文档库 最新最全的文档下载
当前位置:文档库 › 碳化硅基本特性及碳化硅陶瓷烧结工艺

碳化硅基本特性及碳化硅陶瓷烧结工艺

碳化硅基本特性及碳化硅陶瓷烧结工艺
碳化硅基本特性及碳化硅陶瓷烧结工艺

碳化硅基本特性及碳化硅陶瓷烧结工艺
2015 月 01 月 26 日 发布 分类:粉体应用技术 点击量:111
6
碳化硅陶瓷材料具有高温强度大、高温抗氧化性强、耐磨损性能好、热稳定性佳 、热膨 胀系数小、热导率大、硬度高、抗热震和耐化学腐蚀等优良特性,在汽车、机械化工、环境保 护、 空间技术、 信息电子 、能源等领域有着日益广泛的应用,已经成为一种在很多工业领域 性能优异的其他材料不可替代的结构陶瓷。
现代国防、核能和空间技术以及汽车工业、海洋工程的迅速发展, 对火箭燃烧室内衬、飞 机涡轮发动机叶片、核反应堆结构部件、高速气动轴承和机械密封零件等材料的要求愈来愈 高, 迫切需要开发各种新型高性能结构材料。SiC 陶瓷在石油化学工业中已被广泛地用作各种 耐腐蚀用容器及管道在机械工业中已被成功地用作各种轴承、 切削刀具和机械密封部件在航天 和汽车工业中也被认为是未来制造燃气轮机、火箭喷嘴和发动机部件的最有希望的候选材料。
1、碳化硅的基本特性
化学属性
抗化合性: 碳化硅材料在氧气中反应温度达到 1300℃时, 在其碳化硅晶体表层已经生成 二氧化硅保护层。随着保护层的加厚,抵制了里面碳化硅继续被化合,这使碳化硅有较好的抗 化合性。当气温达到 1900K(1627℃)以上时,二氧化硅保护膜已经被破坏,碳化硅化合效应 加重,从而 1900K 是碳化硅在氧化剂氛围下的最高工作气温。
耐酸碱性:在耐酸、碱及化合物的效用方面,因为二氧化硅保护膜的效用,碳化硅的抗 酸能力非常非常强,抗碱性稍差。
物理性能
密度:各样碳化硅晶形的颗粒密度十分相近,通常情况下,应该是 3.20 g/mm3 ,其碳 化硅磨料的堆砌密度在 1.2--1.6 g/mm3 之间,其高矮取决于其粒度号、粒度合成和颗粒形 状的大小。

硬度: 碳化硅的硬度为:莫氏 9.5 级。单晶硅的硬度为:莫氏 7 级。多晶硅的硬度为: 莫氏 7 级。都是硬度相对较高的物料。努普硬度为 2670—2815 公斤/毫米,在磨料中高于 刚玉而仅次于金刚石、立方氮化硼和碳化硼。
导热率:碳化硅制品的导热率非常高,热膨胀参数小,抗热震性非常高,是优质的耐火 材料。
电学属性
恒温下工业碳化硅是一种半导体,属杂质导电性。高纯度碳化硅随着气温的升高内阻率 降低,含杂质碳化硅按照其含杂质不一样,导电性能也不一样。
其它属性 亲水性好。 众所周知, SiC 是共价键很强的化合物。按照 Pauling 对电负性的计算, SiC 中 Si 一 C 键的离子性仅 12%左右。因此,SiC 的硬度高、弹性模量大, 具有优良的耐磨损性能。值得指 出的是, SiC 氧化时, 表面形成的二氧化硅层会抑制氧的进一步扩散, 因而, 其氧化速率并不 高。在电性能方面, SiC 具有半导体特性, 少量杂质的引入会使其表现出良好的导电性:此外, SiC 还具有优良的导热性。
2、碳化硅粉末的合成方法
SiC 是在陨石中发现的,在地球上几乎不存在,因此,工业上应用的 SiC 粉末都是人工 合成的。目前,合成 SiC 粉末的方法主要有:Acheson 法、直接化合法、热分解法和气相反 应法等。其中在实际工业生产中,最为普及的还是 Acheson 法。
Acheson 法简介

Acheson 法是工业采用最多的合成方法。α-SiC 粉末的方法,即用电加热的方法将石英 砂和焦炭的混合物加热到 2500℃左右的高温使其发生反应: SiO2 (s) + 3C(s) →α-SiC(s)+ 2CO(g)
在工业生产中, 用于合成的石英砂和焦炭通常含有 Al 和 Fe 等金属杂质, 因此, 所得到的 SiC 一般都固溶有少量的杂质。其中, 杂质含量少的呈绿色,被称为绿色碳化硅;杂质含量多的 呈黑色, 被称为黑色碳化硅。
3、碳化硅陶瓷的烧结工艺
目前,制备高密度 SiC 陶瓷的方法主要有无压烧结、热压烧结、热等静压烧结和反应烧 结等。通过无压烧结工艺可以制备出复杂形状和大尺寸的 SiC 部件,因此,被认为是 SiC 陶 瓷的最有的前途的烧结方法。采用热压烧结工艺只能制备简单形状的 SiC 部件,而且一次热 烧结过程所制备的产品数量很小,因而,不利于商业化生产。尽管热等静压工艺可以获得复杂 形状的 SiC 制品,但必须对素坯进行包封,所以,也很难实现工业化生产。通过反应烧结工 艺可以制备出复杂形状的 SiC 部件,而且其烧结温度较低,但是,反应烧结 SiC 陶瓷的高温 性能较差。表 1 给出了无压烧结、热压烧结、热等静压烧结和反应烧结中 SiC 陶瓷的某些性 能。显然,SiC 陶瓷的性能因烧结法的不同而不同。一般来说,无压烧结 SiC 陶瓷的综合性能 优于反应烧结的 SiC,但逊色于热压烧结和热等静压烧结的 SiC。
不同烧结方法性能对照表 近年来, 随着 SiC 陶瓷制造技术的不断改进, 其性能不断提高, 应用范围也越来越广。目 前, SiC 陶瓷已在石油、化工、机械、微电子、汽车、航空航天、钢铁、造纸、激光、核能及 加工等工业领域获得大量应用, 并日益展示出其它结构陶瓷所无法比拟的优点。今后, 随着 Si C 陶瓷制造技术的不断进步, 其用途无疑会越来越广。 可以预计, 在不久的将来, 一个以高温机 械部件为最终目标的 SiC 陶瓷市场需求量一定会越来越大。 粉体技术在陶瓷行业的应用

