文档库 最新最全的文档下载
当前位置:文档库 › 轴承发热原因及解决方案汇总

轴承发热原因及解决方案汇总

轴承发热原因及解决方案汇总
轴承发热原因及解决方案汇总

轴承发热原因及解决方案汇总

1.轴承发热原因分析:

常见故障产生原因排除方法

装配轴承不合

理装配轴承时偏斜,导致轴承内外圈边沿不在同

一平面上,端盖合不平,造成轴承发热

平稳装配,保证轴承装配精度

缺油和加油过

多轴承长期运转,内部的润滑油逐渐减少,以至

润滑油不够,增加摩擦。轴承缺油时“擦擦”

声和轻微的“骨碌”声,引起的发热现象,如

发现得早,加油后即可改善,如缺油时间较长,

轴承可能损坏。加入新油时,油脂加至轴承三

分之二为好。润滑油过多,使轴承室温度高,

润滑油受热膨胀而发热

注油量要合理,经常检查,以防止

缺油或加油过多,并检查油的质量,切

忌有硬的杂质

皮带过紧或联轴器装置不平皮带过紧和联轴器装置不平,这两种原因都是

增加轴承的负荷而发热。如果空转时轴承不发

热,带负荷时温度增加很多必须调整皮带和校

联轴器。因为在正常的情况下空转时不发热的

轴承带负荷转动时也不会发热。另外装置不平

衡、没有校准、转动时振动、振动剧烈时轴承

也会发热。

调整装置中的皮带松紧度或调整

联轴器水平,消除机器运转中产生震动

的因素

轴承损坏或使用时间过久轴承损坏会使用时间过久均会导致轴承发热

更换轴承

轴承位磨损采用索雷碳纳米聚合物材料SD7101H快速修复

轴承室磨损

轴承与轴之间

出现配合间隙

轴承座与轴承

间隙增大,轴

承外圈转动

2.轴承位、轴承室磨损采用碳纳米聚合物材料在线修复方案

索雷工业碳纳米聚合物材料修复示意图

索雷工业碳纳米聚合物材料修复技术是利用碳纳米聚合物材料特有的机械性能和针对性的修复工艺在线修复大型轴类的磨损,索雷修复技术针对轴承位、轴承室的磨损主要有三种修复工艺:(1)机加工修复工艺;(2)模具修复;

(3)部件对应关系修复。现主要针对模具修复工艺进行介绍:

修复工艺简单:(1)根据主轴的尺寸,配合加工相应的工装模具;(2)现场使用模具和碳纳米聚合物材料恢复轴的尺寸(3)安装相应的部件,开机运行即可。

其优点是碳纳米聚合物材料粘结力好,良好的抗压性能及具备金属所具有的弹性变形等综合力学性能实现在线修复,修复效率高,不需要对设备大量拆卸,一般情况下8小时内完成修复。

索雷工业碳纳米聚合物材料类似一种冷焊技术,在线修复过程中不会产生高温,很好的保护设备本体不受损伤,且修复过程中不受轴单边磨损量的限制。

碳纳米聚合物材料使用过程中不会产生金属疲劳磨损,在设备正常维护保养的前提下,其修复后使用寿命甚至高于新部件的使用寿命。

综上所述,索雷工业碳纳米聚合物材料修复轴承位、轴承室磨损方面具有修复效率高,可实现在线修复,综合修复,给企业设备维修维护方面提供有力的解决方案,大大降低企业的生产成本。

3.索雷工业碳纳米聚合物材料修复技术现场应用案例

轴承位磨损修复案例

轴承室磨损修复案例

滚动轴承常见的失效形式及原因

滚动轴承常见的失效形式及原因分析 滚动轴承在使用过程中由于很多原因造成其性能指标达不到使用要求时就产 生了失效或损坏.常见的失效形式有疲劳剥落、磨损、塑性变形、腐蚀、烧伤、 电腐蚀、保持架损坏等。 一,疲劳剥落 疲劳有许多类型,对于滚动轴承来说主要是指接触疲劳。滚动轴承套圈各滚动体表面在接触应力的反复作用下,其滚动表面金属从金属基体呈点状或片状剥落下来的现象称为疲劳剥落。点蚀也是由于材料疲劳引起一种疲劳现象,但形状尺寸很小,点蚀扩展后将形成疲劳剥落。 疲劳剥落的形态特征一般具有一定的深度和面积,使滚动表面呈凹凸不平的鳞状,有尖锐的沟角.通常呈显疲劳扩展特征的海滩装纹路.产生部位主要出现在套圈和滚动体的滚动表面. 轴承疲劳失效的机理很复杂,也出现了多种分析理论,如最大静态剪应力理论、最大动态剪应力理论、切向力理论、表面微小裂纹理论、油膜剥落理论、沟道表面弯曲理论、热应力理论等。这些理论中没有一个理论能够全面解释疲劳的各种现象,只能对其中的部分现象作出解释。目前对疲劳失效机理比较统一的观点有: 1、次表面起源型 次表面起源型认为轴承在滚动接触部位形成油膜的条件下运转时,滚动表面是以内部

(次表面)为起源产生的疲劳剥落。 2、表面起源型 表面起源型认为轴承在滚动接触部位未形成油膜或在边界润滑状态下运转时,滚动表面是以表面为起源产生的疲劳剥落。 3、工程模型 工程模型认为在一般工作条件下,轴承的疲劳是次表面起源型和表面起源型共同作用的结果。 疲劳产生的原因错综复杂,影响因素也很多,有与轴承制造有关的因素,如产品设计、材料选用、制造工艺和制造质量等;也有与轴承使用有关的因素,如轴承选型、安装、配合、润滑、密封、维护等。具体因素如下: A、制造因素 1、产品结构设计的影响:产品的结构设计是根据使用性能目标值来确定的,这些目标值如载荷容量、寿命、精度、可靠性、振动、磨损、摩擦力矩等。在设计时,由于各种原因,会造成产品设计与使用的不适用或脱节,甚至偏离了目标值,这种情况很容易造成产品的早期失效。 2、材料品质的影响:轴承工作时,零件滚动表面承受周期性交变载荷或冲击载荷。由于零件之间的接触面积很小,因此,会产生极高的接触应力。在接触应力反复作用下,零件工作表面将产生接触疲劳而导致金属剥落。就材料本身的品质来讲,其表面缺陷有裂纹、表面夹渣、折叠、结疤、氧化皮和毛刺等,内部缺陷有严重偏析和疏松、显微孔隙、缩孔、气泡、白点、过烧等,这些缺陷都是造成轴承早期疲劳剥落的主要原因。

