文档库 最新最全的文档下载
当前位置:文档库 › 高中数学二轮专题复习——数形结合思想

高中数学二轮专题复习——数形结合思想

高中数学二轮专题复习——数形结合思想
高中数学二轮专题复习——数形结合思想

思想方法专题

数形结合思想

【思想方法诠释】

一、数形结合的思想

所谓的数形结合,就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决,数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性与灵活性的有机结合.

数形结合的实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.

二、数形结合思想解决的问题常有以下几种:

1.构建函数模型并结合其图象求参数的取值范围;

2.构建函数模型并结合其图象研究方程根的范围;

3.构建函数模型并结合其图象研究量与量之间的大小关系;

4.构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;

5.构建立体几何模型研究代数问题;

6.构建解析几何中的斜率、截距、距离等模型研究最值问题;

7.构建方程模型,求根的个数;

8.研究图形的形状、位置关系、性质等。

三、数形结合思想是解答高考数学试题的一种常见方法与技巧,特别是在解选择题、填空题时发挥奇特功效,具体操作时,应注意以下几点:

1.准确画出函数图象,注意函数的定义域;

2.用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图)然后作出两个函数的图象,由图求解。

四、在运用数形结合思想分析问题和解决问题时,需做到以下四点:

1.要清楚一些概念和运算的几何意义以及曲线的代数特征;

2.要恰当设参,合理用参,建立关系,做好转化;

3.要正确确定参数的取值范围,以防重复和遗漏;

4.精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解。

【核心要点突破】

要点考向1:利用数学概念或数学式的几何意义解题

例1:实系数一元二次方程x2+ax+2b=0有两个根,一个根在区间(0,1)内,另一个根在区间(1,2)内,求:

(1)点(a,b)对应的区域的面积;

(2)的取值范围;

(3)(a-1)2+(b-2)2的值域.

思路精析:列出a,b满足的条件→画出点(a,b)对应的区域→求面积→根据的几何意义求范围→根据(a-1)2+(b-2)2的几何意义求值域.

解析:方程x2+ax+2b=0的两根在区间(0,1)和(1,2)上的几何意义分别是:函数y=f(x)= x2+ax+2b 与x轴的两个交点的横坐标分别在区间(0,1)和(1,2)内,

由此可得不等式组

由,解得A(-3,1).由,解得C(-1,0).

∴在如图所示的aOb坐标平面内,满足条件的点(a,b)对应的平面区域为△ABC(不包括边界).

(1)△ABC的面积为(h为A到Oa轴的距离).

(2)几何意义是点(a,b)和点D(1,2)边线的斜率.

由图可知

(3)∵(a-1)2+(b-2)2表示的区域内的点(a,b)与定点(1,2)之间距离的平方,

注:如果等式、代数式的结构蕴含着明显的几何特征,就要考虑用数形结合的思想方法来解题,即所谓的几何法求解,比较常见的对应有:

(1)连线的斜率;

(2)之间的距离;

(3)为直角三角形的三边;

(4)图象的对称轴为x=.只要具有一定的观察能力,再掌握常见的数与形的对应类型,就一定能得心应手地运用数形结合的思想方法.

要点考向2:用数形结合求方程根的个数,解决与不等式有关的问题例2:(1)已知:函数f(x)满足下面关系:①f(x+1)=f(x-1);②当x∈[-1,1]时,f(x)=x2,则方程f(x)=lgx 解的个数是()

(A)5 (B)7 (C)9 (D)10

(2)设有函数f(x)=a+ 和g(x)= ,已知x∈[-4,0]时,恒有f(x)≤g(x),求实数a的范围.

思路精析:(1)画出f(x)的图象→画出y=lgx的图象→数出交点个数.

(2)f(x)≤g(x)变形为→画出的图象→画出

的图象→寻找成立的位置

解析:(1)选C.由题间可知,f(x)是以2为周期,值域为[0,1]的函数.又f(x) =lgx,则x∈(0,10],画出两函数图象,则交点个数即为解的个数.由图象可知共9个交点.

(2)f(x)≤g(x),即,变形得,令

…………①,………………②

①变形得,即表示以(-2,0)为圆心,2为半径的圆的上半圆;

②表示斜率为,纵截距为1-a的平行直线系.设与圆相切的直线为AT,其倾斜角为α,则有tanα=,,

要使f(x)≤g(x)在x∈[-4,0]时恒成立,则②成立所表示的直线应在直线AT的上方或与它重合,故有1-a≥6,∴a≤-5.

注:(1)用函数的图象讨论方程(特别是含参数的指数、对数、根式、三角等复杂方程)的解的个数是一种重要的思想方法,其基本思想是先把方程两边的代数式看作是两个熟悉函数的表达式(不熟悉时,需要作适当变形转化为两熟悉的函数),然后在同一坐标系中作出两个函数的图象,图象的交点个数即为方程解的个数.

(2)解不等式问题经常联系函数的图象,根据不等式中量的特点,选择适当的两个(或多个)函数,利用两个函数图象的上、下位置关系转化数量关系来解决不等式的解的问题,往往可以避免繁琐的运算,获得简捷的解答.

(3)函数的单调性经常联系函数图象的升、降;奇偶性经常联系函数图象的对称性;最值(值域)经常联系函数图象的最高、最低点的纵坐标.

要点考向2:数形结合在解析几何中的应用

例3:已知椭圆C的中心在原点,一个焦点

(0,2)

F

,且长轴长与短轴长的比是2:1.

(Ⅰ)求椭圆C的方程;

(Ⅱ)若椭圆C在第一象限的一点P的横坐标为1,过点P作倾斜角互补的两条不同的直线PA,PB分别交椭圆C于另外两点A,B,求证:直线AB的斜率为定值;

(Ⅲ)求PAB

?面积的最大值.

解析:(Ⅰ)设椭圆C的方程为

22

22

1(0)

y x

a b

a b

+=>>

由题意

222,

:2:1,

2.

a b c

a b

c

?=+

??

=

?

?

=

??

………………………………………………2分

解得

24

a=,22

b=.

