文档库 最新最全的文档下载
当前位置:文档库 › PUE/微米SiO2复合材料抗冲蚀磨损性能研究

PUE/微米SiO2复合材料抗冲蚀磨损性能研究

PUE/微米SiO2复合材料抗冲蚀磨损性能研究
PUE/微米SiO2复合材料抗冲蚀磨损性能研究

砂浆冲刷腐蚀磨损介质中粒子冲击速度的确定

大庆石油学院学报 第!"卷第#期!$$%年&!月’()*+,-.)/0-12,3456+).5*72,8626*659:;

碳纤维材料的性能

碳纤维材料的性能及应用 摘要:介绍了碳纤维及其增强复合材料,详细介绍了碳纤维复合材料的分类和特性,着重阐述了碳纤维及其复合材料在高新技术领域和能源、体育器材等民 用领域的应用,并对未来碳纤维复合材料的发展趋势进行了分析。 关键词:碳纤维性能应用 0引言 碳纤维复合材料具有轻质、高强度、高刚度、优良的减振性、耐疲劳和耐腐蚀等优异性能。以高性能碳纤维复合材料为典型代表的先进复合材料作为结构、功能或结构/功能一体化材料,不仅在国防战略武器建设中具有不可替代性,在绿色能源建设、节约能源技术发展和促进能源多样化过程中也将发挥极其重要的作用。若将先进碳纤维复合材料在国防领域的应用水平和规模视作国家安全的重要保证,则碳纤维复合材料在交通运输、风力发电、石油开采、电力输送等领域的应用将与有效减少温室气体排放、解决全球气候变暖等环境问题密切相关。随着对碳纤维复合材料认识的不断深化,以及制造技术水平的不断提升,碳纤维复合材料在相关领域的应用研究与装备不断取得进展,借鉴国际先进的碳纤维复合材料应用经验,牵引高性能碳纤维及其复合材料的国产化步伐,对于改变经济结构、节能减排具有重要的战略意义。 1碳纤维材料 1.1何为碳纤维材料 碳纤维是一种含碳量在9 2% 以上的新型高性能纤维材料, 具有重量轻、高强度、高模量、耐高温、耐磨、耐腐蚀、抗疲劳、导电、导热和远红外辐射等多种优异性能, 不仅是21 世纪新材料领域的高科技产品, 更是国家重要的战略性基础材料, 政治、经济和军事意义十分重大。碳纤维分为聚丙烯睛基、沥青基和粘胶基 3种, 其中90 % 为聚丙烯睛基碳纤维。聚丙烯睛基碳纤维的生产过程主要包括原丝生产和原丝碳化两部分。用碳纤维与树脂、金属、陶瓷、玻璃等基体制成的复合材料, 广泛应用于航空航天领域体育休闲领域以及汽车制造、新型建材、

金属材料 磨损试验方法

金属材料磨损试验方法 试环-试块滑动磨损试验 GB/T12444-2006 一.试验原理 试块与规定转速的试环相接触,并承受一定实验力,经规定转数后,用磨痕宽度计算试块的体积磨损,用称重法测定试环的质量磨损,试验中连续测量试块上的摩擦力和正压力,计算摩擦系数。 二.试验步骤 1.试验应在10℃—35℃范围内进行,对温度要求较严格的试验,应控制在 23±5℃之内。 2.试验应在无腐蚀性气体、无振动、无粉尘的环境中进行。 3.将试环及试块牢固的安装在试验机主轴及夹具上,试块应处于试环中心, 并应保证试块边缘与试环边缘平行。 4.启动试验机,使试环逐渐达到规定转速,平稳的将实验力施加至规定值 5.可以进行干摩擦,也可以加入适当润滑介质以保证试样在规定状态下正 常试验,对于润滑磨损实验,试验前应对所有与润滑剂接触的零件进行 清洗。 6.根据需要,在试验过程中记录摩擦力。 7.试验累计转数应根据材料及热处理工艺需要确定。 8.对于称重的试样,试验前后用适当的清洗液以相同的方法清洗试样,建 议现用三氯乙烷,再用甲醇清洗;清洗后一般在60℃下进行2H烘干冷 却至室温后,放入干燥器,立即称重。 三.试验结果处理 1.在块形试样磨痕中部及两端(距试样边缘1mm处)测量磨痕宽度,取三 次测量平均值作为一个试验数据。 2.标准尺寸试样三个位置的磨痕宽度之差大于平均宽度值20%,试验数据 无效。 3.试验报告中至少包括:试验机型号、试验形式、材料种类、热处理种类、 实验力(正压力)、试验转速及转数、润滑方式及润滑剂种类、试块的磨 痕宽度和体积磨损、试环磨损失去的质量、摩擦系数、环境温度、试块 加工方向。 四.准确度说明 1.本实验方法的偏差与执行标准的严格性密切相关。相同材料重复性试验 的一致性与材料的均匀性、材料在摩擦中的相互作用、试验人员操作技 术密切相关。 2.由于本实验结果分散性较大,尤其干摩擦试验对试样初始表面条件十分 敏感,因此一般要做3次以上重复试验。 3.磨损量与滑动距离一般不呈线性关系,因此仅能对同样转数的试验结果 进行比较。

