文档库 最新最全的文档下载
当前位置:文档库 › 关注:高考物理新题型(磁聚焦、磁扩散、磁漂移)

关注:高考物理新题型(磁聚焦、磁扩散、磁漂移)

关注:高考物理新题型(磁聚焦、磁扩散、磁漂移)
关注:高考物理新题型(磁聚焦、磁扩散、磁漂移)

关注:高考物理新题型

【补充例题1】

(2013·黄冈模拟)地球周围存在磁场,由太空射来的带电粒子在此磁场的运动称为“磁漂移”,以下是描述的一种假设的磁漂移运动,一带正电的粒子(质量为m ,带电量为q)在x=0,y=0处沿y 方向以某一速度v 0运动,空间存在垂直于图中向外的匀强磁场,在y>0的区域中,磁感应强度为B 1,在y<0的区域中,磁感应强度为B 2,B 2>B 1,如图所示,若把粒子

出发点x=0处作为第0次过x 轴。求:

(1)粒子第一次过x 轴时的坐标和所经历的时间。

(2)粒子第n 次过x 轴时的坐标和所经历的时间。

(3)第0次过z 轴至第n 次过x 轴的整个过程中,在x 轴方向的平均

速度v 与v 0之比。

(4)若B 2:B 1=2:1,当n 很大时,v :v 0趋于何值?

【补充例题2】

(2012·临川一中4月模拟)有一种电荷聚焦装置的工作原理可简化为如下工作过程:如图(a )所示,平行金属板A 和B 间的距离为d ,现在A 、B 板上加上如图(b )所示的方波形电压,t =0时A 板比B 板的电势高,电压的正向值为U 0,反向值也为U 0,现有由质量为m 的带正电且电荷量为q 的粒子组成的粒子束,从AB 的中点O 以平行于金属板方向OO '的速度v 0=dm

T qU 30不断射入,所有粒子在AB 间的飞行时间均为T ,不计重力影响。试求: (1)粒子打出电场时位置离O '点的距离范围

(2)粒子射出电场时的速度大小及方向

(3)在平行板的右侧某个区域设置一个有界匀强磁场,使得从电场中出来的粒子,经磁场偏转后,都能聚焦于某一个点,则此匀强磁场区域的最小面积是多大?

【针对练习1】磁聚焦被广泛的应用在电真空器件中,如图所示,在坐标中存在有界的匀强聚焦磁场,方向垂直坐标平面向外,磁场边界PQ 直线与x 轴平行,距x 轴的距离为

,边界POQ 的曲线方程为。且方程对称y 轴,在坐标x 轴上A 处有一粒子源,向着不同方向射出大量质量均为m 、电量均为q 的带正电粒子,所有粒子的初速度大小相同均为v ,粒子通过有界的匀强磁场后都会聚焦在x 轴上的F 点.已知A 点坐标为(-a ,0),F 点坐标为(a ,0).不计粒子所受重力和相互作用求:

(1)匀强磁场的磁感应强度;

(2)粒子射入磁场时的速度方向与x轴的夹角为多大时,粒子在磁场中运动时间最长,最长对间为多少?

【借鉴例题3】图中坐标原点O(0,0)处有一粒子源,向y≥0一侧沿Oxy平面内的各个不同方向发射带正电粒子,粒子的速率都是v,质量均是m,电荷量均是q。有人设计了一方向垂直于Oxy平面,磁感应大小为B的匀强磁场区域,使上述所有带电粒子从该磁场区域的边界射出时,均能沿x轴正向运动。试求出此边界的方程,并画出此边界线的示意图。

y

v

O x

考点3 “磁聚焦”与“磁发散”

考点3 “磁聚焦”与“磁发散” 1.带电粒子的汇聚 如下左图所示,大量的同种带正电的粒子,速度大小相同,平行入射到圆形磁场区域,如果轨迹圆半径与磁场圆半径相等即R =r ,则所有的带电粒子将从磁场圆的最低点B 点射出. 平行四边形OAO ′B 为菱形,可得BO ′为轨迹圆的半径,可知从A 点发出的带电粒子必然经过B 点. 2.带电粒子的发散 如上右图所示,有界圆形磁场磁感应强度为B ,圆心O ,从P 点有大量质量为m ,电量为q 正离子,以大小相等的速度v 沿不同方向射入有界磁场,不计粒子的重力,如果正离子轨迹圆半径与有界圆形磁场半径相等,则所有的运动轨迹的圆心与有界圆圆心O 、入射点、出射点的连线为菱形,即出射速度方向相同. 【例题】如图所示,x 轴正方向水平向右,y 轴正方向竖直向上.在xOy 平面内有与y 轴平行的匀强电场,在半径为R 的圆内还有与xOy 平面垂直的匀强磁场.在圆的左边放置一带电微粒发射装置,它沿x 轴正方向发射出一束具有相同质量m 、电荷量q (q >0)和初速度v 的带电微粒.发射时,这束带电微粒分布在0

带电粒子在磁场中运动的六类高考题型 归类解析

带电粒子在磁场中运动的六类高考题型归类解析 一、带电粒子在匀强磁场中匀速圆周运动基本问题 定圆心、画轨迹、找几何关系是解题的基础。 带电粒子垂直于磁场进入一匀强磁场后在洛伦兹力作用下必作匀速圆周运动,抓住运动中的任两点处的速度,分别作出各速度的垂线,则二垂线的交点必为圆心;或者用垂径定理及一处速度的垂线也可找出圆心;再利用数学知识求出圆周运动的半径及粒子经过的圆心角从而解答物理问题。 (04天津)钍核发生衰变生成镭核并放出一个粒子。 设该粒子的质量为、电荷量为q,它进入电势差为U的带窄缝的平行 平板电极和间电场时,其速度为,经电场加速后,沿方向进 入磁感应强度为B、方向垂直纸面向外的有界匀强磁场,垂直平板电 极,当粒子从点离开磁场时,其速度方向与方位的夹角 ,如图所示,整个装置处于真空中。 (1)写出钍核衰变方程; (2)求粒子在磁场中沿圆弧运动的轨道半径R; (3)求粒子在磁场中运动所用时间。 解析:(1)钍核衰变方程① (2)设粒子离开电场时速度为,对加速过程有 ② 粒子在磁场中有③ 由②、③得④ (3)粒子做圆周运动的回旋周期 ⑤ 粒子在磁场中运动时间⑥ 由⑤、⑥得⑦ 二、带电粒子在磁场中轨道半径变化问题 导致轨道半径变化的原因有: ①带电粒子速度变化导致半径变化。 如带电粒子穿过极板速度变化;带电粒子使空气电离导致速度变化;回旋加速器加速带电粒子等。 ②磁场变化导致半径变化。如通电导线周围磁场,不同区域的匀强磁场不同;磁场随时间变化。 ③动量变化导致半径变化。如粒子裂变,或者与别的粒子碰撞; ④电量变化导致半径变化。如吸收电荷等。

