文档库 最新最全的文档下载
当前位置:文档库 › 13节点配电网潮流计算—上机

13节点配电网潮流计算—上机

13节点配电网潮流计算—上机
13节点配电网潮流计算—上机

13节点配电网潮流计算—上机

配网前推后代潮流计算,

对给定的13节点配电网,熟悉MATLAB 语言前腿后代潮流计算程序。 13节点配电网结构如图1所示,支路参数见表1;节点类型及迭代初始电压及各节点所接负荷见表2。

要看懂前推回代法计算程序,报告叙述计算原理及计算流程。绘制计算流程框图。确定前推回代支路次序(广度优先,或深度优先),编写前推回代计算输入文件。进行潮流计算。

整理专利计算结果。

内容包括节点电压;线路潮流分布,网损 总结配电网潮流计算的要点

1

2

3

45

678

9

10

11

12

13

图1 13节点配电网结构图

表1 系统支路参数

支路R(Ω.)X(Ω.)B/2(T

K

) (S)1~2 3.367 3.685 0.0

2~3 2.356 2.541 0.0

3~4 1.145 1.28 0.0

4~5 4.524 5.04 0.0

2~6 0.856 1.14 0.0

6~7 2.745 2.965 0.0

2~8 3.743 4.251 0.0

8~9 2.237 2.756 0.0

3~10 4.14 4.696 0.0

3~11 1.328 1.763 0.0

11~12 2.436 2.866 0.0

4~13 3.521 3.966 0.0

表2 系统负荷参数

节点编号节点类型节点初始电压

(kV)P

i

(MVA)Q

i

(MVA)

1 根节点10.4 0 0

2 中间节点10.0 0.0342 0.0301

3 中间节点10.0 0.0693 0.0642

4 中间节点10.0 0.084

5 0.0763

5 叶节点10.0 0.0295 0.0261

6 中间节点10.0 0.0474 0.0409

7 叶节点10.0 0.1176 0.0957

8 中间节点10.0 0.0946 0.0857

9 叶节点10.0 0.0916 0.0859

10 叶节点10.0 0.0271 0.0229

11 中间节点10.0 0.0696 0.0643

12 叶节点10.0 0.0676 0.0579

13 叶节点10.0 0.0298 0.0242

主程序清单:

[PQ,FT,RX]=case113(); %调用数据文件NN=size(PQ,1); %节点数

NB=size(FT,1); %支路数数

V=PQ(:,1); %V初始电压相量

maxd=1

k=1

while maxd>0.0001

PQ2=PQ; %每一次迭代各节点的注入有功和无功相同

PL=0.0;

for i=1:NB

kf=FT(i,1); %前推始节点号

kt=FT(i,2); %前推终节点号

x=(PQ2(kf,2)^2+PQ2(kf,3)^2)/V(kf)/V(kf);

%计算沿线电流平方A

PQ1(i,1)=PQ2(kf,2)+RX(i,1)*x; %计算支路首端有功/MW RX(i,1)~R

PQ1(i,2)=PQ2(kf,3)+RX(i,2)*x; %计算沿支路的无功损耗/Mvar RX(i,2)~X PQ2(kt,2)= PQ2(kt,2)+PQ1(i,1); %用PQ1去修正支路末端节点的有功P 单位MW PQ2(kt,3)= PQ2(kt,3)+PQ1(i,2); %用PQ1去修正支路末端节点的有功Q 单位Mvar

PL=PL+RX(i,1)*x;

end

angle(1)=0.0;

for i=NB:-1:1

kf=FT(i,2); %回代始节点号

kt=FT(i,1); %回代终节点号

dv1=(PQ1(i,1)*RX(i,1)+PQ1(i,2)*RX(i,2))/V(kf);

%计算支路电压损耗的纵分量dv1

dv2=(PQ1(i,1)*RX(i,2)-PQ1(i,2)*RX(i,1))/V(kf);

%计算支路电压损耗的横分量dv2

V2(kt)=sqrt((V(kf)-dv1)^2+dv2^2);

%计算支路末端电压/kV

angle(kt)=angle(kf)+atand(dv2/(V(kf)-dv1));

%计算支路

end

maxd=abs(V2(2)-V(2));

V2(1)=V(1);

for i=3:1:NN

if abs(V2(i)-V(i))>maxd;

maxd=abs(V2(i)-V(i));

end

end

maxd

k=k+1

PQ1 %潮流分布即支路首端潮流MVA

V=V2 %节点电压模计算结果kV

angle %节点电压角度计算结果单位度

PL %网损单位MW

end

clear

输入文件清单:

function [PQ,FT,RX]=case113()

PQ=[

%节点电压有功无功

10.5 0 0

10. 0.6 0.45

10 0.4 0.3

10 0.4 0.28

10 0.6 0.4

10 0.4 0.3

10 0.5 0.35

10 0.5 0.4

];

FT=[

%首端末端

4 3

6 5

7 5

3 2

5 2

8 2

2 1

];

RX=[

% R X

0.6 0.35

1.0 0.55

0.65 0.35

0.62 0.5

0.72 0.75

0.90 0.5

0.54 0.65

];