所以椭圆C 的方程为22

142y x +=.………………………………………………4分

(Ⅱ)由题意知,两直线PA ,PB 的斜率必存在,设PB 的斜率为k ,则PB 的直线方程为

2(1)y k x -=-.

由22

2(1),1.42y k x y x ?=-??+

=??得

222(2)2(2)(2)40k x k k x k +++-=.……6分

设(,)A A A x y ,(,)B B B x y ,则2222

1B B k k x x --=?=

同理可得2222A k k x +-=, 则

42A B k x x -=,28(1)(1)2A B A B

k

y y k x k x k -=----=+. 所以直线AB 的斜率

2

A B

AB A B

y y k x x -=

=-为定值. ……………………………………8分

(Ⅲ)设AB 的直线方程为2y x m =

+.

由22

2,1.42y x m y x ?=+??+=??得22

42240x mx m ++-=.

22

(22)16(4)0m m ?=-->,得28m <.……………………………………10分 此时22A B m x x +=-,

24

4A B m x x -?=

. P 到AB 的距离为3m

d =

,2

2

()()A B A B AB x x y y =-+-23

12

2m =-+则

2113122223PAB

m S AB d m ?==-2222

11118(8)222222m m m m -+=-+≤=.

因为2

4m =使判别式大于零,所以当且仅当2m =±时取等号,[

所以PAB ?面积的最大值为2.………………………………………………………13分

注:1.数形结合思想中一个非常重要的方面是以数辅形,通过方程等代数的方法来研究几何问题,也就是解析法,解析法与几何法结合来解题,会有更大的功效.

2.此类题目的求解要结合该类图形的几何性质,将条件信息或结论信息结合在一起,观察图形特征,转化为代数语言,即方程(组)或不等式(组),从而将问题解决.

要点考向2:数形结合在立体几何中的应用

例4:如图1,在直角梯形ABCD 中,90ADC ∠=?,//CD AB ,4,2AB AD CD ===, M 为线段

AB 的中点.将ADC ?沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体D ABC -,如图2所示.

(Ⅰ) 求证:BC ⊥平面ACD ; (Ⅱ) 求二面角A CD M --的余弦值.

解析:(Ⅰ)在图1中,可得22AC BC ==,从而222

AC BC AB +=,故AC BC ⊥.

取AC 中点O 连结DO ,则DO AC ⊥,又面ADC ⊥面ABC ,

面ADC I 面ABC AC =,DO ?面ACD ,从而OD ⊥平面ABC . …………………4分 ∴OD BC ⊥,又AC BC ⊥,AC OD O =I .

∴BC ⊥平面ACD . ………………………………………………6分 (Ⅱ)建立空间直角坐标系O xyz -如图所示,则

2,0)M ,(2,0,0)C ,2)D

2,2,0)CM =u u u u r ,(2,0,2)CD =u u u r

. ………………………………………………8分 设1

(,,)n x y z =u r

为面CDM 的法向量,

1

1

n CM

n CD

??=

?

?

?=

??

u r u u u u r

u r u u u r

220

220

x y

x z

?+=

?

?

+=

??

,解得

y x

z x

=-

?

?

=-

?.

令1

x=-,可得1(1,1,1)

n=-

u r

.

又2

(0,1,0)

n=

u u r

为面ACD的一个法向量,∴

12

12

12

13

cos,

3

||||3

n n

n n

n n

?

<>===

u r u u r

u r u u r

u r u u r

.

∴二面角A CD M

--的余弦值为

3

3.

注:1.应用空间向量可以解决的常见问题有空间角中的异面直线所成的角、线面角、二面角;

位置关系中的平行、垂直及点的空间位置.其一般思路是:尽量建立空间直角坐标系,将要证、要

求的问题转化为坐标运算.

2.立体几何问题的求解往往将题目所给信息先转换成几何图形性质,结合该类图形的几何性质,

将条件信息和结论信息结合在一起,观察图形特征,为代数法求解找到突破口.

【跟踪模拟训练】

一、选择题(每小题6分,共36分)

1.方程lgx=sinx的根的个数( )

(A)1个(B)2个(C)3个(D)4个

2.已知全集U=R,集合A={x|x2-3x-10<0},B={x|x>3},则右图中阴影部分表示的集合为( )

A.(3,5) B.(-2,+∞) C.(-2,5) D.(5,+ ∞)

3.在平面直角坐标系xOy中,已知平面区域A={(x,y)|x+y≤1,且x≥0,y≥0},则平面区域

B={(x+y,x-y)|(x,y)∈A}的面积为()

(A)2 (B)1 (C)

1

2

(D)

1

4

4.函数32

()

f x x bx cx d

=+++图象如图,则函数2

2

33

c

y x bx

=++的单调递增区间为()A.]2

,

(-

-∞B.)

,3[+∞C.]3,2

[-D.)

,

2

1

[+∞

5.不等式组

2

1

42

x a

x a

?->

?

-<

?有解,则实数a的取值范围是()

-2

3

y

x

A .(1,3)-

B .(,1)(3,)-∞-+∞U

C .(3,1)-

D .(,3)(1,)-∞-+∞U

6.已知f(x)是定义在(-3,3)上的奇函数,当0

二、填空题(每小题6分,共18分)

7.复数(x-2)+yi ,其中x 、y 均为实数,当此虚数的模为1时,

的取值范围是

8.已知关于x 的方程x 2-4|x|+5=m 有四个不相等的实根,则实数m 的范围是_______. 9.设A={(x,y)|x 2+(y-1)2=1},B={(x,y)|x+y+m ≥0},则使A

B 成立的实数m 的取值范围是______.

三、解答题(10、11题每题15分,12题16分,共46分)

10.如图,已知四棱锥P ABCD -的底面是正方形,PA ⊥底面ABCD ,且2PA AD ==,点M 、

N 分别在侧棱PD 、PC 上,且PM MD =

(Ⅰ)求证:AM ⊥平面PCD ;

(Ⅱ)若12PN NC

=u u u r u u u r

,求平面AMN 与平面PAB 的所成锐

二面角的大小

11.如图,1l ,2l 是通过某市开发区中心0的两条南北和东西走向的道路,连接M 、N 两地的铁路

是一段抛物线弧,它所在的抛物线关于直线L1对称.M 到L1、L2的距离分别是2 km 、4km ,N 到L1、L2的距离分别是3 km 、9 kin .

