文档库 最新最全的文档下载
当前位置:文档库 › 高等数学的学习与意义

高等数学的学习与意义

高等数学的学习与意义
高等数学的学习与意义

高等数学的学习方法与意义

摘要:高数本来就是解决难题的。而难题本来就是不是留给生活而是留给以推理为乐的思维游戏的。它是测量人类思维强度的直尺,是人类高等的证明。高等数学就是种高于生活的艺术,艺术对很多人来说是可有可无的,但是却能给追求艺术的人无限的乐观和活着的动力。当然从实际角度说,高数在科学研究领域发挥的作用是巨大的,数学的最大功能就是建模,它能把实际问题理论化用数学工具进行分析,或者为一些发展现象提供模型以预测未来的变化趋势,从而避免了反复试验的麻烦和困难。

关键词:极限,牛顿与莱布尼茨,微积分

大家都知道大学高数是一门挂科率很高的课,而高数又很难,尤其对从小到大数学就不好,算数不对,逻辑思维混乱,学了十多年数学,榆木脑袋却怎么都不开窍!高考数学更是拉了后腿,让我来到一个普通的大学!于是大一的时候,我下决心一定不能让高数挂科!下面我就讲一讲我是怎么学习高数的,按照我的方法相信数学再差的人都可以考得很好!我觉得就如高数上课时分大课和习题课,学习高数的过程也应该分成两部分吧。但在介绍这两部分以前,我想强调一些基础性的东西,这个对于入门微积分很重要。

那就是应该做好衔接的准备,尤其是高中时期数学薄弱的同学,在没学排列组合,二项式定理,柯西不等式的情况下更是如此。很多高中学弟学妹在刚进入大学时都会和我抱怨理。当然,这与理科数学的学习面和难度很有关系。比如,高中的复合函数求导,定积分,微积分基本定理,柯西不等式等知识都是高数的研究内容。学习微积分开头时确实会有些难度,这与高中知识不牢固,不等式变换能力还没形成有很大关系。所以我建议大学新生复习一下高中的三角函数的变换,如和差化积,积化和差,万能公式,一些简单的不等式(如|sinx|≤|x|),取整函数的性质,数列的求和,反三角函数的一些性质,图像,公式等等,对你肯定有帮助的。而这也是国内大多数教材不太考虑的问题。在这里我推荐一下张宇的《考研数学十八讲》中的第一讲内容。另外高中数学《五年高考三年模拟》与你的独家笔记本别丢了,没事可以看看。也许未来你站在微积分,线代等比较高的层面来看这些知识会有不一样的体验。以上是衔接内容,接下来是两方面的分析。

首先,是理论方面的。

第一步,你需要开头时搞清楚整个高等数学或者数学分析的理论框架结构。

学数学切忌在一个死胡同里死缠烂打,钻牛角尖。你应该在开始系统学习之前,

看看目录,在草图上画下一个框架结构,例如高等数学就可以分成一元函数微积

分,多元函数微积分,级数与常微分方程(差分方程)。然后在这四个系统下,又

可以细分,例如一元函数微积分可以分为实数理论,极限与连续,导数与微分,

中值定理与导数应用,不定积分,黎曼积分等。一层层分类你哪怕不过只记得一

个名称都好,这样一来你可以随时了解自己的学习进度,合理安排,二来可以在

高维度往下看,“一览众山小”。

第二步就是搞清楚概念。

为了增加趣味性,了解数学的来龙去脉,你不妨配上一本《数学史》,就当课后

读物了。例如,从牛顿与莱布尼茨的微积分开始,到柯西黎曼威尔斯特拉斯等等

的数学发展过程。我们一面可以看到一代代先辈们创业不易,另一面也可了解到

我们在学习微积分的同时,也是与历史上最优秀的一群人对话呢!

然后注重概念的理解。比如最最基础且重要的极限,这可以说是微积分的敲门砖,

不管是导数,微分,还是黎曼积分,都是建立在这个基础上的。记得在闫浩老师

的习题课上就围绕着这一概念提出了几个等价命题让你判别。又例如函数的拐点

的定义写道“函数曲线上”这就说明了没有定义的点就不可能是拐点。然后一定

要对定理的推理证明过程与它们之间的关系有明晰的认识,在这里我以实数的完

备性为例。定理主要有以下几个:确界存在定理、单调有界定理、、柯西收敛准

则。你要明白它们之间的关系,能做到独立推理出来。例如区间套定理推出其他,

你可以吗?定理的证明是一件美妙的事,也是数学思维的体现。特别是我们没能

想到的一些智慧的闪光点,当我们领悟到之后是不是会觉得哇,如此美妙?

因此,我特地准备了两个数学笔记本来记录我的数学心得。一个是用来记录一些主要的概念,定理,证明。另一个则是对习题的总结,一些心得。所以不要再问夹逼定理是否要掌握它的证明类似的问题了,这是非常显然的。知其然且知其所以然难道不好么?

1.学习高数方法。

1.1认真听课!认真听课!认真听课

可能大家会说,这还用你说!但是我一定要说,因为上了大学之后我发现,以前我数学差的原因之一就是没有认真听课,我总是眼睛盯着黑板,看着老师,但是注意力却游离在脑袋之外。我们只有一个脑袋,注意力也是有限的,如果不能集中注意力做一件事,那么,意识活动就没有目标!导致的结果是大脑什么都没学到!所以我强调清空大脑的一切杂念,认真听课!跟着老师的思路,如果一开始你做不到,那就试试这样做:老师说了什么你在心里跟着重复一遍,这样几堂课下来你的注意力就会集中了!

