文档库 最新最全的文档下载
当前位置:文档库 › 工程光学实验

工程光学实验

工程光学实验
工程光学实验

光电位置敏感器件PSD的特性及位移测试

实验原理:

PSD(position sensitive detector)是一

种新型的横向光电效应器件,当入射光

点照在器件光敏面上时,激发光生载流

子而产生电流I,光生电流的大小与光

点的大小无关,只和光点在器件上的位

置有关系。当光点位于器件中点(原点)

时,光生电流I1=I2,根据这一原理,将

PSD器件两极电流I1、I2变换成电压信

号后再进行差分运算即可知道光点的

位置。PSD器件工作原理见图(27)

实验所需器件:

PSD基座(器件已装在基座上)、固体激光器、反射体、PSD处理电路单元、电压表

实验步骤:

1.通过基座上端圆形观察孔观察PSD器件及在基座上的安装位置,连接好PSD器件与处理

电路,开启仪器电源,输出端V o接电压表,此时因无光源照射,PSD前聚焦透镜也无因光照射而形成的光点照射在PSD器件上,V o输出的为环境光的噪声电压,试用一块遮光片将观察圆孔盖上,观察光噪声对输出电压的变化。

2.将激光器插头插入“激光电源”插口,激光器安装在基座圆孔中并固定。开启激光电源,

注意激光束照射到反射面上时的情况,光束应与反射面垂直。旋转激光器角度,调节激光光点,(必要时也可调节PSD前的透镜)使光点尽可能集中在器件上,记录光点位移时V o端的最大输出值。

3.仔细调节位移平台(螺旋测微头),用电压表观察输出电压V O的变化,当输出为零时,

再分别测两路信号电压输出端V O1、V O2的电压值(V o分别换为V o1, V o2),分别记录电压,此时两个信号电压应是基本一致的。

4.换为V o,从原点开始,位移平台分别向前(顺时针)和向后(逆时针)位移,因为PSD

器件对光点位置的变化非常敏感,故每次螺旋测微仪旋转5格(1/10mm),并将位移值(mm)与输出电压值(V0)记录列表,作出V/X曲线,求出灵敏度S,S=△V/△X。

5.在记录的同时,可采用计算机进行单次采集,得出曲线并保存。

注意事项:

实验中所用的固体激光器光点可调节,实验时请注意光束不要直接照射眼睛,否则有可能对视力造成不可恢复的损伤。每一支激光器的光点和光强都略有差异,所以对同一PSD 器件,光源不同时光生电流的大小也是不一样的。实验时背景光的影响也不可忽视,尤其是采用日光灯照明时,或是仪器周围有物体移动造成光线反射发生变化时,都会造成PSD光生电流改变,致使单元V0输出端电压产生跳变,这不是仪器的毛病。如实验时电压信号输出较小,则可调节一下激光器照射角度,使输出达到最大。

红外光传感器的应用

一、实验目的

1、了解热释电红外传感器的结构、原理、工作特性。

2、掌握用热释电红外传感器测量的方法。

二、实验原理

菲涅尔透镜是一种精密的光学系统,专门是用来与热释电红

外传感器配套使用。其结构如图(25)所示。它由经过特殊设计的

透镜组构成,上面的每个透镜单元都只有一个不大的视场,相邻

两个单元透镜的视场即不连续也不重叠,都相隔一个盲区。当热源

在透镜前运动时,顺次从某一单元透镜视场进入又退出,透镜的功

能就是将连续的热源信号变成断续的辐射信号,

使热释电传感器能正常工作。

热释电红外传感器的具体结构和内部电

路如图(26)所示,主要由滤光片、PZT热电元件、

结型场效应管FET及电阻、二极管组成.。其中

滤光片的光谱特性决定了热释电传感器的工作

范围。本仪器所用的滤光片对5μm以下的光具

有高反射率,而对于从人体发出的红外热源则有

高穿透性,传感器接收到红外能量信号后实现了“热-电”的转变,就有电压信号输出。三、主要仪器及耗材

菲涅尔透镜、激光器(或其它经过聚焦的光源)、热释电红外传感器、慢速电机、热释电红外探测电路单元、电加热器、电压表

四、实验内容和步骤

1、仔细观察菲涅尔透镜结构,用激光器从正面照射菲涅尔透镜,用一白纸放在透镜下做投射光背景面。当激光光点照射到透镜正面并相对移动时,白纸上的投射光会出现一个接一个的断续光斑,而光斑始终都是集中在透镜中部的。

2、将菲涅尔透镜装在热释电红外传感器探头上,探头方向对准慢速电机支座下透孔前的热源方向,按图标符号将传感器接入处理电路,接好发光二极管(显示实验单元工作状态)。开启电源,待电路输出稳定后开启热源,同时将慢速电机叶片拨开不使其挡住热源透射孔。

3、随着热源温度缓慢上升,观察热释电红外传感器的V o端输出电压变化情况。可以看出传

感器并不因为热源温度上升而有所反应。

4、开启慢速电机,调节转速旋钮,使电机叶片转速尽量慢,不断地将透热孔开启——遮挡。此时用电压表或示波器观察输出电压端V o就会发现输出电压也随之变化。当达到告警电压时,则发光管闪亮。

5、逐步提高电机转速,当电机转速加快,叶片断续热源的频率增高到一定程度时,传感器又会

6、出现无反应的情况,请分析这是什么原因造成的?(可结合热释电红外传感器工作电路原理分析)

7、传感器的安装方向调整180°面对仪器前实验者,连接传感器探头与处理电路,输出

端V o接电压表。

8、开启电源,待电路稳定后,实验者从探头前经过,移动速度从慢到快,距离从近到远,观察传感器的反应,记录下传感器最大探测距离。

9、在探头前装上菲涅尔透镜,重复步骤(2),并尝试在探头的不同视场范围进入,记录下装透镜后最大的探测距离和探测角度。加深对菲涅尔透镜作用的了解(实际应用中,菲涅尔透镜是必需的)。

五、注意事项

慢速电机的叶片因为是不平衡形式,加之电机功率较小,所以开始转动时可能需要用手拨动协助转动。

8CCD摄像法的应用

一、实验目的

1、了解CCD传感器的结构、原理、工作特性。

2、掌握用CCD传感器测量外形尺寸的原理和方法。

3、掌握用CCD传感器的莫尔条纹计数方法。

二、实验原理

电荷耦合器件(CCD)的重要应用是作为摄像器件,它将二维光学图像信号通过驱动电路转变成一维的视频信号输出。当光学镜头将被摄物体成像在CCD的光敏面上,每一个光敏单元(MOS电容)的电子势阱就会收集根据光照强度而产生的光生电子,每个势阱中收集的电子数与光照强度成正比。在CCD电路时钟脉冲的作用下,势阱中的电荷信号会依次向相邻的单元转移,从而有序地完成载流子的运输—输出,成为视频信号。用图像采集卡将模拟的视频信号转换成数字信号,在计算机上实时显示,用实验软件对图像进行计算处理,就可获得被测物体的轮廓信息。

传统的光栅位移传感器由光栅组、光源、光电器件组成,用光电器件记录莫尔条纹移动数目,对信号进行判向、内插、细分,得出检测结果。本实验用CCD摄象法实验软件记录光栅位移,简单、方便、直观。

三、主要仪器及耗材

CCD摄像头、被测目标(圆形测标)、光栅组、位移平台、视频线、图像采集卡、实验软件

四、实验内容和步骤

1、根据图像采集卡光盘安装说明在计算机中安装好图像卡。并按要求正确设置。照图象采集卡安装说明正确安装图象卡的驱动程序和应用程序,并将视频源(CCD)设置为“PAL_B”制式。安装好测径实验软件“Measure”。