总之,由看m、v、q、B中某个量或某两个量的乘积或比值的变化就会导致带电粒子的轨道半径变化。 (06年全国2)如图所示,在x<0与x>0的区域中,存在磁感应强度大小分别为B1与B2的匀强磁场,磁场方向垂直于纸面向里,且B1>B2。一个带负电的粒子从坐标原点O以速度v沿x轴 负方向射出,要使该粒子经过一段时间后又经过O点,B1与B2的比值应满足 什么条件? 解析:粒子在整个过程中的速度大小恒为v,交替地在xy平面内B1与 B2磁场区域中做匀速圆周运动,轨迹都是半个圆周。设粒子的质量和电荷量的 大小分别为m和q,圆周运动的半径分别为和r2,有 r1=①r2=② 分析粒子运动的轨迹。如图所示,在xy平面内,粒子先沿半径为r1的半圆C1 运动至y轴上离O点距离为2 r1的A点,接着沿半径为2 r2的半圆D1运动至y轴的 O1点,O1O距离 d=2(r2-r1)③ 此后,粒子每经历一次“回旋”(即从y轴出发沿半径r1的半圆和半径为r2的半圆回到原点下方y轴),粒子y 坐标就减小d。 设粒子经过n次回旋后与y轴交于O n点。若OO n即nd满足nd=2r1④ 则粒子再经过半圆C n+1就能够经过原点,式中n=1,2,3,……为回旋次数。 由③④式解得⑤ 由①②⑤式可得B1、B2应满足的条件 n=1,2,3,……⑥ 三、带电粒子在磁场中运动的临界问题和带电粒子在多磁场中运动问题 带电粒子在磁场中运动的临界问题的原因有: 粒子运动范围的空间临界问题; 磁场所占据范围的空间临界问题, 运动电荷相遇的时空临界问题等。 审题时应注意恰好,最大、最多、至少等关键字 (07全国1)两平面荧光屏互相垂直放置,在两屏内分别取垂直于两屏交线的直线为x轴和y轴,交点O为原点,如图所示。在y>0,00,x>a的区域有垂直于纸面向外的匀强磁场,两区域内的磁感应强度 大小均为B。在O点处有一小孔,一束质量为m、带电量为q(q>0)的 粒子沿x轴经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏 发亮。入射粒子的速度可取从零到某一最大值之间的各种数值.已知速 度最大的粒子在0a的区域中运动的时 间之比为2:5,在磁场中运动的总时间为7T/12,其中T为该粒子在磁 感应强度为B的匀强磁场中作圆周运动的周期。试求两个荧光屏上亮线 的范围(不计重力的影响)。

带电粒子在磁场中做匀速圆周运动题型归类

带电粒子在磁场中做匀速圆周运动题型归类(2009、5) 带电粒子在有界磁场中运动的分析方法: 1.圆心的确定 因为洛伦兹力F 指向圆心,根据F ⊥v ,画出粒子运 动轨迹中任意两点(一般是射入和射出磁场两点),先作 出切线找出v 的方向再确定F 的方向,沿两个洛伦兹力F 的方向画其延长线,两延长线的交点即为圆心,或利用圆 心位置必定在圆中一根弦的中垂线上,作出圆心位置,如 图1所示。 2.半径的确定和计算 利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下 两个重要的几何特点: ①粒子速度的偏向角?等于转过的圆心角α,并等于AB 弦与切线的夹角(弦切角)θ的2倍,如图2所示,即?=α=2θ。 ②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。 3.粒子在磁场中运动时间的确定 若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所 对的圆心角,利用圆心角α与弦切角的关系,或者利用四边形内角和等于360°计算出圆心角α的大小,并由表达式,即Bq m t α=,确定通过该段圆弧所用的时间,其中T 即 为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t 越长,注意t 与运动轨迹的长短无关。 4.注意圆周运动的对称性与特殊性 (1)从一直线边界射入的粒子从同一直线边界射出时,速度与边界的夹角相等; (2)在圆形磁场区域内,粒子射入时的速度方向过圆心,射出时的速度方向也过圆心; (3)圆形磁场区域的半径与粒子轨道半径相等时,出射方向一定垂直入射点与磁场圆心的连线。(此结论解题很难想到,也较难证明,利用几何知识。) 问题一:磁场边界问题 有界磁场的两种典型模型: 1.穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。 (1)带电粒子在穿过磁场时的偏向角由sin θ=L /R 求出;(θ、L 和R 见图标) (2)带电粒子的侧移由R 2=L 2-(R-y )2 解出;(y 见所图标) (3)带电粒子在磁场中经历的时间由得出。 ②穿过圆形磁场区:如图4所示,画好辅助线(半径、速度、轨迹圆 的圆心、连心线)。

(完整版)2017年高考物理试题分类汇编及答案解析《磁场》.doc

磁场 1.【 2017·江苏卷】如图所示,两个单匝线圈a、 b 的半径分别为r 和2r .圆形匀强磁场 B 的边缘恰好与 a 线圈重合,则穿过a、 b 两线圈的磁通量之比为 (A)1:1 ( B)1:2 ( C)1:4 ( D)4:1 【答案】 A 【考点定位】磁通量 【名师点睛】本题主要注意磁通量的计算公式中 S 的含义,它指的是有磁感线穿过区域的垂直 面积. 2.【2017 ·新课标Ⅰ卷】如图,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与 纸面平行),磁场方向垂直于纸面向里,三个带正电的微粒 a、 b、 c 电荷量相等,质量分别 为m a、 m b、 m c。已知在该区域内, a 在纸面内做匀速圆周运动, b 在纸面内向右做匀速直线运动, c 在纸面内向左做匀速直线运动。下列选项正确的是 A.m a m b m c B.m b m a m c C.m c m a m b D.m c m b m a 【答案】 B 【解析】由题意知,m a g=qE, m b g=qE+Bqv, m c g+Bqv=qE,所以m b m a m c,故 B 正确,ACD 错误。 【考点定位】带电粒子在复合场中的运动

