文档库 最新最全的文档下载
当前位置:文档库 › 职高数学基础模块下册教案

职高数学基础模块下册教案

职高数学基础模块下册教案
职高数学基础模块下册教案

【课题】6.1 数列的概念

【教学目标】

知识目标:

(1)了解数列的有关概念;

(2)掌握数列的通项(一般项)和通项公式.

能力目标:

通过实例引出数列的定义,培养学生的观察能力和归纳能力.

【教学重点】

利用数列的通项公式写出数列中的任意一项并且能判断一个数是否为数列中的一项.【教学难点】

根据数列的前若干项写出它的一个通项公式.

【教学设计】

通过几个实例讲解数列及其有关概念:项、首项、项数、有穷数列和无穷数列.讲解数列的通项(一般项)和通项公式.

从几个具体实例入手,引出数列的定义.数列是按照一定次序排成的一列数.学生往往不易理解什么是“一定次序”.实际上,不论能否表述出来,只要写出来,就等于给出了“次序”,比如我们随便写出的两列数:2,1,15,3,243,23与1,15,23,2,243,3,就都是按照“一定次序”排成的一列数,因此它们就都是数列,但它们的排列“次序”不一样,因此是不同的数列.

例1和例3是基本题目,前者是利用通项公式写出数列中的项;后者是利用通项公式判断一个数是否为数列中的项,是通项公式的逆向应用.

例2是巩固性题目,指导学生分析完成.要列出项数与该项的对应关系,不能泛泛而谈,采用对应表的方法比较直观,降低了难度,学生容易接受.

【教学备品】

教学课件.

【课时安排】

2课时.(90分钟)

【教学过程】

从小到大依次取正整数时,cos

)

下角码中的数为项数,

a表示第

1

【教师教学后记】

【课题】6.2 等差数列(一)【教学目标】

知识目标:

(1)理解等差数列的定义;

(2)理解等差数列通项公式.

能力目标:

通过学习等差数列的通项公式,培养学生处理数据的能力.【教学重点】

等差数列的通项公式.

【教学难点】

等差数列通项公式的推导.

【教学设计】

本节的主要内容是等差数列的定义、等差数列的通项公式.重点是等差数列的定义、等差数列的通项公式;难点是通项公式的推导.等差数列的定义中,应特别强调“等差”的特点:d a a n n =-+1(常数).例1是基础题目,有助于学生进一步理解等差数列的定义.

教材中等差数列的通项公式的推导过程实际上是一个无限次迭代的过程,所用的归纳方法是不完全归纳法.因此,公式的正确性还应该用数学归纳法加以证明.例2是求等差数列的通项公式及其中任一项的巩固性题目,注意求公差的方法.等差数列的通项公式中含有四个量:

,

,,,1n a n d a 只要知道其中任意三个量,就可以求出另外的一个量.

【教学备品】

教学课件. 【课时安排】

2课时.(90分钟) 【教学过程】

职高数学基础模块下册第八章和第九章

数学竞赛二年级试卷 分值:120分 时间:120分 姓名: 班级: 一、选择题 1. 在正方体ABCD-A ’B’C’D’中,与棱AA ’异面的直线共有几条( ) A.4 B.6 C.8 D.10 2.已知直线()021:1=-++y x a l 与直线()0122:2=+++y a ax l 互相垂直,则实数 a 的值为( ) A. -1或2 B. -1或-2 C. 1或2 D. 1或-2 6.如果直线ax +2y+2=0与直线3x -y -2=0平行,则a 等于 ( ) A .-3 B .-6 C .2 3- D .3 2 3. 4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A.13 B.12 C.23 D.34 3.. 正方体ABCD-A ’B’C’D’中,异面直线CD ’和BC ’所成的角的度数是( ) A.45° B.60° C.90° D.120°

C C' D D'B' A' A B 、已知直线ax+by+c=0)0(≠abc 与圆x 2+y 2=1相切,则三条边长分别为|a|、|b|、|c|的三角形是 ( ) A 、锐角三角形 B 、直角三角形 C 、 钝角三角形 D 、不存在 67. 直线a 是平面α的斜线,b 在平α内,已知a 与b 成60°的角,且b 与a 在平α内的射影成45°角时,a 与α所成的角是( ) A.45° B.60° C.90° D.135° 5. 长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ) A .25π B .50π C .125π D .都不对 8. 如图,在正方体1111ABCD A B C D -中,E F G H ,,, 分别为1AA ,AB ,1BB ,11B C 的中点,则异面直线EF 与 GH 所成的角等于( ) A.45° B.60° C.90° D.120° 9. 已知两个平面垂直,下列命题 ①一个平面内的已知直线必垂直于另一个平面的任意一条直线; ②一个平面内的已知直线必垂直于另一个平面的无数条直线; ③一个平面内的任一条直线必垂直于另一个平面; ④过一个平面内任意一点作交线的垂线,则垂线必垂直于另一个平面. 其中正确的个数是( ) A.3 B.2 C.1 D. αb a O C B A A F D B C G E 1B H 1 C 1D 1A

中职数学基础模块上册

【引课】

师生共同欣赏图片“中国所有的大熊猫”、“我们班的所有同学” 师:“物以类聚”;“人以群分”;这些都给我们以集合的印象 引入课题 【新授】 课件展示引例: (1) 某学校数控班学生的全体;(2) 正数的全体; (3) 平行四边形的全体;(4) 数轴上所有点的坐标的全体。 1. 集合的概念 (1) 一般地,把一些能够确定的对象看成一个整体,我们就说,这个整体是由这些对象的全体构成的集合(简称为集); (2) 构成集合的每个对象都叫做集合的元素; (3) 集合与元素的表示方法:一个集合,通常用大写英文字母A,B,C,…表示,它的元素通常用小写英文字母a,b,c,…表示。 2. 元素与集合的关系 (1) 如果a 是集合A 的元素,就说a属于A,记作a∈A,读作“a属于A” (2)如果a不是集合A的元素,就说a不属于A,记作a?A读作“a不属于A” 3. 集合中元素的特性 (1)确定性:作为集合的元素,必须是能够确定的这就是说,不能确定的对象,就不能构成集合 (2) 互异性:对于一个给定的集合,集合中的元素是互异的这就是说,集合中的任何两个元素都是不同的对象 4. 集合的分类

