文档库 最新最全的文档下载
当前位置:文档库 › CRH2 牵引系统(很详细)

CRH2 牵引系统(很详细)

CRH2 牵引系统(很详细)
CRH2 牵引系统(很详细)

第三章 牵引系统

第一节 概 述

主牵引系统主要由受电弓、牵引变压器、牵引变流器及牵引电机组成。受电弓通过电网接入25kV 的高压交流电,输送给牵引变压器,降压成1500V 的交流电。降压后的交流电再输入牵引变流器,通过一系列的处理,变成电压和频率均可控制的三相交流电,输送给牵引电机,通过电机的转动而牵引整个列车。

主牵引基本动力单元由1台牵引变压器、2台牵引变流器、8台牵引电机构成,1台牵引变流器驱动4台牵引电机。四台牵引电机并联使用。四台牵引电机特性差异控制在±5%以内,以便电流负荷分配均匀。

动车组有两个相对独立的主牵引动力单元。正常情况下,两个牵引单元均工作。当设备故障时,M 1车和M 2车可分别使用。另外,整个基本单元可使用VCB 切除,不会影响其它单元工作。

一、系统原理

主电路简图如图3-2所示,受电弓从接触网25kV 、50Hz 单相交流电源受电,通过主

图 3-2 主电路简图

牵引变压器 逆变器 滤波电容器 脉冲整流器

脉冲整流器 滤波电容器 逆变器

图 3-1 主牵引系统示意图

断路器VCB连接到牵引变压器原边绕组上。主电路开闭由VCB控制。牵引变压器牵引绕组设两组,原边绕组电压25kV时,牵引绕组电压1500V。

主电路系统以M1车、M2车的两辆车为1个单元。主电路系统原理参见图3-2主电路简图。更详细的可参见附图中的《主电路接线图》。

二、系统布置

主牵引系统车底电气设备布置参见图3-3。2、6号车车下各设一台牵引变压器,而2号车(M2)、3号车(M1)、6号车(M2)、7号车(M1s)的车底下均悬挂一台牵引变流器,及车下转向架分别安装4台牵引电机。

其中4号车和6号车车顶均设受电弓、保护接地开关EGS、故障隔离开关一套,2号车和6号车的车下均设高压机器箱;2、3、4号车之间和5、6号车之间的车顶上设置高压电缆连接器,为了方便摘挂,在4、5号车之间的车顶上,设置了高压电缆用倾斜型电缆连接器。

三、车辆编组

车辆编组如图3-3所示。

图3-3 车辆编组图

四、设备构成

主电路设备构成如表3-1所示。

表3-1主电路设备构成表

图 3-4 DSA250受电弓总成

1-底架 2-阻尼器 3-升弓装置 4-下臂 5-弓装配 6-下导杆 7-上臂 8-上导杆 9-弓头 10-滑板

五、单元构成

主电路的基本单元由受电弓(1台)、VCB (主断路器)(1台)、牵引变压器(1台)、牵引变流器 (2台)、牵引电机(8台)构成。1台牵引变流器驱动4台牵引电机。

第二节 受电弓

一、结构

升弓装置安装在底架上,通过钢丝绳作用于下臂。下臂、上臂和弓头由较轻的铝合金材料结构设而成。

滑板安装在U型弓头支架上,弓头支架垂悬在4个拉簧下方,两个扭簧安装在弓头和上臂间,这种结构使滑板在机车运行方向上移动灵活,而且能够缓冲各方向上的冲击,达到保护滑板的目的。

二、技术参数

(一)名称:单臂受电弓。 (二)型号:DSA250。 (三)设计速度:250km/h 。 (四)额定电压/电流:25Kv/1100A 。 (五)标称接触压力:70N (可调整)。 (六)空气动力调整:通过弓头翼片调节(根据用户需要选装)。

(七)升弓驱动方式:气囊装置。 (八)输入空气压力:0.4~1Mpa 。

(九)静态接触压力为70N 时的标称工作压力:约0.35 Mpa 。 (十)弓头垂向移动量:60mm 。

(十一)精密调压阀耗气量:输入压力<1MPa 时不大于11.5L/min 。 (十二)材料

1.滑板:整体碳滑板(鋁托架/碳条)。 2.弓角:鈦合金。

3.上臂/下臂:高强度鋁合金。 4.下导杆:不锈钢。

5.底架:低合金高强度结构钢。

(十三)重量:约115kg(不包含绝缘子)。

注意:必须要由专业技术人员和乘务员来使用和维护受电弓。在任何情况下,必须采取必要的安全和防护措施。

图 3-5 受电弓气动原理图

1-空气过滤器 2-单向节流阀(升弓)G1/4 3-精密调压阀Rc1/2调压范围为0.01~0.8MPa 4-压力表R1/8,0~Mpa 5-单向节流阀(降弓)G1/4 6-安全阀 12-升弓装置 14-电控阀 15-绝缘管 16-气囊驱动式受电弓阀板 17-车顶界面

三、工作原理

上图中的14、15 属选项。压缩空气通过电控阀经过滤器进入精密调压阀,精密调压阀(件3)用于调节受电弓接触压力,输出压力恒定的压缩空气,其精度偏差为±0.002 Mpa 。因为气压每变化0.01Mpa(0.1kgf/c ㎡)会使接触压力变化10N 。

注:精密调压阀调压阀在工作过程中,为保证输出压力穏定,溢流孔和主排气孔始终有压缩空气间歇性排出,属正常现象。 压力表(件4)显示值仅作为参考,应以实测接触压力为准。单向节流阀(件2)用于调节升弓时间,单向节流阀(件5)用于调节降弓时间。如果精密调压阀出现故障,安全阀会起到保护气路的作用。

注:精密调压阀运用中不得随意改变其调整值,为保证各种控制阀正常使用,应严格防止水和其它杂质渗入(注意机车上部件管接头的密封,并及时检查清理空气过滤器。精密调压阀的更换应采用原厂配件或装备部指定的产品,否则引起的质量事故,后果由用户承担)。

四、受电弓的使用 环境和安装条件包括:

环境温度:-40℃/+40℃, 注意阀板尽可能装在车内。;

压缩空气压力值:必须使用干燥的空气,正常升弓空气压力值约0.34~0.38Mpa (接触压力为70N 时)。

接触压力调整:受电弓在正常工作高度,接触压力可在机车顶部用弹簧秤测量,如果需要可由专业技木人员通过精密调压阀调节,调整好的精密调压阀在使用边程中禁止随意人为调整。更换受电弓时,应重新检测受电弓的接触压力。

注:(1).如运行中由于碳滑条磨损使滑板重量减少,导致接触压力少量升高寸,无需调整精密调压阀。(2)本文图纸和文字只说明基本原理,详细精确的设计资料必须从各修订图纸或最新图纸中获得。

五、维护说明

(一)检查

使用前,在降弓位置检查钢丝绳的松紧程度。两侧张紧程度应一致。清理阀板上的过滤器。拧开滤清器的外罩,清理尘埃和水。

1.间隔4周的维修内容

目测整个受电弓。若存在损坏的绝缘子,破损的软连接钱,损坏的滑动轴承和变形的部件都应更换。若磨耗部件超过其磨损极限,也应当及时更换。清洁车顶与受电弓之间的绝缘管,可用中性清洁剂,不得使用带油棉纱。每天用干棉纱擦拭,防止灰尘吸附,导致一次短路。

2.间隔6个月的维修内容

整个受电弓性能检测,目测软连接线,用卡尺测量滑板厚度,若磨损到限则应更换。

3.间隔1年的维修内容

紧固件的检测,尤其是整个弓头弹性系统的零部件。如果需要拧紧螺母,应注意保证相应的扭矩。M8螺栓扭矩为12±2Nm。

4.间隔2年的维修内容

轴承的润滑,滑动轴承可自润滑,对于下导杆两端的关节轴承以及升弓装置销轴处的润滑,可用注油枪向润滑油杯内注SHELLALVANIA R3型润滑脂。注完后用油杯帽密封。下臂上的6个滚动轴承的润滑,需拆下下臂,从有弹性档圈一端将轴拆下,衬套内注SHELLALVANIA R3型润滑脂后,装上下臂。拆装下臂时请向厂家索取拆装工艺。

5.间隔4年的维修内容

更换软连接线。

6.间隔8年的维修内容

更换轴承。

(二)润滑

润滑滚动轴承是为了提高其使用寿命。在最初安装时、两年一次的维修期或常规维修时油杯应注意密封以防尘土和水.滑动轴承可自润滑,保养方便。

(三)清理

阀板上的过滤器应1~2周清理一次。

(四)更换滑板

出现下列情况时,必须更换滑板:

1.碳条磨耗后高度小于5mm成滑板总高度≤22mm。

2.由于产生电弧,发生变形或缺陷。

3.滑板碎裂或出现一定深度的凹槽。

如果仅需更换一个滑板,新滑板与另一个旧滑板的高度差应不超过3mm。

特别注意:安装滑板压缩空气进气接口时,套紧螺母的拧紧力矩不大于3Nm,用手旋入或小型扭力扳手即可。

(五)调试更换阻尼器

阻尼器在安装受电弓前必须经过调试。如果受电弓实际动作特性与额定值之间有较大差别,有必要检查阻尼器的安装情况。磨损、动作不灵活、漏油时,须更换阻尼器。

具体操作如下:先把阻尼器拉伸、压缩5次,长座①=54mm,落弓位置的安装长度②=480±1.5mm。

图 3-6 阻尼器调试说明

1-长座=54mm 2-长度=480±1.5mm 3-阻尼器 4-右 5-左

6-防坐盖 7-锁紧螺母(气缸)8-锁紧螺母 (接头)

(六)检查升弓装置

建议每4~6周在落弓位置检查一次钢丝绳的松紧。如需要,则把钢丝绳拉紧,但两螺母拧紧量要相同,避免升弓装置松弛(在落弓位置),如图3-7所示。

图3-7 装有升弓装置的底架

1-弓装配2-升弓装置3-钢丝绳4-销轴5-主通气管6-线导向

六、弓网故障后的检修、检测

当发生弓网故障,造成受电弓滑板、弓头、上臂等零部件变形或损坏,应将受座弓从车顶拆下,进行全面调修或更换零部件,检修完成后在专用试验台上対受电弓进行例行试验(包括动作试验、弓头自由度测量、气密性试验、静态压力特性试验等),试验合格后方可重新装车投入使用。对于较轻的刮弓,可在车顶调试升降弓时间、静态压力特性试验等。关于受电弓的一些常见故障和维修,可以参见《CRH2动车组故障处理手册》中相关部分和《专项修作业办法》的受电弓专项修办法部分。

七、DSA250 受电弓辅助用油脂

表3-2 受电弓辅助用油脂

八、注意事项

(一)必须要由专业技术人员调整和维护受电弓。在任何情况下,必须采取必要的安全和防护措施。

(二)在车顶工作时,必须切断接触网线供电电源。

(三)受电弓升弓时,应确保压缩空气供应无意外故障发生。因为一旦压缩空气供应发生故障,受电弓就会下降,可能造成受电弓臂底下人员的人身伤害。

(四)在调整和维护受电弓时,为确保不会无意升弓,使用约1.5米的绳子绑在底架和上交叉管间。

(五)维护弓头时,在受电弓的上交叉管和车顶或底架间用长约0.9m的木制支撑支撑。不要把木制支撑放置在气囊或升弓装置的部件上。

(六)特殊情况在受电弓气囊失效后,重新启用受电弓前应完全排除渗入其中的水。

(七)必须遵循网线接地和绝缘的原则。

第三节高压箱

25KV电网高压首先由受电弓引入动车组,然后经过故障隔离开关接入到高压机器箱,并旁路连接了保护接地开关EGS。高压机器箱内有避雷器、真空断路器VCB、接地端子。从高压机器箱出来的高压电直接连接到牵引变压器的原边绕组。设置了高压联锁回路,在受电弓没有降下或保护接地开关EGS没有闭合的情况下,高压机器箱不能打开。

故障隔离开关的作用是在出现故障时强迫断开受电弓。EGS的作用是将高压系统强制性接地,以便车辆维护时人员的安全。VCB的作用是在需要的情况下自动断开主变压器的供电。

一、真空断路器

型式:CB201型。

额定电压:AC30kV,瞬间最大电压AC31kV )额定电流:AC200A。

额定频率:50Hz。

额定开断容量:100MVA。

断路时间:3周以下(50Hz)。

额定闭合电流:10000A。

额定瞬间电流:4000A(2s)。

额定断路电流:3400A。

无负荷闭合时间:0.15s以下。

额定开断时间:0.06s以下。

额定断路时间:0.08s以下。

操作方法:电磁控制空气操作额定操作电压:DC100 +10

-30V

额定操作压力:7.84×105Pa(8kgf/cm2)

二、交流避雷器

额定电压:AC42kV(RMS)。

动作电压:AC57kV以下(V1mA,DC)。限制电压:AC107kV以下。

三、保护接地开关

型号:SH2052C。

方式:电磁空气式。

额定电压:30kV,单相。

额定频率:50Hz。

额定瞬时电流:6000A(15周)。

额定操作空气压力:785kPa(8kgf/cm2)。

额定操作电压:DC100 +10

-30V。

额定联锁接点:3a-3b。

结构:为耐寒耐雪结构,设防冻电热器(AC100V 100W)。

图3-8真空断路器

图 3-9 牵引变压器

长-2570mm 宽-2300mm 高-835mm

第四节 牵引变压器

动车组在2号和6号车下各设有一个牵引变压器,牵引变压器通过螺栓悬挂于车体下。 一、输出

在网压变化范围内,牵引变压器输出电压、电流及功率满足列车牵引和再生制动要求。 二、安装结构

牵引变压器的安装采用在车体横梁下用螺栓固定的吊挂方式。

三、强度

牵引变压器有足够的强度,保证在高速运行时碎石碰撞不至于破损。

四、冷却及其冷却油

冷却采用强迫油循环风冷方式,除用温度继电器、油流指示器实施状态监控外,还采用金属波纹管存油器,避免外气与油的直接接触,防止油质老化。冷却油采用难燃性硅油。

五、规格

牵引绕组为两个独立线圈,每1线圈均连接到1台牵引变流器上,确保牵引绕组的高电抗、疏偶合性,具有可使牵引变流器稳定运行的特性。另外,为了增加每组牵引绕组的容量,原边绕组采用两组并联结构的绕组配置。

六、线圈结构

牵引绕组2组、辅助绕组1组。 七、方式

壳式无压密封方式。 八、冷却方式

油循环风冷方式、硅油。 九、效率

95%以上(额定载荷条件)。 十、绝缘等级 (一)原边绕组高压侧

图 3-10 牵引变流器 长-3100mm 宽-2730mm 高-650mm

1. 感应耐电压:42kV ×10分钟(120Hz 时)(另外,240Hz 时5分、166.7Hz 时7.2

分等条件也可)。

2. 脉冲耐电压:全波150kV (波形:波前长1.2μs ,波尾长 50μs );截断波170kV

(波形:在波前长1.2μs 处截断)。 (二)原边绕组接地侧:工频耐压 2.5kV 。 (三)牵引绕组侧:车辆用工频耐压 5.4kV 。 (四)辅助绕组侧:车辆用工频耐压 2.9kV 。 (五)绝缘种类:特A 级。 十一、牵引变压器额定性能参数

参见表3-3,牵引变压器线圈结构为牵引绕组2组、辅助绕组1组,采用油循环冷却。

关于牵引变压器的一些常见故障,请参见《CRH2动车组故障处理手册》中相关部分。

第五节 牵引变流器

动车组设有四个牵引变流器,分别在2号、3号、6号和7号车下。两个牵引变流器为一组,由一个牵引变压器提供电源。牵引变流器与牵引变压器一样,用螺栓悬挂于车下。

牵引变流器在M 1车、M 2车上分别装载脉冲整流器、逆变器各1台,运行时除实施牵引电机电力供应和制动时的再生制动外,还具备保护功能。

一、结构

动车组牵引变流器采用免维修模块结构。功率半导体模块的换件时间为两小时以内。

牵引变流器功率单元集中布置,

脉冲整流器功率单元(2台)、逆变

功率单元(3台)。牵引变流器配置有两排气口的电动轴流式通风机,向功率单元冷凝器送风。真空接触器、继电器单元和无接点控制装置等集中布置,便于检修。另外,考虑密

封性和检查方便,采用板簧式手动型夹紧装置。

牵引变流器的零部件,考虑到其操作、维修方便,采用模块化设计。例如半导体冷却装置分成脉冲整流器用两台,逆变器用三台的单元,分别具有互换性。控制装置分为无接点控制装置(控制逻辑部)、继电器单元、电源单元等。

半导体冷却装置和电动通风机等大型装置采用下部拆装的结构。小型控制单元内的各零部件可以采用不同厂家的产品,维修和检查时需要更换的控制单元,其结构和功能必须具有互换性。