1.2做笔记

认真听课是前提,笔记一定要做,但不一定非要在课堂上做,你可以把老师写的板书用手机拍下来回去和老师给的ppt做整理。整理的时候回忆老师的做题思路,这样加上之前上课的听讲,你的大脑就有了两次印象。如果你在什么地方思路想不起,一定要做标记,把思路用文字一步一步写下来,不要用脑袋记,写下来会看得清清楚楚,明明白白!

2.第二步就是刷题方法。

有人也许会问,学习数学可以不做题吗?答案是肯定不行的。对于大部分人来说,学习数学的目标就是解决实际中的一些问题,所以做题是一定要的,而且它不应该像记英语一样分散时间来做,而是系统,高效,大规模的做题。习题是检验你数学功夫是否到家的好办法,也是你吸取数学思维的好地方。例如,我所了解的由刘智新,章纪民,闫浩编写的《高等微积分》后面很多习题就是必修的定理的证明过程,正文虽未给出,但习题却有。

2.1教材课后习题

先做老师上课讲的例题,盖上答案和过程,自己一步一步写下解题过程,一步也不要省略中间过程,不要怕麻烦,写下来的是你的思路,把你的思路和老师的思路对比,找出差异,找到思路错误的地方,然后再从新做一遍这道题!

例题做完再做练习题,练习题基本会和例子类型一样,现在经过学习和练习,你已经完全明白例题了,那么练习题你就可以完全会了!

2.2错题经常练

错题一定要经常做,因为我发现,我做错的题型,再过了几天重新做的时候还是会在原来出错的地方出错,所以错题一定要时不时的拿出来做一做,确保准确无误!

2.3考试之前自己梳理知识点

考试之前自己一定要梳理整个知识框架和体系,每个部分有什么,包含什么知识点,一个知识点可能的出题类型,所谓万变不离其宗,所有的题都是根据知识点来出的,所以在考试的时候,做题先想想这个题他要考哪一个知识点,然后再下笔!

另外还要清楚,数学系和计科生的数学是注重点不同哦,数学系的数学分析注重数学思维,数学理论,计科生的高等数学注重应用与计算。所以在这里补充一点:计科同学需要的难度与经管类的不同,但都属于高等数学范围,只是计科生要运用在如程序逻辑,算法方面,运用于软件技术是重点。经管类的同学则是在经济学和金融学中的作用,例如经济数学入门的《数理经济学的基本方法》,还有不可或缺的《计量经济学》等。所以说,多计算对于学习高等数学的同学很重要,也许我之前说的定理的证明反而没那么重要,会用才是王道,而数学系的同学证明是必须要掌握的。

对于一个普通本科生,系统的做完一遍同济版高数并弄懂也可以点个赞了。而且自己也应该庆幸能接触到高数。在中国系统学习高数的基本都是大学生。在我看来教育到了大学这个地步就不是为了所谓的教书育人了,更不是培养人才,而是筛选人才。

在大学教育中,除了理科,如果这门课的深层领域需要用到高数,应该都会教授一些基本的东西,这个时候差距就开始在学生当中体现了,当你连基本需要掌握的都不会的时候,你也就不可能踏入更高的一层了,精英的大门也就对你关上了。

当然,如果你说我的专业和数学一点关系都没有,为什么还要学。

只能说当下的社会太过于浮躁和趋向于功利性,什么事情都要有个意义,这也是为什么经管类专业大热的原因之一。

你要知道,凡事不是有无意义才去做,而是做了才有意义。

假设每个人都觉得学习高数没有意义,这个文明也就死了。这个社会在我看来分为三类人:文明的推动者、财富的创造者以及凡人。

而文明的推动者恰恰是研究那些我们觉得没有意义的理科的人,只有理科的进步才能带动工科的进步,这样才能诞生更多创造财富的机会,才能养活更多凡人。

不过这只是我这个局外人的分类,潜心研究理科的人应该心中都有一个毕生的追求,那就是真理。你永远无法理解他们解出一个方程,或是证出一个证明的喜悦感。

所以,对于高数,又或者理科以及研究它们的人,我们应该抱有敬意。

“你”不能站在凡人的角度想当然的认为这些对我没用,好像对大多数人也没用,那么学习它是不是没有意义。

如果你有类似的想法,只能说明一点——你对数学没有意义。

学习任何东西都可能是毫无意义的。但问题在于你为何而学习,而不是你可以学习到了什么。

这样的问题需要反省内心,而不是指望其他人来回答。可曾想过,你的一生又有何意义?不要担心,微积分不是什么难的课程,数学分析和高等代数才是。

好了,以上就是我对于高数的学习心得和高数对于我们当代大学生的意义,也不仅仅限于

高数,其他学科也适用,在这里我没讲怎么具体学高数,也没说什么必考的公式,我讲的是方法,很简单的方法,这个方法也是每个数学老师都对我们讲过的,只是我们没有实际的听话去做,很多时候解决问题的方法很简单,一步一步来,不要贪心,不要心急,听话照做,清空脑袋,静下心来,数学的世界需要思考和安静!如果真的投入进去你会发现不一样的感受,真的!最后祝你们高数不挂科!