注意:CCD测径及莫尔条纹测试软件在Windows'98上可以直接设置视频源的制式,而在Windows2000或WindowsXP下视频源的设置就要在安装了实验软件和图象卡的驱动和应用程序后再运行“开始”→“程序”→“btcap”→”BtWDMCap.exe”后打开应用程序窗口,选“options”→Video Capt Filter→Video DecoderX下后选PAL_B,获得稳定图象。请注意这一点。为使CCD摄取的莫尔条纹图象清晰,光栅组一定要平行,且间距要尽量小,即目测时莫尔条纹的暗带要足够黑,确定后光栅组一定要安装紧固,以防平台位移时因两片光栅相碰擦造成光栅角度的变化,使莫尔条纹的宽度发生变化。如果光栅片相隔较远,则暗带条纹发红发黄,软件就可能会错误地读取信号,错误地计数。实验时要注意背景光的影响,如果光照太

强,有可能造成自动记数软件误读数。

2、在被测物前安装好摄像头,连接CCD电源,视频线正确连接图像卡与摄像头。

3、检查无误后进入测量程序,启动图像采集后,屏幕窗口即显示被测物的图像,如视频源制式正确,则可以得到稳定的图象。适当地调节CCD的镜头前后位置,使目标图像最为清晰。

4、安装好光栅组,调节位移平台,使两片光栅完全重合,调节主光栅角度,选择合适的条纹宽度,莫尔条纹要清晰可见。

5、在光栅组前安装好CCD摄像头,接通电源与图像卡,安装好实验软件“Count”,启动“CCD 莫尔条纹记数”软件,进入程序,按“活动图像”键,屏幕上即出现条纹图象,调节CCD 光圈及镜头与光栅距离,使条纹图像尽量清晰。

6、按“冻结图像”键,用鼠标在屏幕上确定莫尔条纹间隔,然后开始记数(条纹间隔数越多则测量精度越高,为什么?)。

7、缓慢地转动螺旋测微仪,在屏幕上定一标记,读取条纹移动数,并将目测数与软件自动记数结果对照,得出定性的结论。

8、根据测得的光栅组的光栅距,求出指示光栅(位移平台)的位移量。

9、尺寸标定:先取一标准直径圆形目标(D0=10mm),根据测试程序测定其屏幕图像的直径D1(单位用象素表示),则测量常数K=D1/D0。

10、保持CCD镜头与位移平台距离不变(即表示单位尺寸的象素值不能改变),更换另一未知直径的圆形目标,利用测试程序测得其在屏幕上的直径,除以系数K,即得该目标的直径。

五、思考题

如何利用此方法测试方形物体的尺寸。

光栅衍射实验

一、实验目的

1、了解光栅的结构及光栅距的测量方法。

2、了解光栅莫尔条纹的结构及光栅距的测量方法。

二、实验原理

如果把两块光栅距相等的光栅平行安

装,并且使光栅刻痕相对保持一个较小的夹

角θ时,透过光栅组可以看到一组明暗相

间的条纹,即为莫尔条纹。莫尔条纹的宽度

B为:B=P/sinθ其中P为光栅距。

光栅刻痕重合部分形成条纹暗带,非重

合部分光线透过则形成条纹亮带。光栅莫尔

条纹的两个主要特征是:

判向作用:当指示光栅相对于固定不动的主

光栅左右移动时,莫尔条纹将沿着近于栅线的方向上下移动,由此可以确定光栅移动的方向。位移放大作用:当指示光栅沿着与光栅刻线垂直方向移动一个光栅距D时,莫尔条纹移动一个条纹间距B,当两个等距光栅之间的夹角θ较小时,指示光栅移动一个光栅距D,莫尔条纹就移动KD的距离。K=B/D≈1/θ。B=D/2sinθ/2≈d/θ,这样就可以把肉眼看不见的栅距位移变成清晰可见的条纹位移,实现高灵敏的位移测量。

三、主要仪器及耗材

光栅、激光器、直尺与投射屏(自备)、光栅组、移动平台

四、实验内容和步骤

1、激光器放入光栅正对面的激光器支座中,接通激光电源后调节使光点对准光栅中点后用紧定螺丝固定。

2、在光栅后方安放好投射屏,观察到一组有序排列的衍射光斑,与激光器正对的光斑为中央光斑,依次向两侧为一级、二级、三级…衍射光斑。如图(28)所示。请观察光斑的大小及光强的变化规律。

3、根据光栅衍射规律,光栅距D与激光波长λ、衍射距离L、中央光斑与一级光斑的间距S存在下列的关系:

(式中单位:L 、S 为mm ,λ为nm, D 为μm )

根据此关系式,已知固体激光器的激光波长为650nm ,用直尺量得衍射距离L 、光斑距S ,即可求得实验所用的光栅的光栅距。

4、 尝试用激光器照射用做莫尔条纹的光栅,测定光栅距,了解光斑间距与光栅距的关系。

5、 将激光器换成激光教鞭,测定其波长。

6、按照光栅衍射公式,已知光栅距、激光波长、光斑间距,就可以求出衍射距离L 。 将激光对准衍射光栅中部,在投射屏上得到一组衍射光斑,根据公式求出L 。

调整投射屏与光栅的距离,并尽可能试用不同的激光器,将测得的各参数L 、S 、D 、λ 填入表格,以验证公式。

实验数据表

7、安装好主光栅与指示光栅,使两光栅保持平行,光栅间间隙要尽量小,微调主光栅角度,使莫尔条纹清晰可见,用紧定螺丝固定光栅好光栅的相对位置。

8、 旋动移动平台螺旋测微仪,向前或向后,观察莫尔条纹上下移动与指示光栅位移方向 的关系。

9、 人工微位移测量:当指示光栅位移一个光栅距时,莫尔条纹就移动一个条纹距。调节 位移平台,仔细记数条纹移动数目,根据实验二十测得的光栅距,与位移条纹数相乘,此即为指示光栅的位移距离,实验时可与螺旋测微仪的转动刻度相对照。(事实上光栅莫尔条纹记数所测得的位移精度可以远高于螺旋测微仪的精度)。

S

S L D 2

2+=λ

工程光学第一章知识点

第一章几何光学基本原理 光和人类的生产活动和生活有着十分密切的关系,光学是人类最古老的科学之一。 对光的每一种描述都只是光的真实情况的一种近似。 研究光的科学被称为“光学”(optics),可以分为三个分支: 几何光学物理光学量子光学 第一节光学发展历史 1,公元前300年,欧几里得论述了光的直线传播和反射定律。 2,公元前130年,托勒密列出了几种介质的入射角和反射角。 3,1100年,阿拉伯人发明了玻璃透镜。 4,13世纪,眼镜开始流行。 5,1595年,荷兰著名磨镜师姜森发明了第一个简陋的显微镜。 6,1608年,荷兰人李普赛发明了望远镜;第2年意大利天文学家伽利略做了放大倍数为30×的望远镜。7,1621年,荷兰科学家斯涅耳发现了折射定律;1637年法国科学家笛卡尔给出了折射定律的现代的表述。8,17世纪下半叶开始,英国物理学家牛顿和荷兰物理学家惠更斯等人开始研究光的本质。 9,19世纪初,由英国医生兼物理学家杨氏和法国土木工程师兼物理学家菲涅耳所发展的波动光学体系逐 渐被普遍接受。 10,1865年,英国物理学家麦克斯韦建立了光的电磁理论。 11,1900年,德国柏林大学教授普朗克建立了量子光学。 12, 1905年,德国物理学家爱因斯坦提出光量子(光子)理论。 13,1925年,德国理论物理学家玻恩提出了波粒二象性的几率解释,建立了波动性与微粒性之间的联系。14,1960年,美国物理学家梅曼研制成第一台红宝石激光器,给光学带来了一次革命,大大推动了光学以 及其他科学的发展。 15,激光是20世纪以来,继原子能、计算机、半导体之后,人类的又一重大发明。激光一问世,就获得了 异乎寻常的飞快发展,激光的发展不仅使古老的光学科学和光学技术获得了新生,而且导致整个一门新兴 产业的出现。 ●光学作为一门学科包含的内容非常多,作为在工程上应用的一个分支——工程光学, 内容主要包括几何光学、典型光学系统、光度学等等。 ●随着机械产品的发展,出现越来越多的机、电、光结合的产品。 ●光学手段越来越多用于机电装备的检测、传感、测量。 ●掌握好光学知识,为今后进一步学习机电光结合技术打好基础,也将会有更广阔的 适应面。 第二节光线和光波 1,光的本质 ●光和人类的生产、生活密不可分; ●人类对光的研究分为两个方面:光的本性,以此来研究各种光学现象,称为物理光学;光的传播规律 和传播现象称为几何光学。 ●1666年牛顿提出的“微粒说” ●1678年惠更斯的“波动说” ●1871年麦克斯韦的电磁场提出后,光的电磁波 ●1905年爱因斯坦提出了“光子”说 ●现代物理学认为光具有波、粒二象性:既有波动性,又有粒子性。 ●一般除研究光与物质相互作用,须考虑光的粒子性外,其它情况均可以将光看成是电磁波。 ●可见光的波长范围:380-760nm