轴承故障原因分析及处理方法

轴承故障原因分析及处理方法 [摘要]: 本文介绍了轴承常见故障和处理办法,总结了避免故障发生的几种办法,保证生产的连续性。 [关键字]:轴承;故障率高;处理措施; 一、前言: 轴承是生产线设备上常用的支撑轴零件,它可以引导轴的旋转,也可以承受轴上空转的零件,由于其使用量大,生产过程中经常出现故障,给车间生产的连续性和产品质量的保障带来严重影响。因此,迅速判断故障产生的原因,采取得当的解决措施,保证设备的连续运行是确保产品质量的重要基础和保证。 二、轴承故障原因分析: 导致轴承故障率升高的常见原因: 1、润滑不良,如润滑不足或过分润滑,润滑油质量不符合要求,变质或有杂物。 2、轴承异常,如轴承损坏,轴承装配工艺差,轴承各部位间隙调整不符合要求。 3、振动大,如联轴器找正工艺差不符合要求,转子存在动、静不平衡,基础刚性差、地脚空虚以及旋转失衡,喘振。 三、轴承发生故障时的处理方法: 轴承出现故障时,应从以下几个方面解决问题

1、加油不恰当,润滑油加的过多或过少。应当按工作的的要求定期给轴承加油。轴承加油后有时也会出现温度高的情况,这主要是加油过多。 2、轴承所加油脂不符号要求或被污染。润滑油脂选用不合适,不易形成均匀的润滑油膜。无法减少轴承内部的摩擦和磨损,润滑不足,轴承温度升高。当不同型号的油脂混合时可能发生化学反应,造成油脂变质,结块,降低润滑效果。加注油脂的过程中落入灰尘,造成油脂污染,会导致油脂劣化破坏轴承润滑,进而使轴承损坏。因此应选用合适的油脂,检修中对轴承清洗,对加油油嘴进行检查疏通,不同型号的油脂不能混合使用,若更换其他型号的油脂时,应先将原来的油脂清理干净;运行维护中定期加油,油脂应妥善保管做好防潮防尘措施。 3、确认不存在上面的问题后再检查联轴器找正情况和轴承质量。联轴器的找正要符合工艺标准。在设备维修检查时看轴承有无咬坏和磨损;检查轴承的内外圈,滚动体,保持架其表面光洁度以及有无裂痕和锈蚀,凹坑,过热变色等现象。检查轴承的游隙是否超标,若有以上情况要立即更换新的轴承。轴承的配合,轴承在安装时内径与轴,外径与外壳的配合非常重要,配合过松时,配合面会产生相对滑动称做蠕变。蠕变一但产生会磨损破坏面,损伤轴或外壳,而且磨损粉末会侵入轴承内部,造成发热,振动或损坏轴承。过盈过大时,会导致外圈外径变小或内圈内径变大,减少轴承内部的游隙。轴承各部配合间隙的调整,间隙过小时由于油脂在间隙内摩擦损失过大也会引起轴承发热。同时,间隙过小时,油量减小,来不及带走摩擦产生的热

滚动轴承计算题题

滚动轴承30题(当量动载荷、寿命计算等) 1.有一轴由一对角接触球轴承支承,如图所示。已知:齿轮的分度圆直径d =200mm ,作用在齿轮上的载荷为T F =1890N, =700N, =360N.轴承的内部轴向力S 与径向载荷的关系式为:S=T F 。求两轴承所承受的轴向载荷。 题1图 解:受力分析如图示。 题1答图 1 S 、2 S 方向如图示 所以轴承2被“压紧”,轴承1“放松”。 2.如图所示,某轴用一对30307圆锥滚子轴承,轴承上所受的径向负荷R 1=2500N ,R 2=5000N ,作用在轴上的向外负荷F a1=400N,F a2=2400N 。轴在常温下工作,载荷平稳f P =1。试计算轴承当量动负载大小,并判断哪个轴承寿命短些?(注:30307轴承的Y=,e=,S=R/(2Y);当A/R>e 时,X=,Y=;当A/R<=e 时,X=1,Y=0) 题2图 解:受力分析如图示。 题2答图 所以轴承2被“压紧”,轴承1“放松”。 所以 1 1 1 1 1 ()2500P N f P X R Y A = += 因为1P < 2P 所以轴承2寿命短些 3.某齿轮轴由一对30212/P6X 轴承支承,其径向载荷分别为1r F =5200N,2r F =3800N ,方向如图所示。取载荷系数f p =。试计算: 两轴承的当量动负荷P 1、P 2: 1) 当该对轴承的预期寿命L h =18000h 时,齿轮轴所允许的最大工作转速N max =? 附30212/P6X 轴承的有关参数如下: C r =59250N,e=,X=, Y=,S=Fr/(2Y) 题3图 解:受力分析如图示。 题3答图 (1) 1 15200 152922 1.7 r N Y F S = = =?

滚动轴承常见故障及原因分析

滚动轴承常见故障及原因分析 1.故障形式 (1)轴承转动困难、发热; (2)轴承运转有异声; (3)轴承产生振动; (4)内座圈剥落、开裂; (5)外座圈剥落、开裂; (6)轴承滚道和滚动体产生压痕。 2.故障原因分析 (1)装配前检查不仔细,轴承在装配前要先清洗并认真检查轴承的内外座圈、滚动体和保持架,是否有生锈、毛刺、碰伤和裂纹;检查轴承间隙是否合适,转动是否轻快自如,有无突然卡止的现象;同时检查轴径和轴承座孔的尺寸、圆度和圆柱度及其表面是否有毛刺或凹凸不平等。对于对开式轴承座,要求轴承盖和轴承底座接合面处与外座圈的外圆面之间,应留出0.1mm~0.25mm间隙,以防止外座两侧“瓦口”处出现“夹帮”现象导致的间隙减小,磨损加快,使轴承过早损坏。 (2)装配不当。装配不当会导致轴承出现上述的各种故障形式,以及以下的几种情况: A.配合不当 轴承内孔与轴的配合采用基孔制,轴承外圆与轴承座孔的配合采用基轴制。一般在正常负荷情况下工作的离心泵、离心机、减速机、电动机和离心式压缩机的轴与轴承内座圈,采用j5,js5,js6,k5,k6,m6配合,