《高等数学A》课程教学大纲 (216学时,12学分) 一、课程的性质、目的和任务 高等数学A是理科(非数学)本科个专业学生的一门必修的重要基础理论课,它是为培养我国社会主义现代化建设所需要的高质量专门人才服务的。 通过本课程的学习,要使学生获得:1、函数与极限;2、一元函数微积分学;3、向量代数与空间解析几何;4、多元函数微积分学; 5、无穷级数(包括傅立叶级数); 6、微分方程等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获取数学知识奠定必要的数学基础。 在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力和自学能力,还要特别注意培养学生具有综合运用所学知识去分析问题和解决问题 的能力。 二、总学时与学分 本课程的安排三学期授课,分为高等数学A(一)、(二)、(三),总学时为90+72+54,学分为5+4+3。 三、课程教学基本要求及基本内容 说明:教学要求较高的内容用“理解”、“掌握”、“熟悉”等词表述,要求较低的内容用“了解”、“会”等词表述。 高等数学A(一) 一、函数、极限、连续、 1. 理解函数的概念及函数奇偶性、单调性、周期性、有界性。 2. 理解复合函数和反函数的概念。 3. 熟悉基本初等函数的性质及其图形。 4. 会建立简单实际问题中的函数关系式。 5. 理解极限的概念,掌握极限四则运算法则及换元法则。 6. 理解子数列的概念,掌握数列的极限与其子数列的极限之间的 关系。

7. 理解极限存在的夹逼准则,了解实数域的完备性(确界原理、单界有界数列必有极限的原理,柯西(Cauchy),审敛原理、区间套定理、致密性定理)。会用两个重要极限求极限。 8. 理解无穷小、无穷大、以及无穷小的阶的概念。会用等价无穷 小求极限。 9. 理解函数在一点连续和在一个区间上连续的概念,了解间断点 的概念,并会判别间断点的类型。 10. 了解初等函数的连续性和闭区间上连续函数的性质(介值定理,最大最小值定理,一致连续性)。 二、一元函数微分学 1.理解导数和微分的概念,理解导数的几何意义及函数的可导性与连续性之间的关系。会用导数描述一些物理量。 2.掌握导数的四则运算法则和复合函数的求导法,掌握基本初等函数、双曲函数的导数公式。了解微分的四则运算法则和一阶微分形式不变性。 3.了解高阶导数的概念。 4.掌握初等函数一阶、二阶导数的求法。 5.会求隐函数和参数式所确定的函数的一阶、二阶导数。会求反函数的导数。 6.理解罗尔(Rolle)定理和拉格朗日(Lagrange)定理,了解柯西(Cauchy)定理和泰勒(Taylor)定理。 7.会用洛必达(L’Hospital)法则求不定式的极限。 8.理解函数的极值概念,掌握用导数判断函数的单调性和求极值的方法。会求解较简单的最大值和最小值的应用问题。 9.会用导数判断函数图形的凹凸性,会求拐点,会描绘函数的图形(包括水平和铅直渐进线)。 10.了解有向弧与弧微分的概念。了解曲率和曲率半径的概念并会计算曲率和曲率半径。 11.了解求方程近似解的二分法和切线法。 三、一元函数积分学 1. 理解原函数与不定积分的概念及性质,掌握不定积分的基本公式、换元法和分步积分法。会求简单的有理函数及三角函数有理式的积分。 2. 理解定积分的概念及性质,了解函数可积的充分必要条件。

高等数学基本知识点

一、函数与极限 1、集合的概念 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 ⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。 2、函数 ⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。变量x的变化范围叫做这个函数的定义域。通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只讨论单值函数。 ⑵、函数相等 由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。 ⑶、域函数的表示方法 a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。例:直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2 b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。 c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。一般用横坐标表示自变量,纵坐标表示因变量。例:直角坐标系中,半径为r、圆心在原点的圆用图示法表示为: 3、函数的简单性态 ⑴、函数的有界性:如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。 注:一个函数,如果在其整个定义域内有界,则称为有界函数 例题:函数cosx在(-∞,+∞)内是有界的. ⑵、函数的单调性:如果函数在区间(a,b)内随着x增大而增大,即:对于(a,b)内任意两点x1

高等数学A2 课程教学大纲 课程编号:10009B6 学时:90 学分:5 适用对象:理学类、工科类本科专业 先修课程:高等数学A1 考核要求:闭卷考试,总成绩=平时成绩20%+期末成绩80% 使用教材及主要参考书: 同济大学数学系主编,《高等数学》(下册),高等教育出版社,2002 年, 第五版 黄立宏主编,《高等数学》(上下册),复旦大学出版社,2006 年陈兰祥主编,《高等数学典型题精解》,学苑出版社,2001 年陈文灯主编,《考研数学复习指南(理工类)》,世界图书版公司2006年李远东、刘庆珍编,《高等数学的基本理论与方法》,重庆大学出版社,1995年 钱吉林主编,《高等数学辞典》,华中师范大学出版社,1999 年一、课程的性质和任务 高等数学课程是高等学校理工科各专业学生的一门必修的重要基础理论课,为学习后继课程(如大学物理等)奠定必要的基础,是为培养我国社会主义现代化建设所需要的高质量、高素质专门人才服务的。二、教学目的与要求 通过本课程的学习,使学生获得向量代数和空间解析几何、多元函数微分学、多元函数积分学、无穷级数(包括傅立叶级数)等方面的基本概念、基本理论和基本运算技能。 在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生具有比较熟练的运算能力和综合运用所学知识去分析问题和解决问 题的能力。 三、学时分配