2014 月 12 月 30 日 发布 分类:粉体应用技术 点击量:108 1 在高端陶瓷和特种陶瓷的生产过程中,粉体技术的应用是非常重要的,关系着产品品质 的高低和产品功能的实现。本文就粉体技术在陶瓷行业的应用做一下总结: 精细陶瓷 目前,日本、美国和西欧等发达国家的精细陶瓷生产量和应用量是全世界最大的。日本 和美国精细陶瓷产量约占全世界市场份额的 70%以上。 我国精细陶瓷的起步较晚,但随着一些 民企和中外合资精细陶瓷生产企业的逐渐发展壮大,我国的精细陶瓷产业已初具规模。目前, 我国精细陶瓷的生产规模总体仍较小,但从其结构和功能来区分,我国精细陶瓷的发展趋势仍 与国外精细陶瓷的发展趋势基本一致,主要是以电子陶瓷为主。精细陶瓷主要应用于电子、通 信、化工、冶金、机械、汽车制造、能源、航空航天等空间技术装备各领域。
精细陶瓷制品 陶瓷工业的原料制备过程中需要对物料进行粉磨和混合。为了后续的挤压成型,多采用 湿法的批次粉磨工艺。原料取决于浆料的粉磨效果好坏,直接影响着泥坯的流变性和成型烧结 质量。研磨过程中要避免金属物的污染。所使用的衬板多为非金属材料。研磨介质采用球石或 陶瓷磨球。在精细陶瓷生产过程中、原料超细研磨更为需要。无论是功能陶瓷还是结构陶瓷。 都是多种原料固相反应的产物。若原料粉碎得越细,多种原料的混合度就越高,固相反应也就 越均匀彻底,产品性能也就越好。达到纳米级的陶瓷微纳米陶瓷,通过其小尺寸效应,希望克 服陶瓷材料的脆性,使陶瓷具有像金属一样的柔韧性和可加工性。若能解决单相纳米陶瓷的烧 结过程中抑制晶粒长大的技术难题, 则它将具有高硬度、 高韧性、 低温超塑性、 易加工等优点。 在制备纳米粉体的工艺上,除了保证纳米粉体的质量,做到尺寸和分布可控,无团聚,能控制 颗粒的形状,还要生产量大。 结构陶瓷 高温、高强、超硬、耐磨、抗腐等机械力学性能为其主要特征。例如,纳米级 ZrO2 陶 瓷,烧结温度为 1250℃,施加一不大的力有 400%的形变,类似金属的延展性。室温下进行 拉伸疲劳试验,断裂后表层晶粒间同样表现为塑性形变。不仅离子型物质如此,共价型的 Si

Cl4 也有微小超塑性行为。美国一科学家用 CaF2 纳米材料在室温下可大幅度弯曲不断裂。纳 米 TiO2 陶瓷度达 95%,高硬度,耐高温,若用于改善发动机系统,将大大改善其性能。通 过降低烧结温度制成小晶粒,可用于电子陶瓷制备,例如:采用纳米钛酸钡颗粒烧结来提高片 式电容器和片式电感器的各项指标性能。
结构陶瓷制品 功能陶瓷 以电、磁、光、声、热、力等性能及相互转换为主要特征。例绝缘陶瓷、介电陶瓷、铁 电陶瓷、压电陶瓷、半导、导电、超导陶瓷。有的学者基于过渡液相烧结机制的高性能压电陶 瓷材料具有低烧结温度、高压电常数和低介质损耗等诸多优点。低烧多层压电变压器(MPT) 以其低驱动电压、 小体积、 高升压比、 薄型片式化等优点在液晶显示背光电源等方面获得应用。 多层压电变压器及其背光电源具有高功率密度、高转换效率、薄型化和低成本等特点。基于缺 陷化学原理和无晶粒长大的致密化烧结动力学,制备了亚微米/纳米晶钛酸钡基陶瓷及其薄层 化贱金属内电极 MLCC。研制了低烧铁氧体材料及其片式电感器。
功能陶瓷制品 生物陶瓷 生物陶瓷是指用作特定的生物或生理功能的一类陶瓷材料,即直接用于人体或与人体相 关的生物、 医用、 生物化学等的陶瓷材料。 广义讲, 凡属生物工程的陶瓷材料统称为生物陶瓷。 生物陶瓷材料因其与人的生活密切相关,故一直倍受材料科学工作者的重视。应用化学沉淀法 制备了粒径约 100nm 的 β-磷酸三钙(β-TCP)超细粉体,并采用放电等离子烧结技术烧结 βTCP,制备得到透明的 β-TCP 生物陶瓷。密度和透光性能分析结果表明,制备得到的 β-TCP 生物陶瓷纯度高、结构致密、晶粒平均尺寸约 250nm、具有良好的透光性能。细胞相容性实

验的结果表明,透明 β-TCP 生物陶瓷对骨髓间质干细胞的增殖作用明显高于常规的通用聚乙 烯培养板。采用化学共沉淀法制备了羟基磷灰石和二氧化锆超细粉,并以此为原料,通过不同 材料的优化组合, 用烧结法制备了 HA-ZrO2 二元体系复合生物陶瓷材料, 其抗折强度达到 1 20MPa, 断裂韧性值为 l.74MPa· m-1/2, 几乎为纯 HA 的两倍,接近骨组织(致密骨的抗 折强度为 160MPa,断裂韧性值为 2.2 MPa· m-1/2)。
生理陶瓷制品(烤瓷牙)

碳化硅的应用

碳化硅 碳化硅,又称为金钢砂或耐火砂,英文名Silicon Carbide,分子式SiC。 纯碳化硅是无色透明的晶体。工业碳化硅因所含杂质的种类和含量不同,而呈浅黄、绿、蓝乃至黑色,透明度随其纯度不同而异。碳化硅晶体结构分为六方或菱面体的α-SiC和立方体的β-SiC(称立方碳化硅)。α-SiC由于其晶体结构中碳和硅原子的堆垛序列不同而构成许多不同变体,已发现70余种。β-SiC于2100℃以上时转变为α-SiC。绿色至蓝黑色。介电常数7。硬度9Mobs。A-是半导体。迁移率(300 K), cm2 / (VS),400电子和50空穴,谱带间隙eV,303(0 K)和2.996(300 K);有效质量0.60电子和1.00空穴,电导性,耐高温氧化性能。相对密度3.16。熔点2830℃。导热系数(500℃)22. 5 , (1000℃)23.7 W / (m2K)。热膨胀系数:线性至100℃:5.2×10-6/ ℃,不溶于水、醇;溶于熔融碱金属氢氧化物。 碳化硅是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料在电阻炉内经高温冶炼而成。目前我国工业生产的碳化硅分为黑色碳化硅和绿色碳化硅两种,均为六方晶体,比重为3.20~3.25,显微硬度为2840~3320kg/mm2。碳化硅为晶体,硬度高,切削能力较强,化学性能力稳定,导热性能好。 黑碳化硅是以石英砂,石油焦和优质硅石为主要原料,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉,性脆而锋利。绿碳化硅是以石油焦和优质硅石为主要原料,添加食盐作为添加剂,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉。常用的碳化硅磨料有两种不同的晶体,一种是绿碳化硅,含SiC 97%以上,主要用于磨硬质含金工具。另一种是黑碳化硅,有金属光泽,含SiC 95%以上,强度比绿碳化硅大,但硬度较低,主要用于磨铸铁和非金属材料。 碳化硅的用途是十分广泛的,目前主要是用作磨料和耐火材料,这两项用途占了碳化硅产量中的大部分。通常磨料用的颗粒粒级很窄,反之耐火材料不同。下面分几个方面介绍碳化处的主要用途。 一、磨料 由于碳化硅具有很高的硬度、化学稳定性和一定的韧性,所以是一种用途很广的磨料,可用以制造砂轮、油石、涂附磨具或自由研磨。它主要是用于研磨玻璃、陶瓷、石材等非金属材料、铸铁及某些非铁金属,它与这些材料之间的反应性很弱。由于它是普通废料中硬度最高的材料,所以包常用以加工硬质合金、钛合金、高速钢刀具等难磨材料及修正砂轮用。碳化硅硬度仅次于金刚石,具有较强的耐磨性能,是耐磨管道、叶轮、泵室、旋流器,矿斗内衬的理想材料,其耐磨性能是铸铁、橡胶使用寿命的5~20倍,也是航空飞行跑道的理想材料之一。 其中黑色碳化硅和绿色碳化硅的应用也有所差别。黑碳化硅制成的磨具,多用于切割和研磨抗张强度低的材队如玻璃、陶瓷、石料和耐火物氯同时也用于铸铁零件和有色金属材料的磨削。绿碳化硅制成的磨具,多用于硬质合金、钦合金、光学玻璃的磨削,同时也用于缸缸和高速钢刀具的精磨。 由于其优良的耐磨性,碳化硅在冶金选矿行业中也有应用。参见《碳化硅在选矿工艺中的应用》。 二、耐火材料和耐腐蚀材料 这一用途是由于它的高熔点(分解温度)、化学惰性和抗热震性。日前生产碳化硅耐火材料的主要方法包括压制和烧结碳化硅、压制和再结晶碳化硅、浇注和再结晶碳化硅、碳化硅