工程光学实验教材

工程光学实验教材

实验一自组望远镜 (测量实验) 一、实验目的 了解望远镜的基本原理和结构,并掌握其调节、使用和测量它的放大率的方法。 二、实验原理 最简单的望远镜是由一片长焦距的凸透镜作为物镜,用一短焦距的凸透镜作为目镜组合而成。远处的物经过物镜在其后焦面附近成一缩小的倒立实像,物镜的像方焦平面与目镜的物方焦平面重合。而目镜起一放大镜的作用,把这个倒立的实像再放大成一个正立的像,如图五所示。 三、实验仪器 1、带有毛玻璃的白炽灯光源S 2、毫米尺F L=7mm 3、二维调整架:SZ-07 4、物镜Lo:f o=225mm 5、二维调整架:SZ-07 6、测微目镜Le:(去掉其物镜头的读数显微镜) 7、读数显微镜架: SZ-38 8、滑座:TH70 9、滑座:TH70Y 10、滑座:TH70Y 11、滑座:TH70 12、白屏:SZ-13 四、仪器实物图及原理图

图四 五、实验步骤 1、把全部器件按图四的顺序摆放在导轨上,毫米尺竖直放置,靠拢后目测调至共轴,把 标尺放在毫米尺一侧。 2、把F和Le的间距调至最大,沿导轨前后移动Lo,使一只眼睛通过Le看到清晰的完 整毫米尺上的刻线。 3、再用另一只眼睛看标尺,读出测微目镜看到的像在标尺上的尺寸。 六、数据处理 毫米尺尺寸AB;像在标尺上的尺寸A"B" 望远镜放大倍率M= A"B"/AB 七、实验结果: 1、数据:毫米尺尺寸AB=2mm;像在标尺上的尺寸A''B''=101cm 所以,望远镜放大倍率M=A''B''/AB=10/2=5倍 2、观察到的现象:

八、遇到的问题及心得体会: 1、开始实验时,由于各个仪器的间距摆放不合理,导致得不到想要的实验结果,最后看了实验册,重新摆放仪器; 2、移动透镜的速度过快,使得我们看不到实验现象,也就没法组成望远镜,最后经过老师的指导,我们缓慢移动透镜; 3、由于不知道会看到什么样的实验现象,以至于我们看到了微小的现象,以为不是我们想要的实验结果,再次导致没有做出来; 4、最终在老师的一再指导下,我们终于自组成功望远镜,且通过观察我们得到规律: 凸透镜成像规律:物距大于二倍焦距时成缩小实像。

工程光学(1)_实验讲义

实验一光学实验主要仪器、光路调整与技巧 1.引言 不论光学系统如何复杂,精密,它们都是由一些通用性很强的光学元器件组成的,因此,掌握一些常用的光学元器件的结构,光学性能、特点和使用方法,对于安排实验光路系统时,正确的选择和使用光学元器件具有重要的作用。 2.实验目的 1)掌握光学专业基本元件的功能; 2)掌握基本光路调试技术,主要包括共轴调节和调平行光。 3.实验原理 3.1光学实验仪器概述: 光学实验仪器主要包括:光源,光学元件,接收器等。 3.1.1常用光源 光源是光学实验中不可缺少的组成部分,对于不同的观测目的,常需选用合适的光源,如在干涉测量技术中一般应使用单色光源,而在白光干涉时又需用能谱连续的光源(白炽灯);在一些实验中,对光源尺寸大小还有点、线、面等方面的要求。光学实验中常用的光源可分为以下几类: 1)热辐射光源 热辐射光源是利用电能将钨丝加热,使它在真空或惰性气体中达到发光的光源。白炽灯属于热辐射光源,它的发光光谱是连续的,分布在红外光、可见光到紫外光范围内,其中红外成分居多,紫外成分很少,光谱成分和光强与钨丝温度有关。热辐射光源包括以下几种:普通灯泡,汽车灯泡,卤钨灯。 2)热电极弧光放电型光源 这类光源的电路基本上与普通荧光灯相同,必须通过镇流器接入220V点源,它是使电流通过气体而发光的光源。实验中最常用的单色光源主要包括以下两种:纳光灯(主要谱线:589.3nm、589.6nm),汞灯(主要谱线:623.4nm、579.0nm、577.0nm、546.1nm、491.6nm、435.8nm、407.9nm、404.7nm) 3)激光光源 激光(Light Amplification by Stimulated Emission of Radiation,缩写:LASER),是指通过辐射的受激辐射而实现光放大,即受激辐射的光放大。激光器作为一种新型光源,与普通光源有显著的差别。它是利用受激辐射的原理和激光腔的滤波效应,使所发光束具有一系列新的特点。①激光器发出的光束有极强的方向性,即光束的发散角很小;②激光的单色性好,或者说相干性好,其相干长度可以达十米甚至数百米;③激光器的输出功率密度大,即能量高度集中。所以激光光源是一种单色性和方向性都好的强光源,已应用于许多科技及生产领域

现代电子技术综合实验报告 熊万安

电子科技大学通信与信息工程学院实验报告 实验名称现代电子技术综合实验 姓名: 学号: 评分: 教师签字 电子科技大学教务处制

电子科技大学 实验报告 学生姓名:学号:指导教师:熊万安 实验地点:科A333 实验时间:2016.3.7-2016.3.17 一、实验室名称:电子技术综合实验室 二、实验项目名称:电子技术综合实验 三、实验学时:32 四、实验目的与任务: 1、熟悉系统设计与实现原理 2、掌握KEIL C51的基本使用方法 3、熟悉SMART SOPC实验箱的应用 4、连接电路,编程调试,实现各部分的功能 5、完成系统软件的编写与调试 五、实验器材 1、PC机一台 2、SMART SOPC实验箱一套 六、实验原理、步骤及内容 试验要求: 1. 数码管第1、2位显示“1-”,第3、4位显示秒表程序:从8.0秒到1.0秒不断循环倒计时变化;同时,每秒钟,蜂鸣器对应发出0.3秒的声音加0.7秒的暂停,对应第8秒到第1秒,声音分别为“多(高