(1) 有限集:含有有限个元素的集合叫做有限集 (2) 无限集:含有无限个元素的集合叫做无限集 5. 常用数集及其记法 (1) 自然数集:非负整数全体构成的集合,记作N; (2) 正整数集:非负整数集内排除0的集合,记作N+或N*; (3) 整数集:整数全体构成的集合,记作Z; (4) 有理数集:有理数全体构成的集合,记作Q; (5) 实数集:实数全体构成的集合,记作R。 【巩固】 例1判断下列语句能否构成一个集合,并说明理由 (1) 小于10 的自然数的全体;(2) 某校高一(2)班所有性格开朗的男生; (3) 英文的26 个大写字母;(4) 非常接近1 的实数。 练习1判断下列语句是否正确: (1) 由2,2,3,3构成一个集合,此集合共有4个元素; (2) 所有三角形构成的集合是无限集; (3) 周长为20 cm 的三角形构成的集合是有限集; (4) 如果a ∈Q,b ∈Q,则a+b ∈Q。 例2用符号“∈”或“?”填空: (1) 1N,0N,-4N,0.3N;(2) 1Z,0Z,-4Z,0.3Z; (3) 1Q,0Q,-4Q,0.3Q;(4) 1R,0R,-4R,0.3R。 练习2用符号“∈”或“?”填空:

[数学]高教版中职教材—数学基础模块下册电子教案设计

[数学]高教版中职教材—数学基础模块下册电子教案设计 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

【课题】6.1 数列的概念 【教学目标】 知识目标: (1)了解数列的有关概念; (2)掌握数列的通项(一般项)和通项公式. 能力目标: 通过实例引出数列的定义,培养学生的观察能力和归纳能力. 【教学重点】 利用数列的通项公式写出数列中的任意一项并且能判断一个数是否为数列中的一项. 【教学难点】 根据数列的前若干项写出它的一个通项公式. 【教学设计】 通过几个实例讲解数列及其有关概念:项、首项、项数、有穷数列和无穷数列.讲解数列的通项(一般项)和通项公式. 从几个具体实例入手,引出数列的定义.数列是按照一定次序排成的一列数.学生往往不易理解什么是“一定次序”.实际上,不论能否表述出来,只要写出来,就等于给出了“次序”,比如我们随便写出的两列数:2,1,15,3,243,23与1,15,23,2,243,3,就都是按照“一定次序”排成的一列数,因此它们就都是数列,但它们的排列“次序”不一样,因此是不同的数列. 例1和例3是基本题目,前者是利用通项公式写出数列中的项;后者是利用通项公式判断一个数是否为数列中的项,是通项公式的逆向应用.例2是巩固性题目,指导学生分析完成.要列出项数与该项的对应关系,不能泛泛而谈,采用对应表的方法比较直观,降低了难度,学生容易接受. 【教学备品】 教学课件. 【课时安排】 2课时.(90分钟)

【教学过程】

.其中,下角码中的数为项数, a表示第 1 项,….当n由小至大依次取正整数

中职数学基础模块上册(人教版)全套教案

中职数学基础模块上册(人教版)全套教案 目录 第一章集合 (3) 1.1.1 集合的概念 (3) 1.1.2 集合的表示方法 (7) 1.1.3 集合之间的关系(一) (11) 1.1.3 集合之间的关系(二) (15) 1.1.4 集合的运算(一) (18) 1.1.4 集合的运算(二) (23) 1.2.1 充要条件 (26) 1.2.2 子集与推出的关系 (30) 第二章不等式 (33) 2.1.1 实数的大小 (33) 2.1.2 不等式的性质 (37) 2.2.1 区间的概念 (41) 2.2.2 一元一次不等式(组)的解法 (45) 2.2.3 一元二次不等式的解法(一) (49) 2.2.3 一元二次不等式的解法(二) (52) 2.2.4 含有绝对值的不等式 (56) 2.3 不等式的应用 (59) 第三章函数 (62) 3.1.1 函数的概念 (62) 3.1.2 函数的表示方法 (67) 3.1.3 函数的单调性 (71) 3.1.4 函数的奇偶性 (75) 3.2.1 一次、二次问题 (80) 3.2.2 一次函数模型 (83) 3.2.3 二次函数模型 (87) 3.3 函数的应用 (92) 第四章指数函数与对数函数 (95) 4.1.1 有理指数(一) (95) 4.1.1 有理指数(二) (99) 4.1.2 幂函数举例 (104) 4.1.3 指数函数 (108) 4.2.1 对数 (113) 4.2.2 积、商、幂的对数 (116) 4.2.3 换底公式与自然对数 (120) 4.2.4 对数函数 (123) 4.3 指数、对数函数的应用 (127) 第五章三角函数 (130)