(1)建立适当的坐标系,求抛物线弧MN的方程;

(Ⅱ)该市拟在点0的正北方向建设一座工厂,考虑到环境问题,要求厂址到点0的距离大于5km

6km.求此厂离点0的最近而不超过8km,并且铁路上任意一点到工厂的距离不能小于

距离.(注:工厂视为一个点)

12.已知函数f(x)=-x2+8x,g(x)=6lnx+m.

(1)求f(x)在区间[t,t+1]上的最大值h(t);

(2)是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点若存在,求出m的取值范围;若不存在,说明理由.

参考答案

1.【解析】选C.在同一坐标系中作出y=lgx与y=sinx的图象,如图.其交点数为3.

2.答案:B

3.

作出不等式组表示的平面区域B,如图所示,根据图形可知该区域为等腰直角三角形,可求出面积

,所以平面区域B的面积为1.

4.答案:D

5.答案:A

6.【解析】选B.根据对称性画出f(x)在(-3,0)上的图象如图,结合y=cosx

在(-3,0), (0,3)上函数值的正负,

易知不等式f(x)cosx<0的解集是

7.【解析】由题意知,设,则k为过圆(x-2)2+y2=1

上的点及原点的直线斜率,作图如下:

又由对称性,可得答案:

答案:

8.【解析】令f(x)=x2-4|x|+5=(|x|-2)2+1,其图象如图.

画直线y=m,由图象知当1

答案:(1,5)

9.【解析】由于集合A,B都是点的集合,故可结合图形进行分析、求解.集合A是一个圆x2+(y-1)2=1上的点的集合,集合B是一个不等式x+y+m≥0表示的平面区域内的点的集合, 要使A B,则应使圆被平面区域所包含(如图),

即直线x+y+m=0应与圆相切或相离(在圆的下方),而当直线与圆相切时有

故m 的取值范围是m ≥

-1.答案:m ≥-1

10.解:(Ⅰ)建立如图所示的空间直角坐标系,xyz A -又 PA=AD=2,则有P (0,0,2),D (0,2,0) (0,1,1),(2,2,0).M C (2,2,2).PC ∴=-u u u r (0,1,1)

AM =u u u u r

……3分

(Ⅰ)

0,0,AM CD AM PC AM CD AM PC ==∴⊥⊥u u u u r u u u r u u u u r u u u r Q g g 又,.PC CD C AM PCD =∴⊥I 平面……………7分

(Ⅱ)设1(,,),,

2N x y z PN NC =u u

u r u u u r Q 则有

12

0(2),.23x x x -=-∴= 同理可得

24,.33y z ==即得224(,,).

333N ………………9分 由448

0,.

333PC AN PC AN ?=+-=∴⊥u u u r u u u r

(2,2,2).

AMN PC ∴=-u u u r

平面的法向量为而平面PAB 的法向量可为

(0,2,0),

AD =u u u r

3

cos ,.124PC AD PC AD PC AD

?∴<>==

=??u u u r u u u r

u u u r u u u r u u u r u u u r

故所求平面AMN 与PAB 所成锐二面角的大小为

.

33

arccos

…………12分

11.解析:(1)分别以1l 、2l 为x 轴、y 轴建立如图所示的平面直角坐标系,则M (2,4),N (3,

9)

设MN 所在抛物线的方程为c ax y +=2

,则有???+=+=c a c a 9944,解得?

??==01

c a

∴所求方程为2

x y =(2≤x ≤3)

5分 (说明:若建系

后直接射抛物线方程为

)0(22

>=p py x ,代入一个点坐标求对方程,本问扣2分)

(2)设抛物线弧上任意一点P (x ,2

x )(2≤x ≤3) 厂址为点A (0,t )(5<t ≤8),由题意得2

22)(||t x x PA -+=≥6 ∴

)6()21(2

24-+-+t x t x ≥0 7分

令2

x u =,∵2≤x ≤3,∴4≤u ≤9

∴对于任意的]9,4[∈u ,不等式

)6()21(22-+-+t u t u ≥0恒成立(*) 8分

设)6()21()(2

2

-+-+=t u t u u f ,∵t <5≤8∴2212

9t --

<≤215

.

要使(*)恒成立,需△≤0,即)6(4)12(2

2---t t ≤0

10分

解得t ≥425,∴t 的最小值为425

所以,该厂距离点O 的最近距离为6.25km

12分

12.【解析】(1)f(x)=-x 2+8x=-(x-4)2+16.

①当t+1<4即t<3时,f(x)在[t,t+1]上单调递增(如图①).

h(t)=f(t+1)=-(t+1)2+8(t+1)=-t 2+6t+7.

②当t ≤4≤t+1即3≤t ≤4时,f(x)的最大值为h(t)=f(4)=16(如图②) ③当t>4时,f(x)在[t,t+1]上单调递减(如图③),h(t)=f(t)=-t 2+8t.

(2)函数y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点,即函数φ(x)=g(x)-f(x)的图象与x轴的正半轴有且只有三个不同的交点.

∵φ(x)=x2-8x+6lnx+m,

[

当x∈(0,1)时φ′(x)>0,φ(x)是增函数;

当x∈(1,3)时,φ′(x)<0,φ(x)是减函数;

当x∈(3,+∞)时,φ′(x)>0,φ(x)是增函数;

当x=1或x=3时,φ′(x)=0.

∴φ(x)极大值=φ(1)=m-7,φ(x)极小值=φ(3)=m+6ln3-15.

∵当x充分接近0时,φ(x)<0,当x充分大时,φ(x)>0,

∴要使φ(x)的图象与x轴正半轴有三个不同的交点,

即7

所以存在实数m,使得函数y=f(x)与y=g(x)的图象有且只有三个不同的交点,m的取值范围为(7,15-6ln3).