音1)西(7)拉(6)索(5)发(4)米(3)莱(2)朵(中音1)”;数码管第5位显示“-”号,数码管第6、7、8位显示温度值,其中第6、7位显示温度的两位整数,第8位显示1位小数。按按键转到任务2。 2. 停止声音和温度。数码管第1、2位显示“2-”,第3、4位显示学号的最后2位,第5位显示“-”号,第6到第8位显示ADC电压三位数值,按按鍵Key后转到任务3,同时蜂鸣器发出中音2的声音0.3秒; 3. 数码管第1、2位显示“3-”,第3、4位显示秒表程序:从8.0秒到1.0秒不断循环倒计时变化;调节电压值,当其从0变为最大的过程中,8个发光二极管也从最暗(或熄灭)变为最亮,当电压值为最大时,秒表暂停;当电压值为最小时,秒表回到初始值8.0;当电压值是其他值时,数码管又回到第3、4位显示从8.0秒到1.0秒的循环倒计时秒表状态。按按鍵Key回到任务1,同时蜂鸣器发出中音5的声音0.3秒。

实验报告

电子科技大学电子工程学院实验报告 实验名称现代电子技术综合实验 姓名: 学号: 评分: 教师签字 电子科技大学教务处制

电子科技大学 实验报告 学生姓名:学号:指导教师:习友宝 实验地点:331 实验时间:(5—8周)周一5,6,7,8节 一、实验室名称:电子技术综合实验室 二、实验项目名称:基于单片机的多任务的控制系统的实现 三、实验学时:16 四、实验目的与任务: 1、熟悉系统设计与实现原理 2、掌握KEIL C51的基本使用方法 3、熟悉SMART SOPC实验箱的应用 4、连接电路,编程调试,实现各部分的功能 5、完成系统软件的编写与调试 五、实验器材 1、PC机一台 2、SMART SOPC实验箱一套 六、实验原理、步骤及内容 (一)试验要求(以课件要求为准) 基本要求: (1)程序运行后,在8位数码管上显示自己的班级学号(后8位),如2902002001,显示为“02002001”。 (2)定义5个按键(key1、key2、key3、key4、key5)作为功能选择键。每次按下key2时,为“秒表计时器”(定时中断实现),显示从“00.00.00.00”开始,即00时00分00秒00(1/100秒,即10ms)。当按下key1时,返回到显示

班级学号;按下其他功能键时,进入其他功能。 (3)按下key3键时,基于TLC549 A/D转换器进行电压测量(输入电压来自电位器,调节范围0~2.49V,单位:V),并将电压值显示在8位数码管的后3位。 (4)在上面(3)要求基础上,调节电位器,若输入电压超过2.00V,则声光报警,即用发光二极管指示灯(如LED1)闪烁(亮0.5s、灭0.5s);蜂鸣器响(用500Hz方波驱动);若输入电压低于2.00V后,则撤销声光报警。 扩展要求: (5)按下key4键,基于LM75A数字温度传感器,完成温度的测量,显示温度值保留到小数点后1位,整数部分最高位为零时不显示出来(高位零消影)。 (6)按下key5键,完成基于直流电机的转速测量。 (7)对电压测量值进行简单的数据处理,如去除尖峰干扰的平均滤波:每12个测量值数据为一组,去掉最大值和最小值后的10个测量值进行算术平均后,作为显示值。 (8)将班级学号、开机时间(时:分:秒)、电压值、温度值、转速等同时在LCD液晶显示屏上进行显示。 (二)实验内容 硬件设计 (原理框图)

工程光学期末复习题

简答题、填空题: 1、光线的含义是什么?波面的含义是什么?二者的关系是什么? 光线:发光点发出光抽象为许许多多携带能量并带有方向的几何线。 波面:发光点发出的光波向四周传播时,某一时刻起振动位相相同的点所构成的等相位面。 二者关系:波面法线即为光线。 2、什么是实像?什么是虚像?如何获得虚像? 实像:实际光线相交所会聚成的点的所组成的像。 虚像:光线的延长线相交所形成的点所组成的像。 如何获得虚像:光线延长线所形成的同心光束。 3、理想光学系统几对基点?分别是什么? 2对。像方焦点(F’),像方主点(H’),物方焦点(F),物方主点(H)。 4、什么是孔径光阑?什么是入瞳?什么是出瞳?孔径光阑与入瞳、出瞳之间有什么系? 孔径光阑:限制进入光学系统的成像光束口径的光阑称为孔径光阑。 入瞳:孔径光阑在透镜后,经前面光学系统所成的像,称为入瞳。 出瞳:孔径光阑在透镜前,经后面光学系统所成的像,称为出瞳。 关系:入瞳、出瞳和孔径光阑对整个系统是共轭的,经过入瞳的光线必经过孔径光阑、也经过出瞳。 5、光学系统的景深是什么含义? 能够在像面上获得清晰像的物空间深度,就是系统的景深。 6、发生干涉的条件是什么?发生干涉的最佳光源是什么类型的光源? 两列光波的频率相同,相位差恒定,振动方向一致的相干光源。 7、近场衍射和远场衍射的区别是什么? 近场衍射:光源和衍射场或二者之一到衍射屏的距离比较小时的衍射。 远场衍射:光源和衍射场都在衍射屏无限远处的衍射。 8、什么是光学系统的分辨率?人眼的极限分辨率是多少? 极限分辨角为60``(=1`) 9、完善像和理想光学系统的含义分别是什么? 完善像:每一个物点对应唯一的一个像点。或者,物点发出的同心光束经过光学系统后仍为同心光束。或者,入射波面为球面波时,出射波面也为球面波。 理想光学系统:任何一个物点发出的光线在系统的作用下所有的出射光线仍然相交于一点的系统。 10、近轴光线的条件是什么?近轴光线所成像是什么像? 条件:当孔径角U很小时,I、I’和U’很小。 成像:高斯像。 11、光学系统中主点有什么特点?节点有什么特点? 12、一束光入射到平面镜上,有反射光从平面镜射出,当平面镜旋转了5°,试问反射光旋转过多少度? 13、视场光阑的作用是什么?入窗、出窗和视场光阑的关系是什么? 作用:限制物平面上或物空间中成像范围。 关系:入窗、出窗和视场光阑三者互为共轭。

工程光学Ι复习要点--基本概念汇总

工程光学Ι复习要点 基本概念汇总 一、四大定律;光路可逆;全反射; 二、光轴;符号规则;如射角;孔径角;视场角;物距;像距;物高;像高; 近轴光线;近轴区域;共轭关系;垂轴放大率;轴向方法率;角放大率;拉赫不变量; 三、基点基面(焦点、主点、节点、焦面、主面);焦距;光焦度;牛顿公 式;高斯公式;焦物距;焦像距;等效光组(组合光组);

四、平面镜;双面镜;反射棱镜;折射棱镜;光楔;主截面;屋脊棱镜;等 效空气层;偏向角;色散; 五、孔径光阑;入瞳;出瞳;视场光阑;入窗;出窗;孔径角;孔径高度; 视场角;视场高度(物高、像高);渐晕;渐晕系数(线渐晕);渐晕光阑; 场镜;景深;焦深;理想像;清晰像; 六、像差;球差;彗差;像散场曲;畸变;位置色差;倍率色差;二级光谱; 色球差;像差曲线;子午面;弧矢面;

七、近视;远视;近点;远点;屈光度;分辨力;视放大率;有效放大率; 数值孔径;相对孔径;光圈数(F数);出瞳距; 系统工作原理汇总 远摄系统;反远距系统;望远系统;焦距测量系统;物方远心光路;像方远心光路;景深产生的原理;焦深产生的原理;人眼成像系统(正常、近视、远视);近视眼校正系统;远视眼校正系统;放大镜工作原理;显微镜工作原理;望远镜工作原理;目镜视度调节原理;临界照明;克拉照明;照相系统的调焦原理

方法汇总 全反射;单球面成像;共轴球面成像;反射球面成像(反射镜成像);理想光组成像;薄透镜成像;组合光组、厚透镜成像及焦距主面计算;透镜组成像;平行平板成像;光楔的偏向角计算;孔径光阑的判断;入瞳、出瞳的计算;入窗、出窗的计算;视场大小的判断和计算;渐晕光阑的计算;棱镜大小的计算;景深、焦深的计算;视放大率的计算(放大镜、显微镜、望远镜);有效放大率的计算;出瞳距的计算;通光口径的计算(物镜、目镜、分划板、棱镜、场镜) 作图汇总 作图求像;棱镜展开;棱镜坐标的判断;各种系统工作原理的光路图;

