文档库 最新最全的文档下载
当前位置:文档库 › 计算物理第二次作业

计算物理第二次作业

计算物理第二次作业
计算物理第二次作业

第一题

Use Lagrange , Newton , and Cubic Spline interpolation method to rebuild function for

based on interpolation points (N=15):

do not forget to give the graphical representation

https://www.wendangku.net/doc/ef14051222.html,grange interpolation method

简要流程图:

重要公式:

注意:1.由于Word 对MATLAB 的注释不支持,故出现乱码。代码以附件中的代码为准。如果验证的话,运行附件中的代码。

2.先要函数定义文件保存为Rf.m 才能运行处正确结果。

2

1(),[5,5]

1f x x x

=

∈-+105, 0,1,i x i i N

N

=-+

= 0

()()n

i i

i P x l x y

==

∑011011()()()()()()()()()

i i n i i i i i i i n x x x x x x x x l x x x x x x x x x -+-+----=

----

1.Rf函数的定义:

function y=f(x);

y=1/(1+x^2);

https://www.wendangku.net/doc/ef14051222.html,grange interpolation method:

n=input('??????·??aμ?μè·Yêyê?è?£o\n');

s=[-5+10/n*[0:n]];%???¨μ??¨μ?£?Rf?a???¨μ?oˉêyx=-5:0.1:5;

f=0;

for m=1:n+1;

l=1;%?ó2??μ?ùoˉêy

for k=1:n+1;

if k~=m;

l=l.*(x-s(k))./(s(m)-s(k));

else

l=l;

end

end

f=f+Rf(s(m))*l;%?ó2??μoˉêy

end

plot(x,f,'b')%×÷3?2??μoˉêy?ú??

grid on

hold on

绘图:

2.Newton interpolation method:简要流程图:

重要公式:

注意:1.由于Word 对MATLAB 的注释不支持,故出现乱码。代码以附件中的代码为准。如果验证的话,运行附件中的代码。

2.先要函数定义文件保存为Newton.m 才能运行处正确结果。

Newton 函数定义:

function yi = Newton(x,y,xi) %μè?à?úμ?Newton?ò?°1?ê?£????D£? %x?a?òá?£?μè?à2??μ?úμ?£?°′DDê?è?£? %y?a?òá?£?2??μ?úμ?′|μ?oˉêy?μ£?°′DDê?è?£? %xi?a±êá?£?×?±?á?x %yi?axi′|μ?oˉêy1à???μ?£ %????3?ê??μ

h = x(2) - x(1); t = (xi-x(1)) / h; %????2?·?±íY

n = length(y); Y = zeros(n); Y(:,1) = y'; for k = 1 : n-1

Y(:,k+1) = [ diff(y',k);zeros(k,1) ]; end

%?????ò?°2??μ1?ê?N£¨xi)

01001()() ()()

n n n N x a a x x a x x x x -=+-+

+-- 0[,,]

n n a f x x = 10100

[,,][,,]

[,,]k k k k f x x f x x f x x x x --=

-

yi = Y(1,1);

for i = 1 : n-1

z = t;

for k = 1:i-1

z = z .* (t-k);

end

yi = yi + Y(1,i+1) * z / prod([1 : i]);

end

主程序:

n=input('??????·??aμ?μè·Yêyê?è?£o\n');

x0=[-5+10/n*[0:n]];%%%???¨μ??¨μ?£?Rf?a???¨μ?oˉêyx=-5:0.1:5;

f=0;

y0= 1./(1.+x0.^2);

plot(x,Newton(x0,y0,x),'r')%×÷3?2??μoˉêy?ú??

grid on

hold on

Cubic Spline interpolation method

简要流程图:

重要公式:

注意:1.由于W ord 对MATLAB 的注释不支持,故出现乱码。代码以附件中的代码为准。如果验证的话,运行附件中的代码。

代码:

112i i i i i i

M M M d μλ-+++=1111

11()()()()6

6[,,]

i i i i i i i i i i i i f x f x f x f x d h h h h f x x x +----+??--=- ?+??

=1i 11 i i i i i i i h h h h h h λμ---==

++ 11111()()[,]''()''()i i i i i i i i i i i i i i S x y S x y x x x S x M S x M +++++==?

∈?

==?

clear

n=input('??????·??aμ?μè·Yêyê?è?£o\n');

%%%2??μ????

a=-5;

b=5;

hh=0.001;%?-í?μ?2?3¤

s=[a+(b-a)/n*[0:n]];%%%???¨μ??¨μ?£?Rf?a???¨μ?oˉêy

%%%%μúò?±???ì??tRf"(-5),Rf"(5)

v=-2/(1+a^2)^2*a;

for k=1:n;%è?3??úμ????à

h(k)=2/3;

end

for k=1:n-1;%?ó3??μêy?òá?lamuda,miu

la(k)=1/2;

miu(k)=1/2;

end

%%%%?3?μ?μêy???óA

for k=1:n-1;

for p=1:n-1;

switch p

case k

A(k,p)=2;

case k-1

A(k,p)=miu(p+1);

case k+1

A(k,p)=la(p-1);

otherwise

A(k,p)=0;

end

end

end

%%%%?ó3?d?ó

for k=1:n-1;

switch k

case 1

d(k)=27*Rf(s(k+2))/4-54*Rf(s(k+1))/4+27*Rf(s(k))/4-miu(k)*v; case n-1

d(k)=27*Rf(s(k+2))/4-54*Rf(s(k+1))/4+27*Rf(s(k))/4-la(k)*v; otherwise

d(k)=27*Rf(s(k+2))/4-54*Rf(s(k+1))/4+27*Rf(s(k))/4;

end

end

%%%%?ó?aM?ó

M=A\d';

M=[v;M;v];

%%%%

m=0;

f=0;

for x=a:hh:b;

if x==a;

p=1;

else

p=ceil((x-s(1))/((b-a)/n));

end

ff1=0;

ff2=0;

ff3=0;

ff4=0;

m=m+1;

ff1=1/h(p)*(s(p+1)-x)^3*M(p)/6;

ff2=1/h(p)*(x-s(p))^3*M(p+1)/6;

ff3=((Rf(s(p+1))-Rf(s(p)))/h(p)-h(p)*(M(p+1)-M(p))/6)*(x-s(p)); ff4=Rf(s(p))-M(p)*h(p)*h(p)/6;

f(m)=ff1+ff2+ff3+ff4 ;

end

%%%×÷3?2??μí?D?

x=a:hh:b;

plot(x,f,'r')

hold on

grid on

绘图:

第二题

Write program to implement repeated trapezoid quadrature repeated Simpson quadrature and calculate the integral

including error analysis

5

1

()sin()I f x dx

=

?