计算结果清单:

k =7

PQ1 =

0.4014 0.2808

0.4025 0.3014

0.5025 0.3513

0.8074 0.5857

1.5294 1.0782

0.5036 0.4020

3.5356 2.6303

V =10.5000 10.1557 10.0776 10.0439 9.9677 9.9107 9.9226 10.0913

angle = 0 0.4716 0.4944 0.4785 0.6815 0.6351 0.6511 0.4101

PL =0.1356MW

基于前推回代法的配电网潮流计算

哈尔滨理工大学毕业设计(论文)任务书 学生姓名:孙聪学号:0903010909 学院:电气与电子工程学院专业:电气工程及其自动化 任务起止时间:2013 年2月25 日至2013年 6 月20 日 毕业设计(论文)题目: 基于前推回代法的配电网潮流计算 毕业设计工作内容: 1、查阅国内外相关参考文献,要求阅读20篇以上文献,了解当今电力 系统的发展状况,及目前研究的热点问题; 2、复习并熟练掌握电力系统潮流计算步骤及计算过程; 3、自学前推回代法潮流计算的基本原理及过程; 4、熟悉C语言,编写配电网潮流计算程序; 5、通过实际算例验证所编写程序的可靠性和准确性; 6、撰写论文,准备答辩。 资料: 1、王守相,王成山.现代配电系统分析[M].北京:高等教育出版社, 2007. 2、刘健,毕鹏翔,董海鹏.复杂配电网简化分析与优化[M].北京:中 国电力出版社,2002. 3、何仰赞,温增银.电力系统分析(上册)(第三版)[M] .武汉:华中科 技大学出版社,2002. 4、李光琦.电力系统暂态分析[M].北京:中国电力出版社,1998. 指导教师意见: 签名: 年月日系主任意见: 签名: 年月日 教务处制表

基于前推回带法的配电网潮流计算的研究 摘要 电力系统的潮流计算在电力系统稳态分析和电力系统设计中有很重要的作用,潮流计算也是电力系统暂态分析的基础。潮流计算是根据给定的系统运行条件来计算系统各个部分的运行状况,主要包括电压和功率的计算。 配电网潮流计算是配电管理系统高级应用软件功能组成之一。本课题在分析配电网元件模型的基础上,建立了配电网潮流计算的数学模型。由于配电网的结构和参数与输电网有很大的区别,因此配电网的潮流计算必须采用相适应的算法。配电网的结构特点呈辐射状,在正常运行时是开环的;配电网的另一个特点是配电线路的总长度较输电线路要长且分支比较多,配电线路的线径比输电网细导致配电网的R/X较大,且线路的充电电容可以忽略。配电网的潮流计算采用的方法是前推回代法,文中对前推回代法的基本原理、收敛性及计算速度等进行了理论分析比较。经过C语言编程,运行算例表明,前推回代法具有编程简单、计算速度快、收敛性好的特点,此方法是配电网潮流计算的有效算法,具有很强的实用性。 关键词:电力系统;配电网;潮流计算;前推回代法