电力电子中的碳化硅SiC

电力电子中的碳化硅SiC SiC in Power Electronics Volker Demuth, Head of Product Management Component, SEMIKRON Germany 据预测,采用SiC的功率模块将进入诸如可再生能源、UPS电源、驱动器和汽车等应用。风电和牵引应用可能会随之而来。到2021年,SiC功率器件市场总额预计将上升到10亿美元 [1]。在某些市场,如太阳能,SiC器件已投入运行,尽管事实上这些模块的价格仍然比常规硅器件高。是什么使这种材料具有足够的吸引力,即使价格更高也心甘情愿地被接受?首先,作为宽禁带材料,SiC提供了功率半导体器件的新设计方法。传统功率硅技术中,IGBT开关被用于高于600V的电压,并且硅PIN-续流二极管是最先进的。硅功率器件的设计与软开关特性造成相当大的功率损耗。有了SiC的宽禁带,可设计阻断电压高达15kV的高压MOSFET,同时动态损耗非常小。有了SiC,传统的软关断硅二极管可由肖特基二极管取代,并带来非常低的开关损耗。作为一个额外的优势,SiC具有比硅高3倍的热传导率。连同低功率损耗,SiC是提高功率模块中功率密度的一种理想材料。目前可用的设计是SiC混合模块(IGBT和SiC肖特基二极管)和全SiC模块。 SiC混合模块 SiC混合模块中,传统IGBT与SiC肖特基二极管一起开关。虽然SiC器件的主要优势是与低动态损耗相关,但首先讨论SiC肖特基二极管的静态损耗。通常情况下,SiC器件的静态损耗似乎比传统的硅器件更高。图1.a显示了传统软开关600V赛米控CAL HD续流二极管的正向压降V f ,为低开关损耗而优化的快速硅二极管和SiC肖特基二极管,所有的额定电流为10 A。 图1.a中:25℃和150℃下不同续流二极管的正向电流与正向压降。对比了10A的SiC肖特基二极管,传统的软开关硅二极管(CAL HD)和快速硅二极管(硅快速)。1.b:同一二极管的正向压降和电流密度(正向电流除以芯片面积)。 在10A的额定电流下,硅续流二极管展现出最低的正向压降,SiC肖特基二极 管的V f 更高,而快速硅二极管展现出最高的正向压降。正向电压与温度之间的关 联差别很大:快速硅二极管具有负的温度系数,150°C下的V f 比25°C下的V f 低。 对于12A以上的电流,CAL的温度系数为正,SiC肖特基二极管即使电流为4A时,温度系数也为正。由于二极管通常并联以实现大功率器件,需要具有正温度系数以避免并联二极管中的电流不平衡和运行温度不均匀。这里,SiC肖特基二极管显示出最佳的性能。但与常规硅二极管相比,SiC肖特基二极管的静态损耗较高。由于二极管是基于10A额定电流进行比较的,考虑不同供应商的器件之间有时不同

烧结碳化硅方式对比__烧结碳化硅分类

烧结碳化硅方式对比__烧结碳化硅分类 烧结碳化硅烧结方式有哪三种呢?烧结碳化硅的三种烧结方式虽然各有千秋,但是在科技发展如此迅速的今天,迫切需要提高碳化硅陶瓷的性能,不断改进制造技术,降低生产成本,实现碳化硅陶瓷的低温烧结。以达到降低能耗,降低生产成本,推动碳化硅陶瓷产品产业化的目的。山东中鹏特种陶瓷有限公司生产的烧结碳化硅具有碳化硅材料耐强腐蚀性、耐磨性、高导电性、高温稳定性等性能,在新能源、化工、船舶及科研国防军事技术等领域应用。 【烧结碳化硅分类】 (1)无压烧结 无压烧结被认为是SiC烧结有前途的烧结方法,根据烧结机理的不同,无压烧结又可分为固相烧结和液相烧结。S.Proehazka通过在超细β-SiC粉体(含氧量小于2)中同时加入适量B和C的方法,在2020℃下常压烧结成密度高于98的SiC烧结体。A.Mulla等以Al2O3和Y2O3为添加剂在

1850-1950℃烧结0.5μm的β-SiC(颗粒表面含有少量SiO2),获得的SiC陶瓷相对密度大于理论密度的95,并且晶粒细小,平均尺寸为1.5μm。 (2)热压烧结 不添加任何烧结助剂,纯SiC只有在极高的温度下才能烧结致密,于是不少人对SiC实行热压烧结工艺。关于添加烧结助剂对SiC进行热压烧结的报道已有许多。Alliegro等研究了B、Al、Ni、Fe、Cr等金属添加物对SiC致密化的影响,发现Al和Fe是促进SiC热压烧结有效的添加剂。https://www.wendangku.net/doc/ea13869233.html,nge 研究了添加不同量Al2O3对热压烧结SiC的性能影响,认为热压烧结致密是靠溶解--再沉淀机理。但是热压烧结工艺只能 制备形状简单的SiC部 件,而且一次热压烧结过 程中所制备的产品数量 很小,因此不利于工业化 生产。 (3)反应烧结 反应烧结SiC又称自结 合SiC,是由a-SiC粉和 石墨粉按一定比列混合压成坯体后,加热到1650℃左右,同时熔渗Si或通过气相Si渗入坯体,使之与石墨起反应生成β-SiC,把原来存在的a-SiC颗粒结合起来。 【烧结碳化硅方式对比】 1.热压烧结:只能制备简单形状的碳化硅部件,生产效率低,不利于大规模商业化生产。 2.无压烧结(常压烧结):能生产复杂形状和大尺寸碳化硅部件,是目前普遍认可的有优势的烧结方法。 3.反应烧结:能制备复杂形状的碳化硅部件,烧结温度低,但是产品高温性能不佳。 特点:如果允许完全渗Si,那么整个过程中可获得气孔率为零,无几何尺寸变化的材料。