砂浆特点

砌筑砂浆:用于砌筑砖、石等各种砌块的砂浆。 产品优点: a.具有优异的施工和易性和粘结能力 b.具有优异的保水性,使砂浆在更佳条件下胶凝的更为密实,并可在干燥砌块基面都能保证砂浆有效粘结 c.具有塑性收缩、干缩率低特性,最大限度保证墙体尺寸稳定性 d.胶凝后具有刚中带韧的力学性能 抹灰砂浆:涂抹在建筑物或建筑物构件表面的砂浆。 产品优点: a.能承受一系列外部作用 b.有足够的抗水冲能力,可以用在浴室和其他潮湿的房间抹灰工程中 c.减少抹灰层数,提高工效 d.良好的和易性使施工好的基面光滑平整、均匀 e.具有良好的抗流挂性能、对抹灰工具的低黏性、易施工性 f.砂浆保水性能好,硬化后不产生裂缝 g.具有良好的水蒸气渗透性 h.更好的抗裂、抗渗性能 瓷砖粘结剂:用于粘贴陶瓷砖、抛光砖以及花岗岩之类的天然石材 产品优点: a.施工先进,抗垂性,施工质量和效率得到大幅提高 b.节约材料用量,可实现薄层粘结 c.粘结力强,减少分层和剥落,避免空鼓、开裂 d.简单方便,质量容易控制 e.保护环境,无有毒添加物 保温砂浆:聚苯乙烯颗粒添加纤维素、胶粉、纤维等添加剂的具有保温隔热性能的砂浆 产品优点: a.加水即可使用,施工方便 b.粘结强度高,不易空鼓、脱落 c.物理力学性能稳定、收缩率低、防止收缩开裂或龟裂 d.可在潮湿基面上施工 e.干燥硬化块,施工周期短 f.绿色环保,隔热效果卓越 g.密度小,减轻建筑自重,有利于结构设计 保温板配套砂浆:保温板的粘结剂和保护砂浆 产品优点: a.对基底和聚苯乙烯板有良好的粘结力 b.有足够的变性能力(柔性)和良好的抗冲击性 c.表面可选择多种装饰饰面材料 d.自身重量轻,对墙体要求低,能直接对混凝土和砖墙上使用 e.环保无毒,节约大量能源

冲蚀磨损理论

1、塑性材料的微切削理论 1958 年Finnie I. 提出塑性材料的微切削理论。他认为当尖锐的磨粒划过靶材表面时,会将材料切除而产生磨损。同时第一个给出了较完整定量表达冲蚀率与冲蚀角和冲击速度之间的关系:材料的磨损体积与磨粒的质量和速度的平方(即磨粒的动能)成正比,与靶材的流动应力成反比,与冲角成一定的函数关系。切削模型非常适用于塑性材料小冲角、多角形磨粒的冲蚀磨损,而对于不很典型的延性材料(例如一般的工程材料),冲角较大(特别是冲角α=90°)、非多角形磨粒(如球形磨粒)的冲蚀磨损则存在较大的偏差。并且,磨粒入射速度与靶材磨损体积之间的二次方关系也不是理想数值2,而为2.2-2.4,这已在Finnie I.的有关文献中得到修正。 2、基于单点冲蚀的切削模型(绝热剪切与变形局部化磨损理论、基于应变量的模型) Hutchings于1979 年在用钢球冲击低碳钢试验中对变形唇分析,认为在高应变率下材料将产生很高的温升,首先是使变形过程绝热化,其次是变形的局部化将形成绝热剪切带,他第一次把绝热剪切与变形局部化的概念引入冲蚀磨损过程。 3、变形磨损理论 1963年,Bitter提出冲蚀磨损可分为变形磨损和切削磨损两部分,90°冲击角下的冲蚀磨损和粒子冲击时靶材的变形有关。他认为反复冲击产生加工硬化,并提高材料的弹性极限,粒子冲击平面靶的冲击应力(σ)小于靶材屈服强度(σs)时,靶材只发生弹性变形;当σ>σs时,形成裂纹,靶材产生弹性和塑性两种变形。他从能量的观点出发,推导出变形磨损量W D和切削磨损量W C,粒子的速度v,冲击角度α,变形磨损系数ε和切削磨损系数Q之间的代数关系式,总磨损量为两者之和。 4、弹塑性压痕破裂理论 70年代末,Evans等人提出了弹塑性压痕破裂理论,他们认为在压痕区域下形成了弹性变形区,而后在负荷的作用下,中间裂纹从弹性区向下扩展,形成径

自修复材料涂层发展及应用概述

自修复材料涂层发展及应用概述 二十世纪六十年代,“自我修复材料”的设想被提出,但由于当时科技水平的限制,其并未受到过多的关注,知道进入二十一世纪,其在技术上得以突破和进展。自我修复材料是一种在物体受损时能够进行自我修复的新型材料。本文从自修复材料的分类及修复原理着手,介绍目前自修复材料涂层的发展及应用。 自修复材料领域中,主要分为本征型自修复高分子材料以及复合型自修复高分子材料。前一种是指材料本身具有修复性能,经定型后,性质稳定,但制备工艺较为复杂,成本较高;后一种是指在具有导电性质的聚合物中掺杂可修复的微胶囊或者在具有修复性能的聚合物中形成导电纳米颗粒,进而达到修复效果,生产周期短,效益高。下面对这两种修复材料进行详细的说明。 本征型自修复高分子材料是一类在外部力量或者外加能量作用时,高分子基体受到一定程度破坏后可以在没有外加能量与作用力的情况下做到自我愈合的材料。目前,国内外相关团队都进行了关于自修复材料的大量研究,开发的自修复聚合物材料主要分为两种,以其中修复的键为区分依据,分为带有可逆共价键的自修复材料和带有可逆非共价键的自修复材料。 分别以基于酰腙键型的自修复材料和基于氢键型的自修复材料为例。基于酰腙键型的价键自修复材料的机理,是醛基与酰肼反应生成的酰腙键断裂后可自发生长。修复时,pH值发生变化时,酰腙键会发生断裂和重组,其在宏观上就表现为了材料的自修复行为。氢键型自修复材料是通过在高分子中引入可逆氢键来实现自修复的一类高分子材料,此类材料分子量较高,修复效率快。该类自修复材料在加热条件下完成自我修复,修复方式简单快捷,发展及应用前景较好。除上述所说的两种修复材料外,还有基于双硫键型的自修复高分子材料,基于氮氧键型的自修复高分子材料,基于Dieal-Alder (DA) 型的修复高分子材料,基于超疏水型自修复高分子材料,基于离子作用的自修复高分子材料,基于配位键金属有机自修复高分子材料,前三种属于可逆共价键类型的材料,后两种为可逆非共价键类型的材料。 与本征型的自修复高分子材料不同,复合型的自修复高分子材料是通过在高分子基体中加入固化剂使破裂处的位置迅速固化从而实现自修复效果的。固化剂的添加方式有很多种。其中较为普遍且易于操作的有两种:一种是在高分子基体中直接埋置微胶囊;第二种则是在在高分子基体中加入仿生人体血管一类的仿生结构,当高分子基体在受冲击破裂时,仿生血管破裂,流出固化剂使得在破裂处自行修复。前一种最主要的特点便是其只可以修复一次,为弥补前一种修复方式的不足,便出现了仿生人体血管型自修复材料,其修复原理与第一种相同,改变的时固化剂的填充方式,经测试评价,该材料的自我愈合效果显著,可以进行多次的自我疗伤,其修复率都高达50%以上,重复次数大于7次。 自修复材料的应用十分广泛,作为涂层是其中一种最为高效的利用方式。其大到应用于航空航天,小到应用于手机等电子产品,其产生的效益都十分巨大。以最近几年的应用为例,2015年一月LG G Flex 2手机发布,其中的一个亮点便是其搭配了可自我修复的手机后壳,虽然按照官方说提供的材料来看,其修复方式与上文所提到的修复方式具有一定的差异,但其效果依旧使得该款手机在CES2015大会上吸引了众多媒体。自修复,意味着手机更好的抗磨损性能,无论是后壳,还是屏幕的疏油层,都是自修复涂层的应用方式,且能带来