轴承座孔与轴承外座圈采用j6,j7配合。旋转的座圈(大多数轴承的内座圈为旋转座圈,外座圈不为旋转座圈,少部分轴承则相反),通常采用过盈配合,能在负荷作用下避免座圈在轴径和轴承座孔的配合表面上发生滚动和滑动。 滚动轴承常见故障原因分析 但有时由于轴径和轴承座孔的尺寸测量不精确或配合面粗糙度未达到标准要求,造成过大的过盈配合,使轴承座圈受到很大挤压,从而导致轴承本身的径向间隙减少,使轴承转动困难、发热,磨损加剧或卡死,严重时会造成轴承内外座圈在按装时开裂。不旋转座圈常采用间隙或过盈不大的配合,这样不旋转座圈就有可能产生微小的爬动,而使座圈与滚动体的接触面不断更换,座圈滚道磨损均匀。同时也可以消除轴因热伸长而使轴承中滚动体发生轴向卡住的现象。但过大的间隙配合,会使不旋转座圈随滚动体一同转动,致使轴(或轴承座孔)与内座圈(或外座圈)发生严重磨损,而出现摩擦使轴承发热、振动。 B.装配方法不当 轴承和轴径或轴承座孔的过盈较小时,多采用压入法装配。最简单的方法是利用铜棒和手锤,按一定的顺序对称地敲打轴承带过盈配合的座圈,使轴承顺利压入。另外,也可用软金属制的套管借手锤打入或压力机压入。若操作不当,则会使座圈变形开裂,或者手锤打在非过盈配合的座圈上,则会使滚道和滚动体产生压痕或轴承间接被破坏。 C.装配时温度控制不当 滚动轴承在装配时,若其与轴径的过盈较大,一般采用热装法装配。

扇形段轴承损坏原因分析(PDF X页)

扇形段轴承损坏原因分析 尹秀锦① (济南钢铁总厂机械设备制造公司 山东济南250101) 摘要 分析了济钢超低头板坯连铸机扇形段轴承损坏的原因,并找到了正确的解决措施。关键词 扇形段 载荷 游隙 润滑 Ana lysis on Fa ilur e Ca uses of Seg m en t ′s Bea r i n g Yin X iujin (J inan Ir on and Steel Gr oup Cor por a tion M achine r y Pr oduc tion Co .,L td.,J inan 250101) ABSTRAC T The fail ure cause s of seg ment ′s bearing in Jigang extra -lo w head continuous casting machine a re ana ly zed .The p roblem s are s olved w ith proper mea s ures . KEY W O RDS Seg ment Load C learance space Lubrica ti on 1 概述济钢4#、5#板铸机为超低头板坯连铸机,4#板于1994年投产,其年生产能力为70万t,铸机工作拉速为0.7~ 1.15m /m i n,铸坯规格为200×1400mm ,基本弧半径为5700mm 。二次冷却区域共有7个扇形段,其中1-2段属 于弯曲段,3、4段属于矫直段,5-7段为水平段,从3段以后每一段上都有一对拉矫辊,各段都是6根辊子布置的小辊径,单节辊,密排布置方式,辊径分260mm 和280mm 两种,轴承为调心滚子轴承。2007年4# 、5# 铸机扇形段下线 52台次,轴承原因造成的下线28次,占所有下线次数的53.85%,平均拉钢寿命为98.75天。频繁下线造成炼钢 非计划停机,影响生产节奏,同时也增加了维修成本。 2 原因分析2.1 载荷分布不均 1)辊子同轴度偏差大。在辊子修磨过程中辊子的同 轴度偏低,拉钢过程中辊子的弯曲量会加重,经过长时间的使用,导致个别辊子超负荷工作,使其损坏,同时也会使铸坯出现鼓肚、凹陷等质量问题。 2)对中间隙偏差大。单片对中时,个别辊子辊面与 样规间隙值(对中间隙)是标准的上限,而其他几根辊子对中间隙是标准值的下限,导致这根辊子较其他辊子高,对中时个别辊子水平度偏差大,导致高的轴承承受大负 荷,长时间运转或者超负荷运转导致轴承先损坏。 3)轴承径向游隙不均匀。同一根辊子上的轴承游隙 相差太大,导致辊子两侧轴承受力不均匀,如果同时存在上述任何一种影响因素,会加剧轴承的损坏。 2.2 径向游隙的影响 游隙的大小直接影响滚动轴承的载荷分布、振动、噪声、磨损、温升、使用寿命和机械运转精度等技术性能。通过对损坏轴承的分析,认为轴承游隙大小不合适是造成轴承损坏的另一个因素。 2.3 润滑不良 1)润滑脂供给方式不合适。滚动轴承的润滑主要为 了降低摩擦阻力和减轻磨损,也有吸振、冷却、防锈和密封等作用,但是装脂过多易于引起摩擦发热,影响轴承的正常工作。扇形段在现场使用时润滑脂供给时间长,频次少,导致轴承先是满脂运转,后是少脂运转,没有为轴承提供一个良好的润滑条件。 2)油号不对导致甘油堵塞。冬天维修好的扇形段存 放一段时间上线后就出现干油堵塞的问题,分析原因主要是北方冬天寒冷,润滑脂粘稠度增加,导致输送阻力增加。 2.4 灰尘等污染引起轴承损坏 1)密封结构不完善。分析轴承密封结构(如图1)和 现场环境,发现密封不合适,辊子一侧的单唇骨架油封隔 — 6— Extra Editi on (1)2009 冶 金 设 备M ET ALLUR GI CAL E QU IP MENT 2009年特刊(1) ①作者简介尹秀锦,女,年出生,助理工程师,年毕业于鞍山科技大学机械设计制作及自动化专业 2:19802004

货车滚动轴承热轴故障分析及解决措施

(此文档为word格式,下载后您可任意编辑修改!) 毕业设计(论文)中文题目:货车滚动轴承热轴故障分析及解决措施 学院:远程与继续教育学院 专业:机械设计及其自动化 姓名:廉洪俊 指导教师:林桂清 2009年11 月10 日