1. repeated trapezoid quadrature

简要的流程图

重要公式:

代码:

#include #include

double f(double x)//定义函数 {return(sin(x));}

double trapezoid(double a,double b,int n) //trapezoid 算法的程序 {

int k;double x,s1,h=(b-a)/n; //a 为积分起点,b 为积分终点,h 为步长; x=a; s1=f(x);

for(k=1;k

s1=s1+f(a+k*h); }

s1=h*(f(a)+2*s1+f(b))/2;

1

101

1()(()()2()2()()2n n i i i n i i h T f f x f x h f a f x f b -+=-=??

=+ ?

????=++ ?

??

∑∑

return(s1);

}

main()

{

int n;double a1,h,b1,s=0;

cout<<"\n Input the begin:"<

cin>>a1;

cout<<"\n Input the end:"<

cin>>b1;

cout<<"\n input n "<

cin>>n;

h=(b1-a1)/n;

s=trapezoid(a1,b1,n);

cout<<"the integral value is:"<

cout<

cout<<" the remain item R(f) is" <

cout<

}

运行结果:

2.repeated Simpson quadrature

简要的流程图:

重要公式:

代码:

#include #include

double f(double x)//定义函数 {return(sin(x));}

double Simpson(double a,double b,int n) //Simpson 算法的程序 {

int k;double x,s1,s2,h=(b-a)/n; //a 为积分起点,b 为积分终点,h 为步长; x=a+h/2; s1=f(x);s2=0; for(k=1;k

s1=s1+f(a+k*h+h/a); s2=s2+f(a+k*h); }

s2=h*(f(a)+4*s1+2*s2+f(b))/6;

() 1

22122011

212012()()4()()6

()4()2()()3m n i i i i m m i i i i h S f f x f x f x h f a f x f x f b -++=--+==??

=++ ????

?=+++ ?

??

∑∑∑

return(s2);

}

main()

{

int n;double a1,h,b1,s=0;

cout<<"\n Input the begin:"<

cin>>a1;

cout<<"\n Input the end:"<

cin>>b1;

cout<<"\n input n "<

cin>>n;

h=(b1-a1)/n;

s=Simpson(a1,b1,n);

cout<<"the integral value is:"<

cout<

cout<<" the remain item R(f) is" <

cout<

return(s);

}

运行结果:

第三、四题

1.Write a program to solve the ordinary differential equation

and calculate y(1.5) with step=0.1, 0.1/2, 0.1/4, 0.1/8 Compare it with accurate solution 2. 1.

Write a program to solve the ordinary differential

equation

in the interval [0, 0.5] with step=0.1 Compare it with accurate solution:

简要的流程图:

()30()(0)1y x y x y '=-??

=?22' (0 1.5)(0)3

y x y x y ?=-≤≤?

=?3

()3/(1)

y x x =+30x

y e

-=

重要的公式:

General Runge-Kutta Method with 4-order precision

第一题的代码: #include #include

double f(double x,double y) {

double y1; y1=-x*x*y*y; return y1; }

float Runge_Kutta(double x,double y ,double h) {

1

12341213

243(22)6

(,)(,)

22(,)22(,) n n n n n n n n n n h y y K K K K K f x y h h K f x y K h h K f x y K K f x h y hK +?

=++++??

=???=++??

?=++??

=++??

double k1,k2,k3,k4;

k1=f(x,y);k2=f(x+h/2,y+h*k1/2);

k3=f(x+h/2,y+h*k2/2);k4=f(x+h,y+h*k3);

return(y+h*(k1+2*k2+2*k3+k4)/6);

}

main()

{

int i=0;

double x,y,h,b;

cout<<"Input begin x0:"<

cin>>x;

cout<<"Input begin y0:"<

cin>>y;

cout<<"Input step h:"<

cin>>h;

cout<<"Input end b:"<

cin>>b;

cout<<"初始值为"<

cout<<"x"<<0<<"="<

cout<<3/(1+pow(x,3))<

cout<<"误差为:"<

cout<

}

第一题的运行结果:

第二题的代码:

#include

#include

double f(double x,double y)

{

double y1;

y1=-30*y;

return y1;

}

float Runge_Kutta(double x,double y,double h)//定义库塔龙格函数;{

double k1,k2,k3,k4;

k1=f(x,y);

k2=f(x+h/2,y+h*k1/2);

k3=f(x+h/2,y+h*k2/2);

k4=f(x+h,y+h*k3);

return(y+h*(k1+2*k2+2*k3+k4)/6);

}

main()

{

int i=0;

double x,y,h,b;

cout<<"Input begin x0:"<

cin>>x;

cout<<"Input begin y0:"<

cin>>y;

cout<<"Input step h:"<

cin>>h;

cout<<"Input end b:"<

cin>>b;

cout<<"初始值为"<

cout<<"x"<<0<<"="<

cout<

cout<<"误差为:"<

cout<

}

第二题运行结果:

2020地球物理学基础作业05及参考答案

1. When a bell is struck with a hammer, it vibrates freely at a number of natural frequencies. The combination of natural oscillations that are excited gives each bell its particular sonority. In an analogous way, the sudden release of energy in a very large earthquake can set the entire Earth into vibration, with natural frequencies of oscillation that are determined by the elastic properties and structure of the Earth’s interior. The free oscillations involve three-dimensional defo rmation of the Earth’s spherical shape and can be quite complex. Before discussing the Earth’s free oscillations it is worth reviewing some concepts of vibrating systems that can be learned from the one-dimensional excitation of a vibrating string that is fixed at both ends. Any complicated vibration of the string can be represented by the superposition of a number of simpler vibrations, called the normal modes of vibration. These arise when travelling waves reflected from the boundaries at the ends of the string interfere with each other to give a standing wave. Each normal mode corresponds to a standing wave with frequency and wavelength determined by the condition that the length of the string must always equal an integral number of half-wavelengths (Fig. 3.16).As well as the fixed ends, there are other points on the string that have zero displacement; these are called the nodes of the vibration. The first normal (or fundamental)mode of vibration has no nodes. The second normal mode (sometimes called the first overtone) has one node; its wavelength and period are half those of the fundamental mode. The third normal mode (second overtone) has three times the frequency of the first mode, and so on.Modes with one or more node are called higher-order modes. 当用一把锤子敲击一个钟时,钟会以一系列的固有频率自由的颤动。被激 发的固有震动的联合给每个一钟独特的音响。与此相似,在一个大地震中能量 的突然释放可以使整个地球颤动,这种颤动的固有频率决定于弹性性质和地球 内部的结构。自由振荡涉及地球球面形状的三维变形,可能相当复杂。在讨论 地球的自由振荡之前,有必要回顾一下振动系统的一些概念,这些概念可以从 两端固定的一维振动的激发中学习。 弦的任何复杂的弦振动都可以用一些简单振动的叠加来表示,称为简正振动。当从两端的边界反射出的行波相互干涉以产生驻波时,就会产生这种现象。 每一个简正模态对应于一个驻波,它的频率和波长取决于长度必须等于半波长的 整数的弦(图3.16)。在弦上还存在一些除固定端外的具有零位移的其他点,这 些被称为振动的节点。第一个简正(或基本)模态振动没有节点。第二个简正 模态(有时称为第一谐波)有一个节点,它的波长和周期是基态的一半。第三 个简正模态(第二谐波)的频率是第一模态的三倍,一个或多个节点的模态称 为高阶模态。 2. Explanation of nouns (20points) surface wave(面波):沿界面及界面一定深度范围内传播的一类地震波,振幅随 深度增加而衰减,能量集中在介质分界面并沿分界面传播,包括瑞利波,勒夫 波和斯通利波。dispersion(频散):面波速度随着周期(或频率)而变化而 变化,成为面波频 散。在记录中面波是很多列波的叠加,随着到时的先后,各相位的周期逐渐改变。 第1页共7页