浅谈丙乳砂浆的特性及其应用

浅谈丙乳砂浆的特性及其应用 摘要:丙乳砂浆由于具有优异的粘结、抗裂、防水、防氯离子渗透、耐磨、耐老化等性能,是一种新型混凝土建筑物的水泥基护面修补材料,和树脂基修补材料相比具有成本低、耐老化、易操作、施工工艺简单及质量容易保证等优点。可在水工混凝土建筑物各种老化加固处理中使用和推广。 关键词:丙乳;丙乳砂浆;防渗;防水;防腐护面;修补材料。 一、丙乳砂浆特性 丙乳是丙烯酸脂共聚乳液的简称,是一种高分子聚合物的水分散体,是一种水泥改性剂,是由南京水利科学研究院科研成果直接转化而成的产品,1986年已通过水利部鉴定,1988年获国家科技进步三等奖。已列入《工业建筑防腐设计规范》(GB50046-95)作为化工耐腐蚀材料。加入水泥砂浆后为聚合物水泥砂浆,属于高分子聚合物乳液改性水泥砂浆,适用于水利、公路、工业及民用建筑等钢筋混凝土结构的防渗、防腐护面和修补工程。 丙乳砂浆中聚合物膜弹性模量较小,它使水泥浆体内部的应力状态得到改善,可以承受变形而使水泥石应力减少,产生裂缝的可能性也减少,同时聚合物纤维越过微裂缝,起到桥架作用,缝间都有聚合物纤维相连,所形成的均质聚合物框架,作为填充物跨过已硬化的微裂缝,限制微裂缝的扩展,微裂缝常在聚合物膜较多处消失,显示聚合物的抗裂作用;另外,聚合物有减水作用,使砂浆的水灰比减小,聚合物膜填充了水泥浆体的孔隙,切断了孔隙与外界的通道,起到密封的作用。 1、丙乳砂浆的主要物理力学性能 丙乳砂浆与传统用环氧树脂砂浆相比,更显示其优越性,不仅成本低,而且施工方便,并适合潮湿面粘结,克服了环氧砂浆常见其膨胀系数大于基混凝土而易开裂脱落的缺点,丙乳砂浆施工与普通砂浆相似,可人工涂抹,也可机械喷涂,与基础温度适应性好,耐大气老化,使用寿命同普通水泥砂浆。 1.1、优异的粘结性能。丙乳砂浆与同灰浆比普通水泥浆相比,与老砂浆及钢板的粘结强度提高4倍以上。丙乳砂浆不仅和老砂浆(混凝土)有很高的粘结强度,而且它的弹性模量、热膨胀系数与基底混凝土更接近,是一种非常优异的新老混凝土粘结和修补材料。 1.2、抗渗能力强。丙乳砂浆的密实性远远优于同种灰浆比普通砂浆,抗氯离子渗透能力提高8倍以上,抗水渗透性提高3倍以上,2天吸水率降低10倍,抗渗性提高115倍。 1.3、耐腐蚀性能好。丙乳砂浆能耐2%以下硫酸,5%以下盐酸、硝酸