北京交通大学 毕业设计(论文)成绩评议

北京交通大学 毕业设计(论文)任务书 本任务书下达给:07秋级本科机械设计及自动化专业学生廉洪俊设计(论文)题目:货车滚动轴承热轴故障分析及解决措施 一、设计(论述)内容: 结合我国铁路货车滚动轴承的发展现状,通过对铁路主要货车滚动轴承的了解,正确地分析现阶段铁路货车滚动轴承的特点,有针对性地研究分析滚动轴承常见故障并提出解决措施和可行性整改方案。 二、基本要求: 随着我国铁路货运向高速重载方向发展,滚动轴承各类故障频繁发生,危及铁路货车行车安全、制约货车高速重载的发展。为此,有必要对滚动轴承的各类故障进行研究分析并提出解决措施。要求能根据各型铁路货车实际运行中,滚动轴承出现的各类故障结合实践经验不断摸索和研究,掌握了滚动轴承的各类主要故障,对其进行逐一分析并提出合理化解决措施。 三、重点研究的问题: 结合铁路运输生产力布局调整,针对铁路货车滚动轴承出现的各类故障进行研究分析,找出各类故障的发生规律并提出解决措施和可行性整改方案。 四、主要技术指标: 1.论文题目一般不超过25个字,要简练准确,可分二行书写; 2.开题报告由学生认真书写,经指导教师签字后的开题报告有效; 3.摘要:中文摘要字数应在400字左右,包括论文题目、论文搞要、关键词(3至5个),英文摘要与中文摘要内容要相对应; 4.目录:按三级标题编写,要求层次清晰,且要与正文标题一致,主要包括摘要、正文主要层次标题、参考文献、附录等; 5.正文:论文正文包括绪论(或前言、慨述等)、论文主体、结论。工科论文要求符合科技论文格式,正文文字应在15000字以上; 6.参考文献:必须是学生本人真正阅读过的,以近期发表的杂志类文

轴承的损伤和其原因及对策

轴承的损伤和其原因及对策 一般,如果正确使用轴承,可以使用至达到疲劳寿命为止。但会有意外过早地损伤,不能耐于使用的情况。这种早期损伤,与疲劳寿命相对,是被称做故障或事故的品质使用限度。多起因于安装、使用、润滑上的不注意,从外部侵入的异物,对于轴、外壳的热影响之研究不够充分等。 轴承的损伤状态主要有: ?梨皮状点蚀?微振磨损?卡伤?擦伤?断裂?裂纹 ?保持架的损伤?安装伤痕?剥离?磨损?剥皮?蠕变 ?假性布氏压痕?生锈、腐蚀?电蚀?烧伤?压痕?变色 剥离 损伤状态原因 措施 轴承在承受载荷旋转时,内圈、外圈的滚道面或滚动体的滚动面由于滚动疲劳而呈现鱼鳞状的剥离现象载荷过大。 安装不良(非直线性) 力矩载荷。 异物侵入、进水。 润滑不良,润滑剂不合适。 轴承游隙不适当。 轴、轴承箱精度不好,轴承箱的 刚性不均,轴的挠度大。 生锈、浸蚀点、擦伤和压痕(表面 变形现象)引起的发展。 检查载荷的大小及再次研究所使 用的轴承。 改善安装方法。 改善密封装置,停机时防锈。 使用适当粘度的润滑剂,改善润 滑方法。 检查轴和轴承箱的精度。 检查游隙。 照片 1-1 ●向心角接触球轴承的内圈 ●沿滚道面的半周产生的剥离 ●原因是由于切削液的侵入而所造成润滑不良照片 1-2 ●向心角接触球轴承的内圈●与滚道成斜面产生的剥离●安装时定心不准造成的

照片 1-3 ●深沟球轴承的内圈 ●滚道面上产生的球距的剥离 ●安装时冲击载荷造成的压痕发展面成照片 1-4 ●向心球轴承的内圈 ●滚道面上产生的球距的剥离 ●由停转时冲击载荷造成的压痕发展面成 照片 1-5 ●照片 1-4的外圈 ●滚道面上产生的球距的剥离 ●由停转时冲击载荷造成的压痕发展而成照片 1-6 ●照片 1-4的球 ●球表面的剥离 ●由停转时冲击载荷造成的压痕发展而成

滚动轴承的受力分析、载荷计算、失效和计算准则

1.滚动轴承的受力分析 滚动轴承在工作中,在通过轴心线的轴向载荷(中心轴向载荷)Fa作用下,可认为各滚动体平均分担载荷,即各滚动体受力相等。当轴承在纯径向载荷Fr作用下(图6),内圈沿Fr方向移动一距离δ0,上半圈滚动体不承载,下半圈各滚动体由于个接触点上的弹性变形量不同承受不同的载荷,处于Fr作用线最下位置的滚动体承载最大,其值近似为5Fr/Z(点接触轴承)或4.6Fr/Z(线接触轴承),Z为轴承滚动体总数,远离作用线的各滚动体承载逐渐减小。对于内外圈相对转动的滚动轴承,滚动体的位置是不断变化的,因此,每个滚动体所受的径向载荷是变载荷。 图6滚动轴承径向载荷的分析图7角接触轴承的载荷作用中心 2.滚动轴承的载荷计算 (1)滚动轴承的径向载荷计算 一般轴承径向载荷Fr作用中心O的位置为轴承宽度中点。 角接触轴承径向载荷作用中心O的位置应为各滚动体的载荷矢量与轴中心线的交点,如图7所示。角接触球轴承、圆锥滚子轴承载荷中心与轴承外侧端面的距离a可由直接从手册查得。 接触角α及直径D,越大,载荷作用中心距轴承宽度中点越远。为了简化计算,常假设载荷中心就在轴承宽度中点,但这对于跨距较小的轴,误差较大,不宜随便简化。

图8角接触轴承受径向载荷产生附加轴向力 1)滚动轴承的轴向载荷计算 当作用于轴系上的轴向工作合力为FA,则轴系中受FA作用的轴承的轴向载荷Fa=FA,不受FA作用的轴承的轴向载荷Fa=0。但角接触轴承的轴向载荷不能这样计算。 角接触轴承受径向载荷Fr时,会产生附加轴向力FS。图8所示轴承下半圈第i个球受径向力Fri。由于轴承外圈接触点法线与轴承中心平面有接触角α,通过接触点法线对轴承内圈和轴的法向反力Fi将产生径向分力Fri;和轴向分力FSi。各球的轴向分力之和即为轴承的附加轴向力FS。按一半滚动体受力进行分析,有 FS ≈ 1.25 Frtan α(1) 计算各种角接触轴承附加轴向力的公式可查表5。表中Fr为轴承的径向载荷;e为判断系数,查表6;Y为圆锥滚子轴承的轴向动载荷系数,查表7。 表-5 角接触轴承附加轴向力公式 轴承类型角接触球轴承圆锥滚子轴承