碳化硅复合陶瓷的研究现状及其应用

碳化硅复合陶瓷的研究现状及其应用 曾星华 长安大学材料科学与工程学院 摘要碳/碳化硅(C/SiC)陶瓷基复合材料是重要的热结构材料体系之一。综述了近年来发展的有关制备C/SiC陶瓷基复合材料的各种技术及其在航空航天、光学系统、空间技术、交通Z-具(刹车片、阀)、能源技术等领域的应用,并且综述了烧结助剂含量对液相烧结SiC陶瓷抗氧化性的影响、三维针刺碳/碳化硅陶瓷基复合材料及其摩擦磨损性能以及二维C/SiC复合材料的拉伸损伤演变过程和微观结构特征等最新研究成果。 关键字碳化硅陶瓷基复合材料制备技术力学性能抗氧化性液相烧结1.引言 陶瓷基复合材料(CMC)是在陶瓷基体中引入第二相材料,使之增强、增韧的多相材料,又称为多相复合陶瓷或复相陶瓷.陶瓷基复合材料是2O世纪8O年代逐渐发展起来的新型陶瓷材料,包括纤维(或晶须)增韧(或增强)陶瓷基复合材料、异相颗粒弥散强化复相陶瓷、原位生长陶瓷复合材料、梯度功能复合陶瓷及纳米陶瓷复合材料。其因具有耐高温、耐磨、抗高温蠕变、热导率低、热膨胀系数低、耐化学腐蚀、强度高、硬度大及介电、透波等特点,在有机材料基和金属材料基不能满足性能要求的情况下可以得到广泛应用,成为理想的高温结构材料。陶瓷基复合材料正是人们预计在21世纪中可替代金属及其合金的发动机热端结构的首选材料。鉴于此,许多国家都在积极开展陶瓷基复合材料的研究,大大拓宽了其应用领域,并相继研究出各种制备新技术,其中,C/SiC陶瓷基复合材料是其中一个非常重要的体系。C/SiC陶瓷基复合材料主要有两种类型,即碳纤维/碳化硅和碳颗粒/碳化硅陶瓷基复合材料。碳纤维/碳化硅陶瓷基复合材料是利用碳纤维来增强增韧SiC陶瓷,从而改善陶瓷的脆性,实现高温结构材料所必需的性能,如抗氧化、耐高温、耐腐蚀等;碳颗粒/碳化硅陶瓷基复合材料是利用碳颗粒来降低SiC陶瓷的硬度,实现结构陶瓷的可加工性能,同时具有良好的抗氧

碳化硅陶瓷的发展与应用

碳化硅陶瓷的发展与应用 1073112 王苗 摘要:碳化硅陶瓷以其优异的抗热震、耐高温、抗氧化和耐化学腐蚀等特性而广泛地应用于石油、化学、汽车、机械和宇航等工业领域中,并日益引起人们的重视。本文对各种SiC 陶瓷的制备方法、性能特点及其应用现状进行了综合评述。 关键词:碳化硅陶瓷发展与应用 Abstract: Silicon carbide ceramics have been widely used in petroleum, chemical, automotive,mechanical and aerospace industries because of their excellent resistance to thermal shock, high temperatures, oxidation and chemical corrosion. In this paper, the fabricating methods, mechanical properties and current applications of various SiC ceramics are revicwed. Key Words: SiC Ceramics Development and Application 1 前言 现代国防、核能和空间技术以及汽车工业、海洋工程的迅速发展, 对火箭燃烧室内衬、飞机涡轮发动机叶片、核反应堆结构部件、高速气动轴承和机械密封零件等材料的要求愈来愈高, 迫切需要开发各种新型高性能结构材料。碳化硅陶瓷具有高温强度大、抗氧化性强、耐磨损性好、热稳定性佳、热膨胀系数小、热导率大、硬度高以及抗热震和耐化学腐蚀等优良特性, 因此, 已经在许多领域大显身手, 并日益受到人们的重视。例如, SiC陶瓷在石油化学工业中已被广泛地用作各种耐腐蚀用容器及管道在机械工业中已被成功地用作各种轴承、切削刀具和机械密封部件在宇航和汽车工业中也被认为是未来制造燃气轮机、火箭喷嘴和发动机部件的最有希望的候选材料。 本文首先对SiC 的基本性质及SiC粉末的合成方法进行了简单介绍, 接着重点综述了SiC陶瓷的性能特点, 最后对SiC陶瓷的应用现状与未来发展进行了概括和分析。 2 碳化硅的基本特性 2.1、化学属性 抗化合性:碳化硅材料在氧气中反应温度达到1300℃时,在其碳化硅晶体表层已经生成二氧化硅保护层。随着保护层的加厚,抵制了里面碳化硅继续被化合,这使碳化硅有较好的抗化合性。当气温达到1900K(1627℃)以上时,二氧化硅保护膜已经被破坏,碳化硅化合效应加重,从而1900K是碳化硅在氧化剂氛围下的最高工作气温。 耐酸碱性:在耐酸、碱及化合物的效用方面,因为二氧化硅保护膜的效用,碳化硅的抗酸能力非常非常强,抗碱性稍差。 2.2、物理性能 密度:各样碳化硅晶形的颗粒密度十分相近,通常情况下,应该是3.20 g/ m m3,其碳化硅磨料的堆砌密度在1.2--1.6 g/ m m3之间,其高矮取决于其粒度号、粒度合成和颗粒形状的大小。 硬度:碳化硅的硬度为:莫氏9.5级。单晶硅的硬度为:莫氏7级。多晶硅的硬度为:莫氏7级。都是硬度相对较高的物料。努普硬度为2670—2815公斤/毫米,在磨料中高于刚玉而仅次于金刚石、立方氮化硼和碳化硼。 导热率:碳化硅制品的导热率非常高,热膨胀参数小,抗热震性非常高,是优质的耐火材料。 2.3、电学属性 恒温下工业碳化硅是一种半导体,属杂质导电性。高纯度碳化硅随着气温的升高内阻率降低,含杂质碳化硅按照其含杂质不一样,导电性能也不一样。

碳化硅陶瓷及制备工艺

碳化硅陶瓷性能及制造工艺 碳化硅(SiC)陶瓷,具有抗氧化性强,耐磨性能好,硬度高,热稳定性好,高温强度大,热膨胀系数小,热导率大以及抗热震和耐化学腐蚀等优良特性。因此,已经在石油、化工、机械、航天、核能等领域大显身手,日益受到人们的重视。例如,SiC陶瓷可用作各类轴承、滚珠、喷嘴、密封件、切削工具、燃汽涡轮机叶片、涡轮增压器转子、反射屏和火箭燃烧室内衬等等。 SiC陶瓷的优异性能与其独特结构密切相关。SiC是共价键很强 的化合物,SiC中Si-C键的离子性仅12%左右。因此,SiC强度高、弹性模量大,具有优良的耐磨损性能。纯SiC不会被HCl、HNO3、H2SO4和HF等酸溶液以及NaOH等碱 溶液侵蚀。在空气中加热时易发生氧化,但氧化时表面形成的 SiO2会抑制氧的进一步扩散,故氧化速率并不高。在电性 能方面,SiC具有半导体性,少量杂质的引入会表现出良好的导电性。此外,SiC还有优良的导热性。 SiC具有α和β两种晶型。β-SiC的晶体结构为立方晶系,Si和C分别组成面心立方晶格;α-SiC存在着4H、15R和6H等100余种多型体,其中,6H多型体为工业应用上最为普遍的一种。在

SiC的多种型体之间存在着一定的热稳定性关系。在温度低于1600℃时,SiC以β-SiC形式存在。当高于1600℃时,β-SiC缓慢转变成α-SiC的各种多型体。4H-SiC在2000℃左右容易生成;15R和6H多型体均需在2100℃以上的高温才易生成;对于6H-SiC,即使温度超过2200℃,也是非常稳定的。SiC中各种多型体之间的自由能相差很小,因此,微量杂质的固溶也会引起多型体之间的热稳定关系变化。 现就SiC陶瓷的生产工艺简述如下: 一、SiC粉末的合成: SiC在地球上几乎不存在,仅在陨石中有所发现,因此,工业上应用的SiC粉末都为人工合成。目前,合成SiC粉末的主要方法有:1、Acheson法: 这是工业上采用最多的合成方法,即用电将石英砂和焦炭的混合物加热至2500℃左右高温反应制得。因石英砂和焦炭中通常含有Al和Fe等杂质,在制成的SiC中都固溶有少量杂质。其中,杂质少的呈绿色,杂质多的呈黑色。 2、化合法: 在一定的温度下,使高纯的硅与碳黑直接发生反应。由此可合