T型管道的冲蚀磨损数值模拟分析

龙源期刊网 https://www.wendangku.net/doc/eb2197075.html, T型管道的冲蚀磨损数值模拟分析 作者:彭方现闫宏伟李亚杰袁飞 来源:《当代化工》2020年第03期 Numerical Simulation Analysis of Erosion Wear of T-junction PENG Fang-xian,;YAN Hong-wei,;LI Ya-jie,YUAN Fei (School of Mechanical Engineering, North University of China, Shanxi Taiyuan 030051,China) 因為管道运输具有结构简单、运输量大、高效节能等一系列的优点,所以管道运输作为目前最主要的流体介质运输方式被广泛使用,成为继公路、铁路、航空、水路等运输方式后的第五大运输方式[1-4]。但是在管道使用过程中由于流体介质中不可避免地携带的一些微小颗粒物体,会随着流体介质的流动不断地冲刷管道内壁面,对管道内壁面造成冲蚀磨损的现象,造成管道壁面破裂发生泄漏事故,产生巨大的环境污染及经济损失[5-7]。所谓冲蚀磨损,就是指小颗粒以一定的速度和角度对靶材表面进行撞击,使靶材的表面产生损耗。石油化工、航空航天、能源机械等领域广泛地存在冲蚀磨损现象,这也是设备失效的主要原因之一,对企业的安全生产造成重大影响,越来越引起国内外学者的普遍关注。 近年来,国内外一些有关专家学者采用科学实验或数值模拟分析的研究方法对不同类型下的油气管道的冲蚀问题进行了大量的深入研究。Vigolo, D[8]等将实验结果与理论粒子追踪模型预测的轨迹进行比较,确定了黏性边界层在延迟粒子和降低与基板的碰撞速率方面的作用。随着计算机的发展,计算流体动力学软件也逐步应用于流体仿真计算中。Thiana A等[9,10]在弯头外半径和几种不同的流动条件模拟了最大侵蚀速率、侵蚀位置。闫宏伟等[11]研究了颗粒直径、入口速度及质量流量分别对弯头冲蚀速率的影响。许留云等[12]得出了弯管的弯曲外侧70°~90°之间的位置为冲蚀磨损最严重的部位。 三通管件在化工行业中的应用也比较广泛,三通的主要功能是为了引导管内流体介质分流或者合流,改变了其内部流体介质的流动方向,三通部件通过使管道中的流体介质在分流或者合流过程中产生了较大扰动,进一步促使管内流动介质发生摩擦、碰撞,并加剧冲蚀现象的形成,因此受到冲蚀磨损的程度比直管严重50倍。其更容易发生泄漏危害。例如,我国迪那气田曾发生泄漏事故的原因,即为,三通发生穿孔而导致泄漏此外。陈宇等[13,14]研究了异面三通管在不同工况下的冲蚀磨损规律。梁金川等[15]分析了T型管道内部的流体介质的速度场和 压力场。何兴建等[16]分析了T型弯头的冲蚀情况,得出了在T型弯头盲管区域产生了漩涡,充当保护垫作用,能减缓壁面冲蚀。;除了三通管道本身结构、环境、材料因素的影响外,三通管道也会受到流体介质的速度、颗粒质量流量及颗粒形状等一系列的流体自身特征的影响。

自修复涂料的进展

自修复材料的研究方向与研究进展 一、自修复材料研究方向 1.自修复涂料类型从从不同角度考虑,自修复涂料可有以下几种类型: (1)从涂料的基本结构,可有分相结构的助剂型与连续相结构的本征型。 (2)基于涂料的基本组成,在分相结构的助剂型涂料中,已经研究报道了不同配方组成:有包囊、纤维填料、有层状膨胀型填料、纳米高岭土等类型。 (3)从修复机理上看,可以有液体释放型、化学反应型、体积膨胀型、可逆共价键型、可逆非共价键型和可逆聚合物网络型等。 (4)从功能上看,可有外观修复功能、防腐功能修复涂料等 2.目前自修复材料的研究主要集中在以下几个方面: (1) 陶瓷混凝土基自修复材料 在混凝土中掺入某些特殊的组分,如内含粘结剂的空心胶囊、空心玻璃纤维或液芯光纤,使混凝土材料在受到损伤时部分空心胶囊、空心玻璃纤维或液芯光纤破裂,粘结剂流到损伤处,使混凝土裂缝重新愈合。自修复混凝土对土木建筑结构的应力、应变、和温度等参数进行实时、在线监控、对损伤进行及时修复。这一技术被广泛应用在公路、地基、桥墩等建筑物中。 (2) 金属基自修复材料 金属基复合材料由于金属基体特有的属性,一般都是采用能力补

给的方式进行修复。比如高温保温的方法可以对基体内部的缺陷进行修复,严格地讲这并不是自修复的过程,因为它需要外界因素的作用才可以进行修复。也有利用互穿网络高分子膜络合在金属表面,以实现水蒸气滴状冷凝。由于位阻效应,这类高分子容易铺展成片状。涂覆在金属表面时,形成大分子层,从而得到附加热阻小的超薄涂层。由于具有含孤对电子的原子,因而能够与金属离子或原子形成强度较高的配位键(如N→Cu2+和N→Cu 等)。大面积的配位键像图钉一样把高分子膜牢牢地钉在金属表面上。网格状高分子互相牵制的网状结构,能够使个别断裂的配位键有机会重新形成,这种自修复的特性可以防止涂层剥落。其他一些研究主要集中在材料内部分散或复合一些功能性物质来实现。当材料受损时,这些物质发生某种变化(主要是高温下使金属表面形成氧化膜,通过氧化膜对裂纹发展抑制作用),实现自组装。 (3) 金属磨损自修复材料 金属磨损自修复材料是一种由羟基硅酸镁等多种矿物成分、添加剂和催化剂等构成的复杂组分超细粉体组合材料、它的常用组分的粒度为0.1~10μm,可以添加到各种类型的润滑油或润滑脂中使用。以润滑油或脂作为载体,将修复材料的超细粉粒送入摩擦副的工作面上。它不与油品发生化学反应,不改变油的粘度和性质,也无毒副作用。这种自修复材料的保护层不仅能够补偿间隙,使零件恢复原始形状,而且还可以优化配合间隙。因此,有利于降低摩擦振动,减少噪声,节约能源,实现对零件摩擦表面几何形状的修复和配合间隙的优