轴承保持架碎裂原因分析

轴承保持架碎裂原因分析 保持架在滚动轴承中起着等距离隔离滚动体并防止滚动体掉落,引导并带动滚动体转动的作用。 轴承虽然由很多部件轴承组成,轴承最先损坏(失效)的部件是往往是保持架,保持架可以说是轴承“血管”了,可以把内圈、外圈、滚动体均匀有序的分布好,稍有差错就容易使轴承的使用寿命大缩短,甚至损坏。那么造成轴承保持架碎裂的原因是什么呢? 轴承保持架破损原因有: 1、轴承润滑不足。润滑油或脂干掉,没有及时添加(维护保养),润滑油或脂用的标号不对。 2、轴承的冲击负载。冲击负载中激烈的震动产生滚动体对保持架的撞击。 3、轴承的清洁度。轴承在轴承箱里密封不好,有粉尘进入,加要滚动体与保持架的磨擦,从而使保持架损坏。 4、安装问题。轴承安装不正确,在安装时就损伤保持架。 5、轴承蠕变现象 蠕变多指套圈的滑动现象,在配合面过盈量不足的情况下,由于滑动而使载荷点向周围方向移动,产生套圈相对轴或外壳向圆周方向位置偏离的现象。 6、轴承保持架异常载荷 安装不到位、倾斜、过盈量过大等易造成游隙减少,加剧摩

擦生热,表面软化,过早出现异常剥落,随着剥落的扩展,剥落异物进入保持架兜孔中,导致保持架运转阻滞并产生附加载荷,加剧了保持架的磨损,如此恶化的循环作用,便可能会造成保持架断裂。 7、轴承保持架材料缺陷 裂纹、大块异金属夹杂物、缩孔、气泡及铆合缺陷缺钉、垫钉或两半保持架结合面空隙,严重铆伤等均可能造成保持架断裂 8 、轴承硬质异物的侵入 外来硬质异物或其他杂质东西的侵入,加剧了保持架的磨损。针对以上种种原因进行解决,轴承的寿命一定会很长。很多轴承损坏的原因不是轴承本身寿命到了,而是很多外部环境造成的,如润滑不足,粉尘进入,安装错误,负载过大,温度过高,联轴器不对中等。 9、其它原因。如联轴器不对中产生轴承歪斜,受力不均;皮带安装过紧;环境问题等等都有可能损坏轴承或保持架。 针对以上种种原因进行解决,轴承的寿命一定会很长。但是,富海合精工机械建议:对于轴承保持架破损的原因还得具体问题具体分析,要看你用的是什么类型的轴承,装在哪种设备上,工况是怎样的等等。

电机发热和烧电机的原因分析及解决方法

烧电机的原因总结起来都有哪些呢 电源问题or负载问题... ①电源电压过高,使铁芯发热大大增加;②电源电压过低,电动机又带额定负载运行,电流过大使绕组发热;③修理拆除绕组时,采用热拆法不当,烧伤铁芯;④定转子铁芯相擦;⑤电动机过载或频繁起动;⑥笼型转子断条;⑦电动机缺相,两相运行;⑧重绕后定于绕组浸漆不充分;⑨环境温度高电动机表面污垢多,或通风道堵塞;⑩电动机风扇故障,通风不良;定子绕组故障(相间、匝间短路;定子绕组内部连接错误)。 2.故障排除:①降低电源电压(如调整供电变压器分接头),若是电机Y、Δ接法错误引起,则应改正接法;②提高电源电压或换粗供电导线;③检修铁芯,排除故障;④消除擦点(调整气隙或挫、车转子);⑤减载;按规定次数控制起动;⑥检查并消除转子绕组故障;⑦恢复三相运行;⑧采用二次浸漆及真空浸漆工艺;⑨清洗电动机,改善环境温度,采用降温措施;⑩检查并修复风扇,必要时更换 这个原因很多。 1.电源问题 a.三相电源不对称 b.接法错误包括三角形接成星形,星形接成三角形 c.电压过高或过低

2.负载问题 过载; 负载被卡住 3.电机问题 线圈匝间短路 线圈断开 电机内有异物 定转子相擦 4.其它问题 轴承问题 油脂不好 通风有问题 楼上的比较全面。一般在用户使用过程中烧毁的电机主要原因是:过载、单相、缺相、匝间。 拆开电机后检查绕组线包,可以判断出烧毁的大致原因: 1、过载机过载烧毁时,线包一般会全部烧黑。 2、单相、缺相烧毁一相线圈或两相线圈 3、匝间在线包或是线槽上会有铜线烧熔化后烧出来的洞和铜珠 另外轴承内盖配合不好或是轴承故障抱死轴烧坏电机的情况也会有,这个可以直接看到。这个属于机械方面的故障 造成电动机过负荷的原因主要有:

滚动轴承的选择及校核计算

滚动轴承的选择及校核计算根据根据条件,轴承预计寿命 16×365×8=48720小时 1、计算输入轴承 (1)已知nⅡ=458.2r/min 两轴承径向反力:F R1=F R2=500.2N 初先两轴承为角接触球轴承7206AC型 根据课本P265(11-12)得轴承内部轴向力 F S=0.63F R则F S1=F S2=0.63F R1=315.1N (2) ∵F S1+Fa=F S2 Fa=0 故任意取一端为压紧端,现取1端为压紧端 F A1=F S1=315.1N F A2=F S2=315.1N (3)求系数x、y F A1/F R1=315.1N/500.2N=0.63 F A2/F R2=315.1N/500.2N=0.63 根据课本P263表(11-8)得e=0.68 F A1/F R1

根据手册得7206AC型的Cr=23000N 由课本P264(11-10c)式得 L H=16670/n(f t Cr/P)ε =16670/458.2×(1×23000/750.3)3 =1047500h>48720h ∴预期寿命足够 2、计算输出轴承 (1)已知nⅢ=76.4r/min Fa=0 F R=F AZ=903.35N 试选7207AC型角接触球轴承 根据课本P265表(11-12)得F S=0.063F R,则 F S1=F S2=0.63F R=0.63×903.35=569.1N (2)计算轴向载荷F A1、F A2 ∵F S1+Fa=F S2 Fa=0 ∴任意用一端为压紧端,1为压紧端,2为放松端 两轴承轴向载荷:F A1=F A2=F S1=569.1N (3)求系数x、y F A1/F R1=569.1/903.35=0.63 F A2/F R2=569.1/930.35=0.63 根据课本P263表(11-8)得:e=0.68 ∵F A1/F R1