碳化硅用途

碳化硅用途 碳化硅又称金钢砂或耐火砂。碳化硅是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料在电阻炉内经高温冶炼而成。目前我国工业生产的碳化硅分为黑色碳化硅和绿色碳化硅两种,均为六方晶体,比重为3.20~3.25,显微硬度为2840~3320kg/mm2。黑碳化硅是什么,他是怎么制作出来的 黑碳化硅是以石英砂,石油焦和优质硅石为主要原料,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉,性脆而锋利。 绿碳化硅是什么,他是怎么制作出来的 绿碳化硅是以石油焦和优质硅石为主要原料,添加食盐作为添加剂,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉。 碳化硅(SiC)由于其独特的物理及电子特性, 在一些应用上成为最佳的半导体材料: 短波长光电器件, 高温, 抗幅射以及高频大功率器件. 其主要特性及与硅(Si)和砷化镓(GaAs)的对比. 宽能级(eV) 4H-SiC: 3.26 6H-Sic: 3.03 GaAs: 1.43 Si: 1.12 由于碳化硅的宽能级, 以其制成的电子器件可在极高温下工作. 这一特性也使碳化硅可以发射或检测短波长的光, 用以制作蓝色发光二极管或几乎不受太阳光影响的紫外线探测器. 高击穿电场(V/cm) 4H-SiC: 2.2x106 6H-SiC: 2.4x106 GaAs: 3x105 Si: 2.5x105 碳化硅可以抵受的电压或电场八倍于硅或砷化镓, 特别适用于制造高压大功率器件如高压二极管,功率三极管, 可控硅以及大功率微波器件. 另外, 此一特性可让碳化硅器件紧密排列, 有利于提高封装密度. 高热传导率(W/cm?K@RT) 4H-SiC: 3.0-3.8 6H-SiC: 3.0-3.8 GaAs: 0.5 Si: 1.5 碳化硅是热的良导体, 导热特性优于任何其它半导体材料. 事实上, 在室温条件下, 其热传导率高于任何其它金属. 这使得碳化硅器件可在高温下正常工作. 高饱和电子迁移速度(cm/sec @E 2x105V/cm) 4H-SiC: 2.0x107 6H-SiC: 2.0x107 GaAs: 1.0x10 Si: 1.0x107 由于这一特性, 碳化硅可制成各种高频器件(射频及微波). 碳化硅的5大主要用途 1?有色金属冶炼工业的应用 利用碳化硅具有耐高温,强度大,导热性能良好,抗冲击,作高温间接加热材料,如坚罐蒸馏炉?精馏炉塔盘,铝电解槽,铜熔化炉内衬,锌粉炉用弧型板,热电偶保护管等? 2?钢铁行业方面的应用 利用碳化硅的耐腐蚀?抗热冲击耐磨损?导热好的特点,用于大型高炉内衬提高了使用寿命? 3?冶金选矿行业的应用 碳化硅硬度仅次于金刚石,具有较强的耐磨性能,是耐磨管道?叶轮?泵室?旋流器,矿斗内衬的理想材料,其耐磨性能是铸铁.橡胶使用寿命的5—20倍,也是航空飞行跑道的理想材料之一? 4?建材陶瓷,砂轮工业方面的应用 利用其导热系数?热辐射,高热强度大的特性,制造薄板窑具,不仅能减少窑具容量,还提高了窑炉的装容量和产品质量,缩短了生产周期,是陶瓷釉面烘烤烧结理想的间接材料?

用低纯碳化硅微粉烧结碳化硅陶瓷

第34卷第1期2O06年1月 硅酸盐学报 JOURNAL()FTHECHINFSECERAMICSoCIETY VoI.34,N()l January,2006用低纯碳化硅微粉烧结碳化硅陶瓷 武七德1,孙峰1,吉晓莉1,田庭燕2,郝慧1 1.武汉理工大学.畦酸盐材料工程教育部重点实验守,武汉430070;2山东大学 材料液态结构及其遗传性教育部重点实验室,济南25∞61) 摘要:用工业崖料坻纯w3.spmstc擞粉为原料,在№保护下娆结碳化硅(s,t、)陶瓷。研究了低纯slc徽粉中杂质对蜀c陶瓷力学性能的影响,对比了徽粉提纯后材料的性能‘』结构。通过扫描电镜、金相显馓镜分析材料的显微结构。结果表明:微粉杂质中st魄、金属氧化物在&c烧结温度下的放气反麻是影响陶瓷材料力学性能的主耍目素。由低纯s?c材制得的材料的烧结密度达到(3.15士o01)g/cm3,抗折强度达到(ddl±10)MPa。 关键词:碳化硅;反应烧结;显微结构 中圈分类号:T锄74文献标识码:A文章编号:04545648(2006)0】∞一05 SII.ICoNCARBIDECERAMICSPREPAREDWlTHL()WPURESILICoNCARBIDEMICRo—PoWDERSwuQ2dPl,su~凡n∥,JJxi40“1,1』ANTiwgy。n2,HA0¨“21 (1.KeyI,ab()raturyforS11LcateMatemIsscLcnceandEnglneeringofMmlstryofEducatlon,W1lhan UnlvcrsltyofTechn0109y WuI、an 430070;2.KeyLab。ratoryf01I.1quldStⅢLu rea11dHer列I‘y(】fMlnk【ryEduca¨on, ShandongUnjversl‘y?Jlnall2j0061,Chlna) Abstr{Ict:Reactlon—b(mdcdslJLc。ncarblde(RRS(:)ccranll刚erepreparedwlthindu“rLalscfapsIowpLlmySl(:叫ropowders.T11eaveragegralnslzcofL1】。powder】s3.5"ml、helnfluenceoflmpllⅢ1…)fpow山rsonthemate¨aI。smechanicalpropeftle8wasstudied,andacomparisonwasmade“)matcnakpr印ared州thpunfylngpowdtrbyhydrochlo¨ca虬dThIILIcro乱ructureofsI】£concarbldeccranIicswasInvesttgatedby黜Immg elecfro㈣c㈣ce)p㈨jdo阱lca】m£croscope.Thercsuhss}、owthatthekeyfactorstoL11enlaterlal’smechanlcaIpropertlesaretheexcludlngS102,andthe metalllc()xId㈣acLedwtthotherrawmatelr】alsandrelcasedgasathlghtemperaturesT}1esIntereddenslly()fthcmaLeflalmadeoflowpl】rltyS1Cls(315=001)g/cm。andtheflⅢralsIrenEth1s(d4】±10)MPaatroomtemDeraturc Keywo州s:slnconcarhId。;reacLl。11bonded;mlcr()structurc 反应烧结碳化硅(reaction_bondeds1Iiconca卜hide,RBsc)具有反应温度低且时间短,可近净尺寸烧结,可烧结复条形状制品等优点,自50年代发明以来就得到人们的广泛关注”。3]。但是,传统反应烧结T艺中所需两c原料的纯度较高,因而其制备能耗高,环境污染严重,生产成本大。目前,国内sic生产厂家每年都囤积大黾的收尘尾粉。网尾粉的牲度细,杂质含量高,成分波动大阻碍1r它的进一 收稿日期:200j—06—15。修改稿收到日期:z005—10一lo 第一作者:武已德(19t9~),男.教授。步利用。丈量尾粉既占用贮存用地又增加生产成本。凼此,允分利用尾粉已成为Sic生产厂家的当务之急。 实验中制备RBsc所需的sic微粉全部采用国内某两c磨料生产厂家提供的收尘器中的低纯Sjc尾粉,通过适当的工艺制备出最高密度为3.15g/cw,最大抗折强度为(441±10)MPa的RBsc陶瓷材料。 R戗eiveddate:2∞5—061j.Approveddate:20051010 Firsta砒hor;WUQ1小(1949).ⅢaI}+profe3soL E—mni-:Ⅵ1qIfk@nlall.whuteducn  万方数据