二、电路方式

牵引变流器采用电压型3点式电路,由脉冲整流器、中间直流电路、逆变器构成。模块具有互换性。

三、功率半导体

功率半导体采用:

IGBT或IPM:3300V、1200A。

钳位半导体:3300V、1200A。

四、控制方法

脉冲整流器部分:牵引变压器牵引绕组输出的AC1500V、50Hz输入脉冲整流器。脉冲整流器由单相3点式PWM变频器、交流接触器K组成。采用无接点控制装置(IGBT 元件),从而实现了输出直流电压2600V~3000V定压控制、牵引变压器原边电压电流功率因数的控制以及无接点控制装置保护。再生制动时接收滤波电容器输出的直流3000V电压,向牵引变压器供应AC1500V、50Hz。另外,主电路的输入通过交流接触器K实施。

逆变器部分:输入滤波电容器电压,依据无接点控制装置(IGBT元件)控制信号,输出变频变压的三相交流电对4台并联的电机进行速度、扭矩控制。再生制动时牵引电机发出三相交流电,向滤波电容器输出直流电压。牵引电机控制采用矢量控制方式,独立控制扭矩电流和励磁电流,以使扭矩控制高精度化、反应高速化,提高电流控制性能。

五、保护功能

系统具有完善的保护功能。

六、冷却方式

冷却方式采用液体沸腾冷却机械通风方式,冷却介质采用环保的氟化碳(FX3250)。

七、控制装置

牵引变流器控制为软件控制,调节装置免维护。

八、效率

在额定载荷条件下(除辅助电路和控制电路外),牵引变流器的效率为:0.96以上。

九、性能参数

(一)形式:CI11 。

(二)脉冲整流器:单相电压3点式PWM脉冲整流器。

(三)逆变器:3相电压3点式PWM逆变器。

(四)额定参数

1.输入:1285kVA (单相交流1500V,857A,50Hz)。

2.中间直流电路:1296kW (直流3000V,432A)。

3.输出:1475kVA (三相交流2300V,424A,0~220Hz)。

4.效率:96%以上(在额定载荷条件下,除辅助电路外)。

5.功率因数:97%以上(在额定载荷条件下,除辅助电路和控制电路外)。

(五)开关频率

1.脉冲整流器:1250Hz。

2.逆变器:500~1000Hz。

(六)冷却方式:液体沸腾冷却机械通风方式,冷媒为氟化碳(FX3250)。

(七)主要构成

1.功能单元

(1)主开关元件:IGBT或IPM。

(2)滤波电容器:合计8000μF/装置。

(3)脉冲整流器功率单元:2125μF/台×2台=4250μF。

(4)逆变器功率单元:1250μF/台×3台=3750μF 。

2.过压抑制可控硅单元:过压抑制可控硅栅级驱动电路、直流电压互感器(DCPT)。3.充电单元:滤波电容器备用充电用接触器、变压器及整流器。

4.真空交流接触器。

5.电阻器单元:过电压抑制电抗器、放电电阻器。

6.交流变流器单元:霍尔型电流传感器。

7.交流变压器单元:电压传感器。

8.无接点控制装置。

9.控制电源单元。

10.电动通风机:主电动通风机、辅助电动通风机(密闭室冷却用)。

(八)接点控制装置

(九)脉冲整流器控制功能

1.主电路控制方式:3点式PWM方式。

2.脉冲整流器输出频率:50Hz。

3.直流电压:DC2600V~DC3000V(按速度范围变化可调)。

4.载波频率:1250Hz。

5.功率因数:97%以上。

6.控制功能:(1)发生直流电压模式;(2)电源相位同步控制;(3)PWM控制。(十)逆变器控制功能

1.主电路控制方式:3点式PWM方式。

2.电机控制方式:矢量控制计算的电流瞬间值控制。

3.电机旋转频率:计算频率0~150Hz。

4.V/f特性:2300/116Hz(牵引),2300/130Hz(制动)。

5.非同期脉冲状态载频频率:1000Hz左右。

6.脉冲状态:非同步脉冲状态-(过调制脉冲状态)-同步脉冲状态-同步1脉冲状态。

7.控制功能

(1)电机控制。(2)控制模式(牵引运行、制动、定速、后退启动)。

(十一)程序控制功能

1.启动停止程序。

2.保护程序。

3.动力运行、再生程序。

(十二)维修、检查功能

1.车载试验功能

依据车辆信息控制装置的指令,在无接点控制装置内产生模拟信号,可进行保护动作,接触器动作等自我检查工作。

2.保护检测记录功能

作为保护动作分析手段,在无接点控制装置内记录发生保护动作时装置的输入、输出信号和控制状态,以向列车信息控制装置提供数据。

3.高速记录器功能

作为保护动作分析手段,在无接点控制装置内记录发生保护动作时装置的输入、输出信号和控制状态,以向列车信息控制装置提供数据。

关于牵引变流器的一些常见故障,请参见《CRH2动车组故障处理手册》中相关部分。

第六节牵引电机

一、电机型式

牵引电机采用三相交流异步电机。

二、供电及调速方式

牵引电机适用于电压源逆变器供电,变频变压(VVVF)调速运用方式。

三、绝缘等级

牵引电机绝缘采用200级绝缘等级。

图 3-11 牵引电机 长-720mm 宽-697mm 高-629mm

四、 互换性

所有牵引电机在外形尺寸、安装尺寸和电气性能方面,均能在所有动车的转向架各个轮轴之间完全互换。

五、维修

电机维修时,仅更换定子或转子后,仍能保证电机特性的一致性。

六、 振动和冲击

电机采用耐振动和冲击的结构。 七、牵引电机特性

牵引特性曲线和转矩-转速曲线、再生制动特性曲线参见《时速200/300

公里动车组主要技术条件》中的CRH2牵引电机牵引制动特性曲线和数据表。

八、效率

牵引电机的连续额定效率为0.94以上。 九、电机规格 (一) 概况

牵引电机采用不解体就可供油脂的绝缘轴承。每台牵引电机的最大输出轴功率为300kW 。

(二)性能规格

1.方式:三相异步感应电机 2.相数:3。 3.极数:4。

4.通风方式:强迫通风。

5.装载方式:转向架构架悬挂安装。 6.绝缘种类:200级。 7.额定参数 (1)功率:300kW 。 (2)电压:2000V 。 (3)电流:106A 。 (4)频率:140Hz 。 (5)转差:1.4%。 (6)转速:4140rpm 。

(7)效率:0.94。

(8)功率因数:86%。

(三)结构

1.转子

转子为坚固的鼠笼形,采用耐高速旋转的结构。为确保转子转动,转子导条采用固有电阻大、强度高的铜锌合金(黄铜)。

2.定子

为了轻量化,取消了铁心外的框架,采用连结板压住铁心。电机框架设有与转向架连接的安装座,框架两侧的连结框(铝托座)采用铝合金铸件制造。

3.测速发电机

在非传动轴端安装了2个测速发电机,用于逆变器控制和制动控制。

4.齿轮装置效率

0.95(计算参数,牵引电机输出和车轮踏面输出系数采用此数据)。

十、其它控制和辅助电路设备

(一)主控制器

方式:牵引手柄为前后操作方式。

构成:牵引运行10档,带方向选择开关。

额定工况如表3-4所示。

其它:与制动手柄联锁。

表3-4 主控制器额定参数

(二)牵引电机用电动通风机

方式:鼠笼式异步电机。

通风方式:全封闭外风扇型。

相位数:三相。

极数:4。

电压:AC400±10%。

频率:50Hz。

关于牵引电机的一些常见故障,请参见《CRH2动车组故障处理手册》中相关部分。

16

北交大牵引供电系统作业

北交大17春《牵引供电系统》第二次作业参考答案 (2018 年 10 月 6 日----2018 年 11 月 6 日) 1.电气化铁道牵引变压器的接线方式有哪些?各有何特点? 2.当前高速铁路普遍采用的变压器接线方式是哪一种?为什么? 3.变压器的计算容量,校核容量,最大容量,安装容量有何不同? 4.变压器的过负荷能力对变压器容量有和影响? 5.变压器的备用方式对变压器容量的选择有何影响?当前高速铁路采用的是那种备用方 式? 6、计算题: 沪宁线(单线考虑)某变电所(镇江变电所)供电分区内:列车运行密度N=25对/天,假设每列列车牵引能耗A=1750KVA H所有列车累计运行时间56min,供电分区内有6个车站,该变电所采用三相变压器,固定备用,请确定该变电所的安装容量。 7、牵引网阻抗是什么?牵引网阻抗包含哪些回路,请画出单线铁路等值电路图。 8、牵引网阻抗的影响因素是什么? 9、如何计算牵引网阻抗? 10、计算牵引网阻抗有何意义? 11、如何测量牵引网阻抗? 12、计算:新建合肥至上海(按单线考虑)客专,接触网采用GJ-70+GLCA100/215 已知数据:导线有效电阻R仁0.184欧/公里,当量系数A=0.95 计算半径9.025毫米;等导线有效电阻R仁0.184欧/公里,当量系数A=0.95 承力索GJ-70计算参数: 有效电阻R2=1.93欧/公里,当量系数A=0.95 计算半径5.75毫米;等导线有效电阻R2=0.184 欧/公里,当量系数B=0.1导线高度 H仁6200毫米;结构高度h=1500毫米;驰度f=700毫米 钢轨参数:有效电阻R3=0.18欧/公里;计算半径96.5毫米;当量系数A=0.16 ;等值半径15.4毫米;大地土壤电导率:-=10°/i」cm 试计算牵引网阻抗。 1.常用的有四种接线方式:平衡变压器(阻抗匹配,非阻抗匹配;斯科特(Scoot )接线方式;三相接线方