八年物理上作业展示卡(计算专题)附答案

1、十一黄金周”期间,小群一家驾车去百脉泉游玩.一路上,所学的物理知识帮助他解决了不少实际问题.在经十东路上,小群注意到一个交通标志牌上的标示如图所示. (1)如果小群的爸爸驾车从此处到达明水这段路程用了30min,则汽车的速度是多少? (2)在遵守交通规则的前提下,计算从标志牌到明水最快要多长时间? 2、太空研究站用激光测量月球到地球的距离。经过2.4s接受到反射回来的激光(激光速度取c=3.0×108m/s),求研究站到月球的距离 3、、车号码 川F﹣71238 日期05﹣09﹣28 上车10:00 下车10:05 单价 2.00元 里程 6.0km 金额16.00元 (1)出租车行驶的时间. (2)出租车行驶的速度. 计算专题 第二十二次

4、在一次爆破中,用一根长1m的导火线引爆炸药,导火线以0.5cm/s的速度燃烧,点火者点着导火线后以4m/s的速度跑开,他能否在爆炸前跑到离爆炸地点600m的安全地区?(通过列式计算来说明) 5、某时刻有一辆快速公交车甲和一辆普通公交车乙,从同一路口同时向东匀速行驶.它们的路程随时间变化的图象如图所示,则运行2min后,甲车相对于乙车向哪个方向行驶,两车相距多远? 6、一列火车全长200m,匀速通过一座70m长的桥用时18s,若该车用同样的速度通过一个山洞,用时1.5min,该山洞的长度是多少米?

参考答案 1、(1)解:由图知,从此处到达明水这段路程s=18km,t1=30min=0.5h,车的平均速度 答:汽车的速度是36km/h (2)解:由图知车的最大速度v2=40km/h,从此处到达明水这段路程s=18km,,∴从标志牌到明水最快需要的时间: 答:在遵守交通规则的前提下,计算从标志牌到明水最快要0.45h 2、解:2.4s激光传播的路程为s=vt=3.0×108m/s×2.4s=7.2×108m , 研究站到月球的距离为s/= s/2=3.6×108m 答:研究站到月球的距离为3.6×108m 3、(1)解:出租车行驶的时间为t=10:05﹣10:00=5min=300s, 答:出租车行驶的时间为5min; (2)解:出租车行驶的里程:S=6.0km=6000m, 出租车的速度: v= = =20m/s 答:出租车行驶的速度为20m/s. 4、解:方法一:导火线燃烧完所用时间:, 人跑到安全地区需用的时间: , 因为t2<t1, 所以能跑到安全区. 方法二:, 人在t1内能通过的路程s2=v2t1=4m/s×200s=800m>600m, 所以能跑到安全区. 方法三:人跑到安全地区所需时间: , 经150s导火线燃烧的长度: L=0.5cm/s×150s=75cm<100cm, 在导火线烧完前人能到安全地区. 答:导火线燃烧完之前人能到达安全区. 5、解:由s﹣t图形可知,车的速度: v甲==10m/s, v乙==5m/s, ∴v甲>v乙,从同一路口同时向东匀速行驶, ∴以乙车为参照物,甲车向东方向行驶.

地球物理反演理论

地球物理反演理论 一、解释下列概念 1.分辨矩阵 数据分辨矩阵描述了使用估计的模型参数得到的数据预测值与数据观测值的拟合程度,可以表示为[][]pre est g obs g obs obs d Gm G G d GG d Nd --====,其中,方阵g N GG -=称为数据分辨矩阵。它不是数据的函数, 而仅仅是数据核G (它体现了模型及实验的几何特征)以及对问题所施加的任何先验信息的函数。 模型分辨矩阵是数据核和对问题所附加的先验信息的函数,与数据的真实值无关,可以表示为()()est g obs g true g ture ture m G d G Gm G G m Rm ---====,其中R 称为模型分辨矩阵。 2.协方差 模型参数的协方差取决于数据的协方差以及由数据误差映射成模型参数误差的方式。其映射只是数据核和其广义逆的函数, 而与数据本身无关。 在地球物理反演问题中,许多问题属于混定形式。在这种情况下,既要保证模型参数的高分辨率, 又要得到很小的模型协方差是不可能的,两者不可兼得,只 有采取折衷的办法。可以通过选择一个使分辨率展布与方差大小加权之和取极小的广义逆来研究这一问题: ()(1)(cov )u aspread R size m α+- 如果令加权参数α接近1,那么广义逆的模型分辨矩阵将具有很小的展布,但是模型参数将具有很大的方差。而如果令α接近0,那么模型参数将具有相对较小的方差, 但是其分辨率将具有很大的展布。 3.适定与不适定问题 适定问题是指满足下列三个要求的问题:①解是存在的;②解是惟一的;③解连续依赖于定解条件。这三个要求中,只要有一个不满足,则称之为不适定问题 4.正则化 用一组与原不适定问题相“邻近”的适定问题的解去逼近原问题的解,这种方法称为正则化方法。对于方程c Gm d =,若其是不稳定的,则可以表述为

地球物理学基础复习资料(白永利)