轴承发热原因分析及修复方案

轴承发热原因分析及修复方案 一、轴承发热原因分析及轴承位、轴承室磨损在线修复技术展示 1. 轴承简介 轴承(Bearing)是当代机械设备中一种重要零部件。它的主要功能是支撑机械旋转体,降低其运动过程中的摩擦系数并保证其回转精度。 按运动元件摩擦性质的不同,轴承可分为滚动轴承和滑动轴承两大类。其中滚动轴承已经标准化、系列化,但与滑动轴承相比它的径向尺寸、振动和噪声较大,价格也较高。 滚动轴承一般由外圈、内圈、滚动体和保持架四部分组成,严格的说是由外圈、内圈、滚动体、保持架、密封、润滑油六大件组成。简单来说,只要具备外圈、内圈、滚动体就可定义为滚动轴承。按滚动体的形状,滚动轴承分为球轴承和滚子轴承两大类。 2.轴承发热原因分析:

常见故障产生原因排除方法 装配轴承不合 理装配轴承时偏斜,导致轴承内外圈边沿不在同 一平面上,端盖合不平,造成轴承发热 平稳装配,保证轴承装配精度 缺油和加油过 多轴承长期运转,内部的润滑油逐渐减少,以至 润滑油不够,增加摩擦。轴承缺油时“擦擦” 声和轻微的“骨碌”声,引起的发热现象,如 发现得早,加油后即可改善,如缺油时间较长, 轴承可能损坏。加入新油时,油脂加至轴承三 分之二为好。润滑油过多,使轴承室温度高, 润滑油受热膨胀而发热 注油量要合理,经常检查,以防止 缺油或加油过多,并检查油的质量,切 忌有硬的杂质 皮带过紧或联轴器装置不平皮带过紧和联轴器装置不平,这两种原因都是 增加轴承的负荷而发热。如果空转时轴承不发 热,带负荷时温度增加很多必须调整皮带和校 联轴器。因为在正常的情况下空转时不发热的 轴承带负荷转动时也不会发热。另外装置不平 衡、没有校准、转动时振动、振动剧烈时轴承 也会发热。 调整装置中的皮带松紧度或调整 联轴器水平,消除机器运转中产生震动 的因素 轴承损坏或使用时间过久轴承损坏会使用时间过久均会导致轴承发热 更换轴承 轴承位磨损 采用索雷碳纳米聚合物材料快速修复轴承室磨损 轴承与轴之间 出现配合间隙

滚动轴承故障诊断与分析..

滚动轴承故障诊断与分析Examination and analysis of serious break fault down in rolling bearing 学院:机械与汽车工程学院 专业:机械设计制造及其自动化 班级:2010020101 姓名: 学号: 指导老师:王林鸿

摘要:滚动轴承是旋转机械中应用最广的机器零件,也是最易损坏的元件之一, 旋转机械的许多故障都与滚动轴承有关,轴承的工作好坏对机器的工作状态有很大的影响,其缺陷会产生设备的振动或噪声,甚至造成设备损坏。因此, 对滚动轴承故障的诊断分析, 在生产实际中尤为重要。 关键词:滚动轴承故障诊断振动 Abstract: Rolling bearing is the most widely used in rotating machinery of the machine parts, is also one of the most easily damaged components. Many of the rotating machinery fault associated with rolling bearings, bearing the work of good or bad has great influence to the working state of the machine, its defect can produce equipment of vibration or noise, and even cause equipment damage. Therefore, the diagnosis of rolling bearing fault analysis, is especially important in the practical production. Key words: rolling bearing fault diagnosis vibration 引言:滚动轴承是机器的易损件之一,据不完全统计,旋转机械的故障约有30% 是因滚动轴承引起的,由此可见滚动轴承故障诊断工作的重要性。如何准确判断出它的末期故障是非常重要的,可减少不必要的停机修理,延长设备的使用寿命,避免事故停机。滚动轴承在运转过程中可能会由于各种原因引起损坏,如装配不当、润滑不良、水分和异物侵入、腐蚀和过载等。即使在安装、润滑和使用维护都正常的情况下,经过一段时间运转,轴承也会出现疲劳剥落和磨损。总之,滚动轴承的故障原因是十分复杂的,因而对作为运转机械最重要件之一的轴承,进行状态检测和故障诊断具有重要的实际意义,这也是机械故障诊断领域的重点。 一滚动轴承故障诊断分析方法 1滚动轴承故障诊断传统的分析方法 1.1振动信号分析诊断 振动信号分析方法包括简易诊断法、冲击脉冲法(SPM法)、共振解调法(IFD 法)。振动诊断是检测诊断的重要工具之一。 (1)常用的简易诊断法有:振幅值诊断法,反应的是某时刻振幅的最大值,适用于表面点蚀损伤之类的具有瞬时冲击的故障诊断;波峰因素诊断法,表示的