【备课资源】

4.已知函数f(x)=|x2+2x|,若关于x的方程f2(x)+bf(x)+c=0有7个不同的实数根,则b,c的大小关系是

( )

(A)b>c (B)b≥c或b≤c中至少有一个正确(C)b

【解析】选(x)=|x2+2x|的图象如图.要使关于x的方程f2(x)+bf(x)+c=0有7个不同的实数根,则关于f(x)的一元二次方程f2(x)+bf(x)+c=0有两个不同的根.且一个根在(0,1)内,另一个根为1.

∴b

5.若直线y=kx-1与曲线y=有公共点,则k的取值范围是________.

【解析】∵曲线y=的定义域为[1,3],且其图象为圆(x-2)2+y2=1的下半圆,如图所示,

则直线y=kx-1要与曲线有公共点,则直线只能处于l1,l2之间,且可与l1、l2重合,则k的取值范围

是[0,1].答案:[0,1]

6.已知有向线段PQ的起点P与终点Q的坐标分别为P(-1,1),

Q(2,2).若直线l:x+my+m=0与有向线段PQ延长线相交,求实数m的取值范围.

8.集合A={x|-1

(1)若A∩B=,求a的取值范围;

(2)若A∪B={x|x<1},求a的取值范围.

【解析】(1)如图所示:A={x|-1

B={x|x

(2)如图所示:A={x|-1

B={x|x

9.如图,l1、l2是互相垂直的异面直线,MN是它们的公垂线段.点A、B在l1上,C在l2上,AM=MB=MN.

(1)证明AC⊥NB;(2)若∠ACB=60°,求NB与平面ABC所成角的余弦值.

【解析】如图,

建立空间直角坐标系M-xyz.令MN=1,则有A(-1,0,0),B(1,0,0),N(0,1,0).

(1)∵MN是l1、l2的公垂线,l1⊥l2,∴l2⊥平面ABN,∴l2平行于z轴.故可设C(0,1,m).于是

高中数学专题---隐零点及卡根思想

高中数学专题--- 隐零点及卡根思想 基本方法: 导数解决函数综合性问题最终都回归于函数单调性的判断,而函数的单调性与其导数的零点有着紧密的联系,可以说导函数零点的判断、数值上的精确求解或估计成为导数综合应用中最为核心的问题. 导函数的零点,根据其数值上的差异,我们可以分为两类:一类是数值上能精确求解的,我们不妨称为“显零点”;另一类是能判断其存在但数值上无法精确求解的,我们不妨称为“隐零点”. (1)函数“隐零点”的存在性判断 对于函数“隐零点”的存在性判断,常采用下列两种方法求解:①若连续函数()f x 在(,)a b 上单调,且()()0f a f b ?,则()f x 在(,)a b 上存在唯一零点;②借助图像分析,即将函数()f x 的零点问题转化为方程()0f x =的解的判断,并通过合理的变形将方程转化为合适的形式在处理. (2)函数“隐零点”的虚设和代换 对于函数“隐零点”,由于无法求出其显性表达式,这给我们求解问题带来一定困难. 处理这类问题的基本方法为“虚设及代换”:在确定零点存在的条件下虚设零点0x ,再借助零点的表达式 进行合理的代换进而求解. (3)函数“隐零点”的数值估计-卡根思想 函数“隐零点”尽管无法求解,但是我们可以进行数值估计,最简单的方法即为判断其存在性的前提下利用二分法进行估计,估值范围越精确越容易解决问题. 对于“隐零点”的代数估计,可以通过单调函数构造函数不等式进行估计. 一、典型例题 1. 已知函数()22e x f x x x =+-,记0x 为函数()f x 极大值点,求证:()0124f x <<. 2. 已知函数()4ln (1)x f x x x += >. 若*k N ∈,且()1k f x x <+恒成立. 求k 的最大值. 二、课堂练习 1. 已知函数()2ln f x x x x x =--,证明:()f x 存在唯一的极大值点0x ,且()2202e f x --<<. 2. 已知函数ln 1()x f x ax x -= -. 若12a <<,求证:()1f x <-. 三、课后作业 1. 已知函数()ln f x x =,若关于x 的方程()()1f x m x =+,()m Z ∈有实数解,求整数m 的最大值. 2. 已知函数()22ln f x x =+,令()() 2xf x g x x =-在()2,+∞上的最小值为m ,求证:()67f m <<.

关于数形结合思想的教学方式浅谈

关于数形结合思想的教学方式浅谈 资料来源:大学生教育资源 我有幸参加了由省教科所组织的四川省教育教学共同体举办的关于“小学生数形结合能力的研究”论坛,全省30个共同体研究单位进行了三年级和六年级数形结合能力调查与分析,共同体学校对此项工作非常重视,都给出了分析报告。论坛中来自7所学校的一线教师带来了七堂精彩的数形结合课,有以形来揭示数的《路程速度时间》、《相遇问题》、《合理安排提高效率》、《比赛场次》,有以数来表示形的《点阵中的规律》、《组合图形》、《方向与位置》等,七节课为此次论坛数形结合能力研究提供了很多研究素材,特别是经过小组讨论、专家点评、专家讲座后,给我的教学方法提供了启发。 通过本次论坛,通过与专家面对面的评课、议课结合自己的教学实际和本次对三、六年级的数形能力的调查与分析,主要对以下问题提出了质疑: ●数形结合中“数”与“形”谁先谁后? ●教师在数学教学中如何充分渗透数形结合的思想? ●通过直观的图形揭示数,是否影响了学生的抽象思维能力? ●如何在教学中很好地通过数抽象出图形,看图提问题、解决问题? ●数学课堂中能否建立一种数一形一数或形一数一形的数