【名师点睛】三种场力同时存在,做匀速圆周运动的条件是m a g=qE,两个匀速直线运动, 合外力为零,重点是洛伦兹力的方向判断。 3.【 2017·新课标Ⅲ卷】如图,在磁感应强度大小为B0的匀强磁场中,两长直导线P 和 Q 垂直于纸面固定放置,两者之间的距离为l 。在两导线中均通有方向垂直于纸面向里的电流 I 时,纸面内与两导线距离均为l 的 a 点处的磁感应强度为零。如果让P 中的电流反向、其 他条件不变,则 a 点处磁感应强度的大小为 A.0 3 2 3 0 B.B0 C.B0 D. 2B 3 3 【答案】 C 【考点定位】磁场叠加、安培定则 【名师点睛】本题关键为利用安培定则判断磁场的方向,在根据几何关系进行磁场的叠加和 计算。 4.【 2017·新课标Ⅰ卷】如图,三根相互平行的固定长直导线L1、 L2和 L3两两等距,均通 有电流, L1中电流方向与L2中的相同,与L3中的相反,下列说法正确的是

专题关注】磁聚焦与磁扩散(含答案)

【专题关注】磁聚焦与磁扩散 【亮点】发散的带电粒子束在磁场的作用下聚集于一点的现象称为磁聚焦,反之称为磁扩散。 【结论】R 磁场=R 轨迹 【借鉴例题】(2012·临川一中4月模拟)有一种电荷聚焦装置的工作原理可简化为如下工作过程:如图(a )所示,平行金属板A 和B 间的距离为d ,现在A 、B 板上加上如图(b )所示的方波形电压,t =0时A 板比B 板的电势高,电压的正向值为U 0,反向值也为U 0,现有由质量为m 的带正电且电荷量为q 的粒子组成的粒子束,从AB 的中点O 以平行于金属板方向OO '的速度v 0= dm T qU 30不断射入,所有粒子在AB 间的飞行时间均为T ,不计重力影响。试求: (1)粒子打出电场时位置离O '点的距离范围 (2)粒子射出电场时的速度大小及方向 (3)在平行板的右侧某个区域设置一个有界匀强磁场,使得从电场中出来的粒子,经磁场偏转后,都能聚焦于某一个点,则此匀强磁场区域的最小面积是多大 【寒假作业五套卷5-25】(2008·南通二模)如图4所示的直角坐标系中,在直线x= -2L 0到y 轴区域内存在着两个大小相等、方向相反的有界匀强电场,其中x 轴上方的电场方向沿y 轴负方向,x 轴下方的电场方向沿y 轴正方向.在电场左边界上A(-2L 0,-L 0)到C(-2L 0,0)区域内,连续分布着电荷量为+q 、质量为m 的粒子.从某时刻起由A 点到C 点间的粒子,依次连续以相同的速度v 0沿x 轴正方向射入电场.若从A 点射入的粒子恰好从y 轴上的A (0,L 0), 沿x 轴正方向射出电场,其轨迹如图中虚线所示.不计粒子的重力及粒子间的相互作用.求: (1)求匀强电场的电场强度E;

最新十年高考物理分类解析磁场

十年高考物理分类解析:磁场 15.[2014·新课标全国卷Ⅰ] 关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是( ) A .安培力的方向可以不垂直于直导线 B .安培力的方向总是垂直于磁场的方向 C .安培力的大小与通电直导线和磁场方向的夹角无关 D .将直导线从中点折成直角,安培力的大小一定变为原的一半 16.[2014·新课标全国卷Ⅰ] 如图所示,MN 为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未面出),一带电粒子从紧贴铝板上表面的P 点垂直于铝板向上射出,从Q 点穿越铝板后到达PQ 的中点O ,已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变.不计 重力.铝板上方和下方的磁感应强度大小之比为( ) A .2 B.2 C .1 D.22 18.[2014·山东卷] 如图所示,场强大小为E 、方向竖直向下的匀强电场中有一矩形区域abcd ,水平边ab 长为s ,竖直边ad 长为h .质量均为m 、带电荷量分别为+q 和-q 的两粒子,由a 、c 两点先后沿ab 和cd 方向以速率v 0进入矩形区(两粒子不同时出现在电场中).不计重力.若两粒子轨迹恰好相切,则v 0等于( ) A.s 2 2qE mh B.s 2qE mh C.s 42qE mh D.s 4qE mh 20. [2014·新课标Ⅱ卷] 图为某磁谱仪部分构件的示意图.图中,永磁铁提供匀强磁场,硅微条径迹探测器可以探测粒子在其中运动的轨迹.宇宙射线中有大量的电子、正电子和质子.当这些粒子从上部垂直进入磁 场时,下列说法正确的是( ) A .电子与正电子的偏转方向一定不同 B .电子与正电子在磁场中运动轨迹的半径一定相同 C .仅依据粒子运动轨迹无法判断该粒子是质子还是正电子 D .粒子的动能越大,它在磁场中运动轨迹的半径越小 9.[2014·江苏卷] 如图所示,导电物质为电子的霍尔元件位于两串联线圈之间,线圈中电流为I ,线圈间产生匀强磁场,磁感应强度大小B 与I 成正比,方向垂直于霍尔元件的两侧面,此时通过霍尔元件的电流为I H , 与其前后表面相连的电压表测出的霍尔电压U H 满足:U H =k I H B d ,式中k 为霍尔系数,d 为霍尔元件两侧面间的距离.电阻R 远大于R L ,霍尔元件的电阻可以忽略,则( ) A .霍尔元件前表面的电势低于后表面 B .若电的正负极对调,电压表将反偏 C .I H 与I 成正比 D .电压表的示数与R L 消耗的电功率成正比

