 17.0 16.8 16.6 16.7 16.8 16.9 17.0 17.0 17.1] 课程设计题目3 数据为:X=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23]; Y=[12,12,11,12,12,12,12,12,13,15,16,17,17,18,17,17,17,16,15,15,15,15,14,14]; 源代码为: 第一题: #include #include"math.h" using namespace std; //double x[100],y[100]; int main(){ int i; double k,b; double sum1=0,sum2=0,sum3=0,sum4=0; double x[10]={49.2,50.0,49.3,49.0,49.0,49.5,49.8,49.9,50.2,50.2}; double y[10]={16.7,17.0,16.8,16.6,16.7,16.8,16.9,17.0,17.0,17.1}; for(i=0;i<10;i++){ sum1+=x[i]*y[i]; sum2+=x[i];

数值计算课程设计任务书

数值计算课程设计任务书 学院信息与计算科学/应用数学专业班级学生: 题目:典型数值算法的C++语言程序设计 课程设计从2017 年 6 月12 日起到2017 年7月 1 日 1、课程设计的内容和要求(包括原始数据、技术要求、工作要求等): 每人需作10个算法的程序、必做6题、自选4题。 对每个算法要求用C++语言进行编程。 必选题: 1、高斯列主元法解线性方程组 2、牛顿法解非线性方程组 3、经典四阶龙格库塔法解一阶微分方程组 4、三次样条插值算法(压紧样条)用C++语言进行编程计算 依据计算结果,用Matlab画图并观察三次样条插值效果。 5、龙贝格求积分算法 6、M次多项式曲线拟合,据计算结果,用Matlab画图并观察拟合效果。 自选题:自选4道其他数值算法题目.每道题目重选次数不得超过5次. 2、对课程设计成果的要求〔包括图表、实物等硬件要求〕: 2.1 提交课程设计报告 按照算法要求,应用C++语言设计和开发算法程序,提交由: 1)每个算法的原理与公式说明; 2)每个算法相应的程序设计说明(程序中的主要变量语义说明,变量的数据类型说明,数据在内存中组织和存储结构说明,各函数的输入形参和输出形参说明,函数功能说明,函数中算法主要流程图,函数的调用方法说明); 3)每个程序使用的实例(引用的实例可以自拟,也可以借用相关数值计算参考书中的例题作为作为验证程序是否正确的实例,无论是自拟实例还是引用实例,实例都应详细写入报告的正文中); 4)每个算法的调试记录(包括程序调试(静态调试和动态调试)和程序修改记录、程序测试(可以手工计算进行测试、也可以利用Matlab的函数或

数值分析实验报告1

实验一误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 其中ε(1.1)和(1.221,,,a a 的输出b ”和“poly ε。 (1(2 (3)写成展 关于α solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。 实验过程: 程序: a=poly(1:20); rr=roots(a); forn=2:21 n form=1:9 ess=10^(-6-m);

ve=zeros(1,21); ve(n)=ess; r=roots(a+ve); -6-m s=max(abs(r-rr)) end end 利用符号函数:(思考题一)a=poly(1:20); y=poly2sym(a); rr=solve(y) n

很容易的得出对一个多次的代数多项式的其中某一项进行很小的扰动,对其多项式的根会有一定的扰动的,所以对于这类病态问题可以借助于MATLAB来进行问题的分析。 学号:06450210 姓名:万轩 实验二插值法