冲蚀研究现状

冲蚀磨损是指液体或固体以松散的小颗粒按一定的速度或角度对材料表面进行冲击所造成的一种材料损耗现象或过程。它广泛存在于机械、冶金、能源、建材、航空、航天等许多工业部门,已成为材料破坏或设备失效的重要原因之一[63~65]。 根据流动介质和所携带相的特点,可以将冲蚀磨损分为六种不同的类型[66]:(1)喷砂型冲蚀,即气体介质携带固体颗粒对材料的冲蚀,其工程实例为烟气轮机、锅炉管道等出现的破坏;(2)水滴冲蚀(又称雨蚀),即气体介质携带液滴对材料的冲蚀,其工程实例为高速飞行器、汽轮机叶片出现的破坏等;(3)泥浆(又称料浆)冲蚀,即液体介质携带固体颗粒对材料的冲蚀,其工程实例如水轮机叶片、泥浆泵叶轮出现的破坏;(4)气蚀(又称空蚀),即液体介质携带气泡对材料的冲蚀,工程实例如船用螺旋桨、高压阀门密封面出现的破坏;还有两种类型为三相流冲蚀,即(5)气体介质同时携带液滴和固体颗粒对材料的冲蚀;(6)液体介质同时携带气泡和固体颗粒对材料的冲蚀。本文研究的冲蚀磨损主要是固液两相,可以归到上述的第 3 类。 1958 年,从Finnie. I 第一个冲蚀理论-微切削理论提出以来,许多研究者提出了一些关于冲蚀的模型[67~74],但到目前为止,人们仍未能全面揭示材料冲蚀的内在机理[75]。Finnie. I 解释了塑性材料在多角形磨粒、低冲击角下的磨损规律,但对高冲击角或脆性材料的冲蚀偏差较大;1963 年,Bitter[76]提出变形磨损理论,该理论在单颗粒冲蚀磨损试验机上得到验证,合理地解释了塑性材料的冲蚀现象,但缺乏物理模型的支持。Levy[77]在大量实验的基础上提出来的锻压挤压理论:使用分步冲蚀试验法和单颗粒寻迹法研究冲蚀磨损的动态过程。该理论较好地解释了显微切削模型难以解释的现象。1979 年,Evans 等人提出的弹塑性压痕破裂理论[78]。大量试验证明,该理论很好地反映了靶材和磨粒对冲蚀磨损的影响,试验值和理论值也较吻合,但不能解释脆性粒子以及高温下刚性粒子对脆性材料的冲蚀行为。Tilly[79]提出二次冲蚀理论,它用高速摄影术、筛分法和电子显微镜研究了粒子的破裂对塑性靶材冲击的影响,较好地解释了脆性粒子的大入射角冲蚀问题。Hutching 提出了绝热剪切与变形局部化磨损理论,该理论第一次把变形临界值作为材料性质的衡量指标,由材料的微观结构所决定。流体冲蚀理论目前已建立了两个理论,一个是Springer 理论,它用以解释气蚀及液滴冲蚀中存在孕育期、加速期、最大冲蚀及稳定冲蚀区。另一个是Thiruvengadam 理论,它提出冲蚀强度的概念,用简单的图解法估算特定条件下材料耐冲蚀寿命与冲蚀强度之间的关系,但与实际情况有较大的偏离。影响冲蚀磨损包括材料内在因素和环境因素,这在国内许多书籍和文献[80]已做了大量论述,对材料的耐冲蚀性能与其内在因素的关系,以及环境、冲击角度、粒子大小、速度等因素对冲蚀的影响,研究人员持不同的观点[81~83]。 流速流态对冲刷磨损具有十分重要的影响,通过研究流体力学因素的影响程度,有助于深入认识冲刷磨损的机理[84,85]。在流态发生突然变化的部位(如突然扩充、收缩等),这种恶性循环会造成过流部件的过早失效。流体的流动状态,不仅取决于流速,而且与流体的物性、设备的几何形状有关[86]。 近几十年人们试着寻找某些通用或关键的流体力学参数来解释冲刷磨损速度, 其中包括流速[87]、雷诺数[88]、传质系数[89], 近壁处的湍流强度(near-wall turbulence)[90]。在工程上或实验室研究中, 流速往往是唯一的和可控制的力学指标, 人们借以提出临界流速概念[91], 美国石油学会还制定出适合油气开采过程的临界流速计算公式。但不同学者得出的临界流速各不相同, 这与每个学者采用的不同实验方法有关, 临界流速本身是否存 在也受到质疑。 流体及磨粒速度、冲击角度、冲蚀时间、硬度等也是影响冲刷磨损的重要因素。冲击角的影响与靶材类型有关,塑性材料在20°~30°角冲击时破坏最大[97]。文献[98]认为,材料发生冲刷磨损存在一个冲击速度的门槛值,低于这个数值不产生冲蚀磨损,只发生弹性变

材料磨损失效分析简述

材料磨损失效分析简述 摘要:综述了磨损失效的常见类型及该磨损失效的的影响因素,包括材料的磨损失效过程,指出了降低材料磨损失效的措施,为预防工程领域材料的磨损失效提供了方向。 关键词:磨损失效;类型;影响因素;过程;预防措施 The Review Of Wear Failure Analysis In Materials Abstract:The common types and its influencing factors was summarized. Including the process of wear failure of the measures of how to reduce wear failure was pointed directions how to preventing wear failure in engineering material field. Key words:wear, failure; classify; influencing factor;process; precautionary measures 引言 磨损失效是机械设备和零部件的三种主要失效形式———断裂、腐蚀和磨损失效形式之一。世界一次能源的三分之一、机电设备的70%—80%是由于各种形式的磨损而产生故障[1]。磨损不仅造成大量的材料浪费,而且可能直接导致灾难性后果。因此,研究磨损失效的原因,制定抗磨对策、减少磨损耗材、提高机械设备和零件的安全寿命是极为有必要的。 1 常见磨损失效类型及其影响因素 粘着磨损 当一对磨擦副的两个磨擦表面的显微凸起端部相互接触时,即使法向负载很小,但因为凸起端部实际接触的面积很小,所以接触应力很大。如果接触应力大到足以使凸起端部的材料发生塑性变形而且接触表面非常干净,彼此又具有很好的适应性,那么在磨擦界面上很可能形粘着点。当磨擦面发生相对滑动时,粘着占在剪应力作用下变形以致断裂,使材料从一个表面迁移到另一个表面。通常,金属的这种迁移是由较软的磨擦面迁移到较硬的磨擦面上。根据磨损试验后对磨擦面进行金相检验发现,迁移的金属往往呈颗粒状粘附在表面[2]。这是反复的滑动磨擦,使粘着点扩大并在剪应力作用下在粘着点后根部开裂,进而形成磨粒的结果。这就是粘着磨损。粘着磨损过程十分复杂,以上所述只是对复杂现象作了简单的描述。 影响粘着磨损性能因素有[3]: (1)润滑条件或环境。在真空条件下金属的磨损极为严重。除了金以外,在大气条件下,金属经过切削或磨削加工,洁净的表面产生氧化膜,它在防止粘着磨损方面有重要的作用。而良好的润滑条件更是降低粘着磨损的重要保障。 (2)摩擦副的硬度。材料的硬度越高,耐磨性越好。材料体系一定时,可采用涂层或其他表面处理工艺来降低粘着磨损。 (3)晶体结构和晶体的互溶性。其它条件相同时,晶体结构为hcp的材料摩擦系数最低,fcc次之,bcc最高。冶金上互溶性好的金属摩擦副摩擦系数和磨损率高。 (4)温度。温度对材料粘着磨损的影响是间接的。温度升高,材料硬度下降,摩擦副互溶性增加,磨损加剧。 磨粒磨损