牵引供电系统简介

牵引供电系统简介: 将电能从电力系统传送给电力机车的电力装置的总称叫电气化铁路的供电系统,又称牵引供电系统,主要由牵引变电所和接触网两大部分组成。牵引变电所将电力系统输电线路电压从110kV(或220kV)降到27.5kV,经馈电线将电能送至接触网;接触网沿铁路上空架设,电力机车升弓后便可从其取得电能,用以牵引列车。牵引变电所所在地的接触网设有分相绝缘装置,两相邻牵引变电所之间设有分区亭,接触网在此也相应设有分相绝缘装置。牵引变电所至分区亭之间的接触网(含馈电线)称供电臂。 牵引供电回路是由牵引变电所——馈电线——接触网——电力机车——钢轨——回流联接——(牵引变电所)接地网组成的闭合回路,其中流通的电流称牵引电流,闭合或断开牵引供电回路会产生强烈的电弧,处理不当会造成严重的后果。通常将接触网、钢轨回路(包括大地)、馈电线和回流线统称为牵引网。 牵引供电设备的检修运行由供电段负责,牵引供电系统的运行调度则由供电调度负责。供电调度通常设在铁路局调度所。 牵引供电系统供电示意图如下所示: 二、牵引变电所、分区所、开闭所 牵引变电所:牵引变电所的任务是将电力系统三相电压降

低,同时以单相方式馈出。降低电压是由牵引变压器来实现的,将三相变为单相是通过变电所的电气接线来达到的。 牵引变压器(主变)是一种特殊电压等级的电力变压器,应满足牵引负荷变化剧烈、外部短路频繁的要求,是牵引变电所的“心脏”。我国牵引变压器采用三相、三相——二相和单相三种类型,因而牵引变电所也分为三相、三相——二相和单相三类。 随着技术水平的提高,我国干线电气化铁路已推广使用集中监视及控制的远动系统,牵引变电所将逐步实现无人值班,直接由供电调度实行遥控运行。 分区所:分区所设置在两个变电所中间,作用有三:提高供电质量、供电分段、越区供电。 ?开闭所:一般设置在大型站场附近,进线由变电所或接触网引入,由开关馈出多个供电线路向多个供电设备供电。作用是增强供电的灵活性,便于供电设备的运行及检修,便于行车组织,缩小供电事故及故障范围。 ? ? 三、接触网 接触网是沿铁路沿线架设的特殊电力线路,电力机车受电弓通过与之滑动摩擦接触而授流,取得电能。所以两者均应保持良好的工作状态。

最新电气化铁路牵引供电系统试卷1

电气化铁路供电系统 试卷1一、单项选择题(在 每小题的四个备选答案中,选出一个正确的答案,并将其代码填入题干后的括号内。每小题1分,共20分) 1.我国电气化铁道牵引变电所由国家( )电网供电。 ( ) A 超高压电网 B 区域电网 C 地方电网 D 高压电网 2.牵引网包括 ( ) A 馈电线、轨道和大地、回流线 B 馈电线、接触网、轨道和大地、回流线 C 馈电线、接触网、回流线 D 馈电线、接触网、电力机车、大地 3.通常把( )装置的完整工作系统称为电力系统。 ( ) A 发电、输电、变电、配电、用电 B 发电、输电、配电、用电 C 发电、输电、配电、 用电 D 发电、输电、用电 4.低频交流制牵引网供电电流频率有:( ) ( ) A 50Hz 或25Hz B 30Hz 或50Hz C 2 163 Hz 或25Hz D 20Hz 或25Hz 5.单相结线牵引变电所牵引变压器的容量利用率(额定输出容量与额定容量之比值)可达( )。 ( ) A 100% B 75.6% C 50% D 25% 6.牵引变压器采用阻抗匹配平衡变压器时,阻抗匹配系数等于1时, 且副边两负荷臂电流I I αβ=&&,原边三相电流( ) ( ) A 平衡 B 无负序电流 C 对称 D 有零序电流 7.交流牵引网对沿线通信线的静电影响由( )所引起。 ( ) A 牵引网电流的交变磁场的电磁感应 B 牵引网电场的静电感应 C 牵引网电场的高频感应 D 牵引电流的高次谐波 8.牵引网导线的有效电阻0r r ξ=(0r 是直流电阻;ξ是有效系数)。对于

工频和牵引网中应用的截面不太大的铝、铜等非磁性导线,有效系数ξ( )。 ( ) A ξ≈1 B ξ≈2 C ξ≈3 D ξ≈4 9.以下不属于减少电分相的方法有( )。 ( ) A 采用单相变压器 B 区段内几个变电所采用同相供电 C 复线区段内采用变电所范围内同行同相,上、下行异相 D 采用直供+回流线供电方式 10.对于简单悬挂的单线牵引网,1z 、2z 和12z 分别表示接触网—地回路, 轨道—地回路的自阻抗及两回路的互阻抗,牵引网的等值单位阻抗z ( )。 ( ) A 2 12 21 z z z - B 12212z z z z - C 12221 z z z z - D 212 12 z z z - 11.单链形悬挂的单线牵引网比简单悬挂相比多了一条( )。 ( ) A 承力索 B 接触网 C 回流线 D 加强导线 12.根据国家标准《铁道干线电力牵引交流电压标准》的规定,铁道干线 电力牵引变电所牵引侧母线上的额定电压为( )kV 。 ( ) A 27.5 B 25 C 20 D 19 13.牵引网的电压损失等于牵引变电所牵引侧母线电压与电力机车受电弓 上电压的 ( ) A 平方差 B 算数差 C 向量差 D 平均值 14.牵引网当量阻抗Z 为 ( ) A sin cos R X ??+ B cos sin R X ??+ C sin R X ?+ D cos R X ?+ 15.对于三相结线变压器,应以( )向轻负荷臂供电为宜。 ( ) A 任一相 B 引前相 C 滞后相 D 以上答案都不对 16.牵引供电系统的电能损失包括( )。 ( ) A 电力系统电能损失,牵引网电能损失 B 电力系统电能损失,牵引变电所电能损失 C 牵引网电能损失,牵引变电所电能损失 D 牵引变电所电能损失,馈线电能损失 17.按经济截面选择接触悬挂,如果增大导线截面引起的一次投资增量,

牵引供电系统2

北交大17春《牵引供电系统》 第二次作业(2018年10月6日----2018年11月6日) 1.电气化铁道牵引变压器的接线方式有哪些?各有何特点? 铁道电气化牵引供电方式有①、AT方式(自耦变供电);②、BT方式(吸流变);③、直供方式。不同的供电方式,需要的变压器是不同的。 ①、在一些老的支线上采用Dy11接线,此种变压器制造简单,运行中会产生 严重的负序分量,容量利用率也低,大约在70%多。后来经过云南变压器厂的改进,虽然提高了容量利用率,但负序问题没有解决;②、为了解决负序问题,就出现了平衡变压器,国外有斯科特和李伯来斯等接线方式。国内有阻抗匹配平衡变压器,后者不仅解决了负序问题,还提高了容量利用率(达100%),高压侧可有中性点引出。但设计和制造复杂,由云南变压器厂制造; ③、目前高铁常用的是220kV比27.5kV的单相变压器。其制造简单、运行可 靠。 2.当前高速铁路普遍采用的变压器接线方式是哪一种?为什么? 现在用的比较多的就是带回流线的直接供电方式和AT方式。一般接触网电压不应低于20kv即可。牵引网阻抗主要和接触线规格有关,另外AT方式的阻抗分长回路阻抗和段中阻抗两项。 3.变压器的计算容量,校核容量,最大容量,安装容量有何不同? 设备容量:该变压器所带的所有用电设备额定容量的和。 计算容量:1、单个用电设备,设备容量与用电负荷存在一个设备效率的差异。 2、针对某一组具体用电设备,每台设备运行时也并不一定运行在额定状态, 必须考虑负载系数的问题;所有的用电设备并非同时运行,这就需要考虑设备的同时系数问题。 3、多个组的用电设备,还存在是否同时运行的因素,因此需要考虑多个组的 同期系数。 4.变压器的过负荷能力对变压器容量有和影响? 如果电机的容量大于变压器容量,实际上的物理反应就是变压器绕组过热,时间长了就导致线圈烧毁。 5.变压器的备用方式对变压器容量的选择有何影响?当前高速铁路采用的是