(完整word版)职高数学基础模块下册复习题

第六章:数列 1. 选择题: (1) 已知数列{a n }的通项公式为a n =2n-5,那么a 2n =( )。 A 2n-5 B 4n-5 C 2n-10 D 4n-10 (2)等差数列-7/2,-3,-5/2,-2,··第n+1项为( ) A )7(21-n B )4(21-n C 42-n D 72 -n (3)在等差数列{ a n }中,已知S 3=36,则a 2=( ) A 18 B 12 C 9 D 6 (4)在等比数列{a n }中,已知a 2=2,a 5=6,则a 8=( ) A 10 B 12 C 18 D 24 2.填空题: (1)数列0,3,8,15,24,…的一个通项公式为_________________. (2)数列的通项公式为a n =(-1)n+1?2+n,则a 10=_________________. (3)等差数列-1,2,5,…的一个通项公式为________________. (4)等比数列10,1, 10 1,…的一个通项公式为______________. 3.数列的通项公式为a n =sin ,4πn 写出数列的前5项。 4.在等差数列{ a n }中,a 1=2,a 7=20,求S 1 5. 5.在等比数列{ a n }中,a 5=43,q=2 1-,求S 7. 6. 已知本金p=1000元,每期利i=2%,期数n=5,按复利计息,求到期后的本利和 7. 在同一根轴上安装五个滑轮,它们的直径成等差数,最小与最大的滑轮直径分别为 120厘米与216厘米,求中间三个滑轮的直径.

第七章:向量 1. 选择题: (1)平面向量定义的要素是( ) A 大小和起点 B 方向和起点 C 大小和方向 D 大小、方向和起点 (2)--等于( ) A 2 B 2 C D 0 (3)下列说法不正确的是( ). A 零向量和任何向量平行 B 平面上任意三点A 、B 、 C ,一定有AC BC AB =+ C 若)(R m m ∈=,则// D 若2211,e x e x ==,当21x x =时,= (4)设点A (a 1,a 2 )及点B (b 1,b 2),则的坐标是( ) A (2211,b a b a --) B (2121,b b a a --) C (2211,a b a b --) D (1212,b b a a --) (5)若?=-4,||=2,||=22,则<,>是( ) A ο0 B ο90 C ο180 D ο 270 (6)下列各对向量中互相垂直的是( ) A )5,3(),2,4(-== B )3,4(),4,3(=-= C )5,2(),2,5(--== D )2,3(),3,2(-=-= 2. 填空题: (1)BC CD AB ++=______________. (2)已知2(+)=3(-),则=_____________. (3)向量,的坐标分别为(2,-1),(-1,3),则b a +的坐标_______, 23+的坐标为__________. (4)已知A (-3,6),B (3,-6),则=__________,||=____________. (5)已知三点A (3+1,1),B (1,1),C (1,2),则<,>=_________.

中职数学基础模块下册第六单元《数列》word教案

第六章 数 列 教学设计 课题1 数 列 【教学目标】 1.理解数列的概念. 2.掌握通项公式的求法以及由通项公式求项. 【教学重点】 数列的概念. 【教学难点】 求数列的通项公式. 【教学过程】 (一)引言 有关数列的研究有文字记载的已有五千年的历史了.在我国宋代数列研究的发展水平就很高了.那么,到底什么叫数列呢?下面我们来学习. (二)数列的定义 首先大家来看以下实例: (1)在沙滩上用小石子摆成正方形的形状,所用的石子数分别是 1,4,9,16. (2)正整数1,2,3,4,5的倒数排成一列数:1,12,13,14,1 5. (3)-1的1次方,2次方,3次方,4次方,…排成一列数: -1,1,-1,1,…. (4)无穷多个5排成一列数:5,5,5,5,…. 定义:按一定次序排列的一列数叫做数列.数列中的每一个数叫做这个数列的项.其中,项数有限的数列叫有穷数列,如(1),(2).项数无限的数列叫无穷数列,如(3),(4).

(三)数列的表示方法 项:1,4,9,16. 序号:1,2,3,4. 在数列相应序号位置上的项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,…,并依次用a 1,a 2,a 3,…,a n ,…来表示.数列简记为{a n }.其中a n 叫数列的通项. 如:2,3,4,5,…n +1,… 简记为数列{n +1}.(5) 1,12,13,14,…1n ,… 简记为数列???? ?? 1n . (6) 定义:如果数列{a n }的第n 项a n 与序号n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式. 如:(5)a n =n +1,(6)a n =1 n . (四)数列概念的应用 例1 已知下面数列{a n }的通项公式,分别写出它们的前5项和第10项: (1)a n =2n 2n +1 ; (2)a n =(-1)n ·(2n -1). 解:(1)在通项公式中依次取n =1,2,3,4,5,10,可得到a 1=23,a 2=45,a 3=6 7 , a 4=89,a 5=1011,a 10=2021 . (2)在通项公式中依次取n =1,2,3,4,5,10,可得到a 1=-1,a 2=3,a 3=-5,a 4=7,a 5=-9,a 10=19. 例2 写出下面数列的一个通项公式,使它的前4项分别是下列各数: (1)3,5,7,9; (2)22-12,32-13,42-14,52-15; (3)11×2,-12×3,13×4,-1 4×5 . 解:(1)这个数列的前4项都是序号的2倍加上1,所以它的一个通项公式是a n =2n +1; (2)这个数列的前4项的分母都是序号加上1,分子是分母的平方减去1,所以它的一 个通项公式是a n =(n +1)2-1 n +1; (3)这个数列的前4项的绝对值都等于序号与序号加上1的积的倒数且奇数项为正, 偶数项为负,所以它的一个通项公式是a n =(-1)n + 1 n(n +1) . (五)练习 1.根据下面数列{a n }的通项公式,说出它们的前5项: (1)a n =1 n 2; (2)a n =10n ;

中职数学基础模块上册教案

中职数学(基础模块)教案 1.1集合的概念 知识目标:(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法,会用适当的方法表示集合. 能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.教学重点:集合的表示法. 教学难点:集合表示法的选择与规范书写. 课时安排:2课时. 1.2集合之间的关系 知识目标:(1)掌握子集、真子集的概念;(2)掌握两个集合相等的概念;(3)会判断集合之间的关系. 能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.教学重点:集合与集合间的关系及其相关符号表示. 教学难点:真子集的概念. 课时安排:2课时. 1.3集合的运算(1) 知识目标:(1)理解并集与交集的概念;(2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力. 教学重点:交集与并集. 教学难点:用描述法表示集合的交集与并集. 课时安排:2课时. 1.3集合的运算(2)