轴承损坏原因主要分析

轴承损坏原因主要分析 引风机试转时轴瓦出现的问题徐塘发电有限公司2×300MW扩建工程6号机组引风机是成都电力机械厂制造的型号为AN28e6静叶可调式轴流风机,风量为268.74m3/s,风压为4711Pa;电机是沈阳电机股份有限公司提供的型号为YKK710-8电机,电机转速为744r/min,功率为1 800kW,电压为6000V。电机两端为滑动轴承结构,瓦宽为220mm,甩油环外径为363mm,厚度为11.5mm,宽度为30mm,质量为3060g;轴颈外径为200mm,椭圆度偏差为0.2mm。油室两侧各有一个油位计,轴承座与下轴瓦之间有一个电加热器,下轴瓦下面有一个测温元件。电机轴承的冷却方式为自然冷却。第一次试转时,甲侧引风机电机推力端轴瓦温度升高,定值保护停机;乙侧引风机电机膨胀端轴瓦温度升至报警值,为了防止设备严重损坏,手动停机。检查发现甲侧引风机电机推力端轴瓦有烧瓦现象,乙侧引风机电机膨胀端轴瓦局部有磨痕。现场消缺,重新安装后,电机试运转4h无异常现象。锅炉空气动力场试验时,2台引风机电机的轴瓦温度稳定在61.9℃(甲)、59.5℃(乙)后略微下降,转动正常。 2005年4月1日,电除尘气流分布试验过程中除电机轴瓦温度稍高外,其他正常。但是在气流分布试验快结束后,16∶ 00,62号引风机电机侧轴瓦温度快速攀升至62.4℃时;16∶ 30,61号引风机风机侧轴瓦温度快速攀升至61.2℃,都有进一步上升的趋势。为了保护设备,手动停机。2台电机气流分布试验时引风机轴瓦温升值见表1。 4月2日~4月5 日对电机轴瓦解体检查,发现2台电机端外侧和风机端外侧轴瓦均有磨瓦现象,但内侧没有磨瓦现象。同时发现油挡附近轴颈处油润滑明显不足。对瓦面作刮瓦处理试转,当温度达到56~60℃后,瓦温快速攀升。前后试运转达11次,每次情况都差不多。解瓦检查发现,瓦面痕迹一致。加大冷却油量后,不再烧瓦,但温度仍然升至62℃,并且随着气温的波动而波动。整个过程中,2台风机轴系振动很好,最大振动均为1丝左右。 2 原因分析打开轴瓦对轴承进行了仔细检查,如压力角、间隙、椭圆度等,甲、乙侧引风机电机轴承检查数据见表2。所有数据都符合规范和厂家技术要求,可以排除安装不当的原因。由于2台引风机轴系轴向、水平、垂直方向振动都很小,所以排除了轴系不对中、磁力线中心、电机基础等问题。瓦面没有被电击的痕迹,所以也排除了轴承座绝缘不够和转子磁通量轴向分布不均等原因。2台风机为同一批产品,且烧瓦发生的过程和症状非常相似,所以初步认定故障原因是一致的。由这2台引风机电机轴瓦温升高直至烧瓦整个过程,通过对原始记录的数据资料进行分析,初步判断故障是由于甩油环转动带上来的油量太少,在下瓦压力角内无法形成和保持一定厚度的油膜,导致轴颈与轴瓦接触摩擦。瓦温、油温升高后,润滑油的黏度下降,加剧了油膜的破坏,直至轴瓦与轴颈摩擦,温度急剧升高。当温度达到某一临界数值时,油膜承压能力低于轴颈压力,由此将引起恶性循环,导致轴瓦温度快速攀升。加大润滑冷却油量后,润滑油位高于轴瓦下瓦面,这虽然缓解了油膜的破坏,在一定程度上避免了轴与轴瓦的直接接触,但是此时的平衡温度达到62℃,是一种高位平衡,轴承运行风险太大。 3 改进措施(1)更换润滑油。用46号机械油代替46号透平油,目的是为了提高润滑油的黏度,使得在甩油环转动时可以带上更多的油。但高温时, 机械油黏度的下降程

滚动轴承常见故障原因分析

增刊 西 山 科 技 Supp lem en t 2001年8月 X ishan Science&T echno logy A ug.2001  技术经验 滚动轴承常见故障原因分析 王 建 国① (华化制药集团公司) 摘 要 介绍了滚动轴承的故障形式,分析了产生的原因,并提出了相应的解决方法。 关键词 滚动轴承 故障 原因 滚动轴承一般由外座圈、内座圈、滚动体和保持架等四部分组成。滚动轴承属于标准件,其类型很多,用量很大,凡是运转设备几乎都有不同类型和不同精度的滚动轴承。在生产实际中,由于各种原因,滚动轴承常出现故障,影响设备的正常运行,现对滚动轴承在运行中的常见故障作一分析,并简要介绍消除故障的方法。 1 故障形式 1)轴承转动困难、发热;2)轴承运转有异声;3)轴承产生振动;4)内座圈剥落、开裂;5)外座圈剥落、开裂;6)轴承滚道和滚动体产生压痕。 2 故障原因分析 2.1 检查不细致 轴承在装配前,要先清洗并认真检查轴承的内外座圈、滚动体和保持架,是否有生锈、毛刺、碰伤和裂纹;检查轴承间隙是否合适,转动是否轻快自如,有无突然卡住的现象;同时检查轴颈和轴承座孔的尺寸、圆度和圆柱度及其表面是否有毛刺或凹凸不平等。对于对开式轴承座,要求轴承盖和轴承底座接合面处与外座圈的外圆面之间,应留出0.1mm~0.25mm间隙,以防止外座两侧的“瓦口”处出现“夹帮”现象。若装配前检查不细致,会导致装配后的轴承运转情况不良,出现由于原始间隙太小导致的转动困难、发热;由于“夹帮”现象导致的间隙减小,磨损加快,使轴承过早损坏。 2.2 装配不当 装配不当会导致轴承出现上述的各种故障形式。装配不当有以下几种情况: 1)配合不当。轴承内孔与轴的配合采用基孔制,轴承外圆与轴承座孔的配合采用基轴制。一般在正常负荷情况下工作的离心泵、离心机、减速机、电动机和离心式压缩机的轴与轴承内座圈,采用j5、js5、js6、k5、k6、m6配合,轴承座孔与轴承外座圈采用J6、J7配合。旋转的座圈(大多数轴承的内座圈为旋转座圈,外座圈为不旋转座圈,少部分轴承则相反),通常采用过盈配合,能在负荷作用下避免座圈在轴颈或轴承座孔的配合表面上发生滚动或滑动。但有时由于轴颈和轴承座孔的尺寸测量不精确或配合面粗糙度未达到标准要求,造成过大的过盈配合,使轴承座圈受到很大剂压,从而导致轴承本身的径向间隙减少,使轴承转动困难、发热,磨损加剧或卡死,严重时会造成轴承内外座圈在安装时开裂。不旋转座圈常采用间隙或过盈不大的配合,这样不旋转座圈就有可能产生微小的爬动,而使座圈与滚动体的接触面不断更换,座圈滚道磨损均匀。同时也可以消除轴因热伸长而使轴承中滚动体发生轴向卡住的现象。但过大的间隙配合,会使不旋转座圈随滚动体一同转动,致使轴(或轴承座孔)与内座圈(或外座圈) ①作者简介:王建国 男 1963年出生 1984年毕业于太原工学院 工程师 太原 030021