北交大《牵引供电系统》离线作业2

北交大《牵引供电系统》离线作业2 1.电气化铁道牵引变压器的接线方式有哪些?各有何特点? 答:常用的有四种接线方式:平衡变压器(阻抗匹配,非阻抗匹配;斯科特(Scoot)接线方式;三相接线方式;单相接线方式; 特点:平衡变压器与斯科特变压器的利用率较高,对系统的不对称影响最低;单相的容量可以很大,但对系统影响较大,三相变压器利用率接近0.79-0.82,制造工艺成熟,质量稳定,有中性点,但对系统的影响较大。 2.当前高速铁路普遍采用的变压器接线方式是哪一种?为什么? 答:当前高速铁路较多采用单相接线VV方式,大容量单相变压器制造容易,采用220KV 的电源网络,对系统影响可降至最低。 3.变压器的计算容量,校核容量,最大容量,安装容量有何不同? 答:计算容量:根据列车正常运行密度(年货运量),线路区间状况(区间数),列车运行特征(能耗)等计算条件确定的最小容量; 最大容量:根据列车紧密运行密度(年货运量),线路区间状况(区间数),列车运行特征(能耗)等计算条件下,馈线短时最大工作电流时的容量; 校核容量:利用变压器的过负能力,最大容量与过负荷系数的比值,成为校核容量; 安装容量:根据运行备用方式和校核容量,综合计算容量,最大容量,在产品序列中选取确定的变压器最终容量。 4.变压器的过负荷能力对变压器容量有和影响? 答:变压器的过负荷能力越强,(即在运行条件下过负荷的倍数大和时间长),变压器校核容量越小。但工程实践中,变压器负荷率一般在0.75是变压器的工作状态最好,功率因数最高,安全性能最稳定,因此实际的变压器都取较大容量,留有足够备用,虽然增加了工程静态投资,建设成本升高,但可最大限度延长变压器使用寿命,已策安全。 5.变压器的备用方式对变压器容量的选择有何影响?当前高速铁路采用的是

牵引供电系统简介.

牵引供电系统简介 (丁为民) 一、系统功能 牵引供电系统的主要功能是:将地方电力系统的电源(交流电气化铁路: AC110 kV或AC220kV ,城市轨道交通:中心变电所AC220kV 或AC110kV →AC35 kV 环网)引入牵引供电系统的牵引变电所,通过牵引变压器变压为适合电力机车运行的电压制式(交流电气化铁路:AC25kV 或AC2×25kV ,城市轨道交通:DC750V 、DC1500V 或DC3000V ),向电力机车提供连续电能。 电力牵引负荷为一级负荷,引入牵引变电所的外部电源应为两回独力可靠的电源,并互为热备用,能够实现自动切换。 交流电气化铁路及城市轨道交通牵引供电系统简图分别如图1.1和图1.2所示。 图1.1 交流电气化铁路牵引供电系统

图1.2 城市轨道交通牵引供电系统 二、牵引网供电方式 1. 交流电气化铁路 交流电气化铁路牵引网供电方式大体上可分为三种:直接供电方式(包括带回流线的直接供电方式)、BT 供电方式和AT 供电方式。 (1)直接供电方式 直接供电方式又可分为不带回流线直接供电方式(图2.1 和带回流线的直接供电方式(图2.2 两种。 图2.1 不带回流线的直接供电方式

图2.2 带回流线的直接供电方式 不带回流线的直接供电方式在我国早期的电气化铁路中采用,机车电流完全通过钢轨和大地流回牵引变电所,牵引网本身不具备防干扰功能。在接地方面,每根支柱需单独接地(设接地极或通过火花间隙),或者通过架空地线实现集中接地(架空地线不与信号扼流圈中性点连接)。 带回流线的直接供电方式,机车电流一部分通过钢轨和大地流回牵引变电所(约70%),其余通过回流线流回牵引变电所(约30%)。由于流经接触网的电流和流经回流线的电流虽然大小不等,单方向相反,且安装高度比较接近,两者对铁路沿线通讯设施的电磁干扰影响趋于抵消,因此牵引网本身具备防干扰功能。在接地方面,接触网支柱通过回流线实现集中接地,回流线每隔一个闭塞分区通过吸上线(铝芯或铜芯电缆,常用VLV-70和2xVLV-150)与信号扼流圈中性点连接(吸上线间距3~4km )。 (2) BT 供电方式 BT (Boost Transformer)供电方式又称吸流变压器供电方式,也是在我国早期电气化铁路中有采用,其主要目的是为了提高牵引网防干扰能力,但随着通讯线路电缆化和光缆化,防干扰矛盾越来越不突出,其生命力也已大大降低,该种供电

北京交通大学《牵引供电系统》20秋在线作业1-001答案

1.一般3~15kV电压互感器采用()结构。 A.单相 B.三相 C.四相 D.五相 答案:B 2.当短路发生在电缆线路或低压网络时,总电阻与总电抗之比值大于()。 A.1/5 B.1/4 C.1/3 D.1/2 答案:C 3.牵引变电所将电力系统输送来的110kV三相交流电变换为()V的单相电。 A.27.5 B.30 C.37.5 D.40 答案:A 4.油浸式电压互感器多用于()kV及以下的电压等级。 A.35 B.110 C.220 D.330 答案:A 5.若发现全锚段接触线平均磨耗超过该型接触线截面积的()时,应当全部更换。

B.15% C.25% D.35% 答案:C 6.我国电气化铁路采用()。 A.工频单相交流制 B.工频三相交流制 C.工频四相交流制 D.工频五相交流制 答案:A 7.低式布置的断路器安装在()的混凝土的基础上。 A.0.5-1 B.1-2 C.2-4 D.4-6 答案:A 8.YNd11接线牵引变压器一般容量为()kVA。 A.10000~63000 B.20000~63000 C.30000~63000 D.40000~63000 答案:A 9.短时发热最高允许温度对硬铝及铝锰合金取()。

B.200℃ C.250℃ D.300℃ 答案:B 10.保护线电位一般在()V以下。 A.10 B.50 C.100 D.500 答案:D 11.浇注式电压互感器多用于()kV及以下的电压等级。 A.35 B.110 C.220 D.330 答案:A 12.当用开关电器断开电流时,如果电路电压不低于10~20V,电流不小于()mA。 A.50~80 B.80~100 C.100~120 D.120~140 答案:B 13.为满足机械强度要求,连接导线的截面不得小于()mm2。

《牵引供电系统》习题一.