数值分析实验报告之常微分方程数值解

数学与计算科学学院实验报告 实验项目名称常微分方程数值解 所属课程名称数值方法B 实验类型验证 实验日期 2013.11.11 班级 学号 姓名 成绩

【实验过程】(实验步骤、记录、数据、分析) 注:以下图形是通过Excel 表格处理数据得出,并未通过MATLAB 编程序所得! 1、1(0)1dy y x dx y ?=-++???=? 由题可知精确解为:x y x e -=+,当x=0时,y(x)=0。 h=0.1 表1 h=0.1时三个方法与精确值的真值表 图1 h=0.1时三个方法走势图 步长 Euler 法 预估校正法 经典四阶库 精确值 0.1 1.010000 1.005000 1.004838 1.249080 0.2 1.029000 1.019025 1.018731 1.055455 0.3 1.056100 1.041218 1.040818 1.091217 0.4 1.090490 1.070802 1.070320 1.131803 0.5 1.131441 1.107076 1.106531 1.176851 0.6 1.178297 1.149404 1.148812 1.226025 0.7 1.230467 1.197211 1.196586 1.279016 0.8 1.287421 1.249975 1.249329 1.335536 0.9 1.348678 1.307228 1.306570 1.395322 1.0 1.413811 1.368541 1.367880 1.458127

h=0.05(此时将源程序中i的围进行扩大,即for(i=0;i<20;i++)) 表2 h=0.05时三个方法与精确值的真值表步长Euler法预估校正法经典四阶库精确值 0.05 1.002500 1.001250 1.001229 1.011721 0.10 1.007375 1.004877 1.004837 1.024908 0.15 1.014506 1.010764 1.010708 1.039504 0.20 1.023781 1.018802 1.018731 1.055455 0.25 1.035092 1.028885 1.028801 1.072710 0.30 1.048337 1.040915 1.040818 1.091217 0.35 1.063421 1.054795 1.054688 1.110931 0.40 1.080250 1.070436 1.070320 1.131801 0.45 1.098737 1.087752 1.087628 1.153791 0.50 1.118800 1.106662 1.106531 1.176851 0.55 1.140360 1.127087 1.126950 1.200942 0.60 1.163342 1.148954 1.148812 1.226025 0.65 1.187675 1.172193 1.172046 1.252062 0.70 1.213291 1.196736 1.196585 1.279016 0.75 1.240127 1.222520 1.222367 1.306852 0.80 1.268121 1.249485 1.249329 1.335536 0.85 1.297215 1.277572 1.277415 1.365037 0.90 1.327354 1.306728 1.306570 1.395322 0.95 1.358486 1.336900 1.336741 1.426362 1.00 1.390562 1.368039 1.367880 1.458127 图2 h=0.05时三个方法走势图

数值计算实验报告

(此文档为word格式,下载后您可任意编辑修改!) 2012级6班###(学号)计算机数值方法 实验报告成绩册 姓名:宋元台 学号: 成绩:

数值计算方法与算法实验报告 学期: 2014 至 2015 第 1 学期 2014年 12月1日课程名称: 数值计算方法与算法专业:信息与计算科学班级 12级5班 实验编号: 1实验项目Neton插值多项式指导教师:孙峪怀 姓名:宋元台学号:实验成绩: 一、实验目的及要求 实验目的: 掌握Newton插值多项式的算法,理解Newton插值多项式构造过程中基函数的继承特点,掌握差商表的计算特点。 实验要求: 1. 给出Newton插值算法 2. 用C语言实现算法 二、实验内容 三、实验步骤(该部分不够填写.请填写附页)

1.算法分析: 下面用伪码描述Newton插值多项式的算法: Step1 输入插值节点数n,插值点序列{x(i),f(i)},i=1,2,……,n,要计算的插值点x. Step2 形成差商表 for i=0 to n for j=n to i f(j)=((f(j)-f(j-1)(x(j)-x(j-1-i)); Step3 置初始值temp=1,newton=f(0) Step4 for i=1 to n temp=(x-x(i-1))*temp*由temp(k)=(x-x(k-1))*temp(k-1)形成 (x-x(0).....(x-x(i-1)* Newton=newton+temp*f(i); Step5 输出f(x)的近似数值newton(x)=newton. 2.用C语言实现算法的程序代码 #includeMAX_N) { printf("the input n is larger than MAX_N,please redefine the MAX_N.\n"); return 1; } if(n<=0) { printf("please input a number between 1 and %d.\n",MAX_N); return 1; } printf("now input the (x_i,y_i)i=0,...%d\n",n); for(i=0;i<=n;i++) { printf("please input x(%d) y(%d)\n",i,i);