知识目标:(1)理解全集与补集的概念;(2)会求集合的补集. 能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过全集与补集问题的研究,培养学生的数学思维能力. 教学重点:集合的补运算. 教学难点:集合并、交、补的综合运算. 课时安排:2课时. 1.4充要条件 知识目标:了解“充分条件”、“必要条件”及“充要条件”. 能力目标:通过对条件与结论的研究与判断,培养思维能力. 教学重点:(1)对“充分条件”、“必要条件”及“充要条件”的理解.(2)符号“”,“”,“”的正确使用. 教学难点:“充分条件”、“必要条件”、“充要条件”的判定. 课时安排:2课时. 2.1不等式的基本性质 知识目标:⑴理解不等式的基本性质;⑵了解不等式基本性质的应用.能力目标:⑴了解比较两个实数大小的方法;⑵培养学生的数学思维能力和计算技能. 教学重点:⑴比较两个实数大小的方法;⑵不等式的基本性质. 教学难点:比较两个实数大小的方法. 课时安排:1课时. 2.2区间 知识目标:⑴掌握区间的概念;⑵用区间表示相关的集合.

高教版中职数学基础模块下册8-精品

高教版中职数学基础模块下册8-精品 2020-12-12 【关键字】方法、条件、问题、难点、掌握、特点、位置、思想、基础、重点、能力、方式、关系、分析、倾斜、教育、解决、巩固 【教学目标】 知识目标: (1)掌握两条直线平行的条件; (2)能应用两条直线平行的条件解题. 能力目标: 培养学生的数学思维及分析问题和解决问题的能力. 【教学重点】 两条直线平行的条件. 【教学难点】 两条直线平行的判断及应用. 【教学设计】 从初中平面几何中两条直线平行的知识出发,通过“数”“形”结合的方式,讲解两条直线平行的判定方法,介绍两条直线平行的条件,学生容易接受.知识讲解的顺序为:. 两条直线平行?同位角相等?倾斜角相等? 90 90 ?≠? ? =? ? α α 倾斜角斜率相等; 倾斜角斜率都不存在. 教材都是采用利用“斜率与截距”判断位置关系的方法.其步骤为:首先将直线方程化成斜截式方程,再比较斜率与截距进行位置关系的判断.例1就是这种方法的巩固性题目.考虑到学生的实际状况和职业教育的特点,教材没有介绍利用直线的一般式方程来判断两条直线的位置关系. 例2是利用平行条件求直线的方程的题目,属于基础性题.首先利用平行条件求出直线的斜率,从而写出直线的点斜式方程,最后将方程化为一般式方程.简单的解决问题的过程,蕴含着“解析法”的数学思想,要挖掘. 【教学备品】 教学课件. 【课时安排】 2课时.(90分钟) 【教学过程】

过 程 行为 行为 意图 间 *揭示课题 8.3 两条直线的位置关系(一) *创设情境 兴趣导入 【知识回顾】 我们知道,平面内两条直线的位置关系有三种:平行、相交、重合.并且知道,两条直线都与第三条直线相交时,“同位角相等”是“这两条直线平行”的充要条件. 【问题】 两条直线平行,它们的斜率之间存在什么联系呢? 介绍 质疑 引导 分析 了解 思考 启发 学生思考 0 10 *动脑思考 探索新知 【新知识】 当两条直线1l 、2l 的斜率都存在且都不为0时(如图8-11(1)),如果直线1l 平行于直线2l ,那么这两条直线与x 轴相交的同位角相等,即直线的倾角相等,故两条直线的斜率相等;反过来,如果直线的斜率相等,那么这两条直线的倾角相等,即两条直线与x 轴相交的同位角相等,故两直线平行. 当直线1l 、2l 的斜率都是0时(如图8-11(2)),两条直线都 与x 轴平行,所以1l //2l . 当两条直线1l 、2l 的斜率都不存在时(如图8-11(3)),直线1l 与直线2l 都与x 轴垂直,所以直线1l // 直线2l . 讲解 说明 引领 分析 思考 理解 带领 学生 分析 图8-11 (1)

中职数学基础模块9.4.5球教学设计教案人教版

课时教学设计首页(试用) 第页(总页)

课时教学流程 ☆补充设计☆ 教师行为 导入 问题下面的物体呈什么形状? 新课 1 .球的概念与性质 半圆以它的直径为旋转轴,旋转一周所形成的曲面叫做球面?球面所围成的几何体,叫做球体,简称球. 球的各个元素(如图所示): (1)球心; (2)球的半径; 球的表示方法:用表示球心的字母表示,如球0. 球面可以看作空间中与定点(球心)距离等于定长(半径)的点的全体构成的集合(轨迹),同样,球体也可以看作空间中与定点距离等于或小于定长的点的全体构成的集合. 用一个平面去截一个球,截面是圆面: (1)球心和截面圆心的连线垂直于截面; (2)球心到截面的距离d与球的半径r,有下面的关系: 球面被经过球心的平面截得的圆叫做球的大圆,被不经过球心 的平面截得的圆叫做球的小圆. 知识拓展: 学生行为 教师呈现有关 球的图片. 学生结合图片 以及实际生活经验, 举出更多关于球的 例子. 师:球是由什么 图形旋转而来的? 生:圆,半圆. 教师结合直观 图讲解球的各个元 素. 师:仿照初中圆 的定义,你能给出球 面的另一种定义吗? 强调注意球体与 球面的联系与区别. 结合图形,引导 学生作出辅助线,利 用勾股定理得到结论. 教师可借助地 球仪,帮助学生理解 概念. 设计意图 由丰富的 图片和实物出 发,激发学生兴 趣. 理解定 义,体会旋转体 动态形成的过 程. 由具体的 实物到抽象的直 观图,培养学生 的空间想象能 力. 看懂球的 截面直观图要求 学生有较高的空 间想象能力,教 师可以利用模型 帮助学生理解.