A 《牵引供电系统》习题一 第一章供电系统的结构、原理与电力机车的相关知识 一、填空题请将第一大题前10○题作为作业上交,其余作为课后练习掌握,不需上传。 1、电力系统是指发电、送电、变电、用电组成的整体。 5、电网按其规模主要分为地区电网和区域电网。 7、电力网简称电网,由输电线路、配电线路、变电所组成。 10、按变电所的规模及作用,可将其分为枢纽变电所、地区变电所、用户变电所三种。 13 桥接线方式、双T接线方式、单母线分段方式三种。 16、牵引供电系统的电流制主要有(直流制)、低频单相交流制、三相交流制、工频单相交流制四种。 B 20、单相牵引变压器结线的方式有纯单相结线、单相 ,V结线、三相V,V 结线三种。 23、斯科特变压器可以把 ○ 90°的两相对称电压,它对电力系统形成的负序较小,且变压器的容量利用率较高。 、一台斯科特变压器包括M座变压器和T 30、牵引网是由 34、牵引变电所的一次供电方式有一边供电、两边供电、环形供电三种。 37、

型电力机车25kV侧的电路主要包括(受电弓)、主断路器、变压器、电压互感器、电流互感器、避雷器等设备。 80 二、名词解释 A仁慈慷慨的 B、环形供电—— 2、直接供电方式—— 四、作图题 1 2、画出复线区段的单边供电方式示意图。 第二章牵引变电所容量计算和选择 ○ 2、牵引变电所容量计算步骤分确定计算容量、确定校核容量、安装容量三步进行。 4 移动备用和固定备用两种。 二、名词解释 B1、牵引变压器的计算容量—— 2、牵引变压器的校核容量—— 3、牵引变压器的安装容量—— 三、简答题 1、简述牵引变压器容量计算和选择的步骤。 ○

北交大牵引供电系统作业3

北京交通大学17春《牵引供电系统》第三次作业参考答案 2018年11月1日—2018年11月29日 1. 短路有几种类型?用什么危害? 2. 短路计算的目的什么? 3. 短路计算的假设条件是什么? 4. 如何防止发生短路? 5. 哪种类型的短路,故障电流最大?为什么? 6. 交流电气化铁道供电系统短路的有什么特点? 7. 短路计算的步骤和过程是什么? 8. 何为发电机的次暂态电抗,暂态电抗,稳态电抗?哪个值大?计算时取哪个?为什么? 9. 某供电系统如下图所示,发生三相对称短路,请解答如下问题: 元件1:30MVA ,125.0' ')*(=N G X 元件2: 15MVA ,5.10%=K U 元件3: 4%,110KV,300A T N NK X U I === (1) 计算K 点前的系统阻抗标幺值; (2) 若电源为无穷大容量,计算K 点的瞬态短路电流值; (3) 计算0.01秒时的最大短路冲击电流; (4) 计算短路电的容量; 10. 若3个电源全部为无限大电源,计算: (1)K 点三相短路瞬态电流标幺值和短路容量; (2)K 点的转移电抗和三个电源的电流分布系数;

11、试分析下图,做出的正序、负序和零序网络图。 1. 供电系统短路有四种类型;单相接地短路,发生概率较高;两相接地短路,两相短路, 三相对称短路;电气化铁路通常发生单相接地短路的情况较多; 短路的危害: 短路的大电流造成设备受损,短路的电弧高温危及人身与设备安全,短路造成系统震荡,短路会造成无线电及通讯干扰; 2. 短路计算的目的: 选择高压电气设备的容量,动稳定条件,热稳定条件,导体截面 选择中性点运行方式,确定继电保护的整定值 3. 短路计算的假设条件:A : 不计过渡电阻的金属性短路,B :不计系统电容效应,C : 高压网络不计电阻(当电抗值大于三倍电阻值时),以上为主条件,主要附加条件有3项,其中发电机功角一致,不计变压器励磁电流,短路前系统对称运行; 4. A : 从系统设计开始,科学计算,科学论证,采用先进方法进行科学合理的设计出图, 保证优质设计; B : 施工与安装要严格按规程规范操作,精密施工,正确安装,严格监理,严格验收,严格试验; C : 运营管理和检修要规范,科学,符合设备运行与检修规律,培训与培养设备检修与管理的工程师,技术员,和维修试验人员,不断提升专业技能与劳动素质,开发人力资源, 5. 在一般情况下,三相对称短路的短路电流最大,但也有例外:如零序阻抗较小的网络单 相短路电流往往较大,在环网结构中,两相短路电流可能较大, 6. 先根据列车能耗,走形时间,区间带电概率,运行密度(每昼夜对数),列车电流,供 电臂电流等确定变压器计算容量(最小容量);按列车紧密运行条件和馈线重供电臂最大短时平均电流确定变压器的最大容量;按变压器过负荷能力,对变压器容量校核(校核容量);根据备用方式(一般固定备用)在产品序列中选取,即可得到安装容量。 7. 发电机在短路瞬间,磁场变化,磁链守恒,电抗随转子角度发生改变,一般次暂态电抗 最小,暂态电抗较大,稳态电抗最大,为了获得最严重短路电流,一般采用最小的次暂态电抗做为短路计算条件。 9计算题: (1)选取基准值: Sd=100MV A ,Ud=Uav; 计算网络转移电抗*X 根据题目条件:

北交大牵引供电系统作业2

北交大17春 《牵引供电系统》第二次作业参考答案 (2018年10月6日----2018年11月6日) 1. 电气化铁道牵引变压器的接线方式有哪些?各有何特点? 2. 当前高速铁路普遍采用的变压器接线方式是哪一种?为什么? 3. 变压器的计算容量,校核容量,最大容量,安装容量有何不同? 4. 变压器的过负荷能力对变压器容量有和影响? 5. 变压器的备用方式对变压器 容量的选择有何影响?当前高速铁路采用的是那种备用方式? 6.计算题: 沪宁线(单线考虑)某变电所(镇江变电所)供电分区内:列车运行密度N=25对/天,假设每列列车牵引能耗A=1750KVAH ,所有列车累计运行时间56min,供电分区内有6个车站,该变电所采用三相变压器,固定备用,请确定该变电所的安装容量。 7、牵引网阻抗是什么?牵引网阻抗包含哪些回路,请画出单线铁路等值电路图。 8、牵引网阻抗的影响因素是什么? 9、如何计算牵引网阻抗? 10、 计算牵引网阻抗有何意义? 11、如何测量牵引网阻抗? 12、计算:新建合肥至上海(按单线考虑)客专,接触网采用 GJ-70+GLCA100/215 已知数据:导线有效电阻R1=0.184欧/公里,当量系数A=0.95 计算半径9.025毫米;等导线有效电阻R1=0.184欧/公里,当量系数A=0.95 承力索GJ-70计算参数: 有效电阻R2=1.93欧/公里,当量系数A=0.95 计算半径5.75毫米;等导线有效电阻R2=0.184欧/公里,当量系数B=0.1 导线高度H1=6200毫米;结构高度h=1500毫米;驰度f=700毫米 钢轨参数:有效电阻R3=0.18欧/公里;计算半径96.5毫米;当量系数A=0.16; 等值半径15.4毫米;大地土壤电导率410/cm α-=Ω? 试计算牵引网阻抗。

北京交通大学《牵引供电系统》20秋在线作业2-001答案

1.分相绝缘器每块玻璃钢绝缘件长()m。 A.1.8 B.2.8 C.3.8 D.4.8 答案:A 2.三相YNd11变压器过负荷倍数取()。 A.0.5 B.0.7 C.1.5 D.2.0 答案:C 3.额定热稳定电流的持续时间为()。 A.1s B.2s C.3s D.4s 答案:B 4.限制短路电流的措施通常是在线路上接()。 A.电抗器 B.电阻器 C.电容器 D.电导器 答案:A 5.当短路发生在电缆线路或低压网络时,总电阻与总电抗之比值大于()。

B.1/4 C.1/3 D.1/2 答案:C 6.单相YNd11变压器过负荷倍数取()。 A.0.5 B.0.7 C.1.5 D.1.75 答案:D 7.为满足机械强度要求,连接导线的截面不得小于()mm2。 A.1.5 B.2.0 C.2.5 D.3.0 答案:A 8.使用快速保护和高速断路器时,其开断时间小于()s。 A.0.1 B.0.2 C.0.3 D.0.4 答案:A 9.若电力网电压低于熔断器额定电压,则熔断器熔断时产生过电压可达()倍。

B.3-4.5 C.4.5-6 D.6-8 答案:B 10.220kV及以下电压等级,允许其最高工作电压较额定电压约高()。 A.5% B.10% C.15% D.20% 答案:C 11.运行实践表明,接触网发生断线事故情况较少,影响范围也仅为()个跨距。 A.1~2 B.3~4 C.5~6 D.7~8 答案:B 12.YNd11接线牵引变压器一般容量为()kVA。 A.10000~63000 B.20000~63000 C.30000~63000 D.40000~63000 答案:A 13.我国电气化铁路采用()。

哈大电气化铁路牵引供电系统情况介绍

哈大电气化铁路牵引供电系统情况介绍

————————————————————————————————作者:————————————————————————————————日期:

哈大电气化铁路牵引供电系统情况介绍哈大铁路为中国铁路网中一条重要干线,贯穿哈尔滨、长春、沈阳、大连四大枢纽,始建于1898年,为双线铁路,线路全长946.5公里。在东北乃至全国铁路运输中具有十分重要的地位。国家计委于1990年12月31日批准对哈大铁路进行电气化技术改造。2001年8月18日开通沈阳至哈尔滨段,11月30日开通沈阳至大连段,既全线开通运行。 哈大电气化铁路是我国首次系统引进具有国际先进水平的德国技术、设备和管理模式,其牵引供电系统适应200km/h高速铁路。牵引供电系统新建牵引变电所17座,架设接触网3314条公里,RTU135个,隔离开关900余台,远动控制系统设置1个主控中心和4个分控中心,设置抢修基地4个,引进接触网动态检测车1辆。开通之初成立了哈尔滨、长春、沈阳、大连4个供电中心,随着铁路改革的深入,维修体制也几经变化,现全线由沈哈两局的沈阳、长春、哈尔滨供电段担负运营管理工作。 哈大电气化工程系统引进规模大,设备技术水平新,建设速度快,自全线开通至今,系统设备性能稳定,总体质量优良,达到了项目引进的预期目的。现全面介绍如下: 一、哈大牵引供电系统特点 (一)供电方式 1、全线采用220/27.5kv单相变压器供电,牵引变压器利用率高,变电所接线简洁,接触网电分相数目少,适应高速、繁忙区段。两路进线电源,设有跨桥连接,两台主变压器互为备用。 2、采用带回流线上下行全并联直接供电方式。上下行正线的接触网在车站通过一个带短路报警互感器的柱上开关进行并联。为了改善接触网的电传输特性,沿正线贯通架设加强线和回流线,每隔1500米加强线和回流线进行一次电连接,可每隔300米上下行的回流线并联一次,以明显降低接触网阻抗值和电压降,从而加大变电所的间距,减少牵引变电所的数量,节省了工程投资,降低了运营成本。

哈大电气化铁路牵引供电系统情况介绍

哈大电气化铁路牵引供电系统情况介绍 哈大铁路为中国铁路网中一条重要干线,贯穿哈尔滨、长春、沈阳、大连四大枢纽,始 建于1898年,为双线铁路,线路全长946.5公里。在东北乃至全国铁路运输中具有十分重 要的地位。国家计委于1990年12月31日批准对哈大铁路进行电气化技术改造。2001年8月18日开通沈阳至哈尔滨段,11月30日开通沈阳至大连段,既全线开通运行。 哈大电气化铁路是我国首次系统引进具有国际先进水平的德国技术、设备和管理模式,其牵引供电系统适应200km/h高速铁路。牵引供电系统新建牵引变电所17座,架设接触网3314条公里,RTU135个,隔离开关900余台,远动控制系统设置1个主控中心和4个分控中心,设置抢修基地4个,引进接触网动态检测车1辆。开通之初成立了哈尔滨、 长春、沈阳、大连4个供电中心,随着铁路改革的深入,维修体制也几经变化,现全线由 沈哈两局的沈阳、长春、哈尔滨供电段担负运营管理工作。 哈大电气化工程系统引进规模大,设备技术水平新,建设速度快,自全线开通至今,系统设备性能稳定,总体质量优良,达到了项目引进的预期目的。现全面介绍如下: 一、哈大牵引供电系统特点 (一)供电方式 1、全线采用220/27.5kv单相变压器供电,牵引变压器利用率高,变电所接线简洁, 接触网电分相数目少,适应高速、繁忙区段。两路进线电源,设有跨桥连接,两台主变压器 互为备用。 2、采用带回流线上下行全并联直接供电方式。上下行正线的接触网在车站通过一个带 短路报警互感器的柱上开关进行并联。为了改善接触网的电传输特性,沿正线贯通架设加强线和回流线,每隔1500米加强线和回流线进行一次电连接,可每隔300米上下行的回流线并联一次,以明显降低接触网阻抗值和电压降,从而加大变电所的间距,减少牵引变电所的数量,节省了工程投资,降低了运营成本。

牵引供电系统教学内容

牵引供电系统 说起电气化铁路,大家可能首先想到的就是线路两旁一根根的线杆和列车头顶密如蛛网的电线吧。没错电气化铁路与普通铁路最明显的不同在于,它除了地上一条线(轨道)、还有天上一张网(接触网),是一种立体化的线路。 电力机车所需的电能来自发电厂由输电线路、变电装置、牵引用电网络、回流电路等组成的供用电系统供应。世界各国采用的供电制式各不相同,我国的电气化铁路选择了25千伏单相工频(50赫兹)交流供电制式。这种供电制式与工业生产所使用电流频率简称工频相同能使牵引动力获得最佳效果。从天上到下,一套复杂完整的大系统为电气化列车的运行提供了保证。 1电气化铁路的心脏——牵引变电所 牵引变电所是牵引供电系统的心脏,它的主要任务是将国家电力系统送来的三相高压电变换成适合电力机车使用的单相交流电。牵引变电所从国家电网引入220千伏或110千伏三相交流电将三相电转换为适合电气列车使用的单相交流27.5千伏电源并送上接触网。除此而外,它还起着供电保护、测量、控制电气设备提高供电质量,降低电力牵引负荷对公共电网影响的作用。为确保牵引供电万无一失,牵引供电系统都采用“双备份”模式,两套设备通过切换装置可以互为备用并随时处于“战备”状态,以备不时之需。 通常将变电所设备分为一次设备和二次设备,一次设备是指接触高电压的电气设备,如牵引变压器、高压断路器、高压隔离开关、高压(电压和电流)互感器、输电线路、母线、避雷器等,它们主要完成电能变换、输送、分配等功能。二次设备则主要是控制、监视、保护设备。随着科技的发展,二次设备更加的集成化和智能化,形成了牵引变电所自动化系统为牵引变电所的远动控制提供了可能。 2电气化铁路的动脉——接触网 当我们乘坐在电气化铁路的旅客列车上出行时,会看到路基两旁有一根根电杆竖立着顶端安装有单臂结构装置伸向线路侧上方且悬挂有电线,并将其固定在距轨道面一定高度的地方,在股道多的车站或编组站,悬挂结构及各种线网多如蛛网。这就是电气化铁路牵引供电系统的主要供电设备——接触网。 接触网是在露天设置,不但受到各种气象条件的影响,而且还受到电力机车行走时带来的动作用力,加上接触网又无法设置备用的条件,所以接触网的工作环境条件非常恶劣。为了保证电气化铁路可靠安全运营,接触网的结构必须经久

牵引供电系统分析作业

第46卷第1期西南交通大学学报Vol46. No1. 2014年10月JOURNAL OF SOUTHWEST JIAOTONG UNIVERSITY Oct. 2014 文章编号:0258-2724(2014)04-0619-08 DOI:IO.3969/j.issn.0258-2724.04.009 牵引变电所系统侧最小短路容量需求分析 刘柏林 (西南交通大学电气工程学院,四川省成都市 610031) 摘要:针对Ii、Vx接线牵引变电所,以牵引变电所受电点,即以110kV/220kV母线为监测点,讨论为满足 GB/T 15543 2008 《中华人民共和国国家标准电能质量三相电压允许不平衡度》要求,接于公共接点的每 个用户引起该点正常电压不平衡度允许值一般为不超过1.3% 。讨论Ii、Vx牵引变电所系统侧三相系统短 路容量与牵引变压器额定容量的最小比值。 关键词:RBF神经网络;BP神经网络;MATLAB;故障诊断; 中图分类号:U448.27 文献标志码: A Fault Diagnosis for Gear Model of RBF Neural Network LIU Bolin, ZHOU Guopeng (School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan Province, China) Abstract: According to the theory of system identification, RBF neural network can be regarded as nonlinear system, which can be applied in a mechanical fault classification. RBF neural network as a way of intelligent control, has the advantages of fast convergence speed, strong ability of local approximation, to solve the nonlinear and uncertain system, and it performs well. In mechanical fault classification, the RBF function parameters and the weights of network training can be used as the system parameters to identify the mechanical fault. In this paper, RBF neural network is applied for training and the gear fault model prediction, which is compared with BP neural network. The results show that RBF neural network is not only perform higher accuracy, faster convergence speed in the training but also is the ability of fault diagnosis significantly higher than that of BP neural network. Key words: RBF network; BP network; Gear model; Matlab 我国电气化铁路采用单相工频交流制式,取电于电力系统。我国现行的牵引变电所供电方式绝大多数为三相-两相制式,也有少量的纯单相制式(哈大线)。AT方式VX 接线牵引变压器已经首次于2005年在淮东线投入运行,运行状况良好。本文针对单相牵引变电所下的Ii接线方式和三相-两相制式下的VX接线方式,分析牵引变电所系统侧最小短路容量需求。 1.VX接线与Ii接线介绍1.1.I i接线介绍 Ii接线原理如图一。变压器容量利用率是牵引变电所运行的重要经济指标。Ii 接线牵引变压器的容量利用率可以达到100%。Ii接线牵引变压器具有容量利用率高,变电所的主接线简单、设备少的优点。它的缺点是在三相系统下形成