数值分析实验报告1

实验一 误差分析 实验(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对()中19x 的系数作一个小的扰动。我们希望比较()和()根的差别,从而分析方程()的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b =

的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve = ))20:1((ve poly roots + 上述简单的Matlab 程序便得到()的全部根,程序中的“ess ”即是()中的ε。 实验要求: (1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。 如果扰动项的系数ε很小,我们自然感觉()和()的解应当相差很小。计算中你有什么出乎意料的发现表明有些解关于如此的扰动敏感性如何 (2)将方程()中的扰动项改成18x ε或其它形式,实验中又有怎样的现象 出现 (3)(选作部分)请从理论上分析产生这一问题的根源。注意我们可以将 方程()写成展开的形式, ) 3.1(0 ),(1920=+-= x x x p αα 同时将方程的解x 看成是系数α的函数,考察方程的某个解关于α的扰动是否敏感,与研究它关于α的导数的大小有何关系为什么你发现了什么现象,哪些根关于α的变化更敏感 思考题一:(上述实验的改进) 在上述实验中我们会发现用roots 函数求解多项式方程的精度不高,为此你可以考虑用符号函数solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。

《数值分析》课程设计报告

《数值分析》课程设计实验报告 龙格—库塔法分析Lorenz 方程 200820302033 胡涛 一、问题叙述 考虑著名的Lorenz 方程 () dx s y x dt dy rx y xz dt dz xy bz dt ?=-???=--???=-?? 其中s ,r ,b 为变化区域内有一定限制的实参数,该方程形式简单,表面上看并无惊人之处,但由该方程揭示出的许多现象,促使“混沌”成为数学研究的崭新领域,在实际应用中也产生了巨大的影响。 二、问题分析 Lorenz 方程实际上是一个四元一阶常微分方程,用解析法精确求解是不可能的,只能用数值计算,最主要的有欧拉法、亚当法和龙格- 库塔法等。为了得到较高精度的,我们采用经典四阶龙格—库塔方法求解该问题。 三、实验程序及注释 (1)算法程序 function [T]=Runge_Kutta(f,x0,y0,h,n) %定义算法,其中f 为待解方程组, x0是初始自变量,y0是初始函数 值,h 是步长,n 为步数 if nargin<5 n=100; %如果输入参数个数小于5,则步数 n=100 end r=size(y0);r=r(1); %返回初始输出矩阵的行列数,并将 值赋给r(1) s=size(x0);s=s(1); %返回初始输入矩阵的行列数,并 将值赋给s(1) r=r+s; T=zeros(r,n+1); T(:,1)=[y0;x0]; for t=2:n+1 %以下是具体的求解过程 k1=feval(f,T(1:r-1,t-1)); k2=feval(f,[k1*(h/2)+T(1:r-1,t-1);x0+h/2]); k3=feval(f,[k2*(h/2)+T(1:r-1,t-1);x0+h/2]); k4=feval(f,[k3*h+T(1:r-1,t-1);x0+h]); x0=x0+h; T(:,t)=[T(1:r-1,t-1)+(k1+k2*2+k3*2+k4)*(h/6);x0]; end

数值分析实验报告

学生实验报告实验课程名称 开课实验室 学院年级专业班 学生姓名学号 开课时间至学年学期

if(A(m,k)~=0) if(m~=k) A([k m],:)=A([m k],:); %换行 end A(k+1:n, k:c)=A(k+1:n, k:c)-(A(k+1:n,k)/ A(k,k))*A(k, k:c); %消去end end x=zeros(length(b),1); %回代求解 x(n)=A(n,c)/A(n,n); for k=n-1:-1:1 x(k)=(A(k,c)-A(k,k+1:n)*x(k+1:n))/A(k,k); end y=x; format short;%设置为默认格式显示,显示5位 (2)建立MATLAB界面 利用MA TLAB的GUI建立如下界面求解线性方程组: 详见程序。 五、计算实例、数据、结果、分析 下面我们对以上的结果进行测试,求解:

? ? ? ? ? ? ? ? ? ? ? ? - = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - - - - - 7 2 5 10 13 9 14 4 4 3 2 1 13 12 4 3 3 10 2 4 3 2 1 x x x x 输入数据后点击和,得到如下结果: 更改以上数据进行测试,求解如下方程组: 1 2 3 4 43211 34321 23431 12341 x x x x ?? ???? ?? ???? ?? ???? = ?? ???? - ?? ???? - ???? ?? 得到如下结果:

(完整版)哈工大-数值分析上机实验报告

实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b)<0,且f(x)在[a,b]内仅有一个实根x*,取区间中点c,若,则c恰为其根,否则根据f(a)f(c)<0是否成立判断根在区间[a,c]和[c,b]中的哪一个,从而得出新区间,仍称为[a,b]。重复运行计算,直至满足精度为止。这就是二分法的计算思想。

Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式 产生逼近解x*的迭代数列{x k},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 其中r为要求的方程的根的重数,这就是改进的Newton法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x); y=-x*x-sin(x); 写成如上形式即可,下面给出主程序。 二分法源程序: clear %%%给定求解区间 b=1.5; a=0;

%%%误差 R=1; k=0;%迭代次数初值 while (R>5e-6) ; c=(a+b)/2; if f12(a)*f12(c)>0; a=c; else b=c; end R=b-a;%求出误差 k=k+1; end x=c%给出解 Newton法及改进的Newton法源程序:clear %%%% 输入函数 f=input('请输入需要求解函数>>','s') %%%求解f(x)的导数 df=diff(f);

数值分析实验报告模板

数值分析实验报告模板 篇一:数值分析实验报告(一)(完整) 数值分析实验报告 1 2 3 4 5 篇二:数值分析实验报告 实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。利用二分法求解给定非线性方程的根,在给定的范围内,假设f(x,y)在[a,b]上连续,f(a)xf(b) 直接影响迭代的次数甚至迭代的收敛与发散。即若x0 偏离所求根较远,Newton法可能发散的结论。并且本实验中还利用利用改进的Newton法求解同样的方程,且将结果与Newton法的结果比较分析。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。掌握二分法的原理,验证二分法,在选对有根区间的前提下,必是收

敛,但精度不够。熟悉Matlab语言编程,学习编程要点。体会Newton使用时的优点,和局部收敛性,而在初值选取不当时,会发散。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b) Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式xk?1?xk?f(xk) f'(xk) 产生逼近解x*的迭代数列{xk},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 xk?1?xk?rf(xk) 'f(xk) 其中r为要求的方程的根的重数,这就是改进的Newton 法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x);

12级数值分析课程设计

数值分析课程设计题目与要求 (12级应数及创新班) [设计题一] 编写顺序Gauss消去法和列主元Gauss消去法的函数,再分别调用这两个函数求解下面的84阶方程组: = , 然后考虑将方程组的阶数取为10至100之间多个值进行求解。将你的计算结果与方程组的精确解进行比较。从“快”、“准”、“省”三个方面分析以上两个算法,试提出改进的算法并加以实现和验证。 [设计题二] 编写平方根法和改进的平方根法(参见教材《计算方法》P54的例题2.5)的函数,然后分别调用这两个函数求解对称正定方程组Ax=b,其中A和b分别为: (1)系数矩阵A为矩阵(阶数取为10至100之间多个值): , 向量b随机地选取; (2)系数矩阵A为Hilbert矩阵(阶数取为5至40之间多个值),即A的第i行第j列元素,向量b的第i个分量取为。将你的计算结果与方程组的精确解进 行比较。 若出现问题,分析其原因,提出改进的设想并尝试实现之。