地球物理学基础复习资料 绪论 一.地球物理学的概念,研究特点和研究内容 它是以地球为研究对象的一门应用物理学,是天文学,物理学与地质学之间的 边缘学科。 地球物理学应用物理学的原理和方法研究地球形状,内部构造,物质组成及其 运动规律,探讨地球起源,形成以及演化过程,为维护生态环境,预测和减轻地球 自然灾害,勘探与开发能源和资源做出贡献。包扩地震学,地磁学,地电学,重力 学,地热学,大地测量学,大地构造物理学,地球动力学等。 研究特点:1.交叉学科地球物理学由地质学和物理学发展而来,随着学科 本身的发展,它不断产生新的分支学科,同时促进了各分支学科的相互交叉,加 强了它与地球科学各学科之间的联系。2.间接性都是通过观测和研究物理场的 信息内容实现地质勘查目标,研究的不是地质体本身,而是其物理性质。3 多解 性正演是唯一的,而反演存在多解。不同的地质体具有不同的物理性质,但产 生的物理场可能相同。不同的地质体具有相近的物理性质,由于观测误差,物理 场的观测不完整以及物理场特点研究不够,产生多解。不同的地质体具有相同的 物理性质,即使知道了地质体的物性分布,也无法确定其地质属性。 地球物理学的总趋势:多学科综合和科学的国际合作。 二.地球物理学各分支所依据的物理学原理和研究的物性参数。 地震学:波在弹性介质中的传播。地震体波走时,面波频散,自由振荡的本征 谱特征 重力学:牛顿万有引力定律。地球的重力场和重力位 地磁学:麦克斯韦电磁理论。地磁场和地磁势。 古地磁学:铁磁学。岩石的剩余磁性。 地电学:电磁场理论。天然电场和大地电场 地热学:热学规律,热传导方程。地球热场,热源。 第一章太阳系和地球 一.地球的转动方式。 1.自转地球绕地轴的一种旋转运动,方向自西向东,转速并非完全均匀,有微小变化。 2.公转地球绕太阳以接近正圆的椭圆轨道旋转的运动。 3.平动地球随整个太阳系在宇宙太空中不停地向前运动。 4.进动地球由于旋转,赤道附近向外凸出,日月对此凸出部分的吸引力使地 轴绕黄轴转动,方向自东向西。这种在地球运动过程中,地轴方向发生的运动即 为地球的进动。 5.章动。地轴在空间的运动不仅仅是沿一平滑圆锥面上的转动,地轴还以很小 的振幅在锥面内,外摆动,地球的这种运动叫章动。 二.地球的形状及影响因素。 地球为一梨形不规则回转椭球体。 影响因素:1.地球的自引力---正球体;2.地球的自转----标准扁球体;3.地球内 部物质分布不均匀--不规则回转椭球体

传热学数值计算大作业2014011673

数值计算大作业 一、用数值方法求解尺度为100mm×100mm 的二维矩形物体的稳态导热问题。物体的导热系数λ为1.0w/m·K。边界条件分别为: 1、上壁恒热流q=1000w/m2; 2、下壁温度t1=100℃; 3、右侧壁温度t2=0℃; 4、左侧壁与流体对流换热,流体温度tf=0℃,表面传热系数 h 分别为1w/m2·K、10 w/m2·K、100w/m2·K 和1000 w/m2·K; 要求: 1、写出问题的数学描述; 2、写出内部节点和边界节点的差分方程; 3、给出求解方法; 4、编写计算程序(自选程序语言); 5、画出4个工况下的温度分布图及左、右、下三个边界的热流密度分布图; 6、就一个工况下(自选)对不同网格数下的计算结果进行讨论; 7、就一个工况下(自选)分别采用高斯迭代、高斯——赛德尔迭代及松弛法(亚松弛和超松弛)求解的收敛性(cpu 时间,迭代次数)进行讨论; 8、对4个不同表面传热系数的计算结果进行分析和讨论。 9、自选一种商业软件(fluent 、ansys 等)对问题进行分析,并与自己编程计算结果进行比较验证(一个工况)。(自选项) 1、写出问题的数学描述 设H=0.1m 微分方程 22220t t x y ??+=?? x=0,0

y=H ,0

计算物理作业 2

计算物理作业

第一题: a.用最小二乘法拟合下面的一组数据 寻求经验公式,并拟合以上数据。 答: matlab程序如下: n=7; % n表示拟合的精度,在此取7 x=0:1:7; y=[7.82 7.93 7.98 7.59 7.92 7.91 7.80 7.71]; a1=polyfit(x,y,n); x1=0:0.1:7; y1=polyval(a1,x1); plot(x,y,'*',x1,y1,'-r'); %作出x-y的散点图和x1-y1的拟合曲线 程序运行之后: a1 -0.0024 0.0610 -0.6073 3.0190 -7.7576 9.4799 -4.0827 7.8200 所以该组数据的经验公式就是: 用matlab拟合的曲线

蓝色的散点图是x-y图,红色的多项式曲线就是拟合后的曲线。 当n取6或者更小时,拟合效果并没有上面的好,如下n=6时的拟合曲线所示:

b. 在某次实验中需要观察水分的渗透速度,测得时间t与水重量w的数据 已知t与w关系,试用最小二乘法确定A、S。 答: 先对式子两边取对数,化为一阶,然后使用上题的一阶拟合的程序,取n=1 t=[1 2 4 8 16 32 64]; w=[4.22 4.02 3.85 4.59 3.44 3.02 2.59]; x=log(t); y=log(w); a1=polyfit(x,y,1); A=exp(a1(2)); S=a1(1); x1=1:0.1:64; y1=A*x1.^S; plot(t,w,'*',x1,y1,'-r'); 程序运行结果: a1 -0.1107 1.5153 因此,A=S=-0.1107 拟合曲线:

计算地球物理作业

计算地球物理 单位:海洋二所 姓名:潘少军 学号:JX10028

盆地多源地球物理信息复合与自仿射分形计算 单位:海洋二所姓名:潘少军学号:JX10028 摘要:用对数径向功率谱方法计算了盆地区域重磁异常的分维值,将不同地球物 理异常场的分维值作为研究盆地深层构造的参数,同时,将分维值作复合处理,得到复合后的盆地多源地球物理异常场的分维异常图。最后,分析复合分维异常图在研究盆地深层构造中的作用和效果,探讨了这种自仿射分维值大于3的问题。 关键词:盆地;地球物理场;信息复合;分型 用1种地球物理信息可以进行盆地构造的研究,但往往不够全面。因为任何一种地球物理信息的获取都是有一定的地球物理前提,都是某种物性的反映。所以,不同的地球物理信息正是不同的物性的反映。人们为了更加全面、客观地反映地质实际,就想到要用多种地球物理方法来作综合研究。这样,一方面可以互相佐证,尽量减小地球物理反演中的多解性;另一方面也是为了获得研究对象的全面印象。除了各种地球物理信息作综合解释之外,人们想通过对各种地球物理信息复合来获得一种复合信息。这种信息自然比单个信息源所提供的信息更丰富,反映地质客观实际更全面。 以往的信息复合,多采用简单的复合,如将重力异常(也许作了一些常规变换处理)和航磁异常作简单的叠加(相加),这样获得的信息比单源信息当然要丰富一点。但是,这样作存在一个致命的弱点,就是重力异常与航磁异常毕竟是2种性质完全不同的物理场,它们是对不同物性的反映。简单地将2种异常场作叠加,得到的信息从物理意义上讲,它没有明确的物理意义。因此,这样作是牵强附会,是不合适的。但是,对同一区域所作的地球物理测量,所得到的不同地球物理信息却又是具有一定事实上的内在联系(相关性)的,因为,它们都是对同一地质实体的不同方面(物性)的反映。特别是用这些地球物理信息作构造研究时,就更是如此,同时,盆地深层构造相对于造山带的深层构造等相对要简单一点。 1 基本思路与方法原理 在地球物理信息复合研究中碰到的各种地球物理场都是一种统计自仿射分形(Statistical Self—affine Fracta1)。所谓统计自仿射分形,在二维空间中的定义是:f(rx,r h y)与f(x,y)是统计自相似的,其中H是Hausdorff测度,r是一个标度因子。由此可见,统计自仿射分形不是各向同性的。这一点对地球物理工作者来说是显明的。 1.1 基本思路 将各种反映盆地区域的、深层构造的二维空间地球物理信息(地球物理异常场,二维物性界面等)通过不同的研究窗口(窗口尺寸视分辨率要求、研究的目的而定)变换到波数域(即相空间)中来,然后求得各种信息在波数域中的特征参数(如对数径向功率谱的斜率、截距,亦即幂指数型功率谱的幂指数与系数等),将那些能反映盆地构造的特征参数(如分维值、不平度等)进行复合(如作加权平均等);然后把复合的结果再放回到实际的二维空间中去(如将求得的复合特征参数放在所用的窗口中心点上),用计算机绘出这些窗口(可以是小距离的滑动窗口)中心点的特征参数的区域变化图形或图像(如分维值异常图)。通过这种特征参数图的分析,可以达到研究盆地区域、深层构造之目的。 1.2 方法原理