关于烧结碳化硅的分类_烧结碳化硅工艺说明

关于烧结碳化硅的分类_烧结碳化硅工艺说明特陶领域的多数专家认为国内特陶产品质量提升不上去,很大程度与特陶粉体的制备水平有关系。“巧妇难为无米之炊”,当然没有好“米”,也烧不出“好饭”出来。有关于烧结碳化硅的话题,小编今天想跟大家聊一聊。烧结碳化硅有哪些分类呢?看文章吧! 烧结碳化硅分类: (1)无压烧结 无压烧结被认为是SiC烧结有前途的烧结方法,根据烧结机理的不同,无压烧结又可分为固相烧结和液相烧结。S.Proehazka通过在超细β-SiC粉体(含氧量小于2)中同时加入适量B和C的方法,在2020℃下常压烧结成密度高于98

的SiC烧结体。A.Mulla等以Al2O3和Y2O3为添加剂在1850-1950℃烧结0.5μm的β-SiC(颗粒表面含有少量SiO2),获得的SiC陶瓷相对密度大于理论密度的95,并且晶粒细小,平均尺寸为1.5μm。 (2)热压烧结 不添加任何烧结助剂,纯SiC只有在极高的温度下才能烧结致密,于是不少人对SiC实行热压烧结工艺。关于添加烧结助剂对SiC进行热压烧结的报道已有许多。Alliegro等研究了B、Al、Ni、Fe、Cr等金属添加物对SiC致密化的影响,发现Al和Fe是促进SiC热压烧结有效的添加剂。https://www.wendangku.net/doc/ea13869233.html,nge研究了添加不同量Al2O3对热压烧结SiC的性能影响,认为热压烧结致密是靠溶解--再沉淀机理。但是热压烧结工艺只能制备形状简单的SiC部件,而且一次热压烧结过程中所制备的产品数量很小,因此不利于工业化生产。 (3)反应烧结 反应烧结SiC又称自结合SiC, 是由a- SiC粉和石墨粉按一定比列混合压成坯体后,加热到1650℃左右,同时熔渗Si或通过气相Si渗入坯体,使之与石墨起反

碳化硅陶瓷 论文

新型功能材料 专业化学类 班级应化1101 学生郭珊 学号20110222056 小组成员丁超凡付文静韩丹丹韩双任课教师李村成 平时成绩 论文成绩 课程成绩

课程论文要求 结合自己学习兴趣,通过小组调研,查阅相关资料,撰写一篇与新型功能材料有关的课程论文。 论文要求:1.论文题目科学规范,调研方向具体明确、题目不能过大;2.字数要在5000字左右(不计参考文献);3.论文撰写要使用自己的语言,要有自己见解及评论,不能拷贝、翻译;4.文字简练,层次分明,逻辑性强,条理清晰,引用数据准确、真实、可靠,结论明确;5.文中涉及的图表需自己画;6.引用的参考文献需在文中用数字标出并在文后列出; 7. 量和单位必须采用中华人民共和国的国家标准GB3100~GB3102-93; 8. 字体及格式统一要求:论文标题用居中加粗宋体三号字;小标题用加粗宋体小四号字;图表说明用居中宋体五号字;正文及引用文献用宋体小四号字(英文和数字用Times New Roman);1.25倍行距,A4纸,上、下、左、右页边距均为2.5 cm;9. 提交论文双面打印。 本课程成绩评定说明: 该课程总成绩由平时成绩与课程论文成绩两部分组成,其中平时考勤、课堂表现、课堂报告等成绩占总成绩50%;课程论文成绩占总成绩的50 %。 平时成绩与课程论文成绩均按满分100分评定。

新型陶瓷-碳化硅陶瓷制备技术及应用 摘要:阐述了碳化硅陶瓷的制备技术及应用,介绍了SiC粉末的合成方法(如Acheson法、化合法、热分解法、气相反相法)、SiC的烧结方法(如无压烧结、热压烧结、热等静压烧结、反应烧结)、反应烧结碳化硅的成型工艺(如模压成型、等静压成型、注浆成型)以及碳化硅陶瓷在各个方面的广泛应用,并展望了碳化硅陶瓷的发展应用前景。 关键词:新型陶瓷;碳化硅陶瓷;SiC粉末合成;SiC烧结;成型工艺 一、引言 传统陶瓷是用天然或人工合成的粉状化合物,经过成型和高温烧结制成的,由无机化合物构成的多相固体材料。新型陶瓷以精致的高纯天然无机物或人工合成的无机化合物为原料,采用精密控制的加工工艺烧结,具有优异的性能。在各个方面,新型陶瓷和传统陶瓷有诸多的不同之处。 在原料使用上方面,新型陶瓷突破传统陶瓷以黏土为主,使用精选或提纯的氧化物、硅化物、氮化物、硼化物等原料。成分方面,传统陶瓷的组成与黏土的成分相关,不同产地料对产品组成与结构影响很大;新型陶瓷原料是提纯化合物,性质由原料的纯度和制备工艺决定,与产地原料无关。在制备工艺方面,传统陶瓷以窑炉为主;新型陶瓷用真空烧结、气氛烧结、热压、热静压等手段实现。在性能与用途方面,传统陶瓷体现日常应用;新型陶瓷具有高强度、高硬度、耐磨、耐蚀、感应性等特殊性能、使用在特殊场合,在高温,机械电子计算机航天医学工程广泛应用。 依据材料功能,新型陶瓷分类如表一: 表一新型陶瓷分类

碳化硅陶瓷

碳化硅工艺流程 碳化硅(SiC)陶瓷,具有抗氧化性强,耐磨性能好,硬度高,热稳定性好,高温强度大,热膨胀系数小,热导率大以及抗热震和耐化学腐蚀等优良特性。因此,已经在石油、化工、机械、航天、核能等领域大显身手,日益受到人们的重视。例如,SiC陶瓷可用作各类轴承、滚珠、喷嘴、密封件、切削工具、燃汽涡轮机叶片、涡轮增压器转子、反射屏和火箭燃烧室内衬等等。 SiC陶瓷的优异性能与其独特结构密切相关。SiC是共价键很强的化合物,SiC中Si-C键的离子性仅12%左右。因此,SiC强度高、弹性模量大,具有优良的耐磨损性能。纯SiC 不会被HCl、HNO3、H2SO4和HF等酸溶液以及NaOH等碱溶液侵蚀。在空气中加热时易发生氧化,但氧化时表面形成的SiO2会抑制氧的进一步扩散,故氧化速率并不高。在电性能方面,SiC具有半导体性,少量杂质的引入会表现出良好的导电性。此外,SiC还有优良的导热性。 SiC具有α和β两种晶型。β-SiC的晶体结构为立方晶系,Si和C分别组成面心立方晶格;α-SiC存在着4H、15R和6H等100余种多型体,其中,6H多型体为工业应用上最为普遍的一种。在SiC的多种型体之间存在着一定的热稳定性关系。在温度低于1600℃时,SiC以β-SiC形式存在。当高于1600℃时,β-SiC缓慢转变成α-SiC的各种多型体。4H-SiC在2000℃左右容易生成;15R和6H多型体均需在2100℃以上的高温才易生成;对于6H-SiC,即使温度超过2200℃,也是非常稳定的。SiC中各种多型体之间的自由能相差很小,因此,微量杂质的固溶也会引起多型体之间的热稳定关系变化。 现就SiC陶瓷的生产工艺简述如下: 一、SiC粉末的合成: SiC在地球上几乎不存在,仅在陨石中有所发现,因此,工业上应用的SiC粉末都为人工合成。目前,合成SiC粉末的主要方法有: 1、Acheson法: 这是工业上采用最多的合成方法,即用电将石英砂和焦炭的混合物加热至2500℃左右高温反应制得。因石英砂和焦炭中通常含有Al和Fe等杂质,在制成的SiC中都固溶有少量杂质。其中,杂质少的呈绿色,杂质多的呈黑色。 2、化合法:

碳化硅主要用途__碳化硅用于耐火材料时特性

碳化硅主要用途__碳化硅用于耐火材料时特性 碳化硅主要用途是什么呢?碳化硅用于耐火材料时有哪些特性呢?碳化硅又名金刚砂,包括黑碳化硅和绿碳化硅,其中:黑碳化硅是以石英砂,石油焦和硅石为主要原料,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉,性脆而锋利。绿碳化硅是以石油焦和硅石为主要原料,添加食盐作为添加剂,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉。那么碳化硅的主要用途有哪些? 【碳化硅主要用途】 一、磨料--主要是因为碳化硅具有很高的硬度,化学稳定性和一定的韧性,所以碳化硅能用于制造固结磨具、涂附磨具和自 由研磨,从而来加工玻 璃、陶瓷、石材、铸铁 及某些非铁金属、硬质 合金、钛合金、高速钢 刀具和砂轮等。 二、耐火材料和耐腐蚀 材料---主要是因为碳 化硅具有高熔点(分解 度)、化学惰性和抗热振性,所以碳化硅能用于磨具、陶瓷制品烧成窑炉中用的棚板和匣钵、炼锌工业竖缸蒸馏炉用的碳化硅砖、铝电解槽衬、坩锅、小件炉材等多种碳化硅陶瓷制品。 三、化工--因为碳化硅可在溶融钢水中分解并和钢水中的离氧、金属氧化物反应生成一氧化碳和含硅炉渣。所以它可作为冶炼钢铁的净化剂,即用作炼钢的脱氧剂和铸铁组织改良剂。这一般使用低纯度的碳化硅,以降低成本。同时还可以作为制造四氯化硅的原料。 四、电工--用作加热元件、非线性电阻元件和高半导体材料。加热元件如硅碳棒(适用于1100~1500℃工作的各种电炉),非线性电阻元件,各式的避雷阀片。

五、其它--配制成远红外辐射涂料或制成碳化硅硅板用远红外辐射干燥器中。【碳化硅用于耐火材料时特性】 1、还原气氛下使用温度一般可达1760℃; 2、抗热震性能好,能承受温度急剧变化,防止炉衬出现裂纹或断裂 3、因热态强度高,中高温条件时可承受一定应力,可作为结构材料 4、耐磨性能好,在一定温度下,可作为耐磨衬体 5、能耐受一定熔渣或热态金属,包括碱金属熔液的侵蚀和渗透 6、可承受一些炉气的作用,能用于气氛炉。 其中,碳化硅应用于耐火材料的关键技术有以下四种方式: 1、氧化物结合:以硅酸铝、二氧化硅等为结合剂; 2、氮化物结合:氮化硅、氧氮化硅和赛隆结合; 3、自结合:按碳化硅的当量比例加入石墨和金属硅,高温下反应生成;

碳化硅烧结

1、无压烧结 1974年美国GE公司通过在高纯度β-SiC细粉中同时加入少量的B和C,采用无压烧结工艺,于2020℃成功地获得高密度SiC陶瓷。目前,该工艺已成为制备SiC陶瓷的主要方法。 最近,有研究者在亚微米SiC粉料中加入Al2O3和Y2O3,在1850℃~2000℃温度下实现SiC的致密烧结。由于烧结温度低而具有明显细化的微观结构,因而,其强度和韧性大大改善。 2、热压烧结 50年代中期,美国Norton公司就开始研究B、Ni、Cr、Fe、Al等金属添加物对SiC热压烧结的影响。实验表明:Al和Fe是促进SiC热压致密化的最有效的添加剂。有研究者以Al2O3为添加剂,通过热压烧结工艺,也实现了SiC的致密化,并认为其机理是液相烧结。此外,还有研究者分别以B4C、B或B与C,Al2O3和C、Al2O3和Y2O3、Be、B4C 与C作添加剂,采用热压烧结,也都获得了致密SiC陶瓷。 3、热等静压烧结: 近年来,为进一步提高SiC陶瓷的力学性能,研究人员进行了SiC陶瓷的热等静压工艺的研究工作。研究人员以B和C为添加剂,采用热等静压烧结工艺,在1900℃便获得高密度SiC烧结体。更进一步,通过该工艺,在2000℃和138MPa压力下,成功实现无添加剂SiC陶瓷的致密烧结。研究表明:当SiC粉末的粒径小于0.6μm时,即使不引入任何添加剂,通过热等静压烧结,在1950℃即可使其致密化。 4、反应烧结: SiC的反应烧结法最早在美国研究成功。反应烧结的工艺过程为:先将α-SiC粉和石墨粉按比例混匀,经干压、挤压或注浆等方法制成多孔坯体。在高温下与液态Si接触,坯体中的C与渗入的Si反应,生成β-SiC,并与α-SiC相结合,过量的Si填充于气孔,从而得到无孔致密的反应烧结体。反应烧结SiC通常含有8%的游离Si。因此,为保证渗Si的完全,素坯应具有足够的孔隙度。一般通过调整最初混合料中α-SiC和C的含量,α-SiC的粒度级配,C的形状和粒度以及成型压力等手段来获得适当的素坯密度。 综述:实验表明,采用无压烧结、热压烧结、热等静压烧结和反应烧结的SiC陶瓷具有各异的性能特点。假如就烧结密度和抗弯强度来说,热压烧结和热等静压烧结SiC陶瓷相对较高,反应烧结SiC相对较低。另一方面,SiC陶瓷的力学性能还随烧结添加剂的不同而不同。无压烧结、热压烧结和反应烧结SiC陶瓷对强酸、强碱具有良好的抵抗力,但反应烧结SiC陶瓷对HF等超强酸的抗蚀性较差。就耐高温性能比较来看,当温度低于900℃时,几乎所有SiC陶瓷强度均有所提高;当温度超过1400℃时,反应烧结SiC陶瓷抗弯强度急剧下降。(这是由于烧结体中含有一定量的游离Si,当超过一定温度抗弯强度急剧下降所致)对于无压烧结和热等静压烧结的SiC陶瓷,其耐高温性能主要受添加剂种类的影响。 碳化硅陶瓷的应用