对于迭代法 ,......)2,1,0(99.02 1=-=+k x x x k k k , 它显然有不动点0*=x 。试设计2个数值实验 得到收敛阶数的大概数值(不利用判定收敛阶的判据定理): (1) 直接用收敛阶的定义; (2) 用最小二乘拟合的方法。 [设计题四] 湖水在夏天会出现分层现象,接近湖面温度较高,越往下温度变低。这种上热下冷的现象影响了水的对流和混合过程,使得下层水域缺氧,导致水生鱼类的死亡。如果把水温T 看成深度x 的函数T(x),有某个湖的观测数据如下: 环境工程师希望: 1) 用三次样条插值求出T(x)。 2) 求在什么深度处dx dT 的绝对值达到最大( 即02 2=dx T d )。 [设计题五] 某飞机头部的光滑外形曲线的型值点坐标由下表给出: ...值y 及一阶、二阶导数值y ’,y ”。绘出模拟曲线的图形。

数值分析实验报告资料

机电工程学院 机械工程 陈星星 6720150109 《数值分析》课程设计实验报告 实验一 函数插值方法 一、问题提出 对于给定的一元函数)(x f y =的n+1个节点值(),0,1,,j j y f x j n ==。试用Lagrange 公式求其插值多项式或分段二次Lagrange 插值多项式。 数据如下: (1 求五次Lagrange 多项式5L ()x ,计算(0.596)f ,(0.99)f 的值。(提示:结果为(0.596)0.625732f ≈, (0.99) 1.05423f ≈) 实验步骤: 第一步:先在matlab 中定义lagran 的M 文件为拉格朗日函数 代码为: function[c,l]=lagran(x,y) w=length(x); n=w-1; l=zeros(w,w); for k=1:n+1 v=1; for j=1:n+1 if(k~=j) v=conv(v,poly(x(j)))/(x(k)-x(j)); end end l(k,:)=v; end c=y*l; end

第二步:然后在matlab命令窗口输入: >>>> x=[0.4 0.55 0.65 0.80,0.95 1.05];y=[0.41075 0.57815 0.69675 0.90 1.00 1.25382]; >>p = lagran(x,y) 回车得到: P = 121.6264 -422.7503 572.5667 -377.2549 121.9718 -15.0845 由此得出所求拉格朗日多项式为 p(x)=121.6264x5-422.7503x4+572.5667x3-377.2549x2+121.9718x-15.0845 第三步:在编辑窗口输入如下命令: >> x=[0.4 0.55 0.65 0.80,0.95 1.05]; >> y=121.6264*x.^5-422.7503*x.^4+572.5667*x.^3-377.2549*x.^2+121.9718 *x-15.0845; >> plot(x,y) 命令执行后得到如下图所示图形,然后 >> x=0.596; >> y=121.6264*x.^5-422.7503*x.^4+572.5667*x.^3-377.2549*x.^2+121.9718 *x-15.084 y =0.6257 得到f(0.596)=0.6257 同理得到f(0.99)=1.0542

数值分析实验报告

实验一、误差分析 一、实验目的 1.通过上机编程,复习巩固以前所学程序设计语言及上机操作指令; 2.通过上机计算,了解误差、绝对误差、误差界、相对误差界的有关概念; 3.通过上机计算,了解舍入误差所引起的数值不稳定性。 二.实验原理 误差问题是数值分析的基础,又是数值分析中一个困难的课题。在实际计算中,如果选用了不同的算法,由于舍入误差的影响,将会得到截然不同的结果。因此,选取算法时注重分析舍入误差的影响,在实际计算中是十分重要的。同时,由于在数值求解过程中用有限的过程代替无限的过程会产生截断误差,因此算法的好坏会影响到数值结果的精度。 三.实验内容 对20,,2,1,0 =n ,计算定积分 ?+=10 5dx x x y n n . 算法1:利用递推公式 151--=n n y n y , 20,,2,1 =n , 取 ?≈-=+=1 00182322.05ln 6ln 51dx x y . 算法2:利用递推公式 n n y n y 51511-= - 1,,19,20 =n . 注意到 ???=≤+≤=10 10202010201051515611261dx x dx x x dx x , 取 008730.0)12611051(20120≈+≈y .: 四.实验程序及运行结果 程序一: t=log(6)-log(5);

