文档库 最新最全的文档下载
当前位置:文档库 › 引力波,引力波源及引力波探测

引力波,引力波源及引力波探测

引力波,引力波源及引力波探测
引力波,引力波源及引力波探测

引力波,引力波源及引力波探测

摘要:目的通过讨论初步了解引力波及其检测方法方法采用查阅文献,小组汇报,互相交流的方式。结果初步了解引力波,同学们积极发言,小组讨论效果明显。结论通过独自查阅文献,互相讨论交流,我们对引力波有了更深刻的认识,也获得了许多有用的知识。这是一种增长知识,开阔视野的有效的学习方式。

关键字:引力波;检测;原理;意义

1. 引言

广义相对论的几个经典检验和预言

1.光谱线在引力场中的红移;距引力场源较远处接收到光的频率较低,原因:光“逃离”引力场源需要做功。

2.光线在引力场中的偏折;牛顿理论加上光子概念可以定性解释,但定量结果却总只有观测值的一半。

3. 水星进日点的进动;多出来的43秒/百年,牛顿理论加上摄动修正无法解释。以上三点均是广义相对论的直接推论--史瓦西解(Schwarzschild1916)的直接结果。传感器一般由敏感元件和转换元件组成。敏感元件是指传感器中能直接感受(或响应)被测量的部分;转换元件是指传感器中敏感元件感受(或响应)的被测量,转换成适于传感和测量的电线号的部分。

4.雷达回波延迟;1964年Shapiro首次提出。地球发出的雷达信号经太阳附近到达另一行星(或飞船),然后返回,测量信号发出与接收的时间。与广义相对论的吻合程度非常高。

5.引力波;下面专门谈。

6.黑洞;等。

引力波:指时空弯曲中的涟漪,通过波的形式从辐射源向外传播,以引力辐射的形式传输能量的波。

2. 实验

2.1 共振型棒式天线:

代表:Weber棒(美国)

实验装置:悬挂的铝棒(重1.4吨)+压电陶瓷传感器。灵敏度为h~2X10-15。

Weber的检测器工作在室温下,来自热运动的噪声会干扰实验结果。目前采用高Q值低内耗铝合金在超低温(10-2K)下工作,工作的引力波频段为~1000Hz段,灵敏度为h~2X10-21。

缺点:非共振频段的引力波反应弱;守株待兔式探测需要昂贵的实验维持费用。

部分实验结果:

1969年,韦伯(J. Weber)宣称探测到了来自银河系中心的引力波,实验结果发表于美国物理评论快报(Physics Review Letter),但后来相继建成的更高灵敏度的引力波检测器没能重复其结果,因此其结论目前仍然未能被科学界接受,认为是噪声而非引力波!

1987年有个小组声称接收到了来自大麦哲伦星云(属于银河系的近邻星系)中的超新星1987A 爆发时的引力辐射。

这两个结果都因为没有旁证而无法得到公认.

2i.2激光干涉仪探测器:

代表:LIGO(美国)

其原理与传统的迈克尔逊干涉仪完全相同,引力波作

用将引起两垂直光臂(检验质量)产生不同的距离变化,从而改变两束干涉光的光程差,通过干涉条纹移动反映出来!其工作频率下限为10Hz。欧洲宇航局拟建的LISA工作频率下限为10-2Hz。

部分实验结果:

2016年6月16日凌晨,LIGO合作组宣布:2015

12月26日(UTC ),位于美国利文斯顿的两台引力波探测器同时探测到了一个引力波信号 。

3.研讨内容:

1. 引力波-Einstein 广义相对论的预言

④ 引力波是横波。

原因是假定取谐和坐标,并假定引力波沿某一方向(比如X 方向)传播,则它只对Y 方向和Z 方向的度规造成扰动。

④ 不存在单极和偶极引力辐射。

引力波带有能量,可以被探测,但引力辐射的最低极矩是四极矩,这就是为什么引力波非常弱而难以探测的原因。

2. 引力波的检测原理及引力波检测

④ 弯曲时空中自由粒子的短程线方程

22

0d x dx dx dt dt dt μαβ

μαβ+Γ=

? 两个处于不同短程线上的粒子就构成了一个最

简单的引力波检测器。

? 实验原理:正如电磁场驱动带电粒子一样,处

于引力场中的物体也将受到引力的驱动。可以证明:粒子所组成的环平面与平面引力波的传播方向垂直时,在一个同期内,它将被引力扭曲为下面之图

④ 引力波探测的主要困难:

1.天然引力波信号极弱。平直时空度规取

(1,-1,-1,-1),理论推算认为天然的引力波的

对度规的扰动仅为~10-30

的量级。目前无法人工产生高强度引力波用于实验。

2.自然条件与技术水平的局限。太空噪声,检测设备及检验质量的热运动噪声,信号转换损失,地面振动,目前的测量技术水平等。 3.强引力波源的时间随机性。

4.理论上的原因。引力波与检测质量的作用截面极小;宇宙深处的引力波按与距离平方衰减的规律传到地球,衰减多;Einstein 预言引力波时使用的弱引力场线性近似等。 3.引力波源 3.1 自然源

天体连续引力波源:特点:连续谱,频率较低,源比较确定。

双星系统(最理想的是中子双星或黑洞双星)1993年Nobel 奖颁给两位美国科学家赫尔斯和泰勒,就是奖励他们观察致密双脉冲星PSR1913+16获得引力辐射的间接证据。PSR1913+16双星的观测已经给出了引力波存在的间接定量证据,目前引力波的直接检测已成为现代物理学重大课题中的当务之急。

理论研究表明: 只有由两颗中子星组成的双星体系才有可能检验引力辐射阻尼.

而赫尔斯和泰勒

在1974年底发现的脉冲星 PSR 1913+16 是目前已知的双星中唯一一个宜于进行引力理论检验的良好体系.

3.2 人工源

根据引力场方程可以引力场人工造源,但目前都还仅限于理论方面,不足以引起可观察的效应。

电磁场张量EMT (Energy Momentum Tensor)变化可以引起引力辐射-G-S (Grishchuk-Sazhin)方案(电磁谐振腔), P-R (Pinto-Lotoli)方案(高频脉冲源模型), T-L-L(唐孟希,李芳昱,罗俊)的改进方案(电介质电磁谐振腔)。但距现实仍然有较大的距离—主要是尺寸太大~108-1010cm3!

质量四极矩的三阶导数不为零会有引力辐射。

3.引力波探测的意义和展望

意义:

引力波探测的结果将有助于证明各种引力理论的正确与否。

推动引力场量子化的理论研究,从而为完善物理学“大统一”理论做出贡献。

展望:

棒式天线:

大质量(>5t)、超低温(<0.1K)、高效低噪换能器(超导量子干涉器件SQUID,隧道电子效应换能器等)。

激光干涉仪:

长基线(1~4Km)、多次反射(n>100)、高能高稳定性高单色性激光。

从地球转移到太空:

避免地球引力和地球表面干扰, LISA、ASTROD等。值得思考的问题:探测器的设计思想是否应该考虑更新!目前的探测器都源于韦伯的思路。

4.问题探索①引力波的应用:

1.能源,如果是两个黑洞结合,损失掉的质量能量以

引力波的形式发出,则理论上就有收集引力波并还原为能量的方法。

参考,太阳能电池,太阳帆

2.可以作为曲率和跃迁引擎的探索方向之一

跃迁引擎的原理是压缩路径的空间,而曲率则是改变自身周围的空间,引力波的证实则为这两种驱动实现提供了新的可能。

参考,肥皂船

3..高维探索

弦论中,我们所接触到的力中,只有引力是跨维度的,如果说高维世界对低维世界有线索的话,那么引力波很有可能是四维空间对我们三维空间的线索之一。

参考,水面波纹使得平静的二维水面扭曲到三维,扭曲的白纸

4..时间机器

现在理论上都是时间能被伸缩,但不能往回倒。

我们不妨将引力波对三维空间的影响扩大到对四维时空的影响,也就是说,说不定引力波可以影响时间哦。

这个想不到参考,是纯脑洞,可以参考电影星际穿越

5.信息传递

既然和那么远的距离,用大型仪器可以探测到引力波。

而光的衰减效应,或者更大范围说电磁波的衰减效应,导致未来星球间传输效率太低。

如果我们成为多星文明甚至多星系文明后,引力波会成为最好的星系间通讯介质,将引力波编码和加密,然后定向发射,效果会比现在用的电磁波好很多。

参考,各频率广播,三体中的引力广播

6.武器

次声波或者激光干掉个把导弹卫星已经不成问题了。

如果直接发射引力波,密度足够,摧毁些城市不成问题。

如果按照第一个脑洞里说的那样做成能源储存,那么这个能源容器同时也可以成为一个炸弹,毁掉个把星球该不成问题。

参考,激光武器,核弹

7.医疗

既然能当武器用了,自然也能救人用,因为救人的本质就是杀掉细菌病毒肿瘤嘛。

通过编码和调频发送定向摧毁目标的引力波。

参考,电磁波治疗,激光治疗。

8.生物科学

既然能杀毒了,根据对象的频率特点,定向轰掉dna 某个链应该不成问题吧,这样干掉不合格的精子,筛选出想要的精子,就可以实现基因改造了。

既然核泄漏能让老鼠变大,那么弄出一些奇葩生物应该也不成问题吧。

反正都跟我们没关系了,前人种树后人乘凉,现世来说,主要还是理论上的,后面要成功收集和驾驭估计还是很遥远的事情。

9.行星改造,前面都提到毁掉个把行星不成问题了,

我们还是不要太暴力,换个方向,我们让行星变轨吧。

比如把火星拉进一点,这样什么乱七八糟的水啊氧气啊都出来了。

不过毕竟蝴蝶效应,万一火星的位置改变扰乱了整

个太阳系的秩序,让地球环境发生1%的变化都有可能导致人类灭绝。到时可不要怪我啊。

10.另一种引擎

由于牛顿第三定律,现行的火箭和飞船都只能燃料驱动,而不能电驱动,但如果驾驭了引力波,可就不一样了。

而在真空中,燃料引擎的局限就出现了。

我现在提出一个假设(不知道有没有人比我早),以引力波容器作为能量来源,吸收宇宙中的暗物质,对其赋予动能并射出,实现驱动。原理有点类似涡喷,不过涡喷是空气加热,而这个引擎是暗物质加“热”。

这种引擎,可以作为现有引擎跨到空间引擎的跳板。

11.宇宙监听

这个其实很现实的,已经在做了,通过监听异常空间扰动判断宇宙哪里出了什么事故。

比如现在这个是俩黑洞,那说不定那天能监听到两个高级文明间的战争呢。

12.魔法,力场

貌似如果引力波发射装置可携带化,一个人就可以隔空推动物体了,三个人就可以将中心的物体悬空了,娱乐倒是可以。

如果我们用阵列搭建一个立体引力场,实现空间内的引力自由改变和编程,那么安德的游戏里面那种训练场在地面就可以进行了,不仅如此,还能实现创战纪里面的竞技场,各种道具漂移,各种引力变化。

同样,平面引力阵列可以实现立场护盾,比如at field,独立日里面外星人的飞船护盾以及eve 里面的第一层护盾,都可以实现。

参考,磁场

13.引力悬浮

可以根据12推导,不同于磁悬浮的是,引力波轨道

上的所有东西可能都会反重力,作为运输作用太浪费,估计就用作娱乐和实验用

反之,在交通工具上安装引力波发射阵列,则可以实现单体悬浮,星球大战里的悬浮摩托就离我们不远了哦

参考,磁悬浮,气垫船

②空间结构几何化【广义相对论】

广义相对论将经典的牛顿万有引力定律包含在狭义相对论的框架中,并在此基础上应用等效原理而建立。在广义相对论中,引力被描述为时空的一种几何属性(曲率);而这种时空曲率与处于时空中的物质与辐射的能量-动量张量直接相联系,其联系方式即是爱因斯坦的引力场方程(一个二阶非线性偏微分方程组)。从广义相对论得到的有关预言和经典物理中的对应预言非常不相同,尤其是有关时间流逝、空间几何、自由落体的运动以及光的传播等问题,例如引力场内的时间膨胀、光的引力红移和引力时间延迟效应。广义相对论的预言至今为止已经通过了所有观测和实验的验证——虽说广义相对论并非当今描述引力的唯一理论,它却是能够与实验数据相符合的最简洁的理论。不过,仍然有一些问题至今未能解决,典型的即是如何将广义相对论和量子物理的定律统一起来,从而建立一个完备并且自洽的量子引力理论。爱因斯坦的科学定律,对所有的观察者,不管他们如何运动,都必须是相同的(广义相对性原理)。它将引力解释成四维空间的曲率。

参考文献

Observation of Gravitational Waves from a Binary Black Hole Merger

B.?P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration)

Phys. Rev. Lett. 116, 061102 –Published 11 February 2016

i

原初引力波与阿里探测计划

原初引力波与阿里探测计划 张新民苏萌李虹李明哲蔡一夫 2016年3月公布的我国“十三五”规划纲要中列入了“强化宇宙演化、物质结构、生命起源、脑与认知等基础前沿科学研究”,从国家科技发展的战略高度肯定了宇宙演化等基础前沿科学的重要性。不久前的2016年2月11日,LIGO实验组和美国自然科学基金委员会联合宣布探测到来自于十三亿年前由两个黑洞并合产生的引力波,这是人类第一次直接探测到引力波,可谓一项里程碑式的发现。 ▍一、引力波源及其探测方式 引力波源大体可分为两种,天体物理起源和宇宙学起源。对应不同的波源,相应的探测方式也不一样,如图1所示。 图1,引力波的源及相应的探测方式 (图片来自NASA Goddard Space Flight Center)▍(一)天体物理起源的引力波及其探测