中考科学《物理计算题复习》作业

浙江省潮州市第四中学中考科学《物理计算题复习》 计算题解题要求:1.写出所依据的主要公式或变形公式 2.写出代入数据的过程 3.计算过程和结果都要写明单位 一、物理电学计算练习: 1、如图12所示,A是标有“24V 60W”的用电器,E是串联后电压为32V的电源,S为开关,B是滑动变阻器。若确保用电器A正常工作,请把图中电路连起来,并求出滑动变阻器B中通过电流的那段电阻值和它消耗的电功率。 2.如图13所示,电流表示数为0.8A,标有“6V 3W”的灯L恰正常发光,求:1)电阻R的阻值和通过R的电流;2)电流通过灯L和电阻R做功之比。

3.如图15所示, R1=500Ω, R2=250Ω,并联接在电源上,电流表示数为0.2A。求:R1、R2 的电功率分别是多少?(20W 40W) 4.小明家有一电热水壶,铭牌如下表所示,现他在壶中装上3L20℃的水[C水=4.2×103J/(Kg?℃)]。求: (1)壶中所装水的质量? (2)在额定电压下烧开这些水需要多少分钟? (3)若在用电高峰期,电热水壶的实际电压为额定电压的90%,则此时该热水壶的实际电功率为多少? 5.小李家买回一台新型快速电热水壶,此壶是在热胆中储水,由电热管加热工作的;电热水壶的铭牌上标有如下数据;其瓶内部工作电路可简化为如图所示,当瓶内水烧开时,电

热水壶处于保温状态,问: (1)电热水壶装满20℃的水烧开至少需要耗电多少?其正常加热时间至少多少分钟(一标准大气压下)? (2)小李实际测量了其加热时间,发现比计算值要长,其可能原因是什么(至少说出两个) (3)要使电热水壶满足保温功率,图中R0电阻应取多大值? 二、物理力学计算 1、小刚在学校买了一箱中国学生饮用奶,放在地板上,箱与地板的接触面积是0.08m2,箱和牛奶总质量是6.6kg,箱中每一小袋牛奶的包装袋上标有“净含量200ml、206g”字样.(取g =10N/kg ) 求:(1) 这种牛奶的密度是多少g/cm3 ? (计算结果保留小数点后两位) (2) 这箱牛奶对地板的压强是多少pa? 2、油公司对成品油的垄断和控制,曾经造成广东地区大面积油荒。运油的油罐车一次能最多装满12t密度为0.8×103 kg /m3的90#汽油。90#汽油的价格为4元/升。(1升=10-3 m3)

应用地球物理学习题答案.docx

一、名词解释 1地震勘探:是以不同岩石、矿石间的弹性差异为基础,通过观测和研究地震波 在地下岩石中的传播特性,以实现地质勘查目标的一种研究方法。 2震动图:用μ~t 坐标系统表示的质点振动位移随时间变化的图形称为地震波 的震动图。 3波剖面图:某一时刻 t 质点振动位移μ随距离 x 变化的图形称之为波剖面图。 4时间场:时空函数所确定的时间 t 的空间分布称为时间场。 5等时面:在时间场中,如果将时间值相同的各点连接起来,在空间构成一个面,在面中任意点地震波到达的时间相等,称之为等时面。 6横波:弹性介质在发生切变时所产生的波称之为横波,即剪切形变在介质中传 播又称之为剪切波或 S 波。 7纵波:弹性介质发生体积形变(即拉伸或压缩形变)所产生的波称为纵波,又 称压缩波或 P 波。 8频谱分析:对任一非周期地震阻波进行傅氏变换求域的过程。 9波前面:惠更斯原理也称波前原理,假设在弹性介质中,已知某时刻 t1波前面上的各点,则可把这些点看做是新的震动源,从 t 1时刻开始产生子波向外传播, 经过t 时间后,这些子波波前所构成的包拢面就是t1+ t 时刻的新的波前面。 10视速度:沿观测方向,观测点之间的距离和实际传播时间的比值,称之为视 速度。 V* 11观测系统 :在地震勘探现场采集中,为了压制干扰波和确保对有效波进行√× 追踪,激发点和接收点之间的排列和各排列的位置都应保持一定的相对关系,这种激发点和接收点之间以及排列和排列之间的位置关系,称之为观测系统。

12水平叠加:又称共反射点叠加或共中心点叠加,就是把不同激发点不同接收 点上接收到的来自同一反射点的地震记录进行叠加。 13时距曲线:一种表示接收点距离和地震波走时的关系曲线,通常以接收点到 激发点的距离为横坐标,地震波到达该接收点的走时为纵坐标。 14同向轴:在地震记录上相同相位的连线。 15波前扩散:已知在均匀介质中,点震源的波前为求面,随着传播距离的增大, 球面逐渐扩展,但是总能量保持不变,而使单位面积上的能量减少,震动的振幅将随之减小,这称之为球面扩散或波前扩散。 二、判断题 1.视速度小于等于真速度。× 2.平均速度大于等于均方根速度。× 3.仅在均匀介质时,射线与波前面正交。× 4.纵波和横波都是线性极化波。× 5.地震子波的延续时间长度同它的频带宽度成正比。× 6.倾斜界面情况下,折射波上倾方向接收时的视速度等于下倾方向的视速度。× 7.折射波时距曲线是通过原点的直线,视速度等于界面速度。× 12.瑞雷面波是线性极化波。× 8.折射波的形成条件是地下存在波阻抗界面。× 9.对水平多层介质,叠加速度是均方根速度。√ 10.从各个方向的测线观测到的时距曲线极小点位置,一般可以确定反射界面的 大致倾向。√ 11.相遇观测系统属于折射波法的观测系统√