“磁发散与磁聚焦”模型在高考中的应用-2019年文档

“磁发散与磁聚焦”模型在高考中的应用 当圆形磁场的半径与圆轨迹半径相等时,存在两条特殊规律. 磁发散:带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹半径相等,则粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如图1所示. 磁聚集:平行射入圆形有界磁场的相同带电粒子,如果圆形磁场的半径与圆轨迹半径相等,则所有粒子都从磁场边界上的同一点射出,并且出射点的切线与入射速度方向平行,如图2所示. 图1图2这两条规律在近几年高考中频频出现,如能在平时对平行运动带电粒子磁聚焦问题进行深入分析和研究,那么在考试中遇到类似题目就会有“游刃有余,一切尽在掌控中”的自信和豪情. 一、突出对粒子运动径迹的考察 例1如图3,ABCD是边长为的正方形.质量为、电荷量为的电子以大小为的初速度沿纸面垂直于BC变射入正方形区域.在正方形内适当区域中有匀强磁场.电子从BC边上的任意点入射,都只能从A 点射出磁场.不计重力,求:(1)次匀强磁场区域中磁感应强度的方向和大小;(2)此匀强磁场区域的最小面积. 图3图4解析: (1)设匀强磁场的磁感应强度的大小为B.令圆弧AEC是自C点垂直于BC入射的电子在磁场中的运行轨道.电子所受到的磁场的作用力大小为f =ev0B,方向应指向圆弧的圆心,因而磁场的方向应垂直于纸面向外.圆弧AEC的圆心在CB边或其延长线上.

依题意,圆心在A、C连线的中垂线上,故B点即为圆心,圆半径为a,按照牛顿定律有f=mv202,联立两式得B=mv0ea. (2)由(1)中决定的磁感应强度的方向和大小,可知自点垂直于入射电子在A点沿DA方向射出,且自BC边上其他点垂直于入射的电子的运动轨道只能在BAEC区域中.因而,圆弧AEC是所求的最小磁场区域的一个边界. 为了决定该磁场区域的另一边界,我们来考察射中A点的电子的速度方向与BA的延长线交角为θ(不妨设0≤θ≤π/2)的情形.该电子的运动轨迹qpA,如图4所示.图中,圆弧AP的圆心为O,pq垂直于BC边,由B=mv0ea知,圆弧AP的半径仍为a,在以A为原点、AB为x轴,AD为轴的坐标系中,P点的坐标(x,y)为x=asin θ,y=a-acosθ. 消去参数θ得x2+(y-a)2=a2. 这意味着,在范围0≤θ≤π/2内,p点形成以D为圆心、为半径的四分之一圆周AFC,它是电子做直线运动和圆周运动的分界线,构成所求磁场区域的另一边界.因此,所求的最小匀强磁场区域时分别以AEC和AFC为圆心、为半径的两个四分之一圆周AEC和AFC所围成的,其面积为S=2(14πa2-12a2)=π-22a2. 点评:这是一个典型的利用磁场进行平行运动带电粒子磁聚焦的考题,看起来在考磁场的最小面积问题,但实质上在考核粒子的运动径迹.从知识和能力的角度看,对于面对陌生题目的考生而言,综合考查了学生对于带电粒子在磁场中运动的综合分析能力, 二、突出对粒子运动“汇聚点”的考察

“导体棒切割磁感线”题型与归类

“导体棒切割磁感线”问题的题型与归类 问题一:电磁感应现象中的图象 在电磁感应现象中,回路产生的感应电动势、感应电流及磁场对导线的作用力随时间的变化规律,也可用图象直观地表示出来.此问题可分为两类(1)由给定的电磁感应过程选出或画出相应的物理量的函数图像;(2)由给定的有关图像分析电磁感应过程,确定相关的物理量. 1.判断函数图象 如果是导体切割之动生电动势问题,通常由公式:E=BLv确定感应电动势的大小随时间的变化规律,由右手定则或楞次定律判断感应电流的方向;如果是感生电动势,则由法拉弟电磁感应定律确定E的大小,由楞次定律判断感应电流的方向。 题型1-1-1:例1、如图甲所示,由均匀电阻丝做成的正方形线框abcd的电阻为R1,ab=bc=cd=da=l,现将线框以与ab垂直的速度v匀速穿过一宽度为2l、磁感应强度为B的匀强磁场区域,整个过程中ab、cd两边始终保持与边界平行.令线框的cd边刚与磁场左边界重合时t=O,电流沿abcda流动的方向为正. (1)在图乙中画出线框中感应电流随时间变化的图象. (2)在图丙中画出线框中a、b两点间电势差Uab随时间t变化的图象. 分析:本题是电磁感应知识与电路规律的综合应用,要求我们运用电磁感应中的楞次定律、法拉第电磁感应定律及画出等效电路图用电路规律来求解,是一种常见的题型。 解答:(1)令I0=Blv/R,画出的图像分为三段(如下图所示) t=0~l/v,i=-I0 t= l/v~2l/v,i=0 t=2l/v~3l/v,i=-I0 (2)令U ab=Blv,面出的图像分为三段(如上图所示)

小结:要求我们分析题中所描述的物理情景,了解已知和所求的,然后将整个过程分成几个小的阶段,每个阶段中物理量间的变化关系分析明确,最后规定正方向建立直角坐标系准确的画出图形 例2、如图所示,一个边长为a ,电阻为R 的等边三角形,在外力作用下以速度v 匀速的穿过宽度均为a 的两个匀强磁场,这两个磁场的磁感应强度大小均为B ,方向相反,线框运动方向与底边平行且与磁场边缘垂直,取逆时针方向为电流的正方向,试通过计算,画出从图示位置开始,线框中产生的感应电流I 与沿运动方向的位移x 之间的函数图象 分析:本题研究电流随位移的变化规律,涉及到有效长度问题. 解答:线框进入第一个磁场时,切割磁感线的有效长度在均匀变化.在位移由0到a/2过程中,切割有效长度由0增到2 3a ;在位移由a/ 2到 a 的过程中,切割有效长度由23a 减到 0.在x=a/2时,,I=R avB 23,电流为正.线框穿越两磁场边界时,线框在两磁场中切割 磁感线产生的感应电动势相等且同向,切割的有效长度也在均匀变化.在位移由a 到3a/2 过程中,切割有效长度由O 增到23a 。 ;在位移由3a/2到2a 过程中,切割有效长度由 2 3a 减到0.在x=3a/2时,I=R avB 3电流为负.线框移出第二个磁场时的情况与进入第 一个磁场相似,I 一x 图象如右图所示. 1、长度相等、电阻均为r 的三根金属棒AB 、CD 、EF 用导线相连,如图所示,不考虑导线电阻,此装置匀速进入匀强磁场的过程(匀强磁场垂直纸面向里,宽度大于AE 间距离),AB 两端电势差u 随时间变化的图像可能是:( ) A C E