天体物理起源包括以下三类: (1)中子星、恒星级黑洞等致密天体(几十个太阳质量左右)组成的致密双星系统的合并过程。这类引力波的频率处于10赫兹- 1000赫兹量级的高频段,相应的探测手段是地面激光干涉仪。与迈克耳孙干涉仪一样,在引力波激光干涉仪中激光被分裂成两束后在两个垂直的臂中传播并发生干涉。当引力波经过时,局部的时空发生变形,两个臂的相对长度会发生改变,相应地激光干涉条纹就会移动。此类实验最具代表性的就是LIGO,利用长达4千米的两个互相垂直的探测臂首次探测到了引力波信号。 (2)大质量黑洞并合过程的后期、银河系内的白矮双星系统。频率为10?5赫兹 -1赫兹,这类引力波信号可通过空间卫星阵列构成的干涉仪来探测,如欧洲的eLISA计划。 (3)超大质量黑洞(数百万到数亿太阳质量)并合。频率为10?9赫兹 -10?6赫兹,探测手段是脉冲星计时,即利用地面上的大型射电望远镜,监视校准后的若干毫秒脉冲星。如果其附近有大质量黑洞并合时发出的引力波,这些毫秒脉冲星的脉冲频率会有变化。国际上20世纪70年代就开始这方面的研究,90年代已获得诺贝尔奖,我国在这方面有计划运行的FAST实验。 综上所述,天体物理过程产生的是高频引力波,相应的探测装置覆盖的频率范围在10?9赫兹以上。 ▍(二)宇宙学起源的原初引力波及其探测 除了天体物理起源以外,在宇宙的早期剧烈的量子涨落会产生充满整个宇宙空间的引力波,称之为原初引力波。自1940年代以来,

引力波的发现历程

引力波的发现历程 班级:12级物理一班 姓名:陈昊昱 学号:1207020008 摘要:引力波是根据爱因斯坦的广义相对论作出的奇特预言之一,现代引力波研究已成为天体物理学的一个重要前沿课题。 关键字:引力波(gravitational waves) 广义相对论电磁波 一、引力波初期探索 牛顿在数学,物理和天文学方面有着许多重要的贡献。但是,他最为人知的贡献是发现了引力学定理。爱因斯坦的许多理论,包括对引力波的预言,都是从牛顿引力学理论中得到灵感的。 其中一个最广为人知的故事,是描述有一天,牛顿正坐在一棵苹果树底下思考着宇宙。突然一个苹果从天而降砸到了他的头上。震惊中的牛顿马上意识到发生了什么事。就在这一瞬间,他认识到了引力是怎样将物体拉向地球的。 这个故事可能是虚构的,但它却符合事实。牛顿对自然的观察使他发现了引力定理。他认识到那个将苹果拉向地球的力很可能与使月亮围绕地球转的力是一样的。从而,他认为所有物体之间一定存在一种吸引的力,并称之为引力。 根据他的发现,牛顿注意到所有物体都互相吸引。质量越大,引力越大,但随离开物体距离的增大而减小。他称这就是引力定理。 在他的引力学理论中,牛顿结合了另外三位伟大的科学家哥白尼(1473-1543),开普勒(1571-1630),伽利略(1564-1642)的理论。牛

顿的理论解决了许多他那个时期的难题,包括潮汐产生的原因,地球和月亮的运动,以及彗星的轨道问题。 虽然牛顿的理论解释了什么是引力,但是,在随后的300年中,引力产生的原因仍然是个谜 爱因斯坦认为是一种跟电磁波一样的波动,称为引力波。引力波是时空曲率的扰动以行进波的形式向外传递。引力辐射是另外一种称呼,指的是这些波从星体或星系中辐射出来的现象。牛顿认为是一种即时超距作用,不需要传递的“信使”电荷被加速时会发出电磁辐射,同样有质量的物体被加速时就会发出引力辐射,这是广义相对论的一项重要预言。 二、引力波检测的开拓者 爱因斯坦在把狭义相对论推广到广义相对论的研究过程中,他不但向世人说明引力是一种场,而且还发现了场方程,而场方程是联系引力物质的质量与时空“弯曲”的程度、性质之间的桥粱。 爱因斯坦认为,物质的分布及运动不仅决定其周商整阊的“弯曲”程度,同时还影响周围时间的流逝。这个“弯曲”的空间和时间一起,反过来再决定其周围物质的运动。物质间的万有引力作用就是通过上述过程来实现的,这当然不能在瞬间完成。 当某一物体作加速运动时,就会以有限的速度逐步影响周围的时空结构,若这种影响以波动方式向空问传播,从而逐点改变着原来已经弯曲的时空,进而影响周围物体的运动。例如激发起其他物体作机械振动等,而那正是引力波的传播。这就好似电荷发生运动变化,引