高压电机尾端轴承发热原因

高压电机尾端轴承发热原因? 该帖被浏览了1847次 | 回复了10次 有一台6000V、200KW交流异步电机,更换了好几次轴承,前后都换了同型号的轴承,换完后,做空载试验,试验正常,但带载后,尾端轴承半小时后发热烧毁,负载端的轴承一直没问题,空载和带载时电流正常,都在额定值以内。都换了好几次了,每次都是尾端的轴承发热烧毁,安装工艺正确,也没跑轴承内外套。不明白到底什么原因。求各位朋友帮忙! 你的电机负载侧轴承是圆柱形轴承,尾端是向心球轴承,滚圆柱轴承无轴向受力作用,向心球轴承有轴向定位作用。 “带载后,尾端轴承半小时后发热烧毁,负载端的轴承一直没问题”,肯定是受轴向力过大,原因应该是电机与负载机械找正不对,轴向间隙不符合要求,负载机械顶死电机或拉电机(轴)。 同意二楼的说法 空载试验正常,而带负荷烧毁尾端轴承,说明安装工艺不到位,轴承间隙不达标,你应该查看安装记录,看轴向径向的间隙是多少,尤其是轴向的膨胀间隙,;另外还要看联轴器机械端的窜动顶轴!!! 前段时间我们也碰到一台电机尾端轴承故障的事,是一台立式泵,电机振动值在正常范围内,巡检听声音感觉不好,停下来检修,轴承油脂发黑,轴承间隙(叫流隙)变大。换上合格的新轴承,运行了一天,轴承抱死,132KW电机轴弯而报废! 换上新电机(轴承清洗拍加上新油),运行试车中发现振动符合要求,声音多数时间是好的,但不时来几下不好的声音!我们感觉这泵轴在(向上)撞击电机,问钳工,这种立式泵的结构和轴向定位,钳工说这种泵没有轴向定位!我们不信,找来机械工程师,可他也说是没有轴向定位!我说,泵没有轴向定位,那只有靠电机的轴给泵定位了。(因泵与电机在轴上是钢性连接,没有轴向热胀冷缩的间隙)泵和电机的轴向力全部由电机尾端(向心球)轴承承担。 泵中介质稍有变化,产生的轴向力影响轴承,第二,电机运行温度上去后,泵和电机轴热膨胀(轴变长)后,顶死电机尾端轴承。后经热膨胀计算,加大电机轴往上间隙1mm(在小端盖上加1mm垫圈)后,一切正常。现运行已近一个月,电机再也没有发生不好的声音。 同意二楼的说法 空载试验正常,而带负荷烧毁尾端轴承,说明安装工艺不到位,轴承间隙不

滚动轴承常见失效形式及原因分析

滚动轴承常见失效形式及原因分析 滚动轴承在使用过程中,由于很多原因造成其性能指标达不到使用要求时就产生了失效或损坏.常见的失效形式有疲劳剥落、磨损、塑性变形、腐蚀、烧伤、电腐蚀、保持架损坏等。 一,疲劳剥落 疲劳有许多类型,对于滚动轴承来说主要是指接触疲劳。滚动轴承套圈各滚动体表面在接触应力的反复作用下,其滚动表面金属从金属基体呈点状或片状剥落下来的现象称为疲劳剥落。点蚀也是由于材料疲劳引起一种疲劳现象,但形状尺寸很小,点蚀扩展后将形成疲劳剥落。 疲劳剥落的形态特征一般具有一定的深度和面积,使滚动表面呈凹凸不平的鳞状,有尖锐的沟角.通常呈显疲劳扩展特征的海滩装纹路.产生部位主要出现在套圈和滚动体的滚动表面。 轴承疲劳失效的机理很复杂,也出现了多种分析理论,如最大静态剪应力理论、最大动态剪应力理论、切向力理论、表面微小裂纹理论、油膜剥落理论、沟道表面弯曲理论、热应力理论等。这些理论

中没有一个理论能够全面解释疲劳的各种现象,只能对其中的部分现象作出解释。目前对疲劳失效机理比较统一的观点有: >>>>1、次表面起源型 次表面起源型认为轴承在滚动接触部位形成油膜的条件下运转时,滚动表面是以内部(次表面)为起源产生的疲劳剥落。 >>>>2、表面起源型 表面起源型认为轴承在滚动接触部位未形成油膜或在边界润滑状态下运转时,滚动表面是以表面为起源产生的疲劳剥落。 >>>>3、工程模型 工程模型认为在一般工作条件下,轴承的疲劳是次表面起源型和表面起源型共同作用的结果。 疲劳产生的原因错综复杂,影响因素也很多,有与轴承制造有关的因素,如产品设计、材料选用、制造工艺和制造质量等;也有与轴承使用有关的因素,如轴承选型、安装、配合、润滑、密封、维护等。具体因素如下:

滚动轴承地寿命计算

滚动轴承的寿命计算 一、基本额定寿命和基本额定动载荷 1、基本额定寿命L10 轴承寿命:单个滚动轴承中任一元件出现疲劳点蚀前运转的总转数或在一定转速下的工作小时数称轴承寿命。由于材料、加工精度、热处理与装配质量不可能相同,同一批轴承在同样的工作条件下,各个轴承的寿命有很大的离散性,所以,用数理统计的办法来处理。 基本额定寿命L10——同一批轴承在相同工作条件下工作,其中90%的轴承在产生疲劳点蚀前所能运转的总转数(以106为单位)或一定转速下的工作时数。(失效概率10%)。 2、基本额定动载荷C 轴承的基本额定寿命L10=1(106转)时,轴承所能承受的载荷称基本额定动载荷C。在基本额定动载荷作用下,轴承可以转106转而不发生点蚀失效的可靠度为90%。 基本额定动载荷C (1)向心轴承的C是纯径向载荷; (2)推力轴承的C是纯轴向载荷; (3)角接触球轴承和圆锥滚子轴承的C是指引起套圈间产生相对径向位移时载荷的径向分量。 二、滚动轴承的当量动载荷P 定义:将实际载荷转换为作用效果相当并与确定基本额定动载荷的载荷条件相一致的假想载荷,该假想载荷称为当量动载荷P,在当量动载荷P作用下的轴承寿命与实际联合载荷作用下的轴承寿命相同。 1.对只能承受径向载荷R的轴承(N、滚针轴承)P=F r 2.对只能承受轴向载荷A的轴承(推力球(5)和推力滚子(8))P= F a 3.同时受径向载荷R和轴向载荷A的轴承P=X F r+Y F a X——径向载荷系数,Y——轴向载荷系数,X、Y——见下表。 径向动载荷系数X和轴向动载荷系数

表12-3 考虑冲击、振动等动载荷的影响,使轴承寿命降低,引入载荷系数fp—见下表。载荷系数fp 表12-4

相关文档
相关文档 最新文档