n=1; y(1)=t; for k=2:1:20 y(k)=1/k-5*y(k-1); n=n+1; end y y =0.0884 y =0.0581 y =0.0431 y =0.0346 y =0.0271 y =0.0313 y =-0.0134 y =0.1920 y =-0.8487 y =4.3436 y =-21.6268 y =108.2176 y =-541.0110 y =2.7051e+003 y =-1.3526e+004 y =6.7628e+004 y =-3.3814e+005 y =1.6907e+006 y =-8.4535e+006 y =4.2267e+007 程序2: y=zeros(20,1); n=1; y1=(1/105+1/126)/2;y(20)=y1; for k=20:-1:2 y(k-1)=1/(5*k)-(1/5)*y(k); n=n+1; end 运行结果:y = 0.0884 0.0580 0.0431 0.0343 0.0285 0.0212 0.0188 0.0169

数值分析课程课程设计汇总

课 程 设 计 我再也回不到大二了, 大学是那么短暂 设计题目 数值分析 学生姓名 李飞吾 学 号 x x x x x x x x 专业班级 信息计x x x x x 班 指导教师 设 计 题 目 共15题如下 成绩

数值分析课程设计 1.1 水手、猴子和椰子问题:五个水手带了一只猴子来到南太平洋的一个荒岛上,发现那里有一大堆椰子。由于旅途的颠簸,大家都很疲惫,很快就入睡了。第一个水手醒来后,把椰子平分成五堆,将多余的一只给了猴子,他私藏了一堆后便又去睡了。第二、第三、第四、第五个水手也陆续起来,和第一个水手一样,把椰子分成五堆,恰多一只猴子,私藏一堆,再去入睡,天亮以后,大家把余下的椰子重新等分成五堆,每人分一堆,正好余一只再给猴子,试问原先共有几只椰子?(15621) 试分析椰子数目的变化规律,利用逆向递推的方法求解这一问题 解:算法分析:解该问题主要使用递推算法,关于椰子数目的变化规律可以设起初的椰子数为0p ,第一至五次猴子在夜里藏椰子后,椰子的数目分别为01234,,,,p p p p p 再设最后每个人分得x 个椰子,由题: 14 (1)5 k k p p +=- (k=0,1,2,3,4)51(1)5 x p =- 所以551p x =+,11k k p p +=+利用逆向递推方法求解 15 1,4 k k p p +=+ (k=0,1,2,3,4) MATLAB 代码: n=input('n= '); n= 15621 for x=1:n p=5*x+1; for k=1:5 p=5*p/4+1; end if p==fix(p), break end end disp([x,p]) 1.2 设,1 5n n x I dx x =+? (1)从0I 尽可能精确的近似值出发,利用递推公式: 11 5(1,2,20)n n I I n n -=-+= 计算机从1I 到20I 的近似值; (2)从30I 较粗糙的估计值出发,用递推公式:

数值分析2016上机实验报告

序言 数值分析是计算数学的范畴,有时也称它为计算数学、计算方法、数值方法等,其研究对象是各种数学问题的数值方法的设计、分析及其有关的数学理论和具体实现的一门学科,它是一个数学分支。是科学与工程计算(科学计算)的理论支持。许多科学与工程实际问题(核武器的研制、导弹的发射、气象预报)的解决都离不开科学计算。目前,试验、理论、计算已成为人类进行科学活动的三大方法。 数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支,它研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现。现在面向数值分析问题的计算机软件有:C,C++,MATLAB,Python,Fortran等。 MATLAB是matrix laboratory的英文缩写,它是由美国Mathwork公司于1967年推出的适合用于不同规格计算机和各种操纵系统的数学软件包,现已发展成为一种功能强大的计算机语言,特别适合用于科学和工程计算。目前,MATLAB应用非常广泛,主要用于算法开发、数据可视化、数值计算和数据分析等,除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处理,可视化建模仿真和实时控制等功能。 本实验报告使用了MATLAB软件。对不动点迭代,函数逼近(lagrange插值,三次样条插值,最小二乘拟合),追赶法求解矩阵的解,4RungeKutta方法求解,欧拉法及改进欧拉法等算法做了简单的计算模拟实践。并比较了各种算法的优劣性,得到了对数值分析这们学科良好的理解,对以后的科研数值分析能力有了极大的提高。