原初引力波与阿里探测计划

3 原初引力波与阿里探测计划 张新民1 苏 萌2 李 虹3 李明哲4 蔡一夫5 (1 中国科学院高能物理研究所理论物理研究室 100049;2 麻省理工学院物理系 02139;3 中国科学院高能物理研究所粒子天体物理中心 100049;4 中国科技大学交叉学科理论研究中心 230026;5 中国科技大学天 文学系 230026) 2016年3月公布的我国“十三五”规划纲要中列入了“强化宇宙演化、物质结构、生命起源、脑与认知等基础前沿科学研究”,从国家科技发展的战略高度肯定了宇宙演化等基础前沿科学的重要性。不久前的2016年2月11日,LIGO 实验组和美国自然科学基金委员会联合宣布探测到来自于13亿年前由两个黑洞并合产生的引力波,这是人类第一次直接探测到引力波,可谓一项里程碑式的发现。 一、引力波源及其探测方式 引力波源大体可分为两种,天体物理起源和宇宙学起源。对应不同的波源,相应的探测方式也不一样,如图1所示。 (1)中子星、恒星级黑洞等致密天体(几十个太阳质量左右)组成的致密双星系统的并合过程。这类引力波的频率处于10~1000赫兹量级的高频段,相应的探测手段是地面激光干涉仪。与迈克耳孙干涉仪一样,在引力波激光干涉仪中激光被分裂成两束后在两个垂直的臂中传播并发生干涉。当引力波经过时,局部的时空发生变形,两个臂的相对长度会发生改变,相应地激光干涉条纹就会移动。此类实验最具代表性的就是LIGO ,利用长达4千米的两个互相垂直的探测臂首次探测到了引力波信号。 (2)大质量黑洞并合过程的后期、银河系内的白矮双星系统。频率为10–5~1赫兹,这类引力波信号 可通过空间卫星阵列构成的干涉仪来探测,如欧洲的eLISA 计划。 (3)超大质量黑洞(数百万到数亿太阳质量)并合。频率为10–9~10–6赫兹,探测手段是脉冲星计时,即利用地面上的大型射电望远镜,监视校准后的若干毫秒脉冲星。如果其附近有大质量黑洞并合时发出的引力波,这些毫秒脉冲星的脉冲频率会有变化。国际上20世纪70年代就开始这方面的研究,90年代已获得诺贝尔奖,我国在这方面有计划运行的FAST 实验。 综上所述,天体物理过程产生的是高频引力波,相应的探测装置覆盖的频率范围在10–9赫兹以上。 (二)宇宙学起源的原初引力波及其探测 除了天体物理起源以外,在宇宙的早期剧烈的量子涨落会产生充满整个宇宙空间的引力波,称之为原初引力波。自20世纪40年代以来,经典热大爆炸宇宙学取得了巨大的成功,其预言的宇宙轻元素丰度、 宇宙微波背景辐射等均被实验证实,其中关于微波背 图1 引力波的源及相应的探测方式(图片来自NASA Goddard Space Flight Center ) (一)天体物理起源的引力波及其探测 天体物理起源包括以下三类: DOI:10.13405/https://www.wendangku.net/doc/eb7281820.html,ki.xdwz.2016.02.001

引力波的探测

1.引力波探测器的发展 早的引力波探测器是共振型引力波探测器: 上世纪60年代,马里兰大学的物理学家韦伯(Joseph Weber)首先提出了一共振型引力波探测器。该探测器由多层铝筒构成,直径1米,长2米,质量约1000千克,用细丝悬起来。当引力波经过圆柱时,圆柱会发生共振,进而可以通过安装在圆柱周围的压电感器检测到。韦伯曾经在相距1000千米的两个地方同时放置了相同的探测器,只有两个探测器同时检测到相同的信号才被记录下来。1968年,韦伯宣称他探测到了引力波,立刻引起了学界的轰动,但是后来的重复实验都无所获。 后来人民发展出了激光干涉仪为原理的探测器。世界范围内,除了美国LIGO 引力波探测器之外,还有德国和英国合作的GEO600、法国和意大利合作的VIRGO、日本的TAMA300以及计划中的LCGT、澳大利亚计划中的AIGO以及印度计划中的LIGO-India。 2.引力波探测的原理 是利用激光干涉引力天文台来探测,其原理使用了迈克尔孙干涉仪和法布里-柏罗干涉仪等。