碳纤维增强复合材料概述

碳纤维增强复合材料概述 摘要:本文对碳纤维增强复合材料进行了介绍,详细介绍了其优点和应用。并对碳纤维复合材料存在的问题提出建议。 关键字:碳纤维,复合材料,应用 Abstract: In this paper, the carbon fiber reinforced composite materials are introduced, its advantages and application was introduced in detail. And puts forward Suggestions on the problems existing in the carbon fiber composite materials. Key words: carbon fiber, composite materials, applications 1.碳纤维增强复合材料介绍 复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料,到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维[1]。 碳纤维是一种直径极细的连续细丝材料,直径范围在6~8 μm 内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、

自修复材料在涂料中的应用

目录 1. 研究背景 (1) 2. 自修复材料的分类 (1) 3. 自修复微胶囊 (1) 3.1. 微胶囊的概念 (1) 3.2. 自修复微胶囊修复机理 (2) 3.3. 自修复微胶囊在各领域的应用 (3) 4. 自修复微胶囊在金属防腐涂料中的应用 (4) 4.1自修复涂料的基本要求 (4) 4.2 金属防腐涂料的选择 (5) 4.3微胶囊对自修复金属防腐涂层的耐腐蚀性能的影响 (5) 4.3.1 微胶囊芯壁比对自修复金属防腐涂层的耐腐蚀性能的影响 (5) 4.3.2 微胶囊用量对自修复金属防腐涂层的耐腐蚀性能的影响 (5) 4.4 前人研究成果 (5) 5. 结束 (7) 参考文献 (9)

自修复微胶囊在金属防腐涂料中的应用 1. 研究背景 材料在使用过程中不可避免地会产生局部损伤和微裂纹,并由此引发宏观裂缝而发生断裂,影响材料正常使用和缩短使用寿命[1]。裂纹的早期修复,特别是自修复是一个现实而重要的问题。自修复材料是智能材料的一个重要分支,在无外界作用条件下,材料本身能对内部缺陷进行自我恢复[2]。 金属的腐蚀是金属受环境介质的化学或电化学作用而被破坏的现象。金属腐蚀遍及国民经济各个领域,给国民经济带来了巨大的损失长期以来,人们一直采用多种技术对金属加以保护,其中最有效、最经济的方法之一是在金属表面涂敷防腐涂层,以隔绝腐蚀介质与金属底材。但涂料在其使用过程中会因环境或力学性能等因素的变化产生微裂纹,并且由于暴露于大气中,微裂纹会逐渐蔓延、扩张,从而加速了金属与涂料界面上涂料的剥离和分层[3],减少涂料的使用寿命和防腐能力,同时也影响了金属的使用。涂料可看作是由粘合剂与颜料所组成的一类特殊的复合材料,因此复合材料裂纹自修复技术同样可以应用于涂料领域,延长涂料的耐久性。 2. 自修复材料的分类 自修复材料按机理可分为两大类:一类主要是通过加热等方式向体系提供能量,使其发生结晶[4,5]、在表面成膜[6-8]或产生交联[9,10]等作用实现修复;另一类主要是通过在材料内部分散或复合一些功能性物质来实现的,这些功能性物质主要是装有化学物质的纤维[11-17]或胶囊。本文主要研究微胶囊型自修复材料,即通过在金属防腐涂料中添加微胶囊,使涂层具有自修复功能。 3. 自修复微胶囊 3.1. 微胶囊的概念 微胶囊是通过成膜材料包覆分散性的固体、液体或气体而形成的具有核-壳结构的微小容器[18],通常将成膜材料形成的包覆膜称为壁材或囊壁(一般由天然的或合成的高分子材料形成),

碳纤维复合材料

碳纤维复合材料 碳纤维增强复合材料(Carbon Fibre-reinforced Polymer, 简称CFRP)是以碳纤维或碳纤维织物为增强体,以树脂、陶瓷、金属、水泥、碳质或橡胶等为基体所形成的复合材料,简称碳纤维复合材料。 碳复合材料的特性主要表现在力学性能、热物理性能和热烧蚀性能三个方面。 (1)密度低(1.7g/cm3左右)在承受高温的结构中,它是最轻的材料;高温的强度好,在2200oC时可保留室温强度;有较高的断裂韧性,抗疲劳性和抗蠕变性;而且拉伸强度和弹性模量高于一般的碳素材料,纤维取向明显影响材料的强度,在受力时其应力-应变曲线呈现"假塑性效应"即在施加载荷初期呈线性关系,后来变成双线性关系,卸载后再加载,曲线仍为线性并可达到原来的载荷水平。 (2)热膨胀系数小,比热容高,能储存大量的热能,导热率低,抗热冲击和热摩擦的性能优异。 (3)耐热烧蚀的性能好,热烧蚀性能是在热流作用下,由于热化学和机械过程中引起的固体材料表面损失的现象,通过表层材料的烧蚀带走大量的热量,可阻止热流入材料内部, C-C材料是一种升华-辐射型材料。 复合原理它以碳纤维或碳纤维织物为增强体,以碳或石墨化的树脂作为基体。 复合以后的这种材料在高温下的强度好,高温形态稳定,升华温度高,烧蚀凹陷性,平行于增强方向具有高强度和高刚性,能抗裂纹传播,可减震,抗辐射。 碳纤维增强尼龙的特色 碳纤维具有质轻、拉伸强度高、耐磨损、耐腐蚀、抗蠕变、导电、传热等特色,与玻璃纤维比较,模量高3?5倍,因而是一种取得高刚性和高强度尼龙资料的优秀增强资料。碳纤维复合资料可分为长(接连)纤维增强和短纤维增强两大类。纤维长度可从300~400m 到几个毫米不等。曩昔10年中,大家在改善不一样品种的碳纤维复合资料加工办法和功能方面投入了许多的研讨。从预浸树脂到模塑法加工,从短纤维掺混塑料注射加工到层压成型,在碳纤维复合资料及制品制造方面积累了许多成功的经历。当前普遍认为,长(接连)纤维有高强、高韧方面的优越性,短切纤维有加工性好的特色。因而,长碳纤维复合资料在加工上完善成型技术、短碳纤维复合资料进一步进步力学功能是碳纤维复合资料开展的方向。 依据碳纤维长度、外表处理方式及用量的不一样,还能够制备归纳功能优秀、导电功能各异的导电资料,如抗静电资料、电磁屏蔽资料、面状发热体资料、电极资料等。碳纤维增