分布式电源的配电网潮流计算

分布式电源的配电网潮流计算 发表时间:2019-05-17T09:52:59.897Z 来源:《电力设备》2018年第33期作者:王娟 [导读] 摘要:在分布式电源系统当中它主要是和大电网的供电系统起到了一个相互协调和补充的作用,这主要是利用了现有的综合设备以及资源,从而可以给用户提供一个更为良好的电能可靠的应用方式。 (国网临汾供电公司调控中心山西临汾 041000) 摘要:在分布式电源系统当中它主要是和大电网的供电系统起到了一个相互协调和补充的作用,这主要是利用了现有的综合设备以及资源,从而可以给用户提供一个更为良好的电能可靠的应用方式。由于分布式电源通过了并网以后,这对于在各个地区的电网运行以及在其结构当中都发生很大的变化,有着一定的影响,因此,分布式的电源潮流计算就起到了一定的作用,也是作为评估的重要方式,作为优化电网运行的重要理论基础,通过我们长期的研究证明,其技术已经较为成熟,利于长足的发展。 关键词:分布式电源;配电网;潮流计算 分布式发电系统(Distribute Generation,DG)因具有灵活、高效、可靠等优势而发展迅速。在电力系统稳定运行的情况下,大量DG的接入对配电网的稳定性、网络损耗及电压分布造成了较大影响。因此,需要采用改进传统潮流分析的方法来处理DG接入问题。 传统的配电网潮流算法主要有牛顿拉夫逊法、直接法和前推回代法3种。DGs种类的各异性使其不适用于传统潮流计算方法,加之与传统发电机组计算模型不一致,这使得含DGs的配电网潮流计算更加复杂。因此,建立各种DGs的潮流模型是求解含DGs配电网潮流的关键所在。前推回代法具有易编程、收敛性好、计算效率高、占用内存少、不需要求Jacobi矩阵等优点,在配电系统中应用广泛。但是该方法要求配电网除首端平衡节点以外的节点都为PQ节点。在此基础上,建立新的DG计算模型,提出一种改进的前推回代算法有效处理PV节点。通过反复仿真分析,确定该算法有效,可用于含DG配网的运行分析。 1 分布式潮流计算的重要性 在目前条件下,分布式电源的容量其大小均不同,一般在配电系统中,都有不同数量的分布式电源,所以,在分布式电源当中应用潮流计算是具有非常关键的作用。在一般情况下,在接入分布式的电源当中,由于它的配电网不同,所以在它的节点位置就会具有一定的电压以及功率,也会受到不同程度的作用,从中我们可以看出,一旦要对这些分布式的配电系统进行分析量化处理时,必须要应用相关的潮流计算法。在现阶段,一般应用潮流计算法时都没有充分的考虑到分布式电源所造成的一定影响,因此,在应用时不能直接用该方法进行计算。如果在先前了解分布式电源的主要模型,再对其进行操作,就可以充分的了解到分布式电源它的具体节点可以怎样转化为普通节点,也就可以保证潮流计算的最终结果可靠性。 2 DG的潮流计算模型 2.1 DG节点类型处理 在传统配电网中,通常将根节点视为平衡节点,而其他中间节点视为PQ节点。DG不同于传统发电机的运行方式和控制特性,在确定性潮流计算中归结为PQ节点、PI节点、PV节点和PQ(V)节点。PI节点的无功功率由前次迭代得到的电压、恒定的有功功率和电流计算后转化为PQ节点,PV节点的无功功率通常用灵敏度矩阵修正[14-15]或以节点电压偏差和节点电抗矩阵的关系修正[16-18]后转化为PQ节点,PQ (V)节点的无功功率以异步发电机参数和机端电压的关系计算后转化为PQ节点。各种DG节点类型转化的本质是在迭代过程中将各类节点转换成前推回代法及其改进方法可以方便处理的PQ节点。 需要说明,PQ型DG与PQ节点相比,只是功率流向相反,在潮流计算时只需改变功率符号,将其视为负的负荷。PV型DG与PV节点类似,须有足够的无功可调量用以维持给定电压的幅值。若无功不足或无功注入源不再有备用,无法继续提供电压支撑,使得节点电压不能维持在给定值,根据PVPQ节点转换逻辑[19],PV节点转化为PQ节点。 2.2 改进控制策略下DG新的节点类型 随着DG深入研究,在改进控制策略下,输出电气特性与传统控制策略下有很大不同,在潮流计算中建立模型、确定节点类型时,四种常见的DG节点类型不再适用。文[20]采用直接控制策略,根据并网光伏发电功率模型得到其PQ运行区域图,参照并网点电压从运行表中选择合理的运行点及对应的PWM幅值调制比ma和移相角a作用于并网逆变器,使得输出有功、无功功率依赖于并网点节点电压,可处理成有功和无功均受电压控制的P(V)Q(V)的节点类型。文[21]给出了质子交换膜燃料电池并网运行时,逆变器采用电流内环电压外环的同步PI控制策略,模型中增加了SPLL环节,使负荷发生阶跃变化时,燃料电池并网系统输出有功功率保持不变,输出无功保持为零,因此不能处理成PV节点,可视为Q=0的PQ节点。 2.3 DG处理成有功恒定的依据 光伏发电系统有功输出依赖于光照和温度,风力发电机组有功输出依赖于风速,具有随机性和时变性,但在确定性潮流计算中可处理成有功恒定的节点类型,这是因为确定性潮流计算属于点迭代法,求得的潮流解均为瞬时状态,对光伏发电或风力发电建立数学模型时,应建立离散时间的确定性模型,在潮流计算时,认为可以预测或者给定光照强度或风速的精确值,进而计算有功的精确值,这种思想和负荷在潮流计算中简化处理方法相似。根据负荷曲线可知,负荷也是随时间变化的,加之负荷种类多,其工作状态具有随机性和时变性,如何建立准确适用的负荷模型仍未很好解决。在确定性潮流计算中,需对负荷模型进行简化,采用综合预测负荷或某一时刻的真实负荷建立恒功率静态模型,处理成PQ节点。 燃料电池不受外界因素影响,通过理想假设简化模型,通过半经验模型,导出逆变器输出电压关于相角的公式,可以认为通过气体流量控制相角,进而控制有功输出恒定,这与常规发电机通过调节气门来实现有功调节类似。对微型燃气轮机建模时,通常把微型燃气轮机及电气部分当作一个整体来建立稳态模型,当负荷变化时微型燃气轮机转速虽然发生变化,但基本维持在额定转速附近,保证输出功率恒定。 3 算例结果及分析 IEEE33测试系统中总有功负荷为3715kW,总无功负荷为2300kvar,基准电压和潮流收敛精度分别取10.5kV和10-5。本文基于改进前推回代法、PV型DG无功采用节点电压偏差和节点电抗矩阵的关系修正,定量分析加入不同类型DG对配电网潮流的影响。 为保证整个配电网络是严格吸收型的受端网络,且需要尽量避免DG加入后产生逆向潮流,DG加入配电网时渗透率不易太高 本文基于与节点编号无关的改进前推回代法定量分析了各种DG接入系统后潮流,仿真结果表明,DG接入类型、布局方式的改变不影

电力系统分析潮流计算

电力系统分析潮流计算报告

目录 一.配电网概述 (3) 1.1 配电网的分类 (3) 1.2 配电网运行的特点及要求 (3) 1.3 配电网潮流计算的意义 (4) 二.计算原理及计算流程 (4) 2.1 前推回代法计算原理 (4) 2.2 前推回代法计算流程 (7) 2.3主程序清单: (9) 2.4 输入文件清单: (11) 2.5计算结果清单: (12) 三.前推回代法计算流程图 (13) 参考文献 (14)

一.配电网概述 1.1 配电网的分类 在电力网中重要起分配电能作用的网络就称为配电网; 配电网按电压等级来分类,可分为高压配电网(35—110KV),中压配电网(6—10KV,苏州有20KV的),低压配电网(220/380V); 在负载率较大的特大型城市,220KV电网也有配电功能。 按供电区的功能来分类,可分为城市配电网,农村配电网和工厂配电网等。 在城市电网系统中,主网是指110KV及其以上电压等级的电网,主要起连接区域高压(220KV及以上)电网的作用。 配电网是指35KV及其以下电压等级的电网,作用是给城市里各个配电站和各类用电负荷供给电源。 从投资角度看,我国与国外先进国家的发电、输电、配电投资比率差异很大,国外基本上是电网投资大于电厂投资,输电投资小于配电投资。我国刚从重发电轻供电状态中转变过来,而在供电投资中,输电投资大于配电投资。从我国城网改造之后,将逐渐从输电投资转入配电建设为主。 本文是基于前推回代法的配电网潮流分析计算的研究,研究是是以根节点为10kV的电压等级的配电网。 1.2 配电网运行的特点及要求 配电系统相对于输电系统来说,由于电压等级低、供电范围小,但与用户直接相连,是供电部门对用户服务的窗口,因而决定了配电网运行有如下特点和基本要求:

基于MATLAB的电力系统潮流计算

基于MATLAB的电力系统潮流计算 %简单潮流计算的小程序,相关的原始数据数据数据输入格式如下: %B1是支路参数矩阵,第一列和第二列是节点编号。节点编号由小到大编写%对于含有变压器的支路,第一列为低压侧节点编号,第二列为高压侧节点%编号,将变压器的串联阻抗置于低压侧处理。 %第三列为支路的串列阻抗参数。 %第四列为支路的对地导纳参数。 %第五烈为含变压器支路的变压器的变比 %第六列为变压器是否是否含有变压器的参数,其中“1”为含有变压器,%“0”为不含有变压器。 %B2为节点参数矩阵,其中第一列为节点注入发电功率参数;第二列为节点%负荷功率参数;第三列为节点电压参数;第六列为节点类型参数,其中 %“1”为平衡节点,“2”为PQ节点,“3”为PV节点参数。 %X为节点号和对地参数矩阵。其中第一列为节点编号,第二列为节点对地%参数。 n=input('请输入节点数:n='); n1=input('请输入支路数:n1='); isb=input('请输入平衡节点号:isb='); pr=input('请输入误差精度:pr='); B1=input('请输入支路参数:B1='); B2=input('请输入节点参数:B2='); X=input('节点号和对地参数:X='); Y=zeros(n); Times=1; %置迭代次数为初始值 %创建节点导纳矩阵 for i=1:n1 if B1(i,6)==0 %不含变压器的支路 p=B1(i,1); q=B1(i,2); Y(p,q)=Y(p,q)-1/B1(i,3); Y(q,p)=Y(p,q); Y(p,p)=Y(p,p)+1/B1(i,3)+0.5*B1(i,4); Y(q,q)=Y(q,q)+1/B1(i,3)+0.5*B1(i,4); else %含有变压器的支路 p=B1(i,1); q=B1(i,2); Y(p,q)=Y(p,q)-1/(B1(i,3)*B1(i,5)); Y(q,p)=Y(p,q); Y(p,p)=Y(p,p)+1/B1(i,3);

配电网潮流计算

摘要 配电网潮流计算是配电管理系统应用软件功能组成之一。本设计在分析配电网元件模型的基础上,建立了配电网潮流计算的数学模型。由于配电网的结构参数与输电网有很大的区别,因此配电网的潮流计算采用相适应的算法。配电网的结构特点呈辐射状,在正常运行时是开环的;配电网的另一个特点是配电线路的总长度较输电线路要长并且分支较多,配电线路的线径比输电网的细以至于配电网的R/X较大,且线路的充电电容可以忽略。配电网的潮流计算采用的方法是前推回代法,文中对前推回代法的基本原理,收敛性及计算速度等进行了理论分析比较仿真和算例表明,前推回代法具有编程简单、计算速度快、收敛性好的特点,这个方法是配电网潮流计算的有效算法,具有很强的实用性。 关键词配电网,潮流计算,前推回代法

Abstract Flow solution of distribution networks is one of software in DMS. Because of the different structures between transmission networks and distribution networks, the corresponding methods in flow solution of distribution networks must be applied. Distributions network is radial shape and in the condition of regular is annular. Another characteristic of distribution networks is cabinet minister of distribution long than transmission networks. The line diameter of distribution networks is thin than transmission networks, it cause R/X is large of distribution networks and the line’s capacitance can neglect. Load flow calculation of distributions network use back/ forward sweep. It has some peculiarities such as simple procedures and good restrain and so on. This method of distribution network is an effective method of calculating the trend, with some practicality. Key words :distribution network,load flow calculation,back/ forward sweep

电力系统分析潮流计算课程序设计及其MATLAB程序设计

电力系统分析潮流计算程序设计报告题目:13节点配电网潮流计算 学院电气工程学院 专业班级 学生姓名 学号 班内序号 指导教师房大中 提交日期 2015年05月04日

目录 一、程序设计目的 (2) 二、程序设计要求 (4) 三、13节点配网潮流计算 (4) 3.1主要流程................................................................................................ 错误!未定义书签。 3.1.1第一步的前推公式如下(1-1)-(1-5): .................................. 错误!未定义书签。 3.1.2第二步的回代公式如下(1-6)—(1-9): ................................ 错误!未定义书签。 3.2配网前推后代潮流计算的原理 (7) 3.3配网前推后代潮流计算迭代过程 (8) 3.3计算原理 (9) 四、计算框图流程 (10) 五、确定前推回代支路次序....................................................................................... 错误!未定义书签。 六、前推回代计算输入文件 (11) 主程序: (11) 输入文件清单: (12) 计算结果: (13) 数据分析: (13) 七、配电网潮流计算的要点 (14) 八、自我总结 (14) 九、参考文献 (15) 附录一 MATLAB的简介 (15)

(完整word版)9节点电力系统潮流计算

电力系统分析课程设计 设计题目9节点电力网络潮流计算 指导教师 院(系、部)电气与控制工程学院 专业班级 学号 姓名 日期

电气工程系课程设计标准评分模板

目录 1 PSASP软件简介 (1) 1.1 PSASP平台的主要功能和特点 (1) 1.2 PSASP的平台组成 (2) 2 牛顿拉夫逊潮流计算简介 (3) 2.1 牛顿—拉夫逊法概要 (3) 2.2 直角坐标下的牛顿—拉夫逊潮流计算 (5) 2.3 牛顿—拉夫逊潮流计算的方法 (6) 3 九节点系统单线图及元件数据 (7) 3.1 九节点系统单线图 (7) 3.2 系统各项元件的数据 (8) 4 潮流计算的结果 (10) 4.1 潮流计算后的单线图 (10) 4.2 潮流计算结果输出表格 (10) 5 结论 (14)