第八章多元函数微分法及其应用18 第九章重积分16 第十章曲线积分与曲面积分16 第十一章无穷级数18 总复习 6 四、教学中应注意的问题 1. 考虑学生的差异性,注意因材施教; 2. 考虑数学学科的抽象性,注意数形结合; 3. 考虑数学与现实生活的关系,注意在教学中多讲身边的数学, 使学生树立“学数学是为了用数学”的观点,培养学生“用数学”的好习惯。 五、教学内容 第七章:空间解析几何与向量代数 1 ?基本内容: 向量及其线性运算,数量积,向量积,曲面及其方程,空间曲线及其方程,平面及其方程,空间直线及其方程。 2 ?教学基本要求: (1)理解空间直角坐标系、理解向量的概念及其表示; (2)掌握向量的运算(线性运算、点乘法、叉乘法、)了解两个向量垂直、平行的条件; (3)掌握单位向量,方向余弦、向量的坐标表达式以及用坐标表达式进行向量运算的方法; (4)平面的方程和直线的方程及其求法,会利用平面、直线的相互关系解决有关问题 (5)理解曲面的方程的概念,了解常用二次曲面的方程及其图形,了解以坐标轴为旋转的旋转曲面及母线平行于坐标轴的柱面方程; (6)了解空间曲线的参数方程和一般方程; (7)了解曲面的交线在坐标平面上的投影。 3 ?教学重点与难点: 教学重点:向量的运算(线性运算、点乘法、叉乘法),两个向量垂直、平行的条件,向量方向余弦、向量的坐标表达式以及用坐标表达式进行向量运算,平面的方程和直线的方程及其求法,曲面方程的

《高等数学》教学大纲 (2010年3月讨论稿) 全院专升本各专业适用 一、课程的性质与任务 《高等数学》课程,是成人高等教育本科各专业教学计划中的一门必修基础理论课,它不仅为专业计划中多门后继课程提供必要的数学基础,而且也是为提高学生科学素养而设置的课程。 通过本课程的学习,要使学生获得《高等数学》中的基本概念、基本理论和基本方法。要通过各个教学环节,逐步培养学生具备较熟练的运算能力和运用数学方法处理问题的初步能力。同时,在抽象思维和逻辑推理方面也有一定的提高,以提升学生的数学素质,使自学能力提高一个层次,为以后深造打下坚实的基础。 二、本课程的基本要求与重点 专升本数学教学是比较特殊的一种教学形式,因学生是专科毕业生,已初步获得一元微积分的基本知识。因此,根据成人高等教育以培养应用型人才的目标,按基础理论教材“必需、够用”的原则,本课程的基本要求: 1.加深掌握一元函数微分和积分两大基本数学方法的理解和应用; 2.获得多元函数微积分、常微分方程和无穷级数的系统的基本知识、基本理论和基本方法。 本课程的重点为:微分方程、二元函数微分学、二重积分、曲线积分和无穷级数。(说明:曲线积分和无穷级数经管类不作要求) 三、课程内容和考核要求 第一章函数、极限与连续性 (一)课程内容 1.初等函数与非初等函数; 2.函数的特性; 3.数列的极限; 4.函数的极限; 5.极限的运算法则; 6.两个重要极限; 7.无穷小量及其性质和无穷大量; 8.无穷小量的比较; 9.函数的连续性概念和连续函数的运算; 10.函数的间断点; 11.闭区间上连续函数的性质。 (二)考核要求 1.掌握求函数的定义域和函数值,理解函数记号的运用。 2.了解函数与其图形之间的关系,掌握画常用的简单的函数图像。

高等数学基本公式、概念和方法 一.函数 1.函数定义域由以下几点确定 (1)0)(;) (1 ≠= x f x f y (2)0)(;)(2≥=x f x f y n (其中n 为正整数) (3)0)(:)(log >=x f x f y a 。 (4)1 )(1);(arccos 1)(1);(arcsin ≤≤-=≤≤-=x f x f y x f x f y (5)函数代数和的定义域,取其定义域的交集. (6)对具有实际意义的函数,定义域由问题特点而定. 2.判断函数的奇偶性,依据以下两点确定,否则函数为非奇非偶的. (1) 若)(),()(x f x f x f =-是偶函数,若)(),()(x f x f x f -=-是奇函数. (2) 若)(x f y =的图象关于y 轴对称,则函数是偶函数.如x y x y cos ..2 ==等。 若)(x f y =的图象关于坐标原点对称,则函数是奇函数.如x y x y x y sin (3) === 3. 将函数分解成几个简单函数的合成. 由六类基本初等函数的形式,对要分解的函数,由外层到内层,分别设出关系.函数与常数的四则运算,不必另设一层关系. 二.极限与连续 1.主要概念和计算方法: (1).A x f x f A x f x x x x x x ==?=+-→→→)(lim )(lim )(lim 0 (2).若0)(lim 0 =→x f x x (极限过程不限),则当0x x →时)(x f 为无穷小量。 (3).若)()(lim 00 x f x f x x =→,则函数在0x 处是连续的。 即(1)函数值存在、(2)极限存在、(3)极限值和函数值相等。 若上述三条至少一条不满足,则0x 是函数的间段点。 (4).间断点的分类:设0x 是函数的间断点 若左、右极限均存在,则0x 称为第一类间断点。 若左、右极限至少有一个是无穷大,则0x 称为第二类间断点。 (5).重要公式:条件0)(lim =x ?(极限过程不限)