学教学模式? ●在高段教学中,数形怎样结合才能促进学生主动发展? 在这次论坛中,通过专家对课例的点评和对数形结合的理解,结合课例对一线教师提出的质疑作出了解答,使一线教师对数形结合在实际教学中要注意的问题有了更深入的理解和认识,使我由最初的迷茫发展至现在的茅塞顿开,达到了参与这次论坛的目的。 一、数形结合是一种数学思考方法 数形结合是数学思考、数学研究、数学应用、数学教学的基本方式,数形结合是双向过程,要处理好数与形的结合,要根据教材的特点和学生的思维水平而定。 1.就教材内容而言,对于较新、较难的教学内容、对于学习较困难的学生可先形后数,用形来表示数,学生通过形来表示数量之间的关系;对于后继教材和较容易理解的内容可先数后形,通过数来揭示形。 2.就学生的年龄特征而言。中低段学生是以具体形象思维为主,实施先形后数,让学生从形中读懂重要的数学信息,并整理信息,提出数学问题并加以解决,对于逻辑思维能力较强的中高段学生,应该逐步过渡到先数后形,如在教学分数的乘、除法意义,教学长方体、正方体、圆柱体的拼、截引起的面积变化时,让学生通过画出直观图形,能让学生很快找出面的变化,

备战2021届高考数学二轮复习热点难点突破专题15 数形结合思想(解析版)

专题15 数形结合思想 专题点拨 数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性与灵活性的有机结合. (1)数形结合思想解决的问题常有以下几种: ①构建函数模型并结合其图像求参数的取值范围; ②构建函数模型并结合其图像研究方程根的范围; ③构建函数模型并结合其图像研究量与量之间的大小关系; ④构建函数模型并结合其几何意义研究函数的最值问题和证明不等式; ⑤构建立体几何模型研究代数问题; ⑥构建解析几何中的斜率、截距、距离等模型研究最值问题; ⑦构建方程模型,求根的个数; ⑧研究图形的形状、位置关系、性质等. (2)数形结合思想是解答高考数学试题的一种常用方法与技巧,特别是在解填空题、选择题时发挥着奇特功效,这就要求我们在平时学习中加强这方面的训练,以提高解题能力和速度.具体操作时,应注意以下几点: ①准确画出函数图像,注意函数的定义域; ②用图像法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图),然后作出两个函数的图像,由图求解. (3)在运用数形结合思想分析问题和解决问题时,需做到以下四点: ①要彻底明白一些概念和运算的几何意义以及曲线的代数特征; ②要恰当设参,合理用参,建立关系,做好转化; ③要正确确定参数的取值范围,以防重复和遗漏; ④精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解. 例题剖析 一、数形结合思想在求参数、代数式的取值范围、最值问题中的应用 【例1】若方程x2-4x+3+m=0在x∈(0,3)时有唯一实根,求实数m的取值范围. 【解析】利用数形结合的方法,直接观察得出结果.

(推荐)高中数学七大数学基本思想方法

高中数学七大数学基本思想方法 第一:函数与方程思想 (1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用。 (2)方程思想是解决各类计算问题的基本思想,是运算能力的基础。考把函数与方程思想作为七种重要思想方法重点来考查。 第二:数形结合思想 (1)数学研究的对象是数量关系和空间形式,即数与形两个方面 (2)在一维空间,实数与数轴上的点建立一一对应关系在二维空间,实数对与坐标平面上的点建立一一对应关系,形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化。 第三:分类与整合思想 (1)分类是自然科学乃至社会科学研究中的基本逻辑方法。 (2)从具体出发,选取适当的分类标准。 (3)划分只是手段,分类研究才是目的。 (4)有分有合,先分后合,是分类整合思想的本质属性。 (5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性。 第四:化归与转化思想 (1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决题化归为已解决问题。 (2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法。 (3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化。 第五:特殊与一般思想 (1)通过对个例认识与研究,形成对事物的认识。 (2)由浅入深,由现象到本质、由局部到整体、由实践到理论。 (3)由特殊到一般,再由一般到特殊的反复认识过程。 (4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程。 (5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向。 第六:有限与无限的思想 (1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路。 (2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向。 (3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用。 (4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查。 第七:或然与必然的思想

高中数学总复习-分类讨论思想介绍与专题训练(附详细解析汇报)

专题复习 分类讨论思想 一、填空题: 例1.设集合A ={x ||x |≤4},B ={x ||x -3|≤a },若A B ?,则实数a 的取值围是________. 例2.已知实数a ≠0,函数2,1()2,1x a x f x x a x +

数形结合思想数形结合思想数形结合

数 形 结 合 ———高考解题的一把利刃 山东 胡大波 数形结合思想的实质是将抽象的数量关系与直观的图形结合起来,具有直观、明了、易懂等优越性,如能准确把握,威力巨大.这也是高考考查的重点,让我们看看其在函数中的神奇效果. 一、研究函数的性质 例1 (2005年北京卷13题)对于函数()f x 定义域中任意的1212()x x x x ≠,,有如下结论: ①1212()()()f x x f x f x +=g ;②1212()()()f x x f x f x =+g ; ③1212()()0f x f x x x ->- ;④1212()()22x x f x f x f ++??< ??? . 当()lg f x x =时,上述结论中正确结论的序号是___. 解析:作出图象如图1,由图可知④不正确;而①显然不成立;②为运算律,成立;③表示12x x -与12()()f x f x -同号,由增函数的定义知:()lg f x x =在其定义域上为增函数成立.所以答案为:②③. 点评:本题综合考查函数的概念、图象及性质,选项③侧重考查单调性,选项④考查函数图象,若用代数方法研究,难度较大,通过图象的特征及其变化趋势则容易判断. 二、研究函数的最值 例2 (2006年全国Ⅱ理科12题)函数19 1()n f x x n ==-∑的最小值为( ) . (A)190 (B)171 (C)90 (D)45 解析:绝对值往往是使试题增加难度的“添加剂”.如果试图进行分类讨论,几乎不可能完成,必须另寻妙法!1x -的几何意义是什么?是数轴上的点 x 到点1的距离,那么 12x x -+-就是点x 到点1与到点2的距离之和,如图2,当[1 2]x ∈,时,12x x -+-的最小值为1;又当x =2时,123x x x -+-+-的最小值为2;…,依次类推,当x =10