电力系统分析课程设计任务书9节点系统单线图如下: 基本数据如下:

表3 两绕组变压器数据 负荷数据

1 PSASP软件简介 “电力系统分析综合程序”(Power System Analysis Software Package,PSASP)是一套历史悠久、功能强大、使用方便的电力系统分析程序,是高度集成和开发具有我国自主知识产权的大型软件包。 基于电网基础数据库、固定模型库以及用户自定义模型库的支持,PSASP可进行电力系统(输电、供电和配电系统)的各种计算分析,目前包括十多个计算机模块,PSASP的计算功能还在不断发展、完善和扩充。 为了便于用户使用以及程序功能扩充,在PSASP7.0中设计和开发了图模一体化支持平台,应用该平台可以方便地建立电网分析的各种数据,绘制所需要的各种电网图形(单线图、地理位置接线图、厂站主接线图等);该平台服务于PSASP 的各种计算,在此之外可以进行各种分析计算,并输出各种计算结果。 1.1PSASP平台的主要功能和特点 PSASP图模一体化支持平台的主要功能和特点可概括为: 1. 图模支持平台具备MDI多文档操作界面,是一个单线图图形绘制、元件数据录入编辑、各种计算功能、结果显示、报表和曲线输出的集成环境。用户可以方便地建立电网数据、绘制电网图形、惊醒各种分析计算。人机交互界面全部汉化,界面良好,操作方便。 2. 真正的实现了图模一体化。可边绘图边建数据,也可以在数据已知的情况下进行图形自动快速绘制;图形、数据自动对应,所见即所得。 3. 应用该平台可以绘制各种电网图形,包括单线图、地理位置接线图、厂站主接线图等。 ●所有图形独立于各种分析计算,并为各计算模块所共享; ●可在图形上进行各种计算操作,并在图上显示各种计算结果; ●同一系统可对应多套单线图,多层子图嵌套; ●单线图上可细化到厂站主接线结构;

第三章简单电力系统的潮流计算汇总

第一章 简单电力系统的分析和计算 一、 基本要求 掌握电力线路中的电压降落和功率损耗的计算、变压器中的电压降落和功率损耗的计 算;掌握辐射形网络的潮流分布计算;掌握简单环形网络的潮流分布计算;了解电力网络的简化。 二、 重点内容 1、电力线路中的电压降落和功率损耗 图3-1中,设线路末端电压为2U 、末端功率为222~jQ P S +=,则 (1)计算电力线路中的功率损耗 ① 线路末端导纳支路的功率损耗: 222 2* 222~U B j U Y S Y -=?? ? ??=? ……………(3-1) 则阻抗支路末端的功率为: 222~~~Y S S S ?+=' ② 线路阻抗支路中的功率损耗: ()jX R U Q P Z I S Z +'+'==?2 2 22222 ~ ……(3-2) 则阻抗支路始端的功率为: Z S S S ~ ~~21?+'=' ③ 线路始端导纳支路的功率损耗: 2121* 122~U B j U Y S Y -=?? ? ??=? …………(3-3) 则线路始端的功率为: 111~ ~~Y S S S ?+'= ~~~图3-3 变压器的电压和功率 ~2 ? U (2)计算电力线路中的电压降落 选取2U 为参考向量,如图3-2。线路始端电压 U j U U U δ+?+=2 1 其中 2 2 2U X Q R P U '+'= ? ; 222U R Q X P U '-'=δ ……………(3-4) 则线路始端电压的大小: ()()2 221U U U U δ+?+= ………………(3-5) 一般可采用近似计算: 2 2 2221U X Q R P U U U U '+'+ =?+≈ ………………(3-6)

配电网的潮流计算

毕业设计(论文)题,目配电网潮流计算与程序设计 学生姓名石昊晨学号2010151107 专业发电厂及电力系统班级20109091 指导教师刘会家 评阅教师 完成日期年月日

目录 摘要 一.配电网潮流概述 (5) 1.1配电网潮流计算的目的与意义 (5) 1.2潮流计算方法概述 (5) 1.2.1 牛顿——拉夫逊法 (6) 1.2.2 快速解耦法 (6) 1.2.3 回路阻抗法 (9) 1.2.4 前推回代法 (11) 1.3 本文工作 (11) 二.配电网网络模型 (11) 2.1元件模型 (11) 2.1.1 电力线路的数学模型 (11) 2.1.2 变压器的等值电路 (13) 2.2网络模型 (15) 三:基于matlab的配电网潮流计算算法 (16) 3.1配电网潮流计算算法原理 (16) 3.2 matlab的概述 (19) 3.3程序设计 (21) 3.3.1 牛顿--拉夫逊法潮流求解过程 (21) 3.3.2牛顿—拉夫逊法的程序框图 (25) 四:算例 (27) 参考文献 (28) 致谢 (29)

配电网潮流计算与程序设计 学生:石昊晨 指导教师:刘会家 (三峡大学国际文化交流学院) 摘要:本文首先分析了配电网的特点及对算法的要求,然后建立配电网潮流计算模型。针对配电网潮流计算的现状进行了全面分析,深入讨论了目前各方法的特点,并从收敛性及其他性能指标进行了比较分析;详细研究用的比较广泛的牛顿——拉夫逊法,并以广度优先顺序搜索策略作为理论基础。针对某地区配电网的具体情况,选取IOKV的配电网子系统进行潮流计算。利用MATLAB 2009a 进行了基于牛顿——拉夫逊法的配电网的潮流计算程序。由计算结果可知,该算法具有一定的优越性,软件的开发具有一定的实用性。 关键词:电力系统,配电网潮流,牛顿——拉夫逊法,MATLAB程序设计