2004-2013十年高考物理-大全分类解析-专题13-带电粒子在电磁场中的运动

2004-2013十年高考物理 大全分类解析 专题13 带电粒子在电磁 场中的运动 一.2013年高考题 1. (2013全国新课标理综II 第17题)空间有一圆柱形匀强磁场区域,该区域的横截面的半径为R ,磁场方向垂直于横截面。一质量为m 、电荷量为q (q>0)的粒子以速率v0沿横截面的某直径射入磁场,离开磁场时速度方向偏离入射方向60°。不计重力。该磁场的磁感应强度大小为 A .033mv qR B .qR mv 0 C . qR mv 03 D .qR mv 03 2. (2013全国新课标理综1第18题)如图,半径为R 的圆是一圆柱形匀强 磁场区域的横截面(纸面),磁感应强度大小为B ,方向垂直于纸面向外,一 电荷量为q (q>0)。质量为m 的粒子沿平行于直径ab 的方向射入磁场区域, 射入点与ab 的距离为R/2,已知粒子射出磁场与射入磁场时运动方向间的夹 角为60°,则粒子的速率为(不计重力) A . m qBR 2 B .m qBR C .m qBR 23 D .m qBR 2

3.(2013高考广东理综第21题)如图9,两个初速度大小相同的同种离 子a和b,从O点沿垂直磁场方向进入匀强磁场,最后打到屏P上, 不计重力,下列说法正确的有 A.a,b均带正电 B.a在磁场中飞行的时间比b的短 C. a在磁场中飞行的路程比b的短 D.a在P上的落点与O点的距离比b的近 4.(2013高考浙江理综第20题)注入工艺中,初速度可忽略的离子P+和P3+,经电压为U的电场加速后,垂直进入磁感应强度大小为B、方向垂直纸面向里,有一 定的宽度的匀强磁场区域,如图所示,已知离子P+在磁场中转过 θ=30°后从磁场右边界射出。在电场和磁场中运动时,离子P+和P3+ A.在电场中的加速度之比为1∶1 B.在磁场中运动的半径之比为3∶1 C.在磁场中转过的角度之比为1∶2 D.离开电场区域时的动能之比为1∶3

带电粒子在磁场中运动高考题型归类解析

带电粒子在磁场中运动高考题型归类解析 1、带电粒子在匀强磁场中匀速圆周运动基本问题 找圆心、画轨迹是解题的基础。带电粒子垂直于磁场进入一匀强磁场后在洛伦兹力作用下必作匀速圆周运动,抓住运动中的任两点处的速度,分别作出各速度的垂线,则二垂线的交点必为圆心;或者用垂径定理及一处速度的垂线也可找出圆心;再利用数学知识求出圆周运动的半径及粒子经过的圆心角从而解答物理问题。 (04)钍核Th 23090发生衰变生成镭核Ra 22688并放出一个粒子。设该粒子的质量为m 、电荷量为q ,它进入 电势差为U 的带窄缝的平行平板电极1S 和2S 间电场时,其速度为0v ,经电场加速后,沿ox 方向进入磁感应强度为B 、方向垂直纸面向外的有界匀强磁场,ox 垂直平板电极2S ,当粒子从p 点离开磁场时,其速度方向与ox 方位的夹角?=60θ,如图所示,整个装置处于真空中。 (1)写出钍核衰变方程; (2)求粒子在磁场中沿圆弧运动的轨道半径R ; (3)求粒子在磁场中运动所用时间t 。 (1)钍核衰变方程Ra He Th 226884223090+→ ① (2)设粒子离开电场时速度为v ,对加速过程有 2022121mv mv qU -= ② 粒子在磁场中有R v m qvB 2 = ③ 由②、③得202v m qU qB m R += ④ (3)粒子做圆周运动的回旋周期 qB m v R T ππ22== ⑤

粒子在磁场中运动时间T t 61= ⑥ 由⑤、⑥得qB m t 3π= ⑦ 2、带电粒子在磁场中轨道半径变化问题。 导致轨道半径变化的原因有:①带电粒子速度变化导致半径变化。如带电粒子穿过极板速度变化;带电粒子使空气电离导致速度变化;回旋加速器加速带电粒子等。②磁场变化导致半径变化。如通电导线周围磁场,不同区域的匀强磁场不同;磁场随时间变化。③动量变化导致半径变化。如粒子裂变,或者与别的粒子碰撞;④电量变化导致半径变化。如吸收电荷等。总之,由qB mv r =看m 、v 、q 、B 中某个量或某两个量的乘积或比值的变化就会导致带电粒子的轨道半径变化。 (06年全国2)如图所示,在x <0与x >0的区域中,存在磁感应强度大小分别为B 1与B 2的匀强磁场,磁场方向垂直于纸面向里,且B 1>B 2。一个带负电的粒子从坐标原点O 以速度v 沿x 轴负方向射出,要使该粒子经过一段时间后又经过O 点,B 1与B 2的比值应满足什么条件? 解析:粒子在整个过程中的速度大小恒为v ,交替地在xy 平面B 1与B 2磁场区域中做匀速圆周运动,轨迹都是半个圆周。设粒子的质量 和电荷量的大小分别为m 和q ,圆周运动的半径分别为和r 2,有 r 1=1mv qB ……① r 2=2mv qB ……② 分析粒子运动的轨迹。如图所示,在xy 平面,粒子先沿半径为r 1 的半圆C 1运动至y 轴上离O 点距离为2 r 1的A 点,接着沿半径为2 r 2 的半圆D 1运动至y 轴的O 1点,O 1O 距离 d =2(r 2-r 1)……③ 此后,粒子每经历一次“回旋”(即从y 轴出发沿半径r 1的半圆和半径 为r 2的半圆回到原点下方y 轴),粒子y 坐标就减小d 。 设粒子经过n 次回旋后与y 轴交于O n 点。若OO n 即nd 满足 nd =2r 1 ④ 则粒子再经过半圆C n +1就能够经过原点,式中n =1,2,3,……为回 旋次数。 由③④式解得 11 n r n r n =+ ⑤由①②⑤式可得B 1、B 2应满足的条件 211 B n B n =+ n =1,2,3,……⑥ 3、带电粒子在磁场中运动的临界问题和带电粒子在多磁场中运动问题 带电粒子在磁场中运动的临界问题的原因有:粒子运动围的空间临界问题;磁场所占据围的空间临界问题,运动电荷相遇的时空临界问题等。审题时应注意恰好,最大、最多、至少等关键字。 x y B 2 B 1 O v