《高等数学》教案 第一讲 函数与极限 1.函数的定义 设有两个变量x ,y 。对任意的x ∈D ,存在一定规律f ,使得y 有唯一确定的值与之对应,则y 叫x 的函数。记作y=f(x),x ∈D 。其中x 叫自变量,y 叫因变量。 函数两要素:对应法则、定义域,而函数的值域一般称为派生要素。 例1:设f(x+1)=2x 2+3x-1,求f(x). 解:设x+1=t 得x=t-1,则f(t)=2(t-1)2+3(t-1)-1=2t 2-t-2 ∴f(x)=2x 2 – x – 2 定义域:使函数有意义的自变量的集合。因此,求函数定义域需注意以下几点: ①分母不等于0 ②偶次根式被开方数大于或等于0 ③对数的真数大于0 例2 求函数y= 6—2x -x +arcsin 7 1 2x -的定义域. 解:要使函数有定义,即有: 1|7 12|062≤-≥--x x x ? 4323≤≤--≤≥x x x 或?4323≤≤-≤≤-x x 或 于是,所求函数的定义域是:[-3,-2] [3,4]. 例3 判断以下函数是否是同一函数,为什么? (1)y=lnx 2与y=2lnx (2)ω=u 与y=x 解 (1)中两函数的 定义域不同,因此不是相同的函数. (2)中两函数的 对应法则和定义域均相同,因此是同一函数. 2. 初等函数 (1)基本初等函数 常数函数:y=c(c 为常数) 幂函数: y=μ x (μ为常数) 指数函数:y=x a (a>0,a ≠1,a 为常数) 对数函数:y=x a log (a>0,a ≠1,a 为常数) 三角函数:y=sinx y=cosx y=tanx y=cotx y=secx y=cscx 反三角函数:y=arcsinx y=arccosx y=arctanx y=arccotx (2)复合函数 设),(u f y =其)(x u ?=中,且)(x ?的值全部或部分落在)(u f 的定义域内,则称)]([x f y ?=为x 的复合函数,而u 称为中间变量. 例4:若y=u ,u = sinx ,则其复合而成的函数为y=x sin ,要求u 必须≥0, ∴sinx ≥0,x ∈[2k π,π+2k π] 例5:分析下列复合函数的结构

高等数学思想方法 第一章函数与极限 主要的思想方法: (1)函数的思想 高等数学的核心内容是微积分,而函数是微积分的主要研究对象。我们在运用微积分解决实际问题时,首先就要从实际问题中抽象出变量与变量之间的函数关系,这是一个通过现象抽象出本质特征的思维过程,体现的是科学的抽象是数学的一个思维方法和主要特征。 (2)极限的思想 极限的思想方法是微积分的基础。极限是变量在无限变化过程中的变化趋势,是一个确定的数值。把一些实际问题的确定结果视为一系列的无限近似数值的变化趋势,即函数或者数列的极限,这是一种重要的数学思想方法。 第二章导数与微分 主要的思想方法: (1)微分的思想 微分表示自变量有微小变化时函数的近似变化,一般地,求导的过程就称为微分;导数则反映函数相对于自变量的瞬时变化率。从导数与微分的概念中可看出,在局部的“以直代曲”的微分思想得到了充分的体现,而这也是微积分的一个基本思想。 (2)数形结合的思想 书本中在引入导数与微分概念时,也讨论了它们的几何意义,这显然更好地帮助我们理解这两个概念。通过几何图形来直观地理解概念以及定理的证明等等内容是高等数学中常用的方法,这是抽象思维与现象思维有机结合的典型体现。 (3)极限的思想 不难发现导数概念的引入与定义深刻地体现了极限的思想。 (4)逻辑思维方法 在本章中,归纳法(从特殊到一般),分类(整合)法等逻辑思维方法都得到了充分的体现,理解与掌握此类思维方法有助于良好的理性思维的形成。 第三章中值定理与导数的应用 主要的思想方法: 导数本质上是一种刻画函数在某一点处变化率的数学模型,它实质上反映了函数在该点处的局部变化性态;而中值定理则是联系函数局部性质与整体性质的“桥梁”,利用中值定理我们就能够从函数的局部性质推断函数的整体性质,具体表现为在理论和实际问题中可利用中值定理把握函数在某区间内一点处的导数与函数在该区间整体性质的关系。

高等数学知识点总结 空间解析几何与向量代数 一、重点与难点 1、重点 ①向量的基本概念、向量的线性运算、向量的模、方向角; ②数量积(是个数)、向量积(是个向量);(填空选择题中考察) ③几种常见的旋转曲面、柱面、二次曲面;(重积分求体积时画图需要) ④平面的几种方程的表示方法(点法式、一般式方程、三点式方程、截距式方程),两平面的夹角;(一般必考) ⑤空间直线的几种表示方法(参数方程、对称式方程、一般方程、两点式方程), 两直线的夹角、直线与平面的夹角;(一般必考) 空间解析几何和向量代数: 。 代表平行六面体的体积为锐角时, 向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。 与是向量在轴上的投影:点的距离:空间ααθθθ??,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(22 2 2 2 2 2 212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a k j i b a c b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u AB j z z y y x x M M d z y x z y x z y x z y x z y x z y x z y x z z y y x x z z y y x x u u ??==??=?=?==?=++?++++=++=?=?+=+=-+-+-==

(马鞍面)双叶双曲面:单叶双曲面:、双曲面: 同号) (、抛物面:、椭球面:二次曲面: 参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程: 1 1 3,,2221 1};,,{,1 302),,(},,,{0)()()(122 222222 22222 222 22220000002 220000000000=+-=-+=+=++??? ??+=+=+===-=-=-+++++= =++=+++==-+-+-c z b y a x c z b y a x q p z q y p x c z b y a x pt z z nt y y mt x x p n m s t p z z n y y m x x C B A D Cz By Ax d c z b y a x D Cz By Ax z y x M C B A n z z C y y B x x A 多元函数微分法及应用 z y z x y x y x y x y x F F y z F F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx x u du y x v v y x u u x v v z x u u z x z y x v y x u f z t v v z t u u z dt dz t v t u f z y y x f x y x f dz z dz z u dy y u dx x u du dy y z dx x z dz - =??-=??=? -?? -??=-==??+??=??+??===??? ??+?????=??=?????+?????==?+?=≈???+??+??=??+??= , , 隐函数+, , 隐函数隐函数的求导公式:   时, ,当 : 多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22