13节点潮流计算

%本程序的功能是用牛顿——拉夫逊法进行潮流计算 % B1矩阵:1、支路首端号;2、末端号;3、支路阻抗;4、支路对地电纳 % 5、支路的变比;6、支路首端处于K侧为1,1侧为0 % B2矩阵:1、该节点发电机功率;2、该节点负荷功率;3、节点电压初始值% 4、PV节点电压V的给定值;5、节点所接的无功补偿设备的容量% 6、节点分类标号:1为平衡节点(应为1号节点);2为PQ节点;% 3为PV节点; %S()为结点注入功率 %B()结点无功补长量 clear; n=13;%input('请输入节点数:n='); nl=13;%input('请输入支路数:nl='); isb=1;%input('请输入平衡母线节点号:isb='); pr=1;%input('请输入误差精度:pr='); B1=[1 3 10.349+31.68i 0.0018i 1.0 1; 1 5 1.8+92.16i 0.0000118i 21.0 1; 2 4 2.0328+58.1i 0.000001363i 21.0 1; 2 3 6.688+19.25i 0.00109i 1.0 1; 3 6 2.5+136.64i 0.000208i 15. 4 1; 3 7 2.36+111.55i 0.0000214i 20.0 1; 3 8 14.41+44.11i 0.000627i 1 1; 3 10 14.41+44.11i 0.000627i 1 1; 8 10 12.84+39.3i 0.000559i 1 0; 8 9 1.77+52.33i 0.0000267i 21.0 1; 10 11 2.23+151.25i 0.0000267i 23.0 1; 10 13 5.895+18.045i 0.000513i 1.0 0; 12 13 7.08+209.28i 0.0000267i 23.0 0] B2=[0 0 220 220 0 1; 0 0 220 220 0 3; 0 0 220 0 0 2; 0 66+41i 10.5 0 0 2; 0 77+48i 10.5 0 0 2; 800 0 15.75 15.75 0 2; 100 0 11 0 0 2; 0 0 220 0 0 2; 0 88+55i 10.5 0 0 2; 0 0 220 0 0 2; 0 55+34i 10.5 0 0 2; 71 0 10.5 0 0 2; 0 0 220 0 0 2] %标幺值 s=1000; u=220; for i=1:13

配电网潮流计算方法

摘要 首先简单介绍了基于在MALAB中行潮流计算的原理、意义,然后用具体的实例,简单介绍了如何利用MALAB去进行电力系统中的潮流计算。 电力系统潮流计算是研究电力系统稳态运行情况的一种计算,它根据给定的运行条件及系统接线情况确定整个电力系统各部分的运行状态:各线的电压、各元件中流过的功率、系统的功率损耗等等。 牛顿-拉夫逊法在电力系统潮流计算的常用算法之一,它收敛性好,迭代次 数少。本文介绍了电力系统潮流计算机辅助分析的基本知识及潮流计算牛顿-拉 夫逊法,最后介绍了利用MTALAB程序运行的结果。 关键词:电力系统潮流计算,牛顿-拉夫逊法,MATLAB

The Abstract At first, this paper briefly introduces the theory and the meaning of the load flow calculation based on MALAB, and then it briefly introduces how to apply MALAB to the load flow calculation of the electric system by concrete cases. A kind of calculation is the load flow of the electric system, which studies the stable operation-condition of the electric system. It confirms the operation-condition of the whole electric system, such as the voltage of every line, the rate of power crossing each component, the rate of power consumption of the system, according to the given operation-condition and the connected circumstances of the system. Newton-Raphson method is commonly used in the load flow calculation of the electric system for its good stypticity and little iteration. This paper introduces the basic knowledge about the assistant analysis of the load flow computer of electric system and the Newton-Raphson method. Finally, it introduces the results after making use of MALAB procedure. The key word:The load flow calculation of the electric system; Newton-Raphson method;MALAB

电力系统潮流计算课程设计(终极版)

目录 摘要................................................. - 1 - 1.设计意义与要求..................................... - 2 - 1.1设计意义 ...................................... - 2 - 1.2设计要求(具体题目)........................... - 2 - 2.题目解析........................................... - 3 - 2.1设计思路 ...................................... - 3 - 2.2详细设计 ...................................... - 4 - 2.2.1节点类型.................................. - 4 - 2.2.2待求量 ................................... - 4 - 2.2.3导纳矩阵.................................. - 4 - 2.2.4潮流方程.................................. - 5 - 2.2.5牛顿—拉夫逊算法.......................... - 6 - 2.2.5.1牛顿算法数学原理:................... - 6 - 2.2.5.2修正方程............................. - 7 - 2.2.5.3收敛条件............................. - 9 - 3.结果分析.......................................... - 10 - 4.小结.............................................. - 11 - 参考文献............................................ - 12 -