数学思想方法专题数形结合思想

数学思想方法专题:数形结合思想 【教学目标】 知识目标 数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。它可以使抽象的问题具体化,复杂的问题简单化。灵活运用数形结合的思想方法,可以有效提升思维品质和数学技能。 能力目标 用好数形结合的思想方法,需要在平时学习时注意理解概念的几何意义和图形的数量表示,为用好数形结合思想打下坚实的知识基础。函数的图像、方程的曲线、集合的文氏图或数轴表示等,是 “以形示数”,而解析几何的方程、斜率、距离公式,向量的坐标表示则是 “以数助形”,还有导数更是数形结合的产物,这些都为我们提供了 “数形结合”的知识平台。 情感目标 在数学学习和解题过程中,要善于运用数形结合的方法来寻求解题途径,制定解题方案,养成数形结合的习惯,解题先想图,以图助解题。 【教学重难点】 重点:对数形结合思想方法的考查包含“以形助数”和“以数辅形”两个方面,代数问题几何化,几何问题代数化。 难点:一些概念和运算的几何意义及常见曲线的代数特征,关键在于恰当应用图形来体现数的几何意义,巧妙运用数的精确性和严密性,来揭示形的某些属性。 【考情分析】 在高考中,利用客观题的题型特点来考查数形结合的思想方法,突出考查考生将复杂的数量关系转化为直观的几何图形来解决问题的意识,而在解答题中对数形结合思想的考查是由“形”到“数”的转化为主。高考题对数形结合思想方法的考查,一方面是通过解析几何或平面向量考查一些几何问题,如何用代数方法来处理,另一方面,有一些代数问题则依靠几何图形的构造和分析辅助解决,历年来高考试卷中的许多试题都富有鲜明的几何意义,运用数形结合思想可迅速做出正确的判断。 【知识归纳】 数形结合思想包含“数形结合”和“形数结合”两方面,“数形结合”就是将代数的问题转化为图形形式的问题,利用图形形式解决问题;“形数结合”就是将图形的问题转化为代数的问题,利用代数的方法解决问题。 应用数形结合的思想,可实现以下类型的数与形的转化: (1)构建函数模型并结合其图象求参数的取值范围; (2)构建函数模型并结合其图象研究方程根的范围,求零点的个数; (3)构建解析几何中的斜率、截距、距离等模型研究最值问题; (4)构建函数模型并结合其几何意义研究函数的最值问题、比较大小关系和证明不等式; (5)构建立体几何模型将代数问题几何化; (6)建立坐标关系,研究图形的确定形状、位置关系、性质等. 【考点例析】 题型1:数形结合思想在集合中的应用 例1.设平面点集{ } 22 1(,)()()0,(,)(1)(1)1A x y y x y B x y x y x ??=--≥=-+-≤??? ? ,则B A ?所表示的平 面图形的面积为( D ) A . 34π B . 35π C . 47π D . 2 π

(新)高中数学复习专题一---函数图象问题

专题一 函数图象 数形结合是中学数学的重要的数学思想方法,尤其是函数的图象更是历年高考的热点.函数图象是函数的一种表达形式,形象的显示了函数的性质,为研究数量关系提供了“形”的直观性,它是探求解题途径,获得问题的结果的重要工具. 一、知识方法 1.函数图象作图方法 (1)描点法:列表、描点(注意关键点:如图象与x 、y 轴的交点,端点,极值点等))、连线(注 意关键线:如;对称轴,渐近线等) (2)利用基本函数图象变换。 2.图象变换(由一个图象得到另一个图象):平移变换、对称变换和伸缩变换等。 (1)平移变换 ① 水平平移:函数()y f x a =+的图象可以把函数()y f x =的图象沿x 轴方向向左 (0)a >或向右(0)a <平移||a 个单位即可得到; ② 竖直平移:函数()y f x a =+的图象可以把函数()y f x =的图象沿y 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到. (2)对称变换 ① 函数()y f x =-的图象可以将函数()y f x =的图象关于y 轴对称即可得到; ② 函数()y f x =-的图象可以将函数()y f x =的图象关于x 轴对称即可得到; ③ 函数()y f x =--的图象可以将函数()y f x =的图象关于原点对称即可得到; (3)翻折变换 ① 函数|()|y f x =的图象可以将函数()y f x =的图象的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; ② 函数(||)y f x =的图象可以将函数()y f x =的图象右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到. (4)伸缩变换 ① 函数()y af x =(0)a >的图象可以将函数()y f x =的图象中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到; ② 函数()y f ax =(0)a >的图象可以将函数()y f x =的图象中的每一点纵坐标不变横坐标伸长(01a <<)或压缩(1)a >为原来的 1 a 倍得到. 3.函数图象的对称性:对于函数)(x f y =,若对定义域内的任意x 都有 ①)()(x a f x a f +=-(或))2()(x a f x f -=,则)(x f 的图象关于直线a x =对称; ②b x a f x a f 2)()(=++-(或)2)2()(b x a f x f =-+,,则)(x f 的图象关于点),(b a P 对称. 4、熟练掌握基本初等函数(如正、反比例函数,一次、二次函数,指数、对数函数,幂函数,三角函数)的图象 5、作函数图象的一般步骤: (1)求出函数的定义域;(2)化简函数式;(3)讨论函数的性质(如奇偶性、周期性、单调性)以及图像上的特殊点、线(如极值点、渐近线、对称轴等);(4)利用基本函数的图像(5)利

数形结合思想方法

八、数形结合思想方法 中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。数形结合一是一个数学思想方法,应用主要是借助形的直观性来阐明数之间的联系,其次是借助于数的精确性来阐明形的某些属性。 数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化。 Ⅰ、再现性题组: 1. 设命题甲:0b>1 D. b>a>1 3. 如果|x|≤π4 ,那么函数f(x)=cos 2x +sinx 的最小值是_____。 (89年全国文) A. 212- B. -212+ C. -1 D. 122 - 4. 如果奇函数f(x)在区间[3,7]上是增函数且最小值是5,那么f(x)的[-7,-3]上是____。(91年全国) A.增函数且最小值为-5 B.增函数且最大值为-5 C.减函数且最小值为-5 D.减函数且最大值为-5 5. 设全集I ={(x,y)|x,y ∈R},集合M ={(x,y)| y x --32 =1},N ={(x,y)|y ≠x +1},那么M N ∪等于_____。 (90年全国) A. φ B. {(2,3)} C. (2,3) D. {(x,y)|y =x +1 6. 如果θ是第二象限的角,且满足cos θ2-sin θ2=1-sin θ,那么θ2 是_____。 A.第一象限角 B.第三象限角 C.可能第一象限角,也可能第三象限角 D.第二象限角 7. 已知集合E ={θ|cos θ-+-=-???x x x m x 即:30212->-=-???x x m () 设曲线y 1=(x -2)2 , x ∈(0,3)和直线y 2=1-m ,图像如图所示。由图 可知:① 当1-m =0时,有唯一解,m =1; ②当1≤1-m<4时,有唯一解,即-3