高性能计算实验大作业

大数据处理技术研究 姓名:;学号:1502;专业:模式识别与智能系统 摘要:本文详细介绍了大数据的相关概念及其对应的处理方法,列举了大数据处理技术在当代计算机处理中的应用,并简要的解释了Hadoop的相关概念,展望了大数据处理技术的发展方向。 关键词:大数据 Hadoop高性能计算 1.研究背景: 大数据浪潮汹涌来袭,与互联网的发明一样,这绝不仅仅是信息技术领域的革命,更是在全球范围启动透明政府、加速企业创新、引领社会变革的利器。 大数据,IT行业的又一次技术变革,大数据的浪潮汹涌而至,对国家治理、企业决策和个人生活都在产生深远的影响,并将成为云计算、物联网之后信息技术产业领域又一重大创新变革。未来的十年将是一个“大数据”引领的智慧科技的时代、随着社交网络的逐渐成熟,移动带宽迅速提升、云计算、物联网应用更加丰富、更多的传感设备、移动终端接入到网络,由此而产生的数据及增长速度将比历史上的任何时期都要多、都要快。 2.大数据定义: “大数据”是一个涵盖多种技术的概念,简单地说,是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。IBM将“大数据”理念定义为4个V,即大量化(Volume)、多样化(Variety)、快速化(Velocity)及由此产生的价值(Value)。如下图;

3.大数据技术的发展: 大数据技术描述了一种新一代技术和构架,用于以很经济的方式、以高速的捕获、发现和分析技术,从各种超大规模的数据中提取价值,而且未来急剧增长的数据迫切需要寻求新的处理技术手段。 在“大数据”(Big data)时代,通过互联网、社交网络、物联网,人们能够及时全面地获得大信息。同时,信息自身存在形式的变化与演进,也使得作为信息载体的数据以远超人们想象的速度迅速膨胀。 云时代的到来使得数据创造的主体由企业逐渐转向个体,而个体所产生的绝大部分数据为图片、文档、视频等非结构化数据。信息化技术的普及使得企业更多的办公流程通过网络得以实现,由此产生的数据也以非结构化数据为主。预计到2012年,非结构化数据将达到互联网整个数据量的75%以上。用于提取智慧的“大数据”,往往是这些非结构化数据。传统的数据仓库系统、BI、链路挖掘等应用对数据处理的时间要求往往以小时或天为单位。但“大数据”应用突出强调数据处理的实时性。在线个性化推荐、股票交易处理、实时路况信息等数据处理时间要求在分钟甚至秒级。 而“大数据”的多样性决定了数据采集来源的复杂性,从智能传感器到社交网络数据,从声音图片到在线交易数据,可能性是无穷无尽的。选择正确的数据来源并进行交叉分析可以为企业创造最显著的利益。随着数据源的爆发式增长,

物理作业

米 米”(meter),国际单位制基本长度单位,符号为m。 “米”的定义起源于法国。1米的长度最初定义为通过巴黎的子午线上从地球赤道到北极点的距离的千万分之一,并与随后确定了国际米原器。随着人们对度量衡学的认识加深,米的长度的定义几经修改。 1983年起,米的长度被定义为“光在真空中于1/299 792 458秒内行进的距离”。 提出 1688年,英国哲学家和教士约翰·威尔金斯(John Wilkins)提出需要一个十进制的标准的长度单位系统。 1675年,意大利科学家提托·李维欧·布拉提尼(Tito Livio Burattini)首次在论文中使用了metro cattolico这个词,该词是由希腊语μ?τρον καθολικ?ν(métron katholikón)衍生而来的,意为"一种通用测量单位"。 1789年法国大革命胜利后,国民公会令法国科学院组织一个委员会来标准的度量衡制度。委员会提议了一套新的十进制的度量衡制度,并建议以通过巴黎的子午线上从地球赤道到北极点的距离的一千万分之一(即地球子午线的四千万分之一)作为标准单位。他们将这个单位称之为mètre,后来演变为meter,中文译成“米突”或“米”。1791年,该方案获法国国会批准。[4-7] 子午线定义 19世纪,人们又作了测量,发现米原器并不正好等于地球子午线的四千万分之一,而是大了0.2毫米。人们认为,以后测量技术还会不断进步,势必会再发现偏差,与其修改米原器的长度,不如就以这根铂质米原器为基准,从而统一所有的长度计量。 1875年5月20日由法国政府出面,召开了20个国家政府代表会议,正式签置了米制公约,公认米制为国际通用的计量单位。同时决定成立国际计量委员会和国际计量局。到1985年10月止,米制公约成员国已有47个。中国于1977年参加。[6] 米原器 1792-1799年,在法国天文学家捷梁布尔和密伸的领导下,对法国敦克尔克至西班牙的巴塞罗那进行了测量。1799年根据测量结果制成一根3.5毫米×25毫米短形截面的铂质原器——铂杆,以此杆两端之间的距离定为1米,并交法国档案局保管,所以也称为“档案米”。这就是最早的米定义,而这支米原器一直保存在巴黎档案局里。

勘探地球物理学基础--习题解答

《勘探地球物理学基础》习题解答 第一章 磁法勘探习题与解答(共8题) 1、什么是地磁要素?它们之间的换算关系是怎样的? 解答:地磁场T 是矢量,研究中令x 轴指向地理北,y 轴指向地理东,z 轴铅直向下。地磁场 T 分解为:北向分量为X ,东向分量为Y ,铅直分量为Z 。 T 在xoy 面内的投影为水平分量H ,H 的方向即磁北方向,H 与x 的夹角(即磁北与地理北的夹角)为磁偏角D (东偏为正),T 与H 的夹角为磁倾角I (下倾为正)。X 、Y 、Z ,H 、D 、I ,T 统称为地磁要素。它们之间的关系如图1-1。 图1-1 地磁要素之间的关系示意图 各要素间以及与总场的关系如下: 222222T H Z X Y Z =+=++, c o s X H D =, sin Y H D =? cos H T I =?, s i n Z T I =?, t a n /I Z H =, a r c t a n (/I Z H = tan /D Y X =, a r c t a n (/D Y X = 2、地磁场随时间变化有哪些主要特点? 解答:地磁场随时间的变化主要有以下两种类型:(1)地球内部场源缓慢变化引起的长期变化;(2)地球外部场源引起的短期变化。 其中长期变化有以下两个特点: 磁矩减弱:地心偶极子磁矩正在衰减,导致地磁场强度衰减(速率约为10~