目录 序言 (1) 问题一非线性方程数值解法 (3) 1.1 计算题目 (3) 1.2 迭代法分析 (3) 1.3计算结果分析及结论 (4) 问题二追赶法解三对角矩阵 (5) 2.1 问题 (5) 2.2 问题分析(追赶法) (6) 2.3 计算结果 (7) 问题三函数拟合 (7) 3.1 计算题目 (7) 3.2 题目分析 (7) 3.3 结果比较 (12) 问题四欧拉法解微分方程 (14) 4.1 计算题目 (14) 4.2.1 方程的准确解 (14) 4.2.2 Euler方法求解 (14) 4.2.3改进欧拉方法 (16) 问题五四阶龙格-库塔计算常微分方程初值问题 (17) 5.1 计算题目 (17) 5.2 四阶龙格-库塔方法分析 (18) 5.3 程序流程图 (18) 5.4 标准四阶Runge-Kutta法Matlab实现 (19) 5.5 计算结果及比较 (20) 问题六舍入误差观察 (22) 6.1 计算题目 (22) 6.2 计算结果 (22) 6.3 结论 (23) 7 总结 (24) 附录

数值分析课程设计(最终版)

本文主要通过Matlab 软件,对数值分析中的LU 分解法、最小二乘法、复化Simpon 积分、Runge-Kutta 方法进行编程,并利用这些方法在MATLAB 中对一些问题进行求解,并得出结论。 实验一线性方程组数值解法中,本文选取LU 分解法,并选取数据于《数值分析》教材第5章第153页例5进行实验。所谓LU 分解法就是将高斯消去法改写为紧凑形式,可以直接从矩阵A 的元素得到计算L 、U 元素的递推公式,而不需要任何步骤。用此方法得到L 、U 矩阵,从而计算Y 、X 。 实验二插值法和数据拟合中,本文选取最小二乘拟合方法进行实验,数据来源于我们课堂学习该章节时的课件中的多项式拟合例子进行实验。最小二乘拟合是一种数学上的近似和优化,利用已知的数据得出一条直线或者曲线,使之在坐标系上与已知数据之间的距离的平方和最小。利用excel 的自带函数可以较为方便的拟合线性的数据分析。 实验三数值积分中,本文选取复化Simpon 积分方法进行实验,通过将复化Simpson 公式编译成MATLAB 语言求积分∫e ;x dx 1 0完成实验过程的同时,也对复化Simpon 积分章节的知识进行了巩固。 实验四常微分方程数值解,本文选取Runge-Kutta 方法进行实验,通过实验了解Runge-Kutta 法的收敛性与稳定性同时学会了学会用Matlab 编程实现Runge-Kutta 法解常微分方程,并在实验的过程中意识到尽管我们熟知的四种方法,事实上,在求解微分方程初值问题,四阶法是单步长中最优秀的方法,通常都是用该方法求解的实际问题,计算效果比较理想的。 实验五数值方法实际应用,本文采用最小二乘法拟合我国2001年到2015年的人口增长模型,并预测2020年我国人口数量。 关键词:Matlab ;LU 分解法;最小二乘法;复化Simpon 积分;Runge-Kutta