碳化硅陶瓷

太原工业学院 2015/2016学年第一学期 《特种陶瓷》课程论文 题目:碳化硅陶瓷的工艺与发展方向 班级: 122073219 姓名:刘鑫泽 学号: 19

1 前言 随着科技的发展,人们迫切需要开发各种新型高性能结构材料。碳化硅陶瓷由于具有多种良好的的性能,已经在许多领域大显身手,并且已经收到人们的高度重视。 2 晶体结构 SiC是共价键很强的化合物,SiC中 Si-C键的离子性仅12%左右。 SiC具有α和β两种晶型。β- SiC的晶体结构为闪锌矿晶体结构立方晶系,Si和 C 分别组成面心立方晶格;α-SiC纤锌矿型结构,六方晶系。存在着4H、15R和6H等100余种多型体,其中, 6H多型体为工业应用上最为普遍的一种。在温度低于1600℃时,SiC以β-SiC形式存在。当高于1600℃时,β- SiC缓慢转変成α-SiC的各种多型体。4H- SiC在2000℃左右容易生成;15R和6H多型体均需在2100℃以上的高温才易生成;对于6H- SiC,即使温度.超过2200℃,也是非常稳定的。SiC中各种多型体之间的自由能相差很小,因此,微量杂质的固溶也会引起多型体之间的热稳定关系变化。[1] 3 性能与应用 3.1 性能 (1)SiC陶瓷化学稳定性好、抗氧化性强。 (2)硬度高,耐磨性能好。 (3)SiC具有宽的能带间隙。 (4)优良的导电性。 (5)热稳定性好,高温强度大。 (6)热膨胀系数小、热导率大以及抗热振和耐化学腐蚀等。[4] 3.2 应用 碳化硅的最大特点是高温强度高,有很好的耐磨损、耐腐蚀、抗蠕变性能,其热传导能力很强,仅次子氧化铍陶瓷。碳化硅陶瓷用于制造火箭喷嘴、浇注金属的喉管、热电偶套管、炉管、燃气轮机叶片及轴承、泵的密封圈、拉丝成型模

反应烧结碳化硅陶瓷资料

碳化硅制品的全面概述 碳化硅制品是何物?如何使用碳化硅制品,我们首先要明确碳化硅的定义,然后知道碳化硅制品的组成部分,用哪些工艺?下面做些简单介绍 碳化硅是一种无机非金属材料,由于它具有高硬度、高耐磨性、高耐腐蚀性及较高的高温强度等特点,用于各种要求耐磨、耐蚀和耐高温的机械零部件中。由于材料工作者的不断努力,其性能有了很大的改进,已成为一种重要的工程材料,在机械、冶金、化工、电子等部门得到广泛的应用。 采用常压烧结方法生产碳化硅陶瓷制品,其特点是用较高的烧结温度烧结碳化硅的毛坯,使之达到较高的密度,碳化硅的含量达到98%以上。所得到的碳化硅陶瓷烧结体耐腐蚀性、抗氧化性能及高温强度均较高。在1600oC时强度不降低。因而其制品特别适合于耐磨、耐腐蚀和耐高温的场合使用,如密封环、磨介、喷砂嘴、防弹板等。 特种陶瓷主要运用到那些方面? 特种陶瓷包括各种材料制作的陶瓷制品,例如碳化硅材料生产的碳化硅制品,碳化硅密封环,氧化铝材料生产的99瓷,氧化锆材料生产的电解质等等。所以说,是应用相当广泛的,今天我讲解下应用到高端产品的特种陶瓷。 1 氧化锆材料生产的特种陶瓷 氧化锆陶瓷因其拥有较高的离子电导率,良好的化学稳定性和结构稳定性,成为研究最多、应用最为广泛的一类电解质材料。通过对氧化锆基电解质薄膜制备工艺的改进,降低此类材料的操作温度和制备成本,力争可以实现产业化也是未来研究的重要方向。 2 碳化硅材料生产的特种陶瓷 碳化硅材料是硬度高,成本低的材料,可以生产碳化硅制品,例如碳化硅密封件、碳化硅轴套、碳化硅防弹板、碳化硅异形件等,可以应用到机械密封件上和各种泵上。 在以后的发展中,特种陶瓷会应用得更加广泛,因为新型材料的不断出现,制作的特种陶瓷的功能越来越受到人们的欢迎! 当今市场上存在哪些碳化硅制品 在碳化硅制品行业中,仅仅因为其市场较大,所以涌现了很多的碳化硅制品种类,例如碳化硅密封环、碳化硅轴套、碳化硅轴、碳化硅防弹板等。 1 碳化硅密封环 碳化硅密封环主要运用到机械密封件上,动静环配套使用,外加上固定的配件就组成了机械密封件。它是密封件的核心部位,起到关键作用。 2 碳化硅轴套和轴 碳化硅轴套和轴可以用到磁力泵、高压釜上,它们相互配套使用,轴起到支撑作用,轴套密封在轴上,共同保证磁力泵等在高温下正常密封。 3 碳化硅防弹板 碳化硅防弹板是新型的产物,在国外已经很是流行。碳化硅防弹板硬度高、比重小、弹道性能好,广泛用于各种防弹车、装甲车,舰艇等防护防弹中 随着碳化硅制品的市场越来越大,客户的要求也越来越高,所以,出现的碳化硅制品种类越来越多。

碳化硅陶瓷工艺流程

碳化硅(SiC)陶瓷,具有抗氧化性强,耐磨性能好,硬度高,热稳定性好,高温强度大,热膨胀系数小,热导率大以及抗热震和耐化学腐蚀等优良特性。因此,已经在石油、化工、机械、航天、核能等领域大显身手,日益受到人们的重视。例如,SiC陶瓷可用作各类轴承、滚珠、喷嘴、密封件、切削工具、燃汽涡轮机叶片、涡轮增压器转子、反射屏和火箭燃烧室内衬等等。 SiC陶瓷的优异性能与其独特结构密切相关。SiC是共价键很强的化合物,SiC中Si-C键的离子性仅12%左右。因此,SiC强度高、弹性模量大,具有优良的耐磨损性能。纯SiC 不会被HCl、HNO3、H2SO4和HF等酸溶液以及NaOH等碱溶液侵蚀。在空气中加热时易发生氧化,但氧化时表面形成的SiO2会抑制氧的进一步扩散,故氧化速率并不高。在电性能方面,SiC具有半导体性,少量杂质的引入会表现出良好的导电性。此外,SiC还有优良的导热性。 SiC具有α和β两种晶型。β-SiC的晶体结构为立方晶系,Si和C分别组成面心立方晶格;α-SiC存在着4H、15R和6H等100余种多型体,其中,6H多型体为工业应用上最为普遍的一种。在SiC的多种型体之间存在着一定的热稳定性关系。在温度低于1600℃时,SiC以β-SiC形式存在。当高于1600℃时,β-SiC缓慢转变成α-SiC的各种多型体。4H-SiC在2000℃左右容易生成;15R和6H多型体均需在2100℃以上的高温才易生成;对于6H-SiC,即使温度超过2200℃,也是非常稳定的。SiC中各种多型体之间的自由能相差很小,因此,微量杂质的固溶也会引起多型体之间的热稳定关系变化。 现就SiC陶瓷的生产工艺简述如下: 一、SiC粉末的合成: SiC在地球上几乎不存在,仅在陨石中有所发现,因此,工业上应用的SiC粉末都为人工合成。目前,合成SiC粉末的主要方法有: 1、Acheson法: 这是工业上采用最多的合成方法,即用电将石英砂和焦炭的混合物加热至2500℃左右高温反应制得。因石英砂和焦炭中通常含有Al和Fe等杂质,在制成的SiC中都固溶有少量杂质。其中,杂质少的呈绿色,杂质多的呈黑色。 2、化合法: 在一定的温度下,使高纯的硅与碳黑直接发生反应。由此可合成高纯度的β-SiC粉末。 3、热分解法: 使聚碳硅烷或三氯甲基硅等有机硅聚合物在1200~1500℃的温度范围内发生分解反应,由此制得亚微米级的β-SiC粉末。

相关文档