高中物理 带电粒子比荷类高考试题归类解析

带电粒子比荷类高考试题归类解析 应用电场和磁场的有关知识求解带电粒子比荷类试题是近几年高考常见的考题,这类试题考查学生把所学的知识用来解决实际问题的能力,体现了物理与科学、技术、社会的结合和联系,符合新课程标准。现就这类试题归类解析: 一、用平衡求解 1.用带电粒子在匀强电场中平衡求比荷 例1电子的比荷最早由美国科学家密立根通过油滴实验测出,如图两块水平放置的平行金属板上下极板与电源正负极相接,上下极板分别带正负电荷,油滴从喷雾器喷出后,由于摩擦而起电,油滴进入上板中央小孔后落到匀强电场中,通过显微镜可以观察到油滴的运动,两金属板间距为d,不计空气阻力和浮力,调节两板的电势差,当U=U0时,使油滴做匀速直线运动,求油滴的比荷。 解析:油滴匀速运动受电场力和重力平衡,油滴带负电,由平衡条件 得 2.用带电粒子在电磁场平衡求比荷 (96年全国高考)设在地面上方的真空室内,存在匀强电场和匀强磁场,已知电场强度和磁感应强度的方向是相同的E=4.0v/m,B=0.15T,今有一个带负电的质点以v=20m/s的速度在此区域内沿垂直于磁场方向作匀速直线运动,求此质点的电量和质量之比以及磁场的所有可能方向。

解析:根据带电粒子做匀速直线运动的条件得知,此粒子受重力、电场力和洛仑兹力的合力必定为零,由此可知三力在同一竖直平面内,如图,质点的速度垂直纸面向外,因质点带负电,电场方向和电场力的方向相反,磁场方向也与电场力的方向相反,设磁场方向与重力方向成θ角,由平衡条件 解得 且斜向下的一切方向。 二、用偏转求解 1.用带电粒子在电场中偏转求比荷 (04年江苏)汤姆逊用来测定电子的比荷实验装置如下:真空管内的阴极K发出电子,(不计初速,重力和电子间相互作用)经加速电压加速后,穿过A的中心小孔沿中心轴O/O的方向进入到两块水平正对旋转的平行极板P和P/间的区域,当极板间不加偏转电压时,电子束打在荧光屏的中心O点,形成一个亮点;加上偏转电压U后,亮点偏转到O/点,O与O/点的竖直间距为d,水平间距可以忽略此时在P和P/间的区域内,再加一个方向垂直于纸面向里的匀强磁场,调节磁场的强弱,当磁感应强度的大小为B时,亮点重先回到O点,已知极板水平方向的长度为L1板间距离为b,板右端到荧光屏的距离为L2如图所示,求(1)打在荧光屏O点的电子速度的大小,(2)推导电子的比荷表达式。

高考物理电磁学知识点之磁场分类汇编含解析(4)

高考物理电磁学知识点之磁场分类汇编含解析(4) 一、选择题 1.下列有关运动电荷和通电导线受到磁场对它们的作用力方向判断正确的是()A. B. C. D. 2.如图所示,台秤上放一光滑平板,其左边固定一挡板,一轻质弹簧将挡板和一条形磁铁连接起来,此时台秤读数为N1,现在磁铁上方中心偏左位置固定一通电导线,电流方向如图,当加上电流后,台秤读数为N2,则以下说法正确的是() A.N1>N2,弹簧长度将变长B.N1>N2,弹簧长度将变短 C.N1<N2,弹簧长度将变长D.N1<N2,弹簧长度将变短 3.2019年我国研制出了世界上最大的紧凑型强流质子回旋加速器,该回旋加速器是我国目前自主研制的能量最高的质子回旋加速器。如图所示为回旋加速器原理示意图,现将两个相同的回旋加速器置于相同的匀强磁场中,接入高频电源。分别加速氘核和氦核,下列说法正确的是()

A.它们在磁场中运动的周期相同 B.它们的最大速度不相等 C.两次所接高频电源的频率不相同 D.仅增大高频电源的频率可增大粒子的最大动能 4.如图所示,匀强磁场的方向垂直纸面向里,一带电微粒从磁场边界d点垂直于磁场方向射入,沿曲线dpa打到屏MN上的a点,通过pa段用时为t.若该微粒经过P点时,与一个静止的不带电微粒碰撞并结合为一个新微粒,最终打到屏MN上.若两个微粒所受重力均忽略,则新微粒运动的 ( ) A.轨迹为pb,至屏幕的时间将小于t B.轨迹为pc,至屏幕的时间将大于t C.轨迹为pa,至屏幕的时间将大于t D.轨迹为pb,至屏幕的时间将等于t 5.如图所示,一块长方体金属板材料置于方向垂直于其前表面向里的匀强磁场中,磁感应强度大小为B。当通以从左到右的恒定电流I时,金属材料上、下表面电势分别为φ1、 φ2。该金属材料垂直电流方向的截面为长方形,其与磁场垂直的边长为a、与磁场平行的边长为b,金属材料单位体积内自由电子数为n,元电荷为e。那么 A. 12IB enb ?? -=B. 12IB enb ?? -=- C. 12 IB ena ?? -=D. 12 IB ena ?? -=- 6.教师在课堂上做了两个小实验,让小明同学印象深刻。第一个实验叫做“旋转的液体”,在玻璃皿的中心放一个圆柱形电极,沿边缘内壁放一个圆环形电极,把它们分别与电池的两极相连,然后在玻璃皿中放入导电液体,例如盐水,如果把玻璃皿放在磁场中,液体就会旋转起来,如图甲所示。第二个实验叫做“振动的弹簧”,把一根柔软的弹簧悬挂起来,使它的下端刚好跟槽中的水银接触,通电后,发现弹簧不断上下振动,如图乙所示。下列关于这两个趣味实验的说法正确的是()