现代电子实验报告 电子科技大学

基于FPGA的现代电子实验设计报告 ——数字式秒表设计(VHDL)学院:物理电子学院 专业: 学号: 学生姓名: 指导教师:刘曦 实验地点:科研楼303 实验时间:

摘要: 通过使用VHDL语言开发FPGA的一般流程,重点介绍了秒表的基本原理和相应的设计方案,最终采用了一种基于FPGA 的数字频率的实现方法。该设计采用硬件描述语言VHDL,在软件开发平台ISE上完成。该设计的秒表能准确地完成启动,停止,分段,复位功能。使用ModelSim 仿真软件对VHDL 程序做了仿真,并完成了综合布局布线,最终下载到EEC-FPGA实验板上取得良好测试效果。 关键词:FPGA,VHDL,ISE,ModelSim

目录 绪论 (4) 第一章实验任务 (5) 第二章系统需求和解决方案计划 (5) 第三章设计思路 (6) 第四章系统组成和解决方案 (6) 第五章各分模块原理 (8) 第六章仿真结果与分析 (11) 第七章分配引脚和下载实现 (13) 第八章实验结论 (14)

绪论: 1.1课程介绍: 《现代电子技术综合实验》课程通过引入模拟电子技术和数字逻辑设计的综合应用、基于MCU/FPGA/EDA技术的系统设计等综合型设计型实验,对学生进行电子系统综合设计与实践能力的训练与培养。 通过《现代电子技术综合实验》课程的学习,使学生对系统设计原理、主要性能参数的选择原则、单元电路和系统电路设计方法及仿真技术、测试方案拟定及调测技术有所了解;使学生初步掌握电子技术中应用开发的一般流程,初步建立起有关系统设计的基本概念,掌握其基本设计方法,为将来从事电子技术应用和研究工作打下基础。 本文介绍了基于FPGA的数字式秒表的设计方法,设计采用硬件描述语言VHDL ,在软件开发平台ISE上完成,可以在较高速时钟频率(48MHz)下正常工作。该数字频率计采用测频的方法,能准确的测量频率在10Hz到100MHz之间的信号。使用ModelSim仿真软件对VHDL程序做了仿真,并完成了综合布局布线,最终下载到芯片Spartan3A上取得良好测试效果。 1.2VHDL语言简介:

现代电子技术实验报告(熊万安)

电子科技大学电子信息工程学院实验报告 实验名称现代电子技术综合实验 姓名:张彦婷 学号:2012029070030 评分: 教师签字 电子科技大学教务处制

电子科技大学 实验报告 学生姓名:张彦婷学号:2012029070030 指导教师:熊万安 实验地点:科A333 实验时间:2015.4.23 一、实验室名称:电子技术综合实验室 二、实验项目名称: 三、实验学时:32 四、实验目的与任务: 1、熟悉系统设计与实现原理 2、掌握KEIL C51的基本使用方法 3、熟悉SMART SOPC实验箱的应用 4、连接电路,编程调试,实现各部分的功能 5、完成系统软件的编写与调试 五、实验器材 1、PC机一台 2、SMART SOPC实验箱一套 六、实验原理、步骤及内容 试验要求(必须写): 1、八个数码管显示最后八位学号,八个发光二极管(LED灯)依次亮灭,进入循环流水灯显示状态,每个灯亮0.3秒后,灭0.2秒。循环两轮后,转入任务2。 2、第一、二个数码管显示室温,第三、六个数码管显示“-”号,第四、五个数码管显示ADC的值,第七、八个数码管显示设定温度,设定温度值为(当前环境温度-1)度加上电压值的整数值。旋转按钮,调节电压值,同时也调整了设定温度值。

3、由设定温度和实际环境温度的温差驱动蜂鸣器发声。若温度等于环境温度,蜂鸣器不发声;有温差时,蜂鸣器发声0.2秒。 4、增加按键,当其按下,转入任务1。 1、硬件设计(可打印) 硬件结构: 系统原理图:

2、各部分硬件原理(可打印) (1)数码管动态扫描原理:先把第一个数码管的显示数据送到数据线,同时选通DIS_COM1,而其他数码管的DIS_COMx信号禁止;延迟一段时间(通常不超过10ms),再把第二个数码管的显示数据送到数据线,同时选通DIS_COM2,而其他数码管的DIS_COMx信号禁止;延时一段时间,在显示下一个。注意:整个数码管的扫描频率应当大于50Hz,防止出现明显的闪烁。 (2)外部中断原理:如果外部中断请求信号在产生后能在较短时间每自动撤销,则选择低电平触发。由于这是“一次性的”,中断处理程序执行完毕后科立即返回主程序,而不必等待中断信号请求信号恢复为高电平。 INT0和INH1的中断信号分别是0和2,入口地址分别是0003H和0013H。 (3)L ED流水灯:在LED1~LED8引脚上周期性的输出流水数据。如前一个输出二进制数据是11111100,点亮了LED1~LED2,下一个输出二进制数据则应是11111000,点亮LED1~LED3,继续这一方式并循环,就可

工程光学实验习题

光学实验习题 1.如会聚透镜的焦距大于光具座的长度,试设计一个实验,在光具座上能测定它的焦距。 2.点光源 P 经会聚透镜 L1成实像于 P' 点(图 1-8 ),在会聚透镜 L1与 P' 之间共轴放置一发散透镜 L2;垂直于光轴放一平面反射镜 M ,移动发散透镜至一合适位置,使 P 通过整个系统后形成的像仍重合在 P 处。如何利用此现象测出发散透镜焦距? 3.为什么说当准直管绕轴转过 1800时,十字线物像不重合是由于十字线中心偏离光轴的缘故?试说明之。 4.准直管测焦距的方法有哪些优点?还存在哪些系统误差? 5. 1 、第一主面靠近第一个透镜,第二主面靠近第二个透镜,在什么条件下才是对的?(光具组由二薄凸透镜组成)。 6.由一凸透镜和一凹透镜组成的光具组,如何测量其基点?(距离 d 可自己设定)。7.设计一种不测最小偏向角而能测棱镜玻璃折射率的方案(使用分光计去测)。 8.怎样应用掠入射法测定玻璃棱镜的折射率?简要说明实验方法,并推导出折射率的计算公式。 9.用阿贝折射计测量固体折射率时,为什么要滴入高折射率的接触液?为什么它对测量结果没有影响?试论证之。 10.显微镜与望远镜有哪些相同之处与不同之处? 11.显微镜测量微小长度时,用测微目镜测定石英标准尺 m 个分格的数值为△ X,为什么它和石英标准尺相应分格的实际值△ X 之比不等于物镜的放大率? 12.评价天文望远镜时,一般不讲它是多少倍的,而是说物镜口径多大,你能说明为什么吗?13.推导式( 6-1 )( P90 ) 14.为何摄谱仪的底板面必须与照相系统的光轴倾斜,才能使所有谱线同时清晰? 15.怎样测定摄谱仪的线色散? 16.怎样拍摄叶绿素的吸收光谱? 17.讨论单色仪的人射缝和出射缝的宽度对出射光单色性的影响,并证明出射光谱宽度 其中 a 、 a' 分别为入射缝和出射缝的宽度,为棱镜的线色散。

(完整word版)郁道银主编_工程光学(知识点)