高等数学

一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A ∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集: ①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。

高等数学概念教学方法浅探 发表时间:2019-02-11T16:58:37.107Z 来源:《知识-力量》2019年4月中作者:周金城[导读] 数学概念是数学知识系统中的重要组成部分,正确理解数学概念,是正确归纳、推理和判断的必要条件。因此,加强数学概念教学是提高数学教学质量的有效手段,应引起足够重视。(襄阳职业技术学院公共课部,湖北襄阳 441021) 摘要:数学概念是数学知识系统中的重要组成部分,正确理解数学概念,是正确归纳、推理和判断的必要条件。因此,加强数学概念教学是提高数学教学质量的有效手段,应引起足够重视。关键词:高等数学;概念;教学 概念是对研究对象的本质属性的概括。而本质属性的概括过程是一个由感性到理性、由特殊到一般的思维过程,要使学生获得清晰的概念,就要在概念教学中充分开展这样一个过程。数学概念是用简练的语言对研究对象的本质属性的高度概括,是学生学习数学、接受新知识的基础。准确理解和掌握数学概念是学生学好数学的必备条件。如何搞好高等数学概念教学?笔者通过研究和实践,谈谈一些粗浅的看法。 一、运用数学史进行概念教学 数学史是数学家们克服困难和战胜危机的斗争的记录,是蕴涵了丰富的数学思想的历史。事实上,数学概念并非凭空而来,今天我们所学的数学概念,大都有着各自产生的背景和发展演变的过程,其间凝聚着无数数学家的心血和智慧。在高等数学的教材中我们会接触到一些重要的概念和定理,例如“导数的概念”、“牛顿——莱布尼兹公式”、“拉格朗日中值定理” 等等,这些概念和定理的学习不仅对于学习高等数学知识来说是重要的,并且对于提高数学素质也是极其必要的,它们是微积分的精华,是高等数学教学的必讲内容。牛顿的微积分理论主要体现在《运用无穷多项方程的分析学》、《流数术和无穷级数》、《求曲边形的面积》三部论著里。在《运用无穷多项方程的分析学》这一著作里,他给出了求瞬时变化率的普遍方法,阐明了求变化率和求面积是两个互逆问题,从而揭示了微分与积分的联系,即沿用至今的所谓微积分的基本定理。莱布尼兹是德国数学家、自然主义哲学家、自然科学家。他的第一篇微分学论文《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》是历史上最早公开发表的关于微分学的文献。他也是历史上最伟大的符号学家,例如, dx、dy、∫、log等等,都是他创立的,他的优越的符号为以后分析学的发展带来了极大的方便。牛顿从物理学出发,运用集合方法研究微积分,其应用上更多地结合了运动学,造诣高于莱布尼茨。莱布尼茨则从几何问题出发,运用分析学方法引进微积分概念、得出运算法则,其数学的严密性与系统性是牛顿所不及的。利用数学史资源来引入数学概念,可吸引学生在课堂中的注意力,让学生觉得数学也像其它文科性的学科一样,生动、有趣,从而进一步拉近学生与数学之间的距离。 二、用实际事例或事物、模型引出概念 在数学教学过程中,教师可以有目的、有计划地展示一些能够反映某一数学概念本质属性的直观感性材料,引导学生分析生活或生产活动中的事例,使学生在观察和思考相关实物、图示、模型的同时,获得对所研究对象的感性认识,并通过分析、归纳、总结,可抽象出所研究对象在数量关系和空间形式等方面本质属性,并提出所研究对象的概念。 笔者认为概念教学应该讲清概念的来源、形成,在体验数学概念产生的过程中认识概念。数学概念的引入,应从实际出发,创设情景,提出问题。通过与概念有明显联系、直观性强的例子(如实物、图示、模型等),使学生在对具体问题的体验中感知概念,形成感性认识,通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性。在数学概念教学过程中,教师设计动态图形,运用旋转、平移、分割、叠加等方法,直观清晰地展示概念的发生、发展、变化、演变的过程,在动态变化中认识数学概念的本质。例如用动态图帮助学生理解刘徽的“割之弥细,所失弥少,割之又割,以至于不可割,则与圆和体而无所失矣”极限思想,从而掌握极限概念,进而帮助学生理解导数的概念、定积分的概念及其几何意义等。 三、结合专业讲概念 数学概念是数学研究的出发点,是数学学习的关键,正确理解数学概念是提高学习数学能力的前提。然而,数学历来就有“抽象”的名声,对高职的学生而言,如何在淡化理论的同时,加深对数学概念的理解?从理论的角度来讲十分困难。为此可以在讲解数学概念时,尽可能从学生熟悉的生活实例或与专业相结合的实例引出。例如,在讲导数概念时,除了介绍变速直线运动的速度就是路程对时间的导数,曲线切线的斜率就是函数对自变量的导数外,还可多介绍一些变化率的实际问题,对导数的内涵、外延作进一步的说明。笔者在对经济学专业的学生讲导数时,导数的引入和应用实例的讲解结合经济学中的边际分析的方法进行讲授;在定积分章节的教学中,应用实例的讲解增加了经济学中的消费剩余和生产剩余定义及公式的讲解。由于贴近学生的专业,大大激发了学生学习的兴趣。结合学生所学专业联系实例讲概念,可使学生迅速地接受专业概念的数学描述,不仅加深学生对概念实际意义的理解,使学生认识到引入概念的合理性和必要性,还有利于学生把数学能力转化为实际应用能力。 四、采用类比引入概念 数学中的概念往往不是孤立的,理清概念间的联系,既能促进新概念的自然进入,也有助于接近已学过概念的本质及整个概念体系的建立。多元函数微分学中有一组概念,即极限、连续、偏导数、全微分、方向导数,对它们之间的联系以及它们与一元函数微分学中的极限、连续、导数、微分概念之间的异同的分析比较是我们在教学中要予以重视的.积分学中的定积分、重积分、2类曲线积分、2类曲面积分的概念之间的关系、异同也是在教学中应该加以注意的.建立概念间的联系、异同可以用多种方法,类比与联想是常用的方法之一.依靠类比与联想,可以从2维空间进入3维空间直至更高维空间。 总之,数学概念的教学,是高等数学教学的重要环节,是基础知识和基本技能教学的核心。学生学好数学概念是学习数学知识的重要前提,学生对数学概念掌握与理解的程度,直接影响到其它数学知识的学习。因此,数学概念的教与学显得十分重要,我们在进行数学知识的教学时一定要重视数学概念的教学。参考文献