配电网络的拓扑分析及潮流计算

配电网络的拓扑分析及潮流计算 李晨 在当前经济迅猛发展、供电日趋紧张的情况下,通过配电网络重构,充分发挥现有配电网的潜力,提高系统的安全性和经济性,具有很大的经济效益和社会效益。本文对配电网拓扑分析、对配电网络潮流计算作分析研究,应用MATLAB编程来验证并分析配电网结构特点。配电网的拓扑分析用树搜索法,并采用前推回代法进行潮流计算分析,通过树搜索形成网络拓扑表,然后利用前推回代法计算潮流分布。 1 配电网的接线分析 配电网是指电力系统中二次降压侧直接或降压后向用户供电的网络。配电网由馈线、降压变压器、断路器、各种开关构成。就我国电力系统而言,配电网是指110kV及以下的电网。在配电网中,通常把110kV,35kV级称为高压,10kV级称为中压,0.4kV级称为低压。从体系结构上,配电网可以分作辐射状网、树状网和环状网,如图2.3所示。我国配电网大部分是呈树状结构。 辐射网树状网环状网 图1-1配电网的体系结构 1.1 配电网的支路节点编号 通过简化可把一个复杂的配电网络简化成一个节点一边关系的树状网络,于是就可以运行图论的知识进行网络拓扑分析。按照这种简化模型,易知:节点数目比支路数目和开关数目多1,所以节点从0开始编号,而支路数和开关数从1开始编号,这样编号三者在序号上就可以完全一致,为后面的网损计算打下良好的基础。联络线支路和上面的联络开关编号放在最后处理。 图1-2节点支路编号示意图 图中①为节点号,1为支路号,其它节点、支路编号的含义相同。 节点、支路编号原则:将根节点编为0,并按父节点小于子节点号的原则由根节点向下顺序编号,规定去路正方向为父节点指向子节点,且支路编号与其子节点同号,则网络结构

13节点配电网潮流计算—上机

配网前推后代潮流计算, 对给定的13节点配电网,熟悉MATLAB语言前腿后代潮流计算程序。 13节点配电网结构如图1所示,支路参数见表1;节点类型及迭代初始电压及各节点所接负荷见表2。 要看懂前推回代法计算程序,报告叙述计算原理及计算流程。绘制计算流程框图。确定前推回代支路次序(广度优先,或深度优先),编写前推回代计算输入文件。进行潮流计算。 整理专利计算结果。 内容包括节点电压;线路潮流分布,网损 总结配电网潮流计算的要点 图1 13节点配电网结构图

表1 系统支路参数 表2 系统负荷参数

主程序清单: [PQ,FT,RX]=case113(); %调用数据文件 NN=size(PQ,1); %节点数 NB=size(FT,1); %支路数数 V=PQ(:,1); %V初始电压相量 maxd=1 k=1 while maxd>0.0001 PQ2=PQ; %每一次迭代各节点的注入有功和无功相同 PL=0.0; for i=1:NB kf=FT(i,1); %前推始节点号 kt=FT(i,2); %前推终节点号 x=(PQ2(kf,2)^2+PQ2(kf,3)^2)/V(kf)/V(kf); %计算沿线电流平方A PQ1(i,1)=PQ2(kf,2)+RX(i,1)*x; %计算支路首端有功/MW RX(i,1)~R PQ1(i,2)=PQ2(kf,3)+RX(i,2)*x; %计算沿支路的无功损耗/Mvar RX(i,2)~X PQ2(kt,2)= PQ2(kt,2)+PQ1(i,1); %用PQ1去修正支路末端节点的有功P 单位MW PQ2(kt,3)= PQ2(kt,3)+PQ1(i,2); %用PQ1去修正支路末端节点的有功Q 单位Mvar PL=PL+RX(i,1)*x; end angle(1)=0.0; for i=NB:-1:1 kf=FT(i,2); %回代始节点号 kt=FT(i,1); %回代终节点号 dv1=(PQ1(i,1)*RX(i,1)+PQ1(i,2)*RX(i,2))/V(kf); %计算支路电压损耗的纵分量dv1 dv2=(PQ1(i,1)*RX(i,2)-PQ1(i,2)*RX(i,1))/V(kf); %计算支路电压损耗的横分量dv2 V2(kt)=sqrt((V(kf)-dv1)^2+dv2^2); %计算支路末端电压/kV angle(kt)=angle(kf)+atand(dv2/(V(kf)-dv1)); %计算支路 end

13节点配电网的建模与仿真

大学生课外创新实验竞赛总结报告

项目简介: 在配电网的正常运行中,随着用电负荷的变化和系统运行方式的改变,网络中的损耗也将发生变化。要严格保证所有的用户在任何时刻都有额定的电压是不可能的,因此配电网的某个节点电压偏移额定值是无法避免的。为保证电力系统的正常运行,需要对各节点处的电气量进行监测。在电力系统发生故障后,各节点的电气量也会发生较大波动,也需要对各节点处的电气量进行监测。对配电网进行建模仿真,可以了解配电网各个节点的电流,电压特征,仿真结果对配电网的实际运行有着正要的实际意义。 在PSCAD/EMTDC平台上搭建13节点中性点不接地配电网的仿真模型,仿真了不同故障情况对故障点的电压,电流的幅值、相位特征的影响,并得到各节点处的节点电压和电流的波形。将各节点电压和电流的数据导入matlab中对数据进行绘图。并对数据进行频谱分析,在频域上观察电流电压数据的基本特征。 为了提取各节点处的以及故障处电流电压的特征量,基于PSCAD/EMTDC的仿真环境,搭建了13节点中性点不接地配电网的仿真模型。线路模型采用分布式参数模型进行仿真。对于故障分析,改变故障的发生位置,故障的发生时间以及故障的类型进行仿真,观察各节点处电流、电压的仿真曲线,并对结果进行简单分析。深入研究故障对整个配电网各节点处的电流电压特征量的影响,为故障的确定以及排除提供了理论依据。 关键词:PSCAD/EMTDC matlab 潮流分析频谱分析Ag故障配电网 项目创新点: 在PSCAD/EMTDC平台上搭建13节点中性点不接地配电网的仿真模型,其中输电线路采取分布式参数模型进行建模。改变故障的发生时间,发生位置以及故障类型,在PSCAD/EMTDC平台上进行仿真。将在PSCAD/EMTDC中得到的各节点电压和电流的数据导入matlab中对数据进行绘图,并对不同节点的电流电压波形进行对比,简要分析造成差异的主要原因。同时对各节点所采集的电流电压数据进行频谱分析。