1 、波面:点光源发出的光波向四周传播时,某一时刻其振动位相相同的点所构成的等相位面称为波阵面,简称波面。 2 、几何光学的四大基本定律 1 )光的直线传播定律:在各向同性的均匀介质中,光是沿着直线传播的。 2 )光的独立传播定律:不同光源发出的光在空间某点相遇时,彼此互不影响,各光束独立传播。 3 )反射定律和折射定律(全反射): 全反射:当光线从光密介质向光疏介质入射,入射角大于临界角时,入射到介质上的光会被全部反射回原来的介质中,而没有折射光产生。sinI m =n ’/n ,其中I m 为临界角。 3 、费马原理 光从一点传播到另一点,其间无论经历多少次折射和反射,其光程为极值。 4 、马吕斯定律 光线束在各向同性的均匀介质中传播时,始终保持着与波面正交,并且入射波面与出射波面对应点之间的光程均为定值。 5 、完善成像条件(3种表述) 1)、入射波面为球面波时,出射波面也为球面波; 2)、入射光束为同心光束时,出射光束也为同心光束; 3)、物点A 1及其像点A k ’之间任意二条光路的光程相等。 6 、单个折射面的成像公式(定义、公式、意义) r n n l n l n -= -''' r l l 21'1=+ ( 反射球面,n n -=' ) 7 、垂轴放大率成像特性: β>0,成正像,虚实相反;β<0,成倒像,虚实相同。|β|>1,放大;|β|<1,缩小。 注:前一个系统形成的实像,若实际光线不可到达,则为下一系统的虚物。 若实际光线可到达,则为下一系统的实物。 8 、理想光学系统两焦距之间的关系 n n f f ''-= 9 、解析法求像方法为何?(牛顿公式、高斯公式) 1)牛顿公式: 2)高斯公式: ' 11'1f l l =-

天津大学2018年《807工程光学》考研大纲

天津大学2018年《807工程光学》考研大纲 一、考试的总体要求 本门课程的考试旨在考核学生有关应用光学和物理光学方面的基本概念、基本理论和实际解决光学问题的能力。 考生应独立完成考试内容,在回答试卷问题时,要求概念准确,逻辑清楚,必要的解题步骤不能省略,光路图应清晰正确。 二、考试的内容及比例: 考试内容包括应用光学和物理光学两部分。 “应用光学”应掌握的重点知识包括:几何光学的基本理论和成像概念、理想光学系统理论、光学系统中的光束限制、平面和平面系统对成像的影响、像差的基本概念和典型光学系统的性质、成像关系及光束限制等。具体知识点如下: 1、掌握几何光学基本定律与成像基本概念,包括:四大基本定律及全反射的内容与现象解释;完善成像条件的概念和相关表述;几何光学符号规则以及单个折射球面、反射球面的成像公式、放大率公式等。 2、掌握理想光学系统的基本理论和典型应用,包括:基点、基面的主要类型及其特点;图解法求像的方法;解析法求像方法(牛顿公式、高斯公式);理想光学系统三个放大率的定义、计算公式及物理意义;理想光学系统两焦距之间的关系;正切计算法以及几种典型组合光组的结构特点、成像关系等。 3、掌握平面系统的主要种类及应用,包括:平面镜的成像特点及光学杠杆原理和应用;反射棱镜的种类、基本用途及成像方向判别;光楔的偏向角公式及其应用等。 4、掌握典型光学系统的光束限制分析,包括:孔径光阑、入瞳、出瞳、孔径角的定义及它们的关系;视场光阑、入窗、出窗、视场角的定义及它们的关系;渐晕、渐晕光阑、渐晕系数的定义;物方远心光路的工作原理;光瞳衔接原则及其作用;场镜的定义、作用和成像关系等。 5、了解像差基本概念,包括:像差的定义、种类和消像差的基本原则;7种几何像差的定义、影响因素、性质和消像差方法等。 6、掌握几种典型光学系统的基本原理和特点,包括:正常眼、近视眼和远视眼的定义和特征,校正非正常眼的方法;视觉放大率的概念、表达式及其意义;显微镜系统的结构特点、成像特点、光束限制特点及主要参数的计算公式;临界照明和坷拉照明系统的组成、优缺点;望远系统的结构特点、成像特点、光束限制特点及主要参数的计算公式;摄影系统的结构特点、成像特点、光束限制特点及主要参数的计算公式;投影系统的概念、计算公式以及其照明系统的衔接条件等。 “物理光学”应掌握的重点知识包括:光的电磁理论基础、光的干涉和干涉系统、光的衍射、光的偏振和晶体光学基础等。其中傅立叶光学一章可作为部分专业(如:光科等)的选作内容。具体知识点如下: 1、掌握电磁波的平面波解,包括:平面波、简谐波解的形式和意义,物理量的关系,电磁波的性质等;掌握波的叠加原理、计算方法和4种情况下两列波的叠加结果、性质分析。 2、掌握干涉现象的定义和形成干涉的条件;掌握杨氏双缝干涉性质、装置、公式、条纹特 点及其现象的应用;了解条纹可见度的定义、影响因素及其相关概念(包括临界宽度和允许宽度、空

工程光学习题解答 第十二章 光的衍射

第十二章 光的衍射 1. 波长为500nm 的平行光垂直照射在宽度为0.025mm 的单缝上,以焦距为50cm 的会 聚透镜将衍射光聚焦于焦面上进行观察,求(1)衍射图样中央亮纹的半宽度;(2)第一亮纹和第二亮纹到中央亮纹的距离;(3)第一亮纹和第二亮纹的强度。 解:(1)零强度点有sin (1,2, 3....................)a n n θλ==±±± ∴中央亮纹的角半宽度为0a λ θ?= ∴亮纹半宽度29 0035010500100.010.02510 r f f m a λ θ---???=??===? (2)第一亮纹,有1sin 4.493a π αθλ = ?= 9 13 4.493 4.493500100.02863.140.02510rad a λθπ--??∴= ==?? 2 1150100.02860.014314.3r f m mm θ-∴=?=??== 同理224.6r mm = (3)衍射光强2 0sin I I αα?? = ??? ,其中sin a παθλ= 当sin a n θλ=时为暗纹,tg αα=为亮纹 ∴对应 级数 α 0 I I 0 0 1 1 4.493 0.04718 2 7.725 0.01694 . . . . . . . . . 2. 平行光斜入射到单缝上,证明:(1)单缝夫琅和费衍射强度公式为 2 0sin[(sin sin )](sin sin )a i I I a i πθλπθλ?? -??=????-?? 式中,0I 是中央亮纹中心强度;a 是缝宽;θ是衍射角,i 是入射角(见图12-50) (2)中央亮纹的角半宽度为cos a i λ θ?=

科研项目开发结题报告(修改)

科研项目 《电子设计竞赛的开展与学生创新能力培养的研究》 结题报告 前言 课题研究的背景与意义 进入二十一世纪,知识经济已现端倪,国力竞争日趋激烈。知识经济呼唤素质教育,实施素质教育的重点是要培养学生的创新精神和实践能力。《高等教育法》第五条也规定:“高等教育的任务是培养具有创新精神和实践能力的高级专门人才”,可见高等学校在国家创新体系中有着非常重要的地位。 创造力是创新人才的根本标志。正如哈佛大学校长陆登庭认为:“一个人是否具有创造力,是一流人才与三流人才的主要区别”。创新人才除应具备一般人才的特征外,还应具有强烈的创新意识、创新精神和创新能力,也就是要具备创新素质的人才。创新人才不但要在知识、能力和素质诸方面要协调发展,还需具有丰富的想象、敏锐的思维、鲜明的个性、敢于批判、勇于开拓的精神、强烈的责任感等。 实践是创新的源泉,历史上重大的科技创新成果大多来源于实践。心理学研究和教育实践证明,创新精神和创造能力是人的素质中最重要、最有活力且最具有社会价值的那一部分,也是人类共同和普遍具有的潜能。但不当的教育往往会使人长大之后失去创造性。正如马洛斯曾指出的:“创造性是任何儿童都具有而大多数人长大以后又会失去的”。因此,如何充分激发学生的创新意识、努力培养他们的创新精神和创新能力,并使他们保持良好的创新欲望,是