新型智能材料-自修复复合材料的进展

实验名称:新型智能材料指导教师:殷陶 学院:建筑与城市规划学院专业:风景园林 年级班别:2014级1班学生姓名:梁挚呈 学号:3114009992 论文选题:自修复复合材料的进展 智能材料是指能模仿生命系统,同时具有感知和激励双重功能的材料。自诊断与自修复是智能材料的重要功能。 智能自修复材料的研究是一门新兴的综合科学技术。自修复又称自愈合,是生物的重要特征之一,人们把产生缺陷时在无外界作用的情况下,材料本身自我判断、控制和恢复的能力称为自修复。 材料在使用过程中不可避免地会产生局部损伤和微裂纹,并由此引发宏观裂缝而发生断裂,影响材料正常使用和缩短使用寿命。裂纹的早期修复,特别是自修复是一个现实而重要的问题。 目前,具有自诊断、自修复功能的智能自修复材料已成为新材料领域的研究重点之一,自修复的核心是能量补给和物质补给,其过程由生长活性因子来完成。模仿生物体损伤愈合的原理,使得复合材料对内部或者外部损伤能够进行自修复自愈合,从而消除隐患,增强材料的机械强度,延长使用寿命,在军工、航天、电子、仿生等领域显得尤为重要。 智能自修复材料的自修复原理有分子间相互作用的修复机理、内置胶囊仿生自修复机理、液芯纤维自修复机理、热可逆交联反应修复机理。 热可逆交联反应修复机理是目前最新的技术。近年来,出现了一种高交联度的真正具有自修复能力的透明聚合物材料,这种材料只要施以简单的热处理就可以在材料需要修补的地方形成共价键,并能多次对裂纹进行修复而不需添加额外的单体。文献以呋喃多聚体和马来酰亚胺多聚体进行Diels Alder(DA)热可逆共聚,形成的大分子网络直接由具有可逆性的交联共价键相连,可以通过DA逆反应实现热的可逆性。这种材料的力学性能可与一般的树

第七章金属磨损和接触疲劳.

第七章金属磨损和接触疲劳 机器运转时,相互接触的机器零件总要相互运动,产生滑动、滚动、滚动+滑动,都会产生摩擦,引起磨损。如:轴与轴承、活塞环与气缸、十字头与滑块、齿轮与齿轮之间经常因磨损和接触疲劳,造成尺寸变化,表层剥落,造成失效。 有摩擦必将产生磨损,磨损是摩擦的必然结果。 磨损是降低机器和工具效率、.精确度甚至使其报废的重要原因,也是造成金属材料损 耗和能源消耗的重要原因。据不完全统计,摩擦磨损消耗能源的1/3?1/2,大约80%的机件失效是磨损引起的。汽车传动件的磨损和接触疲劳是汽车报废的最主要原因,所以,耐磨成了汽车档次的一个重要指标。 因此,研究磨损规律,提高机件耐磨性,对节约能源,减少材料消耗,延长机件寿命具有重要意义。 第一节磨损概念 、摩擦与磨损现象 1摩擦 两个相互接触的物体作相对运动或有相对运动趋势时,接触表面之间就会出现一种阻碍运动或运动趋势的力,这种现象成为摩擦。这种作用在物体上并与物体运动方向相反的阻力称为摩擦力0 最早根据干摩擦的试验,得到摩擦力F正比于两物体之间的正压力(法线方向)N的经典摩擦定律,即F=uN,式中卩称为摩擦系数。后来发现这个定律只对低速度、低载荷的干摩擦情况是正确的,然而在许多场合下还是被广泛应用。 摩擦力,来源一于两个方面:①由于微观表面凸凹不平,实际接触面积极少(大致可在1/10000?1/10的范围内变化),这部分的接触应力很大,造成塑性变形而引起表面膜(润滑油膜和氧化膜等)的破裂,促使两种金属原子结合(冷焊);②由于微观表面凸凹不平, 导致一部分阻止另一部分运动。要使物体继续移动,就必须克服这两部分阻力。 用来克服摩擦力所做的功一般都是无用功,在机械运动中常以热的形式散发出去,使机械效率降低。减小摩擦偶件的摩擦系数,可以降低摩擦力,即可以保证机械效率,又可以减少机件磨损。 而要求增加摩擦力的情况也很多,在某些情况下却要求尽可能增大摩擦力,如车辆的制动器、摩擦离合器等。 2、磨损 ①定义:机件表面接触并作相对运动时,表面逐渐有微小颗粒分离出来形成磨屑(松散的尺寸与形状均不相同的碎屑),使表面材料逐渐损失(导致机件尺寸变化、重量损失)、造成表面损伤的