磁聚焦和磁发散

磁聚焦和磁发散 一、带电粒子的汇聚 特点:①磁场是圆形磁场②磁场圆的半径和轨迹圆的半径相等③大量带正电的粒子平行入射。 结论:这些粒子会汇聚一点射出磁场。 几何关系:磁场圆的两条半径,轨迹圆的两条半径组成的四边形是菱形。 因为O O '是角平分线,所以∠1=∠2,因为B O OB '=所以∠2=∠3,所以∠1=∠3,四边形O AOB '是菱形。 如图所示,大量的同种带正电的粒子,速度大小相同,平行入射到圆形磁场区域,如果轨迹圆半径与磁场圆半径相等即R =r ,则所有的带电粒子将从磁场圆的最低点B 点射出. 平行四边形OAO ′B 为菱形,可得BO ′为轨迹圆的半径,可知从A 点发出的带电粒子必然经过B 点. 1、如图所示,x 轴正方向水平向右,y 轴正方向竖直向上.在xOy 平面内有与y 轴平行的匀强电场,在半径为R 的圆内还有与xOy 平面垂直的匀强磁场.在圆的左边放置一带电微粒发射装置,它沿x 轴正方向发射出一束具有相同质量m 、电荷量q (q >0)和初速度v 的带电微粒.发射时,这束带电微粒分布在0

高中物理磁场经典习题(题型分类)含答案

磁场补充练习题 题组一 1.如图所示,在xOy 平面内,y ≥ 0的区域有垂直于xOy 平面向里的匀强磁场,磁感应强度为B,一质量为m 、带电量大小为q的粒子从原点O 沿与x 轴正方向成60°角方向以v 0射入,粒子的重力不计,求带电粒子在磁场中运动的时间和带电粒子离开磁场时的位置。 2.如图所示,a bcd 是一个正方形的盒子,在cd 边的中点有一小孔e ,盒子中存在着沿ad 方向的匀强电场,场强大小为E,一粒子源不断地从a 处的小孔沿a b方向向盒内发射相同的带电粒子,粒子的初速度为v 0,经电场作用后恰好从e 处的小孔射出,现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场,磁感应强度大小为B(图中未画出),粒子仍恰好从e 孔射出。(带电粒子的重力和粒子之间的相互作用均可忽略不计) (1)所加的磁场的方向如何? (2)电场强度E 与磁感应强度B 的比值为多大? 题组二 3.长为L 的水平极板间,有垂直纸面向里的匀强磁场,磁感应强度为B ,板间距离也为L ,极板不带电。现有质量为m ,电荷量为q 的带正电粒子(重力不计),从左边极板间中点处垂直磁场以速度v水平射入,如图所示。为了使粒子不能飞出磁场,求粒子的速度应满足的条件。 4.如图所示的坐标平面内,在y轴的左侧存在垂直纸面向外、磁感应强度大小B 1 = 0.20 T的匀强磁场,在y 轴的右侧存在垂直纸面向里、宽度d = 0.125 m 的匀强磁场B2。某时刻一质量m = 2.0×10-8 kg 、电量q = + 4.0×10-4 C 的带电微粒(重力可忽略不计),从x 轴上坐标为(-0.25 m ,0)的P 点以速度v = 2.0×103 m/s 沿y 轴正方向运动。试求: (1)微粒在y 轴的左侧磁场中运动的轨道半径; (2)微粒第一次经过y 轴时速度方向与y 轴正方向的夹角; (3)要使微粒不能从右侧磁场边界飞出,B 2应满足的条件。 5.图中左边有一对平行金属板,两板相距为d,电压为U ;两板之间有匀强磁场,磁场应强度大小为B 0,方向平行于板面并垂直于纸面朝里。图中右边有一边长为a 的正三角形区域EFG (EF 边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B ,方向垂直于纸面朝里。假设一系列电荷量为q的正离子沿平行于金属板面,垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF 边中点H 射入磁场区域。不计重力。 (1)已知这些离子中的离子甲到达磁场边界EG 后,从边界EF 穿出磁场,v 0 E e b c d a

高考物理电磁学知识点之磁场知识点总复习附解析

高考物理电磁学知识点之磁场知识点总复习附解析一、选择题 1.我国探月工程的重要项目之一是探测月球3 2He含量。如图所示,3 2 He(2个质子和1个 中子组成)和4 2 He(2个质子和2个中子组成)组成的粒子束经电场加速后,进入速度选择器,再经过狭缝P进入平板S下方的匀强磁场,沿半圆弧轨迹抵达照相底片,并留下痕迹M、N。下列说法正确的是() A.速度选择器内部的磁场垂直纸面向外B.平板S下方的磁场垂直纸面向里 C.经过狭缝P时,两种粒子的速度不同D.痕迹N是3 2 He抵达照相底片上时留下的2.回旋加速器是加速带电粒子的装置 .其核心部分是分别与高频交流电源两极相连接的两个D形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底的匀强磁场中,如图所示,要增大带电粒子射出时的动能,则下列说法中正确的是( ) A.减小磁场的磁感应强度 B.增大匀强电场间的加速电压 C.增大D形金属盒的半径 D.减小狭缝间的距离 3.如图所示,两相邻且范围足够大的匀强磁场区域Ⅰ和Ⅱ的磁感应强度方向平行、大小分别为B和2B。一带正电粒子(不计重力)以速度v从磁场分界线MN上某处射入磁场区域Ⅰ,其速度方向与磁场方向垂直且与分界线MN成60 角,经过t1时间后粒子进入到磁场区域Ⅱ,又经过t2时间后回到区域Ⅰ,设粒子在区域Ⅰ、Ⅱ中的角速度分别为ω1、ω2,则() A.ω1∶ω2=1∶1B.ω1∶ω2=2∶1