20nT/a)。 磁场漂移:非偶极子的场正在向西漂移。(且是全球性的,但快慢不同,平均约0.2o/a)。 短期变化有以下两个特点: 平静变化:按一定的周期连续出现,平缓而有规律,称为平静变化。地磁场的平静变化主要指地磁日变。 扰动变化:偶然发生、短暂而复杂、强弱不定、持续一定的时间后就消失,称为扰动变化。地磁场的扰动变化又分为磁暴和地磁脉动两类。 3、地磁场随空间、时间变化的特征,对磁法勘探有何意义? 解答:在实际磁法勘探中,一般工作周期较短,主要关心的是地磁场的短期变化,即地磁日变化、磁暴以及地磁脉动。 在高精度磁测中,地磁日变化是一种严重干扰,一般在地面磁测、航空磁测过程中设有专用仪器进行地磁日变观测,以便进行相应的校正,称为日变改正。但在海上磁测时,为了提高测量精度必须提出相应的措施,消除其日变干扰场。 在强磁暴期间,应该暂停野外磁测工作,避免那些严重的地磁扰动覆盖在地质体异常之上。 地磁脉动可以在具有高电导率的地壳层中产生感应大地电磁场,可以作为磁测的激发场。通过测量其大地电流,可以确定地壳层的电导率及其厚度等,以解决某些地质、地球物理问题。 4、了解各类岩石的磁性特征对磁法勘探的有什么意义? 解答:磁法勘探是以地壳中不同岩(矿)石间的磁性差异为基础,通过观测和研究天然磁场及人工磁场的变化规律,用以查明地质构造和寻找有用矿产的地球物理勘探方法。因此,在磁法勘探前必须了解各类岩(矿)石的磁性参数,以分析总结工作区是否具备磁法勘探的工作前提,为工作方法的选择提供依据;另外,了解工作区各类岩(矿)石的磁性差异、差异大小、分布规律以及成因也是磁法勘探工作的布置和磁测成果资料的解释的重要依据。

地球物理学基础复习资料.docx

绪论 一.地球物理学的概念,研究特点和研究内容 它是以地球为研究对象的一门应用物理学,是天文学,物理学与地质学Z间的边缘学科。 地球物理学应用物理学的原理和方法研究地球形状,内部构造,物质组成及其运动规律,探讨地球起源,形成以及演化过程,为维护生态环境,预测和减轻地球自然灾害,勘探与开发能源和资源做出贡献。包扩地震学,地磁学,地电学,重力学,地热学,大地测量学,大地构造物理学,地球动力学等。 研究特点:1?交叉学科地球物理学由地质学和物理学发展而来,随着学科本身的发展,它不断产生新的分支学科,同时促进了各分支学科的相互交叉,加强了它与地球科学各学科之间的联系。2.间接性都是通过观测和研究物理场的信息内容实现地质勘查目标,研究的不是地质体本身,而是其物理性质。3多解性止演是唯一的,而反演存在多解。不同的地质体具有不同的物理性质,但产生的物理场可能相同。不同的地质体具有相近的物理性质,由于观测误差,物理场的观测不完整以及物理场特点研究不够,产生多解。不同的地质体具有相同的物理性质,即使知道了地质体的物性分布,也无法确定其地质属性。地球物理学的总趋势:多学科综合和科学的国际合作。二?地球物理学各分支所依据的物理学原理和研究的物性参数。 地震学:波在弹性介质屮的传播。地震体波走时,而波频散,自由振荡的本征谱特征重力学:牛顿万有引力定律。地球的重力场和重力位 地磁学:麦克斯韦电磁理论。地磁场和地磁势。 占地磁学:铁磁学。岩石的剩余磁性。 地电学:电磁场理论。天然电场和大地电场 地热学:热学规律,热传导方程。地球热场,热源。 第一章太阳系和地球 一?地球的转动方式。 1?自转地球绕地轴的一种旋转运动,方向自西向东,转速并非完全均匀,冇微小变化。 2.公转地球绕太阳以接近正圆的椭圆轨道旋转的运动。 3?平动地球随整个太阳系在宇宙太空屮不停地向前运动。 4?进动地球曲于旋转,赤道附近向外凸出,口月对此凸出部分的吸引力使地轴绕黄轴转动,方向门东向曲。这种在地球运动过程中,地轴方向发生的运动即为地球的进动。 5. 章动。地轴在空间的运动不仅仅是沿一平滑圆锥面上的转动,地轴还以很小的振幅在锥面内,外摆动,地球的这种运动叫章动。 二.地球的形状及影响因索。 地球为一梨形不规则回转椭球体。 影响因素:1?地球的自引力…正球体;2?地球的自转■…标准扁球体;3.地球内部物质分布不均匀-不规则冋转椭球体

中考物理热量计算的压轴题(含答案)

中考物理热量计算的压轴题及答案 中考真题 人类的祖先钻木取火,为人类文明揭开了新的一页,钻木取火的一种方法如图所示,将削尖的木棒伸到木板的洞里,用力压住木棒来回拉动钻弓,木棒在木板的洞里转动时,板与棒互相摩擦,机械能转化为内能.而热集中在洞内,不易散发,提高了木棒尖端的温度,当达到约260℃时木棒便开始燃烧,因木头是热的不良导体,故受热厚度很薄,木棒受热部分的质量只有0.25g.已知:来回拉一次钻弓需1.0s,弓长为s=0.25m,人拉弓的力为16N,木头比热c=2×103 J/(kg·℃),室温为20℃. 问: (1)人来回拉一次钻弓克服摩擦力所做的功为多少? (2)人克服摩擦力做功使机械能转化为内能,若其中有25%被木 棒尖端吸收,则1s内可使木棒尖端温度提高多少℃? (3)请你估算用多长时间才能使木棒燃烧起来? 【示范解析】 (1)人来回拉一次钻弓克服摩擦力所做的功W=2FS=2×16N×0.25m=8J;(2)木棒尖端吸收的热量Q=ηW=25%×8J=2J,木棒尖端升高的温度△t=Q/cm=2 J/[2×103J/(kg.℃)×0.25×10-3kg]=4℃;(3)使木棒燃烧起来的时间 t=(260℃-20℃)÷4℃/s=60s. 拓展延伸 1.阅读下面的短文,回答问题, 太阳能热水器 太阳能热水器是利用太阳能把水从低温加热到高温,以满足人们日常生活的需要.它具有安全、节能、环保等优点.