复合材料力学性能实验复习题new要点

复合材料力学性能实验复习题 1.力学实验方法的内涵? 是以近代力学理论为基础,以先进的科学方法为手段,测量应变、应力等力学量,从而正确真实地评价材料、零部件、结构等的技术手段与方法; 是用来解决“物尽其用”问题的科学方法; 2.力学实验的主要任务,结合纤维增强复合材料加以阐述。 面向生产,为生产服务;面对新技术新方法的引入,研究新的测试手段;面向力学,为力学的理论建设服务。 3.对于单向层合板而言,需要几组实验来确定其弹性模量和泊松比?如何确定实验方案? 共需五组实验,拉伸0/90两组,压缩0/90两组,剪切试验一组。 4.单向拉伸实验中如何布置应变片? 5.单向压缩实验中如何布置应变片? 6.三点弯曲实验中如何布置应变片? 7.剪切实验中如何布置应变片? 8.若应变片的粘贴方向与实样应变方向不一致,该如何处理? 9.若加载方向与材料方向不一致,该如何处理?(这个老师给了) 10.纤维体积含量的测试方法? 密度法、溶解法 11.评价膜基结合强度的实验方法? 划痕法、压痕法、刮剥法、拉伸法、黏结剂法、涂层直接加载法、激光剥离法、弯曲法。 12.简述试样机械加工的规范? 试样的取位区(距板材边缘30mm以上,最小不得小于20mm) 试样的质量(气泡、分层、树脂富集、皱褶、翘曲、错误铺层) 试样的切割(保证纤维方向和铺层方向与试验要求相符) 试样的加工(采用硬质合金刀具或砂轮片加工,防止试样产生分层、刻痕和局部挤压等机械损伤) 试样的冷却(采用水冷,禁止油冷) 13.纤维增强复合材料在拉伸试验中的几种可能破坏模式及其原因? 所有纤维在同一位置破坏,材料吸收断裂能量很小,材料断裂韧性差; 纤维在基体中拔出,吸收断裂能量很大,材料韧性增加并伴随界面开裂; 介于以上两者之间。 14.加强片的要求? 材料硬度低,便于夹具的咬合;材料的强度高,保证载荷能传递到试样上,且在试样发生破坏前本身不发生破坏。

冲蚀研究现状

冲蚀磨损基础知识 (参考信息,由成都全息精密硬质合金流体控制提供) 冲蚀磨损是指液体或固体以松散的小颗粒按一定的速度或角度对材料表面进行冲击所造成的一种材料损耗现象或过程。它广泛存在于机械、冶金、能源、建材、航空、航天等许多工业部门,已成为材料破坏或设备失效的重要原因之一[63~65]。 根据流动介质和所携带相的特点,可以将冲蚀磨损分为六种不同的类型[66]:(1)喷砂型冲蚀,即气体介质携带固体颗粒对材料的冲蚀,其工程实例为烟气轮机、锅炉管道等出现的破坏;(2)水滴冲蚀(又称雨蚀),即气体介质携带液滴对材料的冲蚀,其工程实例为高速飞行器、汽轮机叶片出现的破坏等;(3)泥浆(又称料浆)冲蚀,即液体介质携带固体颗粒对材料的冲蚀,其工程实例如水轮机叶片、泥浆泵叶轮出现的破坏;(4)气蚀(又称空蚀),即液体介质携带气泡对材料的冲蚀,工程实例如船用螺旋桨、高压阀门密封面出现的破坏;还有两种类型为三相流冲蚀,即(5)气体介质同时携带液滴和固体颗粒对材料的冲蚀;(6)液体介质同时携带气泡和固体颗粒对材料的冲蚀。本文研究的冲蚀磨损主要是固液两相,可以归到上述的第 3 类。 1958 年,从Finnie. I 第一个冲蚀理论-微切削理论提出以来,许多研究者提出了一些关于冲蚀的模型[67~74],但到目前为止,人们仍未能全面揭示材料冲蚀的内在机理[75]。Finnie. I 解释了塑性材料在多角形磨粒、低冲击角下的磨损规律,但对高冲击角或脆性材料的冲蚀偏差较大;1963 年,Bitter[76]提出变形磨损理论,该理论在单颗粒冲蚀磨损试验机上得到验证,合理地解释了塑性材料的冲蚀现象,但缺乏物理模型的支持。Levy[77]在大量实验的基础上提出来的锻压挤压理论:使用分步冲蚀试验法和单颗粒寻迹法研究冲蚀磨损的动态过程。该理论较好地解释了显微切削模型难以解释的现象。1979 年,Evans 等人提出的弹塑性压痕破裂理论[78]。大量试验证明,该理论很好地反映了靶材和磨粒对冲蚀磨损的影响,试验值和理论值也较吻合,但不能解释脆性粒子以及高温下刚性粒子对脆性材料的冲蚀行为。Tilly[79]提出二次冲蚀理论,它用高速摄影术、筛分法和电子显微镜研究了粒子的破裂对塑性靶材冲击的影响,较好地解释了脆性粒子的大入射角冲蚀问题。Hutching 提出了绝热剪切与变形局部化磨损理论,该理论第一次把变形临界值作为材料性质的衡量指标,由材料的微观结构所决定。流体冲蚀理论目前已建立了两个理论,一个是Springer 理论,它用以解释气蚀及液滴冲蚀中存在孕育期、加速期、最大冲蚀及稳定冲蚀区。另一个是Thiruvengadam 理论,它提出冲蚀强度的概念,用简单的图解法估算特定条件下材料耐冲蚀寿命与冲蚀强度之间的关系,但与实际情况有较大的偏离。影响冲蚀磨损包括材料内在因素和环境因素,这在国内许多书籍和文献[80]已做了大量论述,对材料的耐冲蚀性能与其内在因素的关系,以及环境、冲击角度、粒子大小、速度等因素对冲蚀的影响,研究人员持不同的观点[81~83]。 流速流态对冲刷磨损具有十分重要的影响,通过研究流体力学因素的影响程度,有助于深入认识冲刷磨损的机理[84,85]。在流态发生突然变化的部位(如突然扩充、收缩等),这种恶性循环会造成过流部件的过早失效。流体的流动状态,不仅取决于流速,而且与流体的物性、设备的几何形状有关[86]。

相关文档
相关文档 最新文档