但是它与传统的迈克尔逊干涉原理有着本质的不同,简单来说就是光速恒定,时空弯曲,路程变化,本来互相“抵消”的光线没有抵消,然后就产生了信号。具体原理涉及到相对论方程。 3.激光干涉引力天文台的建造 激光干涉引力波天文台于1999年11月建成,耗资3.65亿美元。2005年,激光干涉引力波天文台开始进行改造,包括采用更高功率的激光器、进一步减少振动等。 2015年,最新的激光干涉引力波天文台正式上线。最新建造的激光干涉引力波天文台在华盛顿州与路易斯安那州之间架设了两个引力波探测器,主要部分是两个互相垂直的长臂,个臂长4000米,臂的末端悬挂着反射镜,管道采用不锈钢制成,直径1.2米,内部真空度为10-12大气压。大功率的激光束在臂中来回反射大约50次,使等效臂长大大增加,这样就会形成干涉条纹,如果引力波传播到地球上,那么就可以引起干涉条纹的位移。 为了降低地震对系统带来的干扰,光学装置安装在结构复杂的防振台上,为降低空气分子热运动的影响,光路中抽成10-12大气压的真空。此外还要在路易斯安那州和华盛顿州建造两个相同的探测器,彼此相距3000公里。只有两个探测器同时检测到信息时,才有可能是引力波的信号 4.引力波探测遇到的困难 事实上,引力波就像是时空的涟漪,如果将时空想象成水面,那么天体碰撞事件就如同块石头落入水中所引发的水波,只不过引力波的传播速度可以达到光速。为了寻找引力波,科学家需要借助宇宙中的极端事件,比如黑洞合并、中子星事件等,因为大质量天体可以产生相对较强的引力波。只不过如此事件较为罕见,在银河系内大约平均每1万年会发生一次。 引力波的探测要求仪器的灵敏度达到能够检测长度到为10-21量级的变化,也

引力波,引力波源及引力波探测

引力波,引力波源及引力波探测 摘要:目的通过讨论初步了解引力波及其检测方法方法采用查阅文献,小组汇报,互相交流的方式。结果初步了解引力波,同学们积极发言,小组讨论效果明显。结论通过独自查阅文献,互相讨论交流,我们对引力波有了更深刻的认识,也获得了许多有用的知识。这是一种增长知识,开阔视野的有效的学习方式。 关键字:引力波;检测;原理;意义 1. 引言 广义相对论的几个经典检验和预言 1.光谱线在引力场中的红移;距引力场源较远处接收到光的频率较低,原因:光“逃离”引力场源需要做功。 2.光线在引力场中的偏折;牛顿理论加上光子概念可以定性解释,但定量结果却总只有观测值的一半。 3. 水星进日点的进动;多出来的43秒/百年,牛顿理论加上摄动修正无法解释。以上三点均是广义相对论的直接推论--史瓦西解(Schwarzschild1916)的直接结果。传感器一般由敏感元件和转换元件组成。敏感元件是指传感器中能直接感受(或响应)被测量的部分;转换元件是指传感器中敏感元件感受(或响应)的被测量,转换成适于传感和测量的电线号的部分。 4.雷达回波延迟;1964年Shapiro首次提出。地球发出的雷达信号经太阳附近到达另一行星(或飞船),然后返回,测量信号发出与接收的时间。与广义相对论的吻合程度非常高。 5.引力波;下面专门谈。 6.黑洞;等。 引力波:指时空弯曲中的涟漪,通过波的形式从辐射源向外传播,以引力辐射的形式传输能量的波。 2. 实验 2.1 共振型棒式天线: 代表:Weber棒(美国) 实验装置:悬挂的铝棒(重1.4吨)+压电陶瓷传感器。灵敏度为h~2X10-15。 Weber的检测器工作在室温下,来自热运动的噪声会干扰实验结果。目前采用高Q值低内耗铝合金在超低温(10-2K)下工作,工作的引力波频段为~1000Hz段,灵敏度为h~2X10-21。 缺点:非共振频段的引力波反应弱;守株待兔式探测需要昂贵的实验维持费用。 部分实验结果: 1969年,韦伯(J. Weber)宣称探测到了来自银河系中心的引力波,实验结果发表于美国物理评论快报(Physics Review Letter),但后来相继建成的更高灵敏度的引力波检测器没能重复其结果,因此其结论目前仍然未能被科学界接受,认为是噪声而非引力波! 1987年有个小组声称接收到了来自大麦哲伦星云(属于银河系的近邻星系)中的超新星1987A 爆发时的引力辐射。 这两个结果都因为没有旁证而无法得到公认. 2i.2激光干涉仪探测器: 代表:LIGO(美国) 其原理与传统的迈克尔逊干涉仪完全相同,引力波作 用将引起两垂直光臂(检验质量)产生不同的距离变化,从而改变两束干涉光的光程差,通过干涉条纹移动反映出来!其工作频率下限为10Hz。欧洲宇航局拟建的LISA工作频率下限为10-2Hz。 部分实验结果: 2016年6月16日凌晨,LIGO合作组宣布:2015 年