高等数学常用概念及公式 ● 极限的概念 当x 无限增大(x →∞)或x 无限的趋近于x 0(x →x 0)时,函数f(x)无限的趋近于常数A ,则称函数f(x)当x →∞或x →x 0时,以常数A 为极限,记作: lim ∞ →x f(x)=A 或 lim 0 x x →f(x)=A ● 导数的概念 设函数y=f(x)在点x 0某邻域内有定义,对自变量的增量Δx =x- x 0,函数有增量Δy=f(x)-f(x 0),如果增量比 x y ??当Δx →0时有极限,则称函数f(x)在点x 0可导,并把该极限值叫函数y=f(x)在点x 0的导数,记为f ’(x 0),即 f ’(x0)=lim →?x x y ??=lim 0x x →0 0)()(x x x f x f -- 也可以记为y ’=|x=x0,dx dy |x=x0或dx x df ) (|x=x0 ● 函数的微分概念 设函数y=f (x )在某区间内有定义,x 及x+Δx 都在此区间内,如果函数的增量 Δy=f (x+Δx )-f(x)可表示成 Δy=A Δx+αΔx 其中A 是常数或只是x 的函数,而与Δx 无关,α当Δx →0时是无穷小量( 即αΔx 这一项是个比Δx 更高阶的无穷小),那么称函数y=f (x )在点x 可微,而A Δx 叫函数y=f (x )在点x 的微分。记作dy ,即: dy=A Δx=f ’(x)dx

● 不定积分的概念 原函数:设f(x)是定义在某个区间上的已知函数,如果存在一个函数F(x),对于该区间上每一点都满足 F ’(x)= f(x) 或 d F(x)= f(x)dx 则称函数F(x)是已知函数f(x)在该区间上的一个原函数。 不定积分:设F(x)是函数f(x)的任意一个原函数,则所有原函数F(x)+c (c 为任意常数)叫做函数f(x)的不定积分,记作 ?dx x f )( 求已知函数的原函数的方法,叫不定积分法,简称积分法。 其中“?”是不定积分的记号;f(x)称为被积函数;f(x)dx 称为被积表达式;x 称为积分变量;c 为任意实数,称为积分常数。 ● 定积分的概念 设函数f(x)在闭区间[a ,b]上连续,用分点 a=x 0

目录 一、函数与极限 (2) 1、集合的概念 (2) 2、常量与变量 (3) 2、函数 (4) 3、函数的简单性态 (4) 4、反函数 (5) 5、复合函数 (6) 6、初等函数 (6) 7、双曲函数及反双曲函数 (7) 8、数列的极限 (8) 9、函数的极限 (10) 10、函数极限的运算规则 (11)

一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a?A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A?B(或B?A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作?,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A?A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集: ①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。

第一讲函数,极限,连续性 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给 定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集,记作N+。 ⑶、全体整数组成的集合叫做整数集,记作Z。 ⑷、全体有理数组成的集合叫做有理数集,记作Q。 ⑸、全体实数组成的集合叫做实数集,记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A 中的任意一个元素都是集合B 的元素,我们就 说A、B 有包含关系,称集合A 为集合B 的子集,记作A ?B。 ⑵、相等:如何集合A 是集合B 的子集,且集合B 是集合A 的子集,此时集合A 中的元素与集合B 中 的元素完全一样,因此集合A 与集合B 相等,记作A=B。 ⑶、真子集:如何集合A 是集合B 的子集,但存在一个元素属于B 但不属于A,我们称集合A 是集合 B 的真子集,记作A 。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。 ②、对于集合A、B、C,如果A 是B 的子集,B 是C 的子集,则A 是C 的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合称为A 与B 的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A 且属于集合B 的元素组成的集合称为A 与B 的交集。记作A ∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。 通常记作U。