电气化铁路牵引供电系统试卷

电气化铁路供电系统 试卷1 一、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,并将其代码填入题干后的括号内。每小题1分,共20分) 1.我国电气化铁道牵引变电所由国家( )电网供电。( ) A 超高压电网 B 区域电网 C 地方电网D 高压电网 2.牵引网包括( ) A 馈电线、轨道和大地、回流线 B 馈电线、接触网、轨道和大地、回流线 C 馈电线、接触网、回流线 D 馈电线、接触网、电力机车、大地 3.通常把( )装置的完整工作系统称为电力系统。( ) A 发电、输电、变电、配电、用电 B 发电、输电、配电、用电 C 发电、输电、配电、 用电 D 发电、输电、用电 4.低频交流制牵引网供电电流频率有:( ) ( ) A 50Hz 或25Hz B 30Hz 或50Hz C 2163 Hz 或25HzD 20Hz 或25Hz 5.单相结线牵引变电所牵引变压器的容量利用率(额定输出容量与额定容量之比值)可达( )。 ( ) A 100% B 75.6% C 50% D 25% 61时, 且副边两负荷臂电流I I αβ =&&,原边三相电流( ) ( ) A 平衡B 无负序电流C 对称D 有零序电流 7.交流牵引网对沿线通信线的静电影响由( )所引起。 ( ) A 牵引网电流的交变磁场的电磁感应 B 牵引网电场的静电感应 C 牵引网电场的高频感应 D 牵引电流的高次谐波 8.牵引网导线的有效电阻0r r ξ=(0r 是直流电阻;ξ是有效系数)。对于工频和牵引网中应用的截面不太大的铝、铜等非磁性导线,有效系数ξ( )。 ( ) A ξ≈1 B ξ≈2 C ξ≈3 D ξ≈4 9.以下不属于减少电分相的方法有( )。 ( )

高速铁路牵引供电系统(组成)85236

第一节高速铁路牵引供电系统 电气化铁路的组成 由于电力机车本身不带原动机,需要靠外部电力系统经过牵引供电装置供给其电能,故电气化铁路是由电力机车和牵引供电系统组成的。 牵引供电系统主要由牵引变电所和接触网两部分组成,所以人们又称电力机车、牵引变电所和接触网为电气化铁道的三大元件。 一、电力机车 (一)工作原理 电力机车靠其顶部升起的受电弓和接触网接触获取电能。电力机车顶部都有受电弓,由司机控制其升降。受电弓升起时,紧贴接触网线摩擦滑行,将电能引入机车,经机车主断路器到机车主变压器,主变压器降压后,经供电装置供给牵引电动机,牵引电动机通过传动机构使电力机车运行。 (二)组成部分 电力机车由机械部分(包括车体和转向架)、电气部分和空气管路系统构成。 车体是电力机车的骨架,是由钢板和压型梁组焊成的复杂的空间结构,电力机车大部分机械及电气设备都安装在车体内,它也是机车乘务员的工作场所。 转向架是由牵引电机把电能转变成机械能,便电力机车沿轨道走行的机械装置。它的上部支持着车体,它的下部轮对与铁路轨道接触。 电气部分包括机车主电路、辅助电路和控制电路形成的全部电气设备,在机车上占的比重最大,除安装在转向架中的牵引电机之外,其余均安装在车顶、车内、车下和司机室内。 空气管路系统主要执行机车空气制动功能,由空气压缩机、气阀柜、制动机和管路等组成 (三)分类 干线电力牵引中,按照供电电流制分为:直流制电力机车和交流制电力机车和多流制电力机车。交流机车又分为单相低频电力机车(25Hz或16 2/3Hz)和单相工频(50Hz)电力机车。单相工频电力机车,又可分为交--直传动电力机车和交—直—交传动电力机车。 二、牵引变电所 牵引变电所的主要任务是将电力系统输送来的110kV三相交流电变换为27.5(或55)KV单相电,然后以单相供电方式经馈电线送至接触网上,电压变化由牵引变压器完成。电力系统的三相交流电改变为单相,是通过牵引变压器的

牵引供电系统

电力牵引的制式是指供电系统向电动车辆或电力机车所采用的()电压和电流制式 当前世界各国干线电气化铁路应用较普遍的牵引供电制式是()。工频单相交流制 电力系统是由各环节构成的完整工作系统,包括()。发电、输电、变电、配电、用电 牵引供电系统主要有三大组成,下列哪一项不属于组成之一()。外部电源 由于交通运输的重要性,所有轨道交通的牵引供电都属于电力部门供电的一级负荷 第二章 变压器能实现的作用是()。二次侧电压的升降 YNd11接线牵引变压器的的额定容量利用率为()。75.6% 采用斯科特接线变压器相邻供电臂相位为()关系。90° 牵引变电所按照变压器接线可以分为单相、三相、三相两相变电所,下列哪一项不属于三相变电所的范畴()。斯科特接线 列勃兰接线主要用在()。三相 二相牵引变电所 第三章 悬挂在轨道上方沿轨道敷设并和铁路轨顶保持一定距离的输电网称为()。接触网 目前单相工频25kV牵引网供电方式不包括下列的哪种()。自耦变压器供电方式 我国的电气化铁路接触网普遍采用()供电方式。单边 AT供电方式牵引变电所,按牵引变压器结线型式分类,以下哪个()不属于AT方式下的牵引变压器结线。YNd11 BT供电方式主要指()。吸流变压器方式 第四章 牵引变电所内不包括的变压器类型有()。升压变压器 开关电器不包括()。高压熔断器 电流互感器又称为()。仪用变流器 适合于线路长,线路故障率高,而变压器不需频繁操作的场合的接线形式为()。内桥接线()主接线可实现同一供电分区的上、下行接触网并联工作或单独工作。分区所 第五章 牵引变电所容量计算和校验主要是针对()设备而言的。变压器 供电臂的负荷电流与下列哪项无关()。接触网类型 在牵引变电所的容量计算中一般考虑牵引变电所的效率为()。0.85 选取馈电线导线截面要根据供电系统电气参数计算所得到的馈电线()。有效电流值 牵引变压器的寿命取决于()。绝缘老化 第六章 牵引网导线参数主要指()。导线单位长有效电阻和导线等效半径 由接触线、承力索两条及两条以上的辅助索组成的悬挂称为()。多链形悬挂 单线单链形悬挂牵引网可以等效为()个有源回路。1 牵引电流在牵引网各导线中所产生的电压降(),各导线间的电流分布比例()。相同不变 双线牵引网阻抗的基本回路是:()和轨道网—地回路。上行接触网—地回路;下行接触网

《牵引供电系统》习题

《牵引供电系统》习题一、二、三 一、填空题 1、电力系统是指(发电)、送电、变电、用电组成的整体。 2、电网按其规模主要分为地区电网和(区域)电网。 3、电力网简称电网,由(输电线路)、配电线路、变电所组成。 4、按变电所的规模及作用,可将其分为(枢纽)变电所、地区变电所、用户变电所三种。 5、牵引变电所的一次侧主接线方式有(桥接线方式)、双T接线方式、单母线分段方式三种。 6、牵引供电系统的电流制主要有(直流制)低频单相交流制、三相交流制、工频单相交流制四种。 7、单相牵引变压器结线的方式有(纯单相结线)、单相V,V结线、三相V,V结线三种。 8、斯科特变压器可以把(三相对称)电压变换成相位差为90°的两相对称电压,它对电力系统形 成的负序较小,且变压器的容量利用率较高。 9、斯科特变压器可以把三相对称电压变换成相位差为90°的两相对称电压,它对电力系统形成的 负序(较小),且变压器的容量利用率较小。 10、一台斯科特变压器包括M座变压器和(T)座变压器。 11、牵引网是由馈电线、接触网、(钢轨)、回流线组成的双导线供电系统。 12、牵引变电所的一次供电方式有(一边供电)、两边供电、环形供电三种。 13、SS8型电力机车25kV侧的电路主要包括(受电弓)、主断路器、变压器、电压互感器、电流 互感器、避雷器等设备。 14、牵引变电所容量计算步骤分确定计算容量、确定校核容量、(安装容量)三步进行。 15、牵引变压器的备用方式有移动备用和(固定备用)两种。 16、牵引网阻抗是计算牵引网的电压损失、电能损失、(短路电流)所必需的基本参数。 17、牵引网主要由接触网和(钢轨)组成。

相关文档