《数形结合思想》专题(整理)

数形结合思想 知识综述 (1)函数几何综合问题是近年来各地中考试题中引人注目的新题型,这类试题将几何问题与函数知识有机地结合起来,重在考查学生的创新思维及灵活运用函数、几何有关知识,通过分析、综合、概括和逻辑推理来解决数学综合问题的能力,此类试题倍受命题者青睐,究其原因,它是几何与代数的综合题,构题者巧妙地将几何图形置于坐标系中,通过函数图象为纽带,将数与形有机结合,并往往以开放题的形式出现。 (2)解答此类问题必须充分注意以下问题: a. 认识平面坐标系中的两条坐标轴具有垂直关系 b. 灵活将点的坐标与线段长度互相转化 c. 理解二次函数与二次方程间的关系——抛物线与x轴的交点,横坐标是对应方程的根。 d. 熟练掌握几个距离公式: 点P(x,y)到原点的距离 e. 具备扎实的几何推理论证能力。 一、填空题(每空5分,共50分) 1. 如果a,b两数在数轴上的对应点如图所示: 则化简:__________。 2. 已知A,B是数轴上的两点,AB=2,点B表示数-1,则点A表示的数为__________。 3. 已知△ABC的三边之比是,则这个三角形是__________三角形。 4. 已知点A在第二象限,它的横坐标与纵坐标之和是1,则点A的坐标是__________。(写出符合条件的一个点即可) 5. 如图,在梯形ABCD中,AB∥CD,E为CD的中点,△BCE的面积为1,则△ACD 的面积为__________。 6. 已知二次函数的图象如图所示,则由抛物线的特征写出如下含有系数

a,b,c的关系式:①②③④,其中正确结论的序号是__________(把你认为正确的都填上) 7. 如图,AB是半圆的直径,AB=10,弦CD∥AB,∠CBD=45°,则阴影部分面积为__________。 8. 某公司市场营销部的营销人员的个人收入与其每月的销售量成一次函数关系,其图象如图所示,由图中给出的信息可知,营销人员没有销售时的收入是__________元。 9. 如图,矩形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积为 __________。 10. 如图,在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC上一点,若 ,则AD的长为__________。

高中数学常用思想方法

高中数学常用的数学思想 一、函数与方程思想 函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。 笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式。我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。而函数和多元方程没有什么本质的区别,如函数y=f(x),就可以看作关于x、y的二元方程f(x)-y =0。可以说,函数的研究离不开方程。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。 函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地, 函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f-1(x)的单调性、 奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。 函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。 例设f(x)=lg 124 3 ++ x x a ,如果当x∈(-∞,1]时f(x)有意义,求实数a的取值范围。 【分析】当x∈(-∞,1]时f(x)=lg 124 3 ++ x x a 有意义的函数问题,转化为1+2x+4x a>0 在x∈(-∞,1]上恒成立的不等式问题。 【解】由题设可知,不等式1+2x+4x a>0在x∈(-∞,1]上恒成立, 即:(1 2 )2x+( 1 2 )x+a>0在x∈(-∞,1]上恒成立。 设t=(1 2 )x, 则t≥ 1 2 ,又设g(t)=t2+t+a,其对称轴为t=- 1 2

高中数学竞赛专题一 函数与方程思想

高中数学竞赛专题一函数与方程思想 函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,它主要包括函数的概念、图象和性质以及几类典型的函数,函数思想是对函数内容在更高层次上的抽象、概括与提炼,是从函数各部分内容的内在联系和整体角度来考虑问题,研究问题和解决问题。函数思想贯穿于高中代数的全部内容,它是在学习指数函数、对数函数以及三角函数的过程中逐渐形成,并为研究这些函数服务的,如研究方程、不等式、数列、解析几何等其他内容,一直是高考的热点、重点内容。函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数关系,运用函数的知识,使问题得到解决.这种思想方法在于揭示问题的数量关系的本质特征,重在对问题的变量的动态研究,从变量的运动变化,联系和发展角度拓宽解题思路. 和函数有必然联系的是方程,方程是初中代数的主要内容,初中阶段主要学习了几类方程和方程组的解法,方程的思想就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的的解题思路和策略。 一、考点回顾 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。比如,对于满足0≤p≤4的一切实数,不等式x2+px>4x+p-3恒成立,试求x的取值范围一例,我们习惯上把x当作自变量,构造函数y=x2+(p-4)x+3-p,于是问题转化为:当p∈[0,4]时,y>0恒成立,求x的取值范围.解决这个等价的问题需要应用二次函数以及二次方程的区间根原理,可想而知,这是相当复杂的. 如果把p看作自变量,x视为参数,构造函数y=(x-1)p+(x2-4x+3),则y是p的一次函数,就非常简单.即令 f(p)=(x-1)p+(x2-4x+3).函数f(p)的图象是一条线段,要使f(p)>0恒成立,当且仅当f(0)>0,且f(4)>0,解这个不等式组即可求得x的取值范围是(-∞,-1)∪(3,+∞).本题看上去是一个不等式问题,但是经过等价转化,我们把它化归为一个非常简单的一次函数,并借助于函数的图象建立了一个关于x的不等式组来达到求解的目的 在函数的学习和复习中,要做到熟练掌握基础知识,充分理解各知识点间的内在联系,如数列中的an、Sn都可以看作是n的函数而应用函数思想以获得新的解法。要总结、归纳运用