“高等数学1”课程教学大纲 教研室主任:任洲鸿执笔人:马凤明连淑君 一、课程基本信息 开课单位:经济学院 课程名称:高等数学1 课程编号:201001 英文名称:Advanced Mathematics 课程类型:学科基础课 总学时: 72 理论学时:72 实验学时:0 学分:3 开设专业:经济学 先修课程:无 二、课程任务目标 (一)课程任务 本课程是理科院校管理类专业的一门专业基础课,又是全国硕士研究生入学考试统考科目。通过本课程的学习,要使学生掌握一元函数微积分学、空间解析几何与向量代数的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力。 (二)课程目标 在学完本课程之后,学生能够: 基本了解一元函数微积分学、空间解析几何与向量代数的基础理论;充分理解一元函数微积分学、空间解析几何与向量代数的背景及数学思想。掌握微积分学及空间解析几何与向量代数的基本方法、手段、技巧,并具备一定的分析论证能力和较强的运算能力和空间想象能力。能较熟练地应用微积分学及空间解析几何与向量代数的思想方法解决应用问题。 三、教学内容和要求 第一章函数与极限 1.内容概要

函数,初等函数,数列的极限,函数的极限,无穷小与无穷大,极限运算法则,极限存在准则及两个重要极限,无穷小的比较,函数的连续性与间断点,连续函数的运算与初等函数的连续性,闭区间上连续函数的性质。 2.重点与难点 重点:函数的概念、性质;极限的概念,无穷大、无穷小的概念;极限的运算;连续的概念。 难点:函数的记号及所涉及到的函数值的计算;极限的ε—Ν,ε—δ定义;极限中一些定理的论证方法;极限存在性的判定,连续性的判断。 3.学习目的与要求 (1)了解函数的概念、函数的单调性,反函数和复合函数的概念,熟悉基本初等函数的性质及其图形,能列出简单实际问题中的函数关系。 (2)了解极限的ε—Ν,ε—δ定义;能根据定义证明本课程内容中有关极限的简单定理(对于给出的ε,求Ν或δ不作过高要求),在学习过程中逐步加深对极限思想的理解。 (3)掌握极限的四则运算法则,了解两个极限存在准则(夹逼准则和单调有界准则),会使用两个重要极限。 (4)理解无穷大、无穷小的概念,掌握无穷小的比较。 (5)理解函数在一点连续的概念,会判断间断点的类型。 (6)了解初等函数的连续性,知道在闭区间上连续函数的性质。 第二章导数与微分 1.内容概要 导数的概念,函数的求导法则,高阶导数,隐函数及由参数方程所确定的函数的导数,相关变化率,函数的微分。 2.重点和难点 重点:导数和微分的概念;复合函数微分法。 难点:微分的概念;隐函数及参数式二阶导数。 3.学习目的与要求 (1)理解导数和微分的概念,了解导数的几何意义及函数的可导性与连续性之间的关系,用导数描述一些物理量(如速度)。 (2)熟悉导数和微分的运算法则(包括微分形式不变性)和导数的基本公式,了解高阶导数概念,能熟练的求一阶、二阶导数。

命题人或命题小组负责人签名: 系(部)主任签名: 分院领导签名: ………………………………………………………………密封线…………………………………………………………… §1.1 函数 一、有关四种性质(奇偶性、单调性、周期性、有界性) 1. 0 () (0)()2() ()a a a f x a f x dx f x dx f x ->?? =???? ?当为奇函数当为偶函数 口诀(1):奇偶函数常遇到;对称性质不可忘。 2. 在(a,b )内,若()0f x '>,则()f x 单调增加 若()0f x '<,则()f x 单调减少 口诀(2):单调增加与减少;先算导数正与负 例1 求1 521[()ln(1)].x x I x x e e x x dx --= +-++? 解 1()x x f x e e -=-是奇函数,∵2 112()(),()ln(1)x x f x e e f x f x x x --=-=-=++是奇函数, ∵ 222 22 (1)()ln(1)ln 1 x x f x x x x x +--=-+ -=++ 22ln1ln(1)()x x f x =-++=- 因此2 ()ln(1)x x x e e x x --++是奇函数。 于是1 1 6 61 2027 I x dx x dx -= +== ? ?。 例2 设()()F x f x '=,则下列结论正确的是 (A)若()f x 为奇函数,则()F x 为偶函数。 (B)若()f x 为偶函数,则()F x 为奇函数。 (C)若()f x 为周期函数,则()F x 为周期函数。 (D)若()f x 为单调函数,则()F x 为单调函数。 解 (B)不成立,反例32 (),()13 x f x x F x ==+ (C)不成立,反例()cos 1,()sin f x x F x x x =+=+ (D)不成立,反例2 ()2,()(,)f x x F x x ==-∞+∞在内 (A)成立。 证明 0 ()(0)(),x F x F f t d t f =+ ? 为奇函数, 00 ()(0)()(0)()() (0)()() x x x F x F f t dt F f u d u F f u du F x --=+=+--=+=? ?? 所以,()F x 为偶函数。 例3 设()f x ,()g x 是恒大于零的可导函数,且()()()()0f x g x f x g x ''-<,则当a x b <<时,下列结论成立的是 (A)()()()()f x g b f b g x > (B)()()()()f x g a f a g x > (C)()()()()f x g x f b g b > (D)()()()()f x g x f a g a > 解 ∵2()1[()()()()]0()()f x f x g x f x g x g x g x '??''=-,故(A)成立。 二、有关复合函数 1. 已知()f x ,()g x 求[()]f g x 2. 已知[()]f g x 和()g x ,求()f x 例1、已知12() ()() f x x a f x f x x a ≤?=?>?和12 () ()() g x x b g x g x x b ≤?=?>? 求[()]f g x 解:11112221122 2[()] ()[()] ()[()][()] ()[()] () f g x x b g x a f g x x b g x a f g x f g x x b g x a f g x x b g x a ≤≤?? >≤?=? ≤>??>>?当,当,当,当,

相关文档
相关文档 最新文档