数值分析实验报告总结

数值分析实验报告总结 随着电子计算机的普及与发展,科学计算已成为现代科 学的重要组成部分,因而数值计算方法的内容也愈来愈广泛和丰富。通过本学期的学习,主要掌握了一些数值方法的基本原理、具体算法,并通过编程在计算机上来实现这些算法。 算法算法是指由基本算术运算及运算顺序的规定构成的完 整的解题步骤。算法可以使用框图、算法语言、数学语言、自然语言来进行描述。具有的特征:正确性、有穷性、适用范围广、运算工作量少、使用资源少、逻辑结构简单、便于实现、计算结果可靠。 误差 计算机的计算结果通常是近似的,因此算法必有误差, 并且应能估计误差。误差是指近似值与真正值之差。绝对误差是指近似值与真正值之差或差的绝对值;相对误差:是指近似值与真正值之比或比的绝对值。误差来源见表 第三章泛函分析泛函分析概要 泛函分析是研究“函数的函数”、函数空间和它们之间 变换的一门较新的数学分支,隶属分析数学。它以各种学科

如果 a 是相容范数,且任何满足 为具体背景,在集合的基础上,把客观世界中的研究对象抽 范数 范数,是具有“长度”概念的函数。在线性代数、泛函 分析及相关的数学领域,泛函是一个函数,其为矢量空间内 的所有矢量赋予非零的正长度或大小。这里以 Cn 空间为例, Rn 空间类似。最常用的范数就是 P-范数。那么 当P 取1, 2 ,s 的时候分别是以下几种最简单的情形: 其中2-范数就是通常意义下的距离。 对于这些范数有以下不等式: 1 < n1/2 另外,若p 和q 是赫德尔共轭指标,即 1/p+1/q=1 么有赫德尔不等式: II = ||xH*y| 当p=q=2时就是柯西-许瓦兹不等式 般来讲矩阵范数除了正定性,齐次性和三角不等式之 矩阵范数通常也称为相容范数。 象为元素和空间。女口:距离空间,赋范线性空间, 内积空间。 1-范数: 1= x1 + x2 +?+ xn 2-范数: x 2=1/2 8 -范数: 8 =max oo ,那 外,还规定其必须满足相容性: 所以

数值分析-课程设计doc

课程设计报告 课程名称数值分析 课题名称数值积分 专业信息与计算科学 班级 学号 姓名 指导教师 2015 年12 月20 日

湖南工程学院 课程设计任务书 课程名称数值分析 课题数值积分 专业班级信息与计算科学0901班 学生姓名 学号 指导老师辉 审批 任务书下达日期2015 年12 月7 日任务完成日期2015 年12 月20日

设计内容与设计要求 1. 设计内容: 非奇异矩阵矩阵A ∈R n*n ,已知A -1的一个近似矩阵D (0)∈R n*n ,则由矩阵公式: ?????+=-=--)()1()1(K K K K K F I D D AD I F , K=0,1,2,3........... (1).已知矩阵A 及其逆矩阵的一个近似D (k)为: A=?? ??? ?? ?? ???--------7.49.43.49.19.47.11.88.78.26 .21.27.07.37.08.38.1 D= ???? ? ???? ???---------185.0061.0388.0293.0199.0009.0046.0230.0089.0016.0169.0035.0270.0163.0460.0211.0 用以上方法计算序列{D (k)}迭代次数超过100次时结束。 (2)分析最后得到的D (k)是否A 的一个较好的近似逆矩阵 2.设计要求: ● 课程设计报告正文内容 a. 问题的描述及算法设计; b. 算法的流程图(要求画出模块图); c. 算法的理论依据及其推导; d. 相关的数值结果(通过程序调试),; e. 数值计算结果的分析; f. 附件(所有程序的原代码,要求对程序写出必要的注释)。 ● 书写格式

数值分析实验报告1

实验一 误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对(1.1)中19x 的系数作一个小的扰动。我们希望比较(1.1)和(1.2)根的差别,从而分析方程(1.1)的解对扰动的敏感性。 实验容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b = 的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve =

相关文档