高等院校实施创新教育应着重解决的问题。 实施创新教育必须要“手脑并用”、“知行合一”,要在实践中培养创新意识与创新能力,从而提高综合素质。通过实践和训练,不仅能牢固掌握已学过的知识,而且也锻炼了运用知识分析、解决问题的能力,培养了创新思维和创新能力。 实践证明,学科竞赛是培养学生创新精神,提高学生动手能力的有效形式。全国大学生电子设计竞赛作为国家教育部倡导的四项学科竞赛之一,在培养学生动手能力和综合素质方面发挥了极为重要的作用。竞赛为参赛学生提供了综合运用所学过的知识、发挥想象力和创新能力的机会和思维空间。学生通过参加竞赛,可以培养他们查阅资料能力、自学能力、分析问题与解决问题的能力、综合设计与调试能力、科技论文写作能力,可以培养了他们理论联系实际的作风、团结协作精神和创新意识。因此,受到了大学生的普遍欢迎,报名参赛的学校和参赛的学生人数呈逐年递增的趋势。 1、项目研究的预期目标 1.1.以电子信息学科为依托,进行机构调整与课程的整合与优化; 1.2.调整电子技术实验系列课程,建立现代电子技术实验课程教学体系; 1.3.建立四个层次的实验教学模式: ①基础实验;②设计性实验;③综合设计性实验;④设计研究性实验。 1.4.组织课题成员和系部老师参加全国、全区大学生电子设计竞赛力争 获奖以检验课题的实战效果。

工程光学实验I期末复习重点

工程光学实验I复习提纲 考试形式:闭卷考试时间: 120 分钟 题型大致分布:填空24分简答20分综合56分 要求:必须在答题纸上作答,否则无效; 作图题必须使用铅笔直尺作图,否则零分。 椭偏仪: 1.椭圆偏振测量(椭偏术)是研究光在两媒质界面发生的现象及介质特性的一种光学方法,其原理是利用偏振光在界面反射或透射时发生的偏振态的改变。 2.椭偏仪实验中检偏器读数头位置的调整与固定时,使激光束按布儒斯特角(约57) 入射到黑色反光镜表面并反射入望远镜到达半反目镜上成为一个圆点。 3.椭偏仪实验中,圆偏振光的获得使入射光的振动平面和四分之一波片的光轴成45度角。 4.椭偏仪实验中,将被测样品,放在载物台的中央,旋转载物台使望远镜和平行光管夹角为 45度。 5.测量薄膜厚度和折射率实验中,椭偏参数为Ψ和Δ。(写字母), 6.椭偏术。 椭偏术是研究光在两媒质界面发生的现象及介质特性的一种光学方法。7.下图为椭偏仪结构,请写出1-10仪器名称。 1 半导体激光器 2平行光管 3起偏器读数头(与6可换用) 4 1/4波片读数头 5氧化锆标准样 6检偏器读数头 7望远镜筒 8 半反目镜 9光电探头 10信号线 11分光计 12 数字式检流计

平行光管: 1.凸透镜的鉴别率角值表达式。 " 206256 ' 2 f a = θ 2.根据衍射理论和瑞利准则,仪器的最小分辨角。 D λ θ22 .1 = 3.平行光管有4种分划板。 4.简述什么是光学系统的鉴别率。 答:光学系统能够把这种靠得很近的两个衍射花样分辨出来的能力,称为光学系统的鉴别率。 5.画出平行光管测量凸透镜焦距的原理图,并写出焦距表达式。 答: (分) ' ' y y f f ? 式中f为被测透镜焦距,'f为平行光管焦距实测值,'y为玻罗板上所选用线距实测值(' ' 'Y B A=),y为测微目镜上玻罗板低频线的距离(Y AB=,即测量 测微目镜 焦距 被测凸透镜 焦距 平行光管物镜 玻罗板 .4 ) ( .3 )' ( .2 .1f f A B f α 'α 'f ' B 1 2 3 4α

电子技术综合实验报告

电子科技大学电工学院实验报告实验名称现代电子技术综合实验 姓名: 学号: 评分: 教师签字: 电子科技大学教务处制

电子科技大学 实验报告 学生姓名:学号:指导教师: 实验地点:科A333 实验时间:第一周 一、实验室名称:电子技术综合实验室 二、实验项目名称: 三、实验学时:32 四、实验目的与任务: 1、熟悉系统设计与实现原理 2、掌握KEIL C51的基本使用方法 3、熟悉SMART SOPC实验箱的应用 4、连接电路,编程调试,实现各部分的功能 5、完成系统软件的编写与调试 五、实验器材 1、PC机一台 2、SMART SOPC实验箱一套 六、实验原理、步骤及内容 试验要求: 1、第一、二个数码管显示最后两位学号,第三、六个数码管显示“-”号,第四、五个数码管显示设定温度,第七、八个数码管显示当前环境温度。设定温度初值为(当前环境温度-2)度,每隔2秒

设定温度值加2,加到(当前环境温度+2)度后,隔2秒,设定温度值变回(当前环境温度-2)度,进入循环状态。 2、由设定温度和实际环境温度的温差驱动蜂鸣器发声。若温度等于环境温度,蜂鸣器发出标准的声音0.2秒;温差不同,蜂鸣器发不同声音0.2秒,温差值越大,蜂鸣器声音越尖。 3、增加按键,当其按下,数码管显示学号后8位,同时,第一个LED灯亮,再次按该键,恢复温度的显示,LED灯灭。 1、硬件设计 实验平台核心板原理图如下: 此次实验除主板外,还用到数码管、按键、蜂鸣器和温度传感器等其他功能模块。

2、各部分硬件原理 LED原理图: 由于I/O口输出低电平时,可以驱动LED,输出高电平时,无法点亮LED,因此设计利用I/O口在低电平时点亮LED。 蜂鸣器原理图: 利用单片机中的定时中断通过I/O口控制交流蜂鸣器发声,不同的定时器初值可得到不同的蜂鸣器音调。 数码管动态扫描原理图:

郁道银主编-工程光学(知识点)要点汇编

第一章小结(几何光学基本定律与成像概念) 1、光线、波面、光束概念。 光线:在几何光学中,我们通常将发光点发出的光抽象为许许多多携带能量并带有方向的几何线。 波面:发光点发出的光波向四周传播时,某一时刻其振动位相相同的点所构成的等相位面称为波阵面,简称波面。 光束:与波面对应所有光线的集合称为光束。 2、几何光学的基本定律(内容、表达式、现象解释) 1)光的直线传播定律:在各向同性的均匀介质中,光是沿着直线传播的。 2)光的独立传播定律:不同光源发出的光在空间某点相遇时,彼此互不影响,各光束独立传播。 3)反射定律和折射定律(全反射及其应用): 反射定律:1、位于由入射光线和法线所决定的平面内;2、反射光线和入射光线位于法线的两侧,且反射角和入射角绝对值相等,符号相反,即1'-1。 全反射:当满足1、光线从光密介质向光疏介质入射,2、入射角大于临界角时,入射到介质上的光会被全部反射回原来的介质中,而没有折射光产生。sinl m=n7n,其中Im为临界角。 应用:1、用全反射棱镜代替平面反射镜以减少光能损失。(镀膜平面反射镜只能反射90%左右的入射光能)2、光纤 折射定律:1、折射光线位于由入射光线和法线所决定的平面内;2、折射角的正弦和入射角的正弦之比与入射角大小无关,仅由两种介质的性质决定。n'inI 'nsinl 应用:光纤