课时教学流程 过南北极的半大圆是经线,平行于赤道的小圆是纬线. 南极 北极 球面上两点之间的最短距离,就是经过两点的大圆在这两点 间的一段劣弧的长度,我们把这个弧长叫做两点的球面距离. 例1我国首都北京靠近北纬40纬线上,求北纬40纬线的长度.(地 球半径约为6 370 km) 解:如图,设A是北纬40圈上的一点,AK是它的半径,所以 OK丄AK . 设c是北纬40的纬线长,因为 / AOB=Z OAK =40 , 所以 c = 2 二? AK =2 r: - OAcos/ OAK =2 -: - OAcos 40 ?2 X 3.141 6 X 6 370 X 0.766 0, ~ 30 658 ( km). 即北纬40纬线长约为30 658 km. 2 .球的表面积 由球的半径R计算球表面积S的公式为 ? 2 S= 4 ~R . 例2已知圆柱的底面直径与高都等于球的直径,求证: (1)球的表面积等于圆柱的侧面积; (2)球的表面积等于圆柱全面积的 证明 (1)设球的半径为R,依题意圆柱的底半径也是 R,圆柱的高为2R. 因 为 师:假如你要乘 坐从济南直飞广州的 飞机,设想一下,它 应该沿着怎样的航线 飞行呢?航程大约是 多少呢? (1) 济南和广州间 的距离是一条线段的 长吗? (2) 经过球面上 的这两点有多少条弧 呢? (3) 这无数条弧 中,长度最短的是哪 条? 教师分析,从立 体图形中抽象到平面 图形,引导学生用初 中所学知识解决问题. 学生在教师的 引导下,逐步完成证 明过程. 借助这个 例题,教师再次 强调将立体几何 问题转化为平面 几何问题的思 路.

数学基础模块下册-教学设计

6.1.1 数列的定义 【教学目标】 1. 理解数列的有关概念和通项公式的意义. 2. 了理解数列与函数的关系,培养学生观察分析的能力. 3. 使学生体会数学与生活的密切联系,提高数学学习的兴趣. 【教学重点】 数列的概念及其通项公式. 【教学难点】 数列通项公式的概念. 【教学方法】 这节课主要采用情景教学法.利用多媒体,在教师的引导下,根据学生的认知水平,设计了创设情境——引入概念,观察归纳——形成概念,讨论研究——深化概念,即时训练——巩固新知等环节.各步骤环环相扣,层层深入,引导学生体会数学概念形成过程中所蕴涵的数学方法,使之获得内心感受.【教学过程】 环节教学内容师生互动设计意图 导入 1.讲故事,感受数列 2.提出问题,引入新课 我国有用十二生肖纪年的习俗,每 年都用一种动物来命名,12年轮回一 次.2009年(农历乙丑年)是21世纪的 第一个牛年,请列出21世纪所有牛年的 年份. 教师讲述古印度传说故事 《棋盘上的麦粒》. 学生倾听故事,认识数列. 教师提出问题. 学生分组讨论,找出问题 的答案. 创设情境,让学 生认识数列,激发学 生的好奇心,增强学 生的学习兴趣. 提出和本节课 密切相关的问题,让 学生思考,充分发挥 学习小组的作用,展 开讨论. 新课 1.数列的定义 把21世纪所有牛年的年份排成一 列,得到 2 009,2 021,2 033,2 045,2 057, 2 069,2 081,2 093.① 像①这样按一定次序排列的一列 数,叫做数列. 教师在学生探究的基础 上,给出问题的答案. 教师板书定义.

6.1.2 数列的通项 【教学目标】 1. 理解数列的通项公式的意义,能根据通项公式写出数列的任意一项,以及根据其前几项写出它的一个通项公式. 2. 了解数列的递推公式,会根据数列的递推公式写出前几项. 3. 培养学生积极参与、大胆探索的精神,培养学生的观察、分析、归纳的能力. 【教学重点】 数列的通项公式及其应用. 【教学难点】 根据数列的前几项写出满足条件的数列的一个通项公式. 【教学方法】 本节课主要采用例题解决法.通过列举实例,进一步研究数列的项与序号之间的关系.通过三类题目,使学生深刻理解数列通项公式的意义,为以后学习等差数列与等比数列打下基础. 【教学过程】

职高数学基础模块下册复习题及答案

复习题6 1. 选择题: (1) 已知数列{a n }的通项公式为a n =2n-5,那么a 2n =( B )。 A 2n-5 B 4n-5 C 2n-10 D 4n-10 (2)等差数列-7/2,-3,-5/2,-2,··第n+1项为( A ) A )7(21-n B )4(21-n C 42-n D 72 -n (3)在等差数列{ a n }中,已知S 3=36,则a 2=( B ) A 18 B 12 C 9 D 6 (4)在等比数列{a n }中,已知a 2=2,a 5=6,则a 8=( C ) A 10 B 12 C 18 D 24 2.填空题: (1)数列0,3,8,15,24,…的一个通项公式为an=n^2-1. (2)数列的通项公式为a n =(-1)n+1?2+n,则a 10=8. (3)等差数列-1,2,5,…的一个通项公式为an=3n-4. (4)等比数列10,1, 10 1,…的一个通项公式为an=10^(2-n) 3.数列的通项公式为a n =sin ,4πn 写出数列的前5项。 解:sin π/4=根号2/2 sin π/2=1 sin 3π/4=根号2/2 sin π =0 sin 5π/4=-根号2/2 4.在等差数列{ a n }中,a 1=2,a 7=20,求S 1 5. 解:an=a1+(n-1)d a1=2 a7=a1+(7-1)d 20=2+6d 所以d=3 sn=na1+n(n-1)/2*d 所以s15=15*2+15*14/2*3=345 5.在等比数列{ a n }中,a 5=43,q=2 1-,求S 7. 解:a5=a1*q^(5-1),∴a1=12