关于引力波的探测与未来前景

关于引力波的探测与未来前景 在我们身边存在着各种各样的波。池塘里碧波荡漾、大海中波浪滔天,这是我们看得见的水波;小提琴琴声缭绕使人心潮澎湃,老师讲课发出的声音,这是听得到、看不见的声波;地震时房屋倒塌,地动山摇,这是我们听不到也看不见,但破坏力极强的地震波。除此之外,在我们身边还有五彩斑斓的光波、传递信息的无线电波等等。那么在神秘的宇宙间,还存在这一种既看不见,又摸不着,甚至很难探测到的一种波——引力波。 在物理学中,引力波是指时空弯曲中的涟漪,通过波的形式从辐射源向外传播,这种波以引力辐射的形式传输能量。时空命令物质如何运动,而物质引导时间如何弯曲。如果把时空想象成一张巨大的橡胶膜,有质量的物体会让橡胶膜弯曲,就像在蹦床上扔了一个保龄球。质量越大,时空被引力波扭曲的越厉害。就好比太阳系,太阳的质量非常大,导致周围的引力波发生扭曲,时空大大形变而产生了巨大的涟漪,而地球与其他行星正位于这涟漪之内。如果你想在这样的形变下走直线,最终你会发现你实际上是在绕着形变的中心也就是发出引力波的中心绕圈。轨道就是这么来的,并没有什么力拉着行星绕圈,而是时空的扭曲导致行星在绕圈。所以从某种意义上来讲行星是在这段时空内做直线运动,只不过时空是弯曲的罢了。有质量的物体一加速,改变

了时空中的扭曲,引力波随之而生。任何有质量的物体并且有能量的物体都能产生引力波,要是我们绕着操场跑一圈,我们也会产生时空的涟漪。但是由于我们的质量太小,那些引力波太微不足道了,实际上根本无法被探测到。就像前不久LIGO科学合作组织在2月11号直接探测到了引力波,而此次探测到的引力波是由两个黑洞合并引发的。这两个黑洞的直径都在150公里左右,它们不断靠近,旋转,并最终合并成一个黑洞。两个黑洞一个达到太阳质量的29倍,一个为太阳质量的36倍。据推测,两个黑洞的合并发生在13亿年前,合并过程中产生的引力波经漫长的传播最终抵达地球。据推测,两个黑洞以1/2光速的速度相撞后合并。二者在合并的过程中释放出约3个太阳质量的能量,这些能量以引力波的形式辐射出去。在穿过13亿光年之后到达地球,最为时空的涟漪,也仅仅将LIGO的4公里臂长改变了一个质子直径的万分之一,也相当于将太阳系到我们最近恒星之间距离改变了一个头发丝的宽度。这种及其微小的变化,如果不借用异常精密的探测器,我们根本是探测不到的。所以对于我们的质量来说,完全不可能将我们所释放的的引力波探测到。 那么,LIGO是如何探测到引力波的呢?首先,它采用的是激光干涉的思路。如果你我之间的时空被拉伸或者压缩了,仅凭我们去观察地上等距的标记,是不可能的。因为这