如图1所示,太阳能热水器主要由两部分构成:一部分是妾许多根玻璃吸热管组成的集热器,每根玻璃吸热管由双层玻璃管组成,双层玻璃管之间是真空.如图1所示是玻璃吸热管的工作原理图,它的结构与保温瓶的玻璃内胆相似,只是在玻璃吸热管的内表面涂了一层黑色的吸热材料;另一部分是保温储水箱,保温储水箱下部与玻璃吸热管相通. 玻璃吸热管工作原理如图2所示:当太阳光入射到黑色的吸热层上时,黑色吸热层能把太阳能更有效地转化为内能,将管内的水加热.向光一侧的水被加热后体积增大、密度变小而向上运动;背光一侧的水由于温度较低、密度较大而向下运动,形成冷热水循环,最终整箱水都升高至一定的温度.玻璃吸热管具有吸热保温作用 . 请回答以下问题: (1)玻璃吸热管内向光一侧的水吸热后体积增大、密度变小,所受到的浮力_______重力. (2)能否将黑色的吸热材料涂在玻璃吸热管的外表面上?简单说明理 由.___________ _____________________________________________________________________ _______. (3)将质量为100kg初温为20℃的水加热到60℃,求这些水需要吸收多少热量?[水的比热容是4.2×103J/(kg.℃)] (4)某品牌太阳能热水器集热器面积为S=2m2,热效率为η=40%(即热水器能将照射到玻璃吸热管上的太阳能的40%转化为水的热能),该地点太阳能辐射到地面的平均功率为P=1.4×103W/m2(即平均每平方米每秒钟太阳辐射能为1.4×103J).在第(3)小题中水吸收的热量由该热水器提供,求需要加热多少小时?

地球物理计算常用的插值方法-克里格法

克里格法(Kriging)是地统计学的主要内容之一,从统计意义上说,是从变量相关性和变异性出发,在有限区域内对区域化变量的取值进行无偏、最优估计的一种方法;从插值角度讲是对空间分布的数据求线性最优、无偏内插估计一种方法。克里格法的适用条件是区域化变量存在空间相关性。 克里格法,基本包括普通克里格方法(对点估计的点克里格法和对块估计的块段克里格法)、泛克里格法、协同克里格法、对数正态克里格法、指示克里格法、折取克里格法等等。随着克里格法与其它学科的渗透,形成了一些边缘学科,发展了一些新的克里金方法。如与分形的结合,发展了分形克里金法;与三角函数的结合,发展了三角克里金法;与模糊理论的结合,发展了模糊克里金法等等。 应用克里格法首先要明确三个重要的概念。一是区域化变量;二是协方差函数,三是变异函数 一、区域化变量 当一个变量呈空间分布时,就称之为区域化变量。这种变量反映了空间某种属性的分布特征。矿产、地质、海洋、土壤、气象、水文、生态、温度、浓度等领域都具有某种空间属性。区域化变量具有双重性,在观测前区域化变量Z(X)是一个随机场,观测后是一个确定的空间点函数值。 区域化变量具有两个重要的特征。一是区域化变量Z(X)是一个随机函数,它具有局部的、随机的、异常的特征;其次是区域化变量具有一般的或平均的结构性质,即变量在点X与偏离空间距离为h的点X+h处的随机量Z(X)与Z(X+h)具有某种程度的自相关,而且这种自相关性依赖于两点间的距离h与变量特征。在某种意义上说这就是区域化变量的结构性特征。 二、协方差函数 协方差又称半方差,是用来描述区域化随机变量之间的差异的参数。在概率理论中,随机向量X与Y 的协方差被定义为: 区域化变量在空间点x和x+h处的两个随机变量Z(x)和Z(x+h)的二阶混合中心矩定义为Z(x)的自协方差函数,即 区域化变量Z(x) 的自协方差函数也简称为协方差函数。一般来说,它是一个依赖于空间点x 和向量h 的函数。< 设Z(x) 为区域化随机变量,并满足二阶平稳假设,即随机函数Z(x)的空间分布规律不因位移而改变,h为两样本点空间分隔距离

初中物理热学计算题

热学计算 1.(09一模)(7分)小明为了探究太阳光的辐射情况,分别用水和细沙做实验,该实验不计热量损失。[水的比热容为4.(09一模)2×103J/(kg·℃),细沙的比热容为O.92×103J /(kg·℃),液化气的热值为100 J/cm3]试求: (1)用一底面积为0.1 m2的方形水槽装了6 kg水,在中午的太阳光下照射25 min,水的温度升高了5℃。水吸收的热量是多少? (2)设每平方米水面上、平均每分钟太阳辐射的热量为N,则N是多少? (3)将水槽中的水倒掉,然后平铺上6 kg的细沙,在中午的太阳光下照射23 min,细沙的温度能升高多少? (4)细沙吸收的这些热量相当于完全燃烧多少立方厘米液化气所产生的热量? 2.(09二模)(7分)小明家用的是太阳能热水器,该热水器水箱的容积是200L。某天早晨,他给热水器的水箱加满20℃的自来水。中午时,热水器水箱中的水温为45℃。 [ρ水=1.O×103kg/m3,c水=4.2×103J/(kg·℃),q煤气=4.2×107J/kg) 试求:(1)水箱中水的质量是多少? (2)这些水吸收的热量是多少? (3)用煤气灶加热时,也使这些水从20℃升高到45℃,共燃烧了2kg煤气。则用该煤气灶烧水的效率是多少? 3.(09中考)(6分)某浴池用的是地下温泉水,浴池中水的体积是40m3,初温是85℃,当温度降到45℃时可供洗浴使用。温泉水的密度约为1.0×103 kg/m3,温泉水的比热容约为4.2×103 J/(kg·℃),煤的热值是3.O×107J/kg试求: (1)浴池中温泉水的质量是多少? (2)当浴池中的温泉水从85℃降到45℃时,放出的热量是多少? (3)温泉水放出的这些热量相当于完全燃烧多少千克的煤? 4.(10一模)(5分)某种汽油的热值是4.6×107J/kg,水的比热容是4.2×103J/(kg·℃)。试求: (1)完全燃烧2l0g的汽油,能放出多少热量? (2)如果这些热量全部被水吸收,水温从20℃升高到43℃。则水的质量是多少? 5.(10二模)用锅炉烧水时,将50kg的水由20℃加热到l00℃,需要完全燃烧2kg的烟煤。水的比热容是4.2×103J/(kg·℃),烟煤的热值是3.O×107J/kg。 试求: (1)水吸收的热量是多少? (2)烟煤放出的热量是多少? (3)锅炉烧水的效率是多少? 6.(10中考)(5分)用烟煤烧水时,将lOkg的水从20℃加热到100℃,燃烧了1.4kg的烟煤。水的比热容是4.2×103J/(kg·℃),烟煤的热值约为3×107J/kg。试求: (1)水吸收的热量是多少? (2)1.4kg的烟煤完全燃烧放出的热量是多少? (3)实际上烟煤未完全燃烧。若水吸收的热量是烟煤放出热量的8.4%,那么烟煤实际放出的热量是多少? 7.(11一模)(5分)某太阳能热水器的水箱内装有50kg的水,太阳光照射一段时间后,水温从20℃升高到60℃。水的比热容是4.2×103J/(kg·℃),焦炭的热值是3.O×107J/kg。

相关文档
相关文档 最新文档