中职数学基础模块下册概率与统计初步练习题及答案

概率与统计初步 例1、某商场有4个大门,若从一个门进去,购买商品后再从另一个门出去,不同的走法共有多少种 解:4×3=12 例2.指出下列事件是必然事件,不可能事件,还是随机事件 ①某乒乓球运动员在某运动会上获得冠军。 ②掷一颗骰子出现8点。 ③如果0 a=。 a,则b -b = ④某人买某一期的体育彩票中奖。 解:①④为随机事件,②是不可能事件,③是必然事件。 例3.某活动小组有20名同学,其中男生15人,女生5人,现从中任选3人组成代表队参加比赛, A表示“至少有1名女生代表”,求) P。 (A 解:) P=15×14×13/20×19×18=273/584 (A 例4.在50件产品中,有5件次品,现从中任取2件。以下四对事件哪些是互斥事件哪些是对立事件哪些不是互斥事件 ①恰有1件次品和恰有2件次品互斥事件 ②至少有1件次品和至少有1件正品不是互斥事件 ③最多有1件次品和至少有1件正品不是互斥事件 ④至少有1件次品和全是正品对立事件 例5.从1,2,3,4,5,6六个数字中任取两个数,计算它们都是偶数的概率。 解:P(A)=3×2/6×5=1/5

例6.抛掷两颗骰子,求:①总点数出现5点的概率;②出现两个相同点数的概率。 解:容易看出基本事件的总数是6×6=36(个),所以基本事件总数n=36. (1)记“点数之和出现5点”的事件为A,事件A 包含的基本事件共6个:(1,4)、(2,3)、(3,2)、 (4,1)、,所以P(A)=.4/36=1/9 (2)记“出现两个相同的点”的事件为B,则事件B 包含的基本事件有6个:(1,1)、(2,2)、(3,3)、(4,4)、(5,5)、(6,6).所以P(B)=6/36=1/6 例7.甲、乙两人各进行一次射击,如果两人击中目标的概率都是,计算: ①两人都未击中目标的概率; ②两人都击中目标的概率; ③其中恰有1人击中目标的概率; ④至少有1人击中目标的概率。 解:A={甲射击一次,击中目标},B={乙射击一次,击中目标} (1)16 .04.04.0)()()(=?==B P A P B A P (2) 36.06.06.0)()()(=?==B P A P AB P (3)48.04.06.06.04.0)()(=?+?=+B A P B A P (4)84.016.01)(1=-=-B A P 例8.种植某种树苗成活率为,现种植5棵。试求: ①全部成活的概率; ②全部死亡的概率; ③恰好成活4棵的概率; ④至少成活3棵的概率。 解:(1)××××=

人教版中职数学基础模块上册 -第一章集合教案

1.1.1 集合的概念 【教学目标】 1. 初步理解集合的概念;理解集合中元素的性质. 2. 初步理解“属于”关系的意义;知道常用数集的概念及其记法. 3. 引导学生发现问题和提出问题,培养独立思考和创造性地解决问题的意识. 【教学重点】 集合的基本概念,元素与集合的关系. 【教学难点】 正确理解集合的概念. 【教学方法】 本节课采用问题教学和讲练结合的教学方法,运用现代化教学手段,通过创设情景,引导学生自己独立地去发现、分析、归纳,形成概念. 【教学过程】 环节教学内容师生互动设计意图 导入 师生共同欣赏图片“中国所有的大 熊猫”、“我们班的所有同学”. 师:“物以类聚”;“人以 群分”;这些都给我们以集合的 印象. 引入课题. 联系实际; 激发兴趣. 新课课件展示引例: (1) 某学校数控班学生的全体; (2) 正数的全体; (3) 平行四边形的全体; (4) 数轴上所有点的坐标的全体. 师:每个例子中的“全体” 是由哪些对象构成的?这些对 象是否确定? 你能举出类似的几个例子 吗? 学生回答. 教师引导学生阅读教材,提 出问题如下: (1) 集合、元素的概念是如 何定义的? (2) 集合与元素之间的关 系为何?是用什么符号表示 的? (3) 集合中元素的特性是 什么? (4) 集合的分类有哪些? (5) 常用数集如何表示? 教师检查学生自学情况,梳 从具体事例直观 感知集合,为给出集 合的定义做好准备. 老师提出问题, 放手让学生自学,培 养自学能力,提高学 生的学习能力. 检查自学、梳理 知识阶段,穿插讲解 1