4)光路的可逆性 光从A点以AB方向沿一路径S传递,最后在D点以CD方向出射,若光从D点以CD 方向入射,必原路径S传递,在A点以AB方向出射,即光线传播是可逆的。 5)费马原理 光从一点传播到另一点,其间无论经历多少次折射和反射,其光程为极值。(光是沿着光程为极值(极大、极小或常量)的路径传播的),也叫“光程极端定律”。 6)马吕斯定律 光线束在各向同性的均匀介质中传播时,始终保持着与波面的正交性,并且入射波面与出射波面对应点之间的光程均为定值。 折/反射定律、费马原理和马吕斯定律三者中的任意一个均可以视为几何光学的一个基本定律,而把另外两个作为该基本定律的推论。 3、完善成像条件(3种表述) 1)、入射波面为球面波时,出射波面也为球面波; 2)、入射光束为同心光束时,出射光束也为同心光束; 3)、物点A1及其像点Ak '之间任意二条光路的光程相等。 4、应用光学中的符号规则(6条) 1)沿轴线段(L、L'、门:规定光线的传播方向自左至右为正方向,以折射面顶点0为原点。 2)垂轴线段(h):以光轴为基准,在光轴以上为正,以下为负。 3)光线与光轴的夹角(U、U、:光轴以锐角方向转向光线,顺时针为正,逆时针为负。 4)光线与法线的夹角(I、丨、:光线以锐角方向转向法线,顺时针为正,逆时针为负。

工程光学第三章知识点

理想光学系统 第三章 理想光学系统 第一节 理想光学系统的共线理论 ● 理想光学系统:在任意大的空间内、以任意宽的光束都能成完善像的光学系统 ● 理想光学系统理论又称“高斯光学”,理想光学系统所成的完善像又称“高斯像” ● 描述理想光学系统必须满足的物像关系的理论称为“共线理论” 共线理论 (1)物空间的每一点对应像空间的相应一点,且只对应一点(点对应点) (2)物空间的每一条直线对应像空间的相应直线,且只对应一条直线(直线对应直线) (3)物空间的每一平面对应像空间的相应平面,且只对应一个平面(平面对应平面) ● 这种对应关系称为“共轭”,相应的点构成一对共轭点,直线构成一对共轭直线,平面构成一对共轭平面 ● 推论:物空间某点位于一条直线上,则像空间中该点的共轭点必定也位于这条直线的共轭直线上(点在线上对应点在线上) ● 共轴球面系统用结构参数(r 、d 、n )描述系统 ● 理想光学系统用“基点”和“基面”来描述系统 ● 基点基面就是理想光学系统的特征参数 第二节 无限远轴上物点与其对应像点F ’---像方焦点 ● 设有一理想光学系统 ● 有一条平行于光轴的光线A1E1入射到这个系统 ● 在像空间必有一条直线与之共轭,即PkF’,交光轴于F’点 ● 在物空间中平行于光轴入射的光线都将汇聚在F’点上,F’点称为“像方焦点” 共轴球面系统 焦点、焦平面、主平面示意图

焦点、焦平面、主平面示意图 ● 过F’点作垂直于光轴的平面,称为“像方焦平面” ● 像方焦平面与物方无限远处垂直于光轴的物平面共轭 ● 物方的任何平行光线若不与光轴平行,表示无限远处的轴外点,将汇聚在像方焦平面上的一点 2,无限远的轴上像点和它所对应的物方共轭点F ——物方焦点 ● 像方平行于光轴的光线,表示像方光轴上的无限远点 ● 在物方光轴上必定有一点F 与之共轭,F 点称为物方焦点,过F 点的垂轴平面称为物方焦平面 ● 物方焦点F 与像方焦点F’不是一对共轭点 3,垂轴放大率β=+1的一对共轭面——主平面 ● 在光学系统中存在着垂轴放大率β=+1的一对共轭平面,这一对共轭面称为“主平面”即物方主平面和像方主平面 ● 共轭垂轴平面QH 和Q’H’满足β=+1(因为高度h 相等) ● QH 为物方主平面,Q’ H’为像方主平面 ● H 为物方主点,H’为像方主点 ● 物方主平面QH 与像方主平面Q’H’共轭 ● 物方主点H 与像方主点H’共轭 ● 对于理想光学系统,不论其实际结构如何,只要知道了主点和焦点的位置,其特性就完全被决定了 4,光学系统焦距 ● 像方焦距:像方主点H ’到像方焦点F ’的距离f ’ ● 物方焦距:物方主点H 到物方焦点F 的距离f ● 焦距均以各自的主点为原点,与光线传播方向一致为正,相反为负 光学系统的焦距 计算式 tan tan h f U h f U '= '= 焦距包含了光学系统主点和焦点的相对位置,是描述光学系统性质的重要参数 像方焦距f ’>0的光组称为正光组,f ’<0的光组称为负光组 无限远轴外物点的共轭像点 焦点、焦平面、主平面示意图

技术综合实验室项目建设可行性报告(经典版)

生物传感器技术综合实验室项目建设可行性报告(经典版) 一、基本情况 单位名称: 单位地址: 邮编: 联系电话: 法人代表: 资产规模: 上级单位:教育部 项目组成员长期从事电子信息和生物传感器技术领域的教学科研工作,主持或参与国家和省部级项目多项,并多次获奖,近几年来在IEEE, Microelectron. J., Phys. Stat. Sol., Eur. Phys. J.和电子学报等国内外权威期刊上发表相关论文150余篇,其中SCI、EI收录110余篇次。参加该项目主要人员有:**,**,**。 ****大学生物传感器技术综合实验室创建于1998年,现有生物材料制备实验室、材料处理与改性实验室、生物传感器研发实验室以及功能薄膜性能研究室。共有设备总资产约230.6万元。 本项目为新增项目,其目的是改造现有部分传感器实验室和新建相关实验室,共需资金953.80万元,其中已筹资金153.80万元,申请国家项目经费800万元。 二、必要性与可行性 传感器技术、通讯系统技术和计算机技术是现代电子信息技术的

三大支柱,其中传感器技术及应用工程是信息获取与交换的核心,被列为近十年来世界现代电子技术的首位,它是一个国家的支柱和先导产业,对经济的发展和人们生活水平的提高起着至关重要的作用,国民经济信息化是社会发展的必然趋势。信息化社会要求既具有扎实的专业理论知识,又具有很强的实践及创新能力的复合型、应用型高素质人才。 为此,新世纪对于培养、造就高层次人才的高等院校在人才培养方面提出了更高要求。为了满足社会的需求,高等院校必须改革传统的教学模式和教学方法,加强实践教学环节。针对目前这种形势,我们本着重基础、重应用、重设计、重创新的方针,将实验室的建设同理论教学与社会的需求相结合,通过实验不仅让学生加深对基础理论知识的理解及动手能力的培养,而且能培养学生的设计、创新、学会应用的技能,使学生走上工作岗位后,在很短时间内就能够适应科研和生产工作。 ****大学电子与信息工程学院现有本科生1900人,研究生100人,计划“十一五”末期发展到本科生23000人,研究生1200人。为此,我们提出必须改造和新建传感器技术综合实验室,提供给学生一个先进的实验手段,使学生能够加深对理论知识的理解,进而达到融会贯通、应用自如的目的,确保我院高标准的办学质量,从而使学院在激烈的高校办学竞争中立于不败之地。 另外,为了适应竞争日益激烈的就业形势,提高生物医学工程和电子信息工程专业人才质量,迫切需要加强专业课程设置的技术含量,建设一个具有综合性、可扩展性、开放性、教学和实验同步性等特色的、具有超前水平的高效应用综合实验室。 ****大学传感器技术综合实验室的建设是一项重要的项目,我们本着认真规划,精心设计,利用有限的资金,建设成一个适应21世纪生物传感器技术发展的,适合教学科研需要的先进的实验室。具体

相关文档
相关文档 最新文档