引力波探测的未来

引力波探测的未来 邓雪梅/编译 在利文斯顿市,工程师们正在为LIGO引力波探测器进行升级 ●在经历了二十年的漫长岁月并耗资超过5亿多美元,世界上最大的引力波探测器——LIGO——或将成为对引力波探测最为敏感的仪器。然而近十年来,LIGO的首要任务是搜寻引力波,但却没有任何发现。随着设备的升级,该项目将面临不得不最终兑现其承诺的残酷现实。 在路易斯安那州巴吞鲁日东面的湿地中,对引力波的搜索在中午后才算真正开始。这缘于附近公路的车辆声、火车的呼啸,以及伐木工人偶尔发出的电锯声的干扰,因此,上午的工作往往一无所获。 即使是现在(5月的一个下午6点),在利文斯顿市激光干涉引力波天文台(LIGO)的控制室中,瑞恩·德罗萨(Ryan de Rosa)正无奈地凝视着一套电脑显示器。尽管显示器画面稳定,但仍不时会出现震颤波——这是人类感觉不到的,由墨西哥湾沿岸100多公里外产生的地震、交通嘈杂声以及海浪声引发的,看起来就像锯齿状的山峰。 为了掌控引力波探测器红外激光光束(这些光束在两个长达4 000米的通道中来回反射),这位来自路易斯安那州立大学的物理学家德罗萨及其团队,正致力于实现对LIGO的一个主要升级工作,即通过控制光束以及测量其走过的路径,他们希望能观测到由引力波经过时所产生的独特振荡——这个时空涟漪是爱因斯坦在几乎100年以前预测的——但时至今日,还没有发现引力波存在的直接证据。 另一组致力于华盛顿州汉福德核设施探测器研究的团队将于几个月内抵达。如果一切顺利的话,这两套耗资近6.2亿美元的设备或于明年恢复数据,届时将会成为世界上对引力波探测最敏感的仪器, LIGO 小组因此很有可能会成为第一个直接探测到引力波的研究团队。 寻找引力波的直接证据将把天文学推向新的时代。天文学家声称,如果找到成千上万个引力波源的存在证据,这将有助于获知黑洞碰撞、恒星自身湮灭及时空振动的秘密。届时,引力波会彻底打开一个动态且不断变化的宇宙新窗口。 然而近十年来,LIGO的首要任务是搜寻引力波,但却没有任何发现。现在,随着设备的升级,该项目将面临不得不最终兑现其承诺的残酷现实。 无处不在却无影无形

引力波_引力波源和引力波探测实验_唐孟希

引力波、引力波源和引力波探测实验 唐孟希1,李芳昱2,赵鹏飞3,唐敏然4 (1.中山大学物理系,广州510275;2.重庆大学应用物理系,重庆400044; 3.湛江师范学院物理系,湛江510089; 4.中山大学中山医学院基础部,广州524048)摘要:引力波是爱因斯坦和其他物理学家提出的关于广义相对论的四大预 言之一。除了PSR1913+16引力辐射阻尼的观测提供了引力波存在的间接证据外,科学家至今仍没有在实验室中确证引力波的存在。由于人类目前的技术水平还不可能在实验室中产生强度可供探测的引力波,而宇宙中存在大量大质量、高速运动的天体,有可能产生较强的引力波,天体引力波源自然成为现阶段科学家研究引力波的首选。本文介绍广义相对论框架下预言的引力波性质,引力波探测的理论依据,共振型棒式天线和激光干涉仪两大类探测器的基本原理,引力波探测实验的现状和面临的困难,科学家采取的对策,以及爆发型和连续型两类天体引力波源。最后介绍了正在计划中的几个引力波探测空间实验。 关键词:广义相对论;引力波;引力波源;空间实验 中图分类号:O 412,P 142.84 文献标识码:A 文章编号:1001-7526(2002)03-0071-17 1 广义相对论和引力波 牛顿的引力理论统治了物理学界200多年。根据牛顿的引力理论,由两个质点组成,作周期运动的动力学系统,运动轨迹是一个封闭的椭圆,太阳系的行星轨道就属于这种情况。当考虑到太阳的质量四极矩和受到其他天体的摄动时,行星绕太阳运动的轨道不再封闭,椭圆轨道的近日点会以一定的角速度进动。离太阳越近的行星轨道,进动角速度越大。1859年Leverrier 首先发现,水星轨道近日点的进动,在扣除以上因素外,还有每百年38s 的剩余进动无法在牛顿力学的框架内给出解释。Ne wcomb 进行了精度较高的观测后得出,这个剩余的进动为每百年43s 。1916年爱因斯坦在他早期发表的广义相对论的论文中就给出了行星近日点进动的广义相对论的计算值[1],这个值与Leverrier 和Newcomb 的观测值相符合。这是广义相对论第一个成功的例证。根据广义相对论,爱因斯坦和其他的物理学家先后提出了4个预言,即光线在引力场中的偏折,光谱线在引力场中的红移,引力辐射存在和黑洞存在。这4个预言中的前2个在随后不久便得到了2002No .3 云 南 天 文 台 台 刊Publications of Yunnan Observatory 2002年第3期 基金项目:国家自然科学基金(10175096)资助项目. 收稿日期:2001-12-27 作者简介:唐孟希,男,教授,研究方向:引力理论和引力实验.DOI :10.14005/j .cn ki .issn 1672-7673.2002.03.009

相关文档
相关文档 最新文档