C.t1∶t2=1∶1D.t1∶t2=2∶1 4.如图所示,匀强磁场的方向垂直纸面向里,一带电微粒从磁场边界d点垂直于磁场方向射入,沿曲线dpa打到屏MN上的a点,通过pa段用时为t.若该微粒经过P点时,与一个静止的不带电微粒碰撞并结合为一个新微粒,最终打到屏MN上.若两个微粒所受重力均忽略,则新微粒运动的 ( ) A.轨迹为pb,至屏幕的时间将小于t B.轨迹为pc,至屏幕的时间将大于t C.轨迹为pa,至屏幕的时间将大于t D.轨迹为pb,至屏幕的时间将等于t 5.如图甲所示,静止在水平面上的等边三角形金属线框,匝数n=20,总电阻R=2.5Ω,边长L=0.3m,处在两个半径均为r=0.1m的圆形匀强磁场中,线框顶点与右侧圆心重合,线框底边与左侧圆直径重合,磁感应强度B1垂直水平面向外;B2垂直水平面向里, ,下列说B1、B2随时间t的变化如图乙所示,线框一直处于静止状态,计算过程中取π3 法正确的是() A.线框具有向左的运动趋势 B.t=0时刻穿过线框的磁通量为0.5Wb C.t=0.4s时刻线框中感应电动势为1.5V D.0-0.6s内通过线框横截面电荷量为0.018C 6.如图,一正方体盒子处于竖直向上匀强磁场中,盒子边长为L,前后面为金属板,其余四面均为绝缘材料,在盒左面正中间和底面上各有一小孔(孔大小相对底面大小可忽略),底面小孔位置可在底面中线MN间移动,让大量带电液滴从左侧小孔以某一水平速度进入盒内,若在正方形盒子前后表面加一恒定电压U,可使得液滴恰好能从底面小孔通过,测得小孔到M点的距离为d,已知磁场磁感强度为B,不考虑液滴之间的作用力,不计一切阻力,则以下说法正确的是()

verygood带电粒子在磁场中做匀速圆周运动题型归类

带电粒子在磁场中做匀速圆周运动题型归类 一、运动电荷在磁场中的运动 一、洛仑兹力的方向、大小及回旋角、弦切角等的关系 1、在不计带电粒子(如电子、质子、α粒子等基本粒子)的重力的条件下,带电粒子在匀强磁场有三种典型的运动,它们决定于粒子的速度(v )方向与磁场的磁感应强度(B )方向的夹角(θ)。 (1)若带电粒子的速度方向与磁场方向平行时,粒子不受洛仑兹力作用而作匀速直线运动。 (2)若粒子的速度方向与磁场方向垂直,则带电粒子在垂直于磁感线的平面内以入射速度v 作匀速圆周运动,其运动所需的向心力全部由洛仑兹力提供。 (3)若带电粒子的速度方向与磁场方向成一夹角θ(θ≠0°,θ≠90°),则粒子的运动轨迹是一螺旋线(其轨迹如图):粒子垂直磁场方向作匀速圆周运动,平行磁场方向作匀速运动,螺距S=v ∥T 。 2、带电粒子在匀强磁场中做匀速圆周运动的方向及几个基本公式 向心力公式:安培力是洛伦兹力的宏观表现,因而洛伦兹力的方向仍由左手定则判定,只是注意:四指的指向为正电荷运动方向或负电荷运动的反方向。由于洛伦兹力与带电粒子的运动方向垂直,故洛伦兹力不做功。当带电粒子的运动方向与磁场方向垂直时,洛伦兹力为带电粒子做匀速圆周运动提供向心力。 B q V m V R =2 轨道半径公式:Bq mV R = 周期、频率和角频率公式: T R V m B q ==22ππ m Bq T f π21== m Bq f T ===ππω22

动能公式:()E m V P m B q R m K ===1222222 T 、f 和ω的两个特点 第一、T 、 f 的ω的大小与轨道半径(R )和运行速率(V )无关,而只与磁场的磁感应强度(B )和粒子的荷质比(q/m )有关。 第二、荷质比(q/m )相同的带电粒子,在同样的匀强磁场中,T 、f 和ω相同。 3.注意圆周运动的对称性与特殊性 (1)从一直线边界射入的粒子从同一直线边界射出时,速度与边界的夹角相等; (2)在圆形磁场区域内,粒子射入时的速度方向过圆心,射出时的速度方向也过圆心; (3)圆形磁场区域的半径与粒子轨道半径相等时,出射方向一定垂直入射点与磁场圆心的连线。(此结论解题很难想到,也较难证明,利用几何知识。) 二、“电偏转”与“磁偏转”的比较 1、概念:带电粒子垂直电场方向进入匀强电场后,在电场力作用下的偏转叫“电偏转”。带电粒子垂直磁场进入匀强磁场后,在洛伦兹力作用下的偏转叫“磁偏转”。 2、“电偏转”和“磁偏转”的比较。 (1)带电粒子运动规律不同。电偏转中:粒子做类平抛运动,轨迹为抛物线,研究方法为运动分解和合成,加速度a =Eq/m ,(粒子的重力不计)侧移量(偏转量)y =at 2/2=qEt 2/2m ;磁偏转中:带电粒子做匀速圆周运动,从时间看T=2πm/qB ,从空间看:R=mv/qB 。 x x (2)带电粒子偏转程度的比较。 电偏转:偏转角(偏向角)θE =tan -1(V Y /V X )=tan - 1(Eqt/mv 0),由式中可知:当偏转区域足够大,偏转时间t 充分长时,偏转角θE 接近π/2,但不可能等于π/2。磁偏转的偏转角θB =ωt =Vt/r =qBt/m ,容易实现0—π角的偏转 O 0 带电粒子在有界磁场中运动的分析方法: 确定带电粒子在磁场中做匀速圆周运动的圆心、半径和运动时间的方法 解决在洛伦兹力作用下带电粒子在磁场中的匀速圆周运动问题时,要注意以下三点: 1.圆心的确定

相关文档
相关文档 最新文档