含PV节点的配电网潮流计算

含PV节点的配电网潮流计算 发表时间:2018-07-03T10:28:16.133Z 来源:《电力设备》2018年第6期作者:李月[导读] 摘要:电网技术的日益发展带动着分布式电源(distribution generation,DG)技术的不断革新,越来越多的DG将接入到配电网中。 (国家电网徐州供电公司 221000)摘要:电网技术的日益发展带动着分布式电源(distribution generation,DG)技术的不断革新,越来越多的DG将接入到配电网中。DG在潮流计算中可以看成不同的节点,其中PV型节点的处理方式最为复杂。因此,本文在用前推回代法进行潮流计算的基础上,提出了PV节点的处理方法,该方法引入了节点电抗矩阵,用无功分摊的原理确定PV节点的无功初值,大大提高了PV节点无功初值的精确性。关键词:分布式电源;PV节点潮流计算无功分摊大电网集中式供电仍是目前电力行业的主流供电方式。但是近些年全球大面积停电事故频发,大电网供电的缺陷逐渐暴露,系统内小故障的发生,都有可能引起整个系统的瘫痪。分布式电源(Distributed Generation,DG)出现后,从某种程度上弥补了这一缺陷。DG在并入传统电网后,能改善系统稳定性,使之安全运行,为用户提供更加安全可靠的电能[1]。另一方,DG并入配电网,系统原有的拓扑结构 也会发生变化,从单电源变成多多电源,潮流会随之受到影响。由于基本形式下的潮流计算中不涉及DG,所以研究DG并网后对大电网的影响,以及研究并入后的潮流计算方法很有必要。本文首先介绍分析了分布式发电的类型,以及几种发电方式各自的特点,接下来构造了PV型DG在潮流计算中的节点模型,在用前推回代法计算的基础上,用节点电抗矩阵来分析处理PV节点,很好解决了潮流计算时PV节点出现无效的问题。并根据配电网的结构特点,用无功分摊法去计算DG的无功初值,使其无功初值能无限接近于实际值,这样一来也降低了迭代次数。 1分布式发电类型 现今主要的分布式发电方式可以分为风力发电、光伏发电、燃料电池发电等。 1.1风力发电 异步电机发电是风力发电的主要形式,自身无法产生无功,其无功来自于电网。一般会通过并联电容器组来补偿无功,从而降低网损。发电机的功率因数也会因为并联电容器组的自动投切达到要求。在安装了电容器以后,要求功率因数能达到0.9或者更高[2]。因此在含有风机的潮流计算中,可以将其看作PQ节点。在计算的过程中把它当成负的负荷来看。 1.2光伏发电 光伏发电的依据是光生伏打效应,所产生的电能是电池吸收到的阳光直接转化的。这类DG如要并入大电网网,需要通过逆变器连接。逆变器可分为电流控制型和电压控制型两种。前者输出的有功和注入电网的电流是不变的,注入的无功大小为 (1)式中:I为电池注入电网电流;e为DG并网节点处电压的实部f为虚部;P是DG的有功输出。在潮流计算中可以将光伏电池视为PI型节点。 1.3微型燃气轮机 微型燃气轮机发电的原理基本都是回热式白朗托循环,随着高效回热器在坊间的越来越普及,其发电效率也随之提高。AC/DC整流器、DC/AC逆变器、带电容直流母线,组成了电力电子设备的接口。通过这些设备,微型燃气轮机将能够输出数值固定不变的电压和频率,在并网后向负荷供电。因而微型燃气轮机可以视作PV型节点。这类节点的处理方式下文会详细介绍。 2 PV型节点的处理方式如果潮流计算中包含有DG,由于DG会改变网络结构和功率走向,传统的前推回代法将不再适用。PV型DG的有功功率P不变,因而只需要将无功功率Q的大小确定,就可以把PV型DG转化成用比较好处理的PQ型节点。 2.1 用无功分摊法确定PV型DG无功初值 PV型DG的无功初值在一般情况下取0或是无功上下限相加后值的一半。这两种方法相对来说比较简单,但是结果与实际值的偏差将会比较大。PV型DG的无功来源主要是并网点的无功补偿装置,和DG的无功输出量没有关系,而是由系统负荷量的位置和大小、DG的并网位置等因素决定。无功初值的正确与否,对潮流计算结果的收敛性会有直接的影响,因而本文将运用无功分摊法去处理接入配电网的PV型节点的无功初值。 PV节点处的电压值和配电网根节点处的电压值一样,都可视作恒定,现设该类DG的无功补偿装置的补偿量为无限大,则可近似认为根节点和PV型DG一起分摊系统中的无功负荷[3]。由于配电网为辐射状,为了计算的方便,以PV型DG的并网位置为依据,找到一条包含根节点、PV型节点、末节点的线路。根节点与PV型节点之间的无功由两者平分,而PV节点要独自提供它到末节点之间的无功负荷。如果PV型DG的并网位置在网络几条支路之间,则优先考虑哪条支路到末节点无功负荷最大。 以下图所示的配电系统为例,无功修正值为,假设在节点编号为6和9的节点处分别并入一个PV型DG,标为a和b。则它们的无功初值分别为 图1 13节点配网系统图

相关文档
相关文档 最新文档