新课1. 集合的概念. (1) 一般地,把一些能够确定的对 象看成一个整体,我们就说,这个整体 是由这些对象的全体构成的集合(简称 为集). (2) 构成集合的每个对象都叫做集 合的元素. (3) 集合与元素的表示方法:一个 集合,通常用大写英文字母A,B,C,… 表示,它的元素通常用小写英文字母 a,b,c,…表示. 2. 元素与集合的关系. (1) 如果a 是集合A 的元素,就 说a属于A,记作a∈A,读作“a属于A”. (2)如果a不是集合A的元素,就说 a不属于A,记作a?A.读作“a不属 于A”. 3. 集合中元素的特性. (1) 确定性:作为集合的元素,必 须是能够确定的.这就是说,不能确定 的对象,就不能构成集合. (2) 互异性:对于一个给定的集合, 集合中的元素是互异的.这就是说,集 合中的任何两个元素都是不同的对象. 4. 集合的分类. (1) 有限集:含有有限个元素的集 合叫做有限集. (2) 无限集:含有无限个元素的集 合叫做无限集. 5. 常用数集及其记法. (1) 自然数集:非负整数全体构成 的集合,记作N; (2) 正整数集:非负整数集内排除0 的集合,记作N+或N*; 理本节课知识,并强调要注意的 问题. 教师要把集合与元素的定 义分析透彻. 请同学举出一些集合的例 子,并说出所举例子中的元素. 教师强调:“∈”的开口方 向,不能把a∈A颠倒过来写. 教师强调集合元素的确定 性.师:高一(1)班高个子同学 的全体能否构成集合? 生:不能构成集合.这是由 于没有规定多高才算是高个子, 因而“高个子同学”不能确定. 教师强调:相同的对象归入 同一个集合时只能算作集合的 一个元素. 请学生试举有限集和无限 集的例子. 师:说出自然数集与非负整 数集的关系. 生:自然数集与非负整数集 是相同的. 师:也就是说,自然数集包 括数0. 解难点、强调重点、 举例说明疑点等环 节,使学生真正掌握 所学知识. 2

中职数学基础模块下册《等差数列》公开课教案

嘉兴市中职数学教研活动 数学公开课教案 授课教师:孙贤授课班级:1203班授课时间:2013年4月17日 ---------------------------------------------------------------------------------------------------------------------------------------------- 等差数列的概念 教学目标:1、明确等差数列的定义,掌握等差数列的通项公式; 2、会解决知道、、d、n中的三个,求另一个的问题 教学重点:等差树立的概念,等差数列的通项公式 教学难点:等差数列的性质 教学课型:新授课 教学课时:1课时 教学道具:多媒体、投影仪 教学过程: 一.知识回顾 数列的定义、通项公式。 二.情景引入 ○1Tom觉得自己英语成绩很差,目前他的单词量只有yes,no,you,me,he5个。他决定从今天起每天背起10个单词,那么从今天开始,他的单词量逐日增加,依次为:5,15,25,35,45,…… (问:多少天后他的单词量达到995个?) ○2Linda很喜欢画画,可总是画不好排成一列的柱子的透视图,老师启发她:第一根柱子100mm,第二根90mm,第三根80mm,第四根70mm,……(你能帮Linda总结一下规律吗?) 从上面两个例子中,我们分别得到两个数列: ○15,15,25,35,45,……和○2100,90,80,70,…… 请同学们仔细观察一下,看看以上两个数列有什么共同特征? 共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差),我们给具有这种特征的数列一个名字——等差数列。 三.讲解新课:

中职数学基础模块[精品全套]

人教版中职数学教材基础模块上册全册教案 目录 第三章函数 (1) 3.1.1 函数的概念 (1) 3.1.2 函数的表示方法 (5) 3.1.3 函数的单调性 (8) 3.1.4 函数的奇偶性 (13) 3.2.1 一次、二次问题 (17) 3.2.2 一次函数模型 (20) 3.2.3 二次函数模型 (24) 3.3 函数的应用 (28) 第四章指数函数与对数函数 (30) 4.1.1 有理指数(一) (30) 4.1.1 有理指数(二) (34) 4.1.2 幂函数举例 (38) 4.1.3 指数函数 (41) 4.2.1 对数 (45) 4.2.2 积、商、幂的对数 (48) 4.2.3 换底公式与自然对数 (52) 4.2.4 对数函数 (54) 4.3 指数、对数函数的应用 (57) 第五章三角函数 (60) 5.1.1 角的概念的推广 (60) 5.1.2 弧度制 (64) 5.2.1 任意角三角函数的定义 (67) 5.2.2 同角三角函数的基本关系式 (71) 5.2.3 诱导公式 (75) 5.3.1 正弦函数的图象和性质 (80) 5.3.2 余弦函数的图象和性质 (84) 5.3.3 已知三角函数值求角 (87) .

第三章函数 3.1.1函数的概念 【教学目标】 1. 理解函数的概念,会求简单函数的定义域. 2. 理解函数符号y=f (x)的意义,会求函数在x=a处的函数值. 3. 通过教学,渗透一切事物相互联系和相互制约的辩证唯物主义观点. 【教学重点】 函数的概念及两要素,会求函数在x=a处的函数值,求简单函数的定义域. 【教学难点】 用集合的观点理解函数的概念. 【教学方法】 这节课主要采用问题解决法和分组教学法.运用现代化教学手段,通过两个实例,分析抽象出函数概念,使学生更容易理解函数关系的实质以及函数两要素.然后通过求函数值与定义域的两类题目,深化对函数概念的理解.

中职数学基础模块下册-概率与统计初步练习题及答案

概率与统计初步 例1、某商场有4个大门,若从一个门进去,购买商品后再从另一个门出去,不同的走法共有多少 种? 解:4×3=12 例2.指出下列事件是必然事件,不可能事件,还是随机事件? ①某乒乓球运动员在某运动会上获得冠军。 ②掷一颗骰子出现8点。 ③如果0=-b a ,则b a =。 ④某人买某一期的体育彩票中奖。 解:①④为随机事件,②是不可能事件,③是必然事件。 例3.某活动小组有20名同学,其中男生15人,女生5人,现从中任选3人组成代表队参加比赛, A 表示“至少有1名女生代表”,求)(A P 。 解:)(A P =15×14×13/20×19×18=273/584 例4.在50件产品中,有5件次品,现从中任取2件。以下四对事件哪些是互斥事件?哪些是对立 事件?哪些不是互斥事件? ①恰有1件次品和恰有2件次品 互斥事件 ②至少有1件次品和至少有1件正品 不是互斥事件 ③最多有1件次品和至少有1件正品 不是互斥事件 ④至少有1件次品和全是正品 对立事件 例5.从1,2,3,4,5,6六个数字中任取两个数,计算它们都是偶数的概率。 解:P(A)=3×2/6×5=1/5 例6.抛掷两颗骰子,求:①总点数出现5点的概率;②出现两个相同点数的概率。 解:容易看出基本事件的总数是6×6=36(个),所以基本事件总数n=36. (1)记“点数之和出现5点”的事件为A,事件A 包含的基本事件共6个:(1,4)、(2,3)、(3,2)、 (4,1)、,所以P(A)=.4/36=1/9 (2)记“出现两个相同的点”的事件为B,则事件B 包含的基本事件有6个:(1,1)、(2,2)、(3,3)、(4,4)、(5,5)、(6,6).所以P(B)=6/36=1/6 例7.甲、乙两人各进行一次射击,如果两人击中目标的概率都是0.6,计算: ①两人都未击中目标的概率; ②两人都击中目标的概率; ③其中恰有1人击中目标的概率; ④至少有1人击中目标的概率。 解:A={甲射击一次,击中目标},B={乙射击一次,击中目标} (1)16.04.04.0)()()(=?==B P A P B A P (2) 36.06.06.0)()()(=?==B P A P AB P (3)48.04.06.06.04.0)()(=?+?=+B A P B A P