数形结合的思想

数形结合的思想 中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意

义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。数学中的知识,有的本身就可以看作是数形的结合。如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。

《数形结合思想》专题(整理)doc初中数学

《数形结合思想》专题(整理)doc 初中数学 知识综述 〔1〕函数几何综合咨询题是近年来各地中考试题中引人注目的新题型,这类试题将几何咨询题与函数知识有机地结合起来,重在考查学生的创新思维及灵活运用函数、几何有关知识,通过分析、综合、概括和逻辑推理来解决数学综合咨询题的能力,此类试题倍受命题者青睐,究其缘故,它是几何与代数的综合题,构题者巧妙地将几何图形置于坐标系中,通过函数图象为纽带,将数与形有机结合,并往往以开放题的形式显现。 〔2〕解答此类咨询题必须充分注意以下咨询题: a. 认识平面坐标系中的两条坐标轴具有垂直关系 b. 灵活将点的坐标与线段长度互相转化 c. 明白得二次函数与二次方程间的关系——抛物线与x 轴的交点,横坐标是对应方程的根。 d. 熟练把握几个距离公式: 点P 〔x ,y 〕到原点的距离PO x y =+22 AB x x a =-= |||| 12? e. 具备扎实的几何推理论证能力。 一、填空题〔每空5分,共50分〕 1. 假如a ,b 两数在数轴上的对应点如下图: 那么化简:||||a b a b ++-=__________。 2. A ,B 是数轴上的两点,AB=2,点B 表示数-1,那么点A 表示的数为__________。 3. △ABC 的三边之比是752::,那么那个三角形是__________三角形。 4. 点A 在第二象限,它的横坐标与纵坐标之和是1,那么点A 的坐标是__________。〔写出符合条件的一个点即可〕 5. 如图,在梯形ABCD 中,AB ∥CD ,E 为CD 的中点,△BCE 的面积为1,那么△ACD 的面积为__________。 6. 二次函数y ax bx c =++2 的图象如下图,那么由抛物线的特点写出如下含有系数a ,

最新高中数学思想方法(附经典例题及详解)

最新高中数学思想 方法 经典例题

经典解析

目录 前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案……………………………………

前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳 和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思 想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷。 在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。

(完整版)高中数学四大思想方法

高中数学四大思想方法 ————读《什么是数学》笔记 《什么是数学》这本书是一本数学经典名著,它收集了许多闪光的数学珍品。它的目标之一是反击这样的思想:"数学不是别的东西,而只是从定义和公理推导出来的一组结论,而这些定义和命题除了必须不矛盾外,可以由数学家根据他们的意志随意创造。"简言之,这本书想把真实的意义放回数学中去。但这是与物质现实非常不同的那种意义。数学对象的意义说的是"数学上'不加定义的对象'之间的相互关系以及它们所遵循的运算法则"。数学对象是什么并不重要,重要的是做了什么。这样,数学就艰难地徘徊在现实与非现实之间;它的意义不存在于形式的抽象中,也不存在于具体的实物中。对喜欢梳理概念的哲学家,这可能是个问题,但却是数学的巨大力量所在--我们称它为,所谓的"非现实的现实性"。数学联结了心灵感知的抽象世界和完全没有生命的真实的物质世界。我根据自己在数学方面的兴趣,基于已有的数学背景知识,选取一部分和高中有关的内容进行舒心愉快的阅读。重新总结了高中数学中的数学四大思想方法:函数与方程、转化与化归、分类讨论、数形结合;函数与方程 函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式。我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。而函数和多元方程没有什么本质的区别,如函数y=f(x),就可以看作关于x、y的二元方程f(x)-y=0。可以说,函数的研究离不开方程。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。 等价转化等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范

数形结合思想

数形结合思想 数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题,几何问题相互转化,使抽象思维与形象思维有机结合。应用数形结合思想,就是充分考查数学问题的条件与结论之间的内在联系,既分析其代数意义又提示其几何意义,将数量关系和空间形式巧妙结合,寻求解题思路,使问题得到解决。运用这一数学思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征。 一、选择题 1.设()y f x = 的图象经过点(1,2)--( ) A.(2,1)- B .(8,1)-- C.(4,-解:已知得(1)2f -=-,∴1(2)1f --=- 令1 222 x -= +,得8x =-,故选答案 2.已知函数32 ()f x ax bx cx d =+++A.(,0)b ∈-∞ B.(0,1)b ∈ C.b 解:根据图象可知()(1)(2)f x ax x x =--展开得32()32f x ax ax ax =-+ 与32()f x ax bx cx d =+++比较系数知b 3.方程1 sin()44 x x π-=的实根个数是( ) A .2 B.3 解:分别作出sin(y x =

与直线1 :4 l y x =的图象如下 只须考虑[4,4]x ∈-时交点个数,得答案 B. 4.设P (,) x y 是圆22(1)1x y +-=上的任意一点,欲使不等式 0x y c ++≥恒成立,则c 的取值范围是( ) A.[11]-- B.1,)+∞ C.(1) D.(,1]-∞ 解:由线性规划知识知0x y c ++≥表示点P 在直线:0l x y c ++=的上方 ∴圆在l 上方,即圆心(0,1)到l 的距离大于(或等于)1 1, ∴1c (舍去)或1c ≤,得答案D. 5.已知()()()2f x x a x b =---(其中a b <)且α、β是方程()0f x =的两根(αβ<),则实数,,,a b αβ的大小关系是( ) A.a b αβ<<< B.a b αβ<<< C.a b αβ<<< D.a b αβ<<< 解:易知,a b 是()()()0g x x a x b =--= ∵()()2f x g x =-,作(),()f x g x 得答案A. 6.平面上整点(横、纵坐标都是整数的点)到直线54 35 y x =+的最小值是( ) A. 170 B.85 C. 120 D .1 30 解:直线方程化为2515120x y -+=,设整点坐标为(,)m n ,则距离 d = = ∵5(53)051015m n -=±±±或或或 ∴min |5(53)12|2m n -+=,此时2,4m n == ∴min 85 d ==,此时整点为(2,4),选答案B . )

相关文档
相关文档 最新文档