高教版中职数学(基础模块)下册7.1《平面向量的概念及线性运算》word教案

【课题】7.1 平面向量的概念及线性运算 【教学目标】 知识目标: (1)了解向量的概念; (2)理解平面向量的线性运算; (3)了解共线向量的充要条件 能力目标: (1)能将生活中的一些简单问题抽象为向量问题; (2)正确进行平面向量的线性运算,并作出相应的图形; (3)应用共线向量的充要条件判断两个向量是否共线; (4)通过相关问题的解决,培养计算技能和数学思维能力 情感目标: (1)经历利用有向线段研究向量的过程,发展“数形结合”的思维习惯. (2)经历合作学习的过程,树立团队合作意识. 【教学重点】 向量的线性运算. 【教学难点】 已知两个向量,求这两个向量的差向量以及非零向量平行的充要条件. 【教学设计】 从“不同方向的力作用于小车,产生运动的效果不同”的实际问题引入概念. 向量不同于数量,数量是只有大小的量,而向量既有大小、又有方向.教材中用有向线段来直观的表示向量,有向线段的长度叫做向量的模,有向线段的方向表示向量的方向.数量可以比较大小,而向量不能比较大小,记号“a >b ”没有意义,而“︱a ︱>︱b ︱”才是有意义的. 教材通过生活实例,借助于位移来引入向量的加法运算.向量的加法有三角形法则与平行四边形法则. 向量的减法是在负向量的基础上,通过向量的加法来定义的.即a -b =a +(-b ),它可以通过几何作图的方法得到,即a -b 可表示为从向量b 的终点指向向量a 的终点的向量.作向量减法时,必须将两个向量平移至同一起点. 实数λ乘以非零向量a ,是数乘运算,其结果记作λa ,它是一个向量,其方向与向量a 相同,其模为a 的λ倍.由此得到λ?=a b a b ∥.对向量共线的充要条件,要特别注意“非零向量a 、b ”与“0λ≠ ”等条件. 【教学备品】

中职数学基础模块下册《等差数列》word公开课教案

等差数列的概念 教学目标:1、明确等差数列的定义,掌握等差数列的通项公式; 2、会解决知道、、d、n中的三个,求另一个的问题 教学重点:等差树立的概念,等差数列的通项公式 教学难点:等差数列的性质 教学课型:新授课 教学课时:1课时 教学道具:多媒体、投影仪 教学过程: 一.知识回顾 数列的定义、通项公式。 二.情景引入 ○1Tom觉得自己英语成绩很差,目前他的单词量只有yes,no,you,me,he5个。他决定从今天起每天背起10个单词,那么从今天开始,他的单词量逐日增加,依次为:5,15,25,35,45,…… (问:多少天后他的单词量达到995个?) ○2Linda很喜欢画画,可总是画不好排成一列的柱子的透视图,老师启发她:第一根柱子100mm,第二根90mm,第三根80mm,第四根70mm,……(你能帮Linda总结一下规律吗?) 从上面两个例子中,我们分别得到两个数列: ○15,15,25,35,45,……和○2100,90,80,70,…… 请同学们仔细观察一下,看看以上两个数列有什么共同特征? 共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差),我们给具有这种特征的数列一个名字——等差数列。 三.讲解新课: 1、等差数列:一般地,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数, 这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示) (1)公差d一定是由后项减前项所得,而不能用前项减后项来求;

(2)若数列为等差数列,d为公差,则,即, (3)已知等差数列的首项为12,公差为-5,试写出这个数列的第2项到第5项。 2、等差数列的通项公式: 3、等差中项:若a,A,b成等差数列,那么A叫做a与b的等差中项。 四.例题讲解: 例1、求等差数列 -1,5,11,17.……的第50项。 解: 例2、在等差数列中,,公差,求首项 解: 例3、小明,小明的爸爸和小明的爷爷三个人的年龄恰好构成一个等差数列,他们三人的年龄之和为120岁,爷爷的年龄比小明的年龄的4倍还多5岁,求他们祖孙三人的年龄。 解:略。 例4、梯子的最高一级宽32cm,最低一级宽慰96cm,中间还有7级,各级的宽度成等差数列,计算中间各级的宽度。 解:略。 五.课堂练习: 1、求等差数列的通项公式与第15项。 2、在等差数列数列中,,求与公差d。 3、100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由。 4、-20是不是等差数列0,的项?如果是,是第几项?如果不是,说明理由。 六.小结:通过本节学习,首先要理解与掌握等差数列的定义及数学表达式:,;其次要理解等差 数列通项公式,并掌握其基本应用。 七.课外作业:同步练,P2,6.2节

相关文档
相关文档 最新文档