文档库 最新最全的文档下载
当前位置:文档库 › 羟基值测定

羟基值测定

羟基值测定

用咪唑-邻苯二甲酸酐法测定羟基值,以咪唑为催化剂,用邻苯二甲酸酐进行酯化反应30min。[18]

称取约6.0g(精确至0.0002g)试样于250mL碘量瓶中,用移液管吸取邻苯二甲酸酐-吡啶-咪唑溶液25mL摇均,使试样完全溶解,盖上瓶塞,用塑料纸扎紧,将瓶置于沸水中加热30min,取出加入沸水10mL,冷却至室温,加入酚酞指示剂2-3mL,用1 mol/L氢氧化钠标准溶液滴定至桃红色并保持15s不褪色为终点,在相同条件下,做空白实验,并记下所消耗的氢氧化钠标准的体积。

分析结果的计算:

I(OH)= 56.1(V0-V)C/m-x

式中I(OH)-羟基值,mg/g;

V-滴定试样消耗NaOH标准溶液的体积(mL);

V0-滴定空白消耗NaOH标准溶液体积(mL);

C-NaOH标准溶液的物质的量浓度(mol/L);

m-试样的质量(g);

x-试样的酸碱度,试样含游离酸,x取正值;试样含游离碱,x取负值。

羟基自由基的测定方法

羟基自由基(.OH)是最活跃的一种活性分子,也是进攻性最强的化学物质之一,几乎可以与所有的生物分子、有机物或无机物发生各种不同类型的化学反应,并伴有非常高的反应速率常数和负电荷的亲电性。羟基自由基是目前所知活性氧自由基中对生物体毒性最强、危害最大的一种自由基,可以通过电子转移、加成以及脱氢等方式与生物体内的多种分子作用,造成糖类、氨基酸、蛋白质、核酸和脂类等物质的氧化损伤,使细胞坏死或突变,羟基自由基还与衰老、肿瘤、辐射损伤和细胞吞噬等有关。羟基自由基由于其寿命短,反应活性高,存在浓度低,目前尚未有专一、有效的方法可以精确测定羟基自由基的含量,其测定方法也成为一项国际性的难题。本文对近几年出现的羟基自由基检测方法进行了综述。 1电子自旋共振法 电子自旋共振法或电子顺磁共振法主要研究对象为未成对的自由基或过渡金属离子及其化合物。自旋捕捉(spin trapping)技术的出现为化学反应中自由基中间体及生命活动过程中短寿命自由基的检测开辟了新的检测途径[[1]]。此方法是利用捕捉剂与自由基结合形成相对稳定的自旋加合物(spin adducts),然后进行ESR测定。 2HPLC法 HPLC法可用于间接测定自由基。测定过程中必须先选择合适的化合物捕集被测体系中的自由基,使之生成具有一定稳定性,且能被液相色谱分离与检测的产物,然后用HPLC进行测定。1)、采用二甲基亚砜捕集羟基自由基的HPLC测 2)、采用水杨酸捕集羟基自由基的HPLC测定方法 3化学发光法 化学发光法是一种灵敏、准确的检测自由基的方法,其原理是利用发光剂被活性氧自由基氧化成激发态,当其返回到基态时放出大量光子,从而对发光起放大作用。且自由基产生越多,发光值就越大。通过函数换算间接反应系统中自由基的量。与ESR和HPLC法相比,具有操作简便、设备成本较低、测定快速等优点。4氧化褪色光度法 6极谱法 7毛细管电泳-电化学检测法 8胶束电动毛细管色谱法

羟基自由基发生器复习进程

羟基自由基发生器 说明书 江苏恩飞特环保工程有限公司

目录 一、羟基自由基技术简介 (3) 二、羟基自由基(.OH)产生的方法及其原理 (3) 三、羟基自由基的特点 (5) 四、废水处理效果及能耗 (5) 五、公司信息 (5)

一、羟基自由基技术简介 有机污染物种类繁多,不少难于生化降解,尤其“三致”有机污染物,由于在水体中浓度低至10—9级对人类健康危害仍很大,因此对于这类毒性大,浓度高且难于生化降解的有机废水处理已是当前世界水处理领域的热点。 80年代末,随着有机电化学理论研究的深入,证实不少有机物的氧化还原、加成或分解都可在电极上进行,是去除水中有机污染物很有发展潜力的新方法,并被誉为“清洁处理法”,对一些成份复杂、生物难降解的有机废水,用生物法或一般物理化学方法难于奏效,而电解法则有可能获得较好的结果。 比较国内外有机废水众多的处理技术,从经济和技术统一的观点考虑,认为电解法和催化氧化法均有巨大的潜力。因此,从三维电极的基本原理出发,巧妙配以催化氧化技术,构成一种新的很具特式的羟基絮凝复合床(即多维电极羟基发生器)水处理技术。这种充分利用一些已有的原理和技术进行“巧妙的组合”达到1+1>2的目的,以求获得更佳效果的方法也是当前学术和工业领域的新思想。这种新技术是根据水中需要去除污染物的种类和性质,在两个主电极之间充填高效、无毒的颗粒状专用材料、催化剂(或催化手段)及一些辅助剂、组成去除某种或某一类有机或无机污染物最佳复合填充材料作为粒子电极,将它们置于结构为方型或圆型的复合床内,当需要处理的废水流经羟基絮凝复合床装置时,在一定的操作条件下,装置内便会产生一定数量的羟基自由基和新生态的混凝剂。这样废水中的污染物便会产生诸如催化氧化分解、混凝、吸附、络合、置换等作用,使废水中的污染物迅速被去除。 二、羟基自由基(·OH)产生的方法及其原理 羟基自由基如下表所示,其标准电极电位仅次于F2+2H+/2HF,比O3+2H+/H2O+O2还要高,因此是极强的氧化剂。 表几种氧化剂的电极电位

溶剂水分含量的测定

溶剂水分含量的测定 水分的危害 在塑料软包装的复合和印刷中,需要用到很多溶剂,它们本身的质量对产品有很大影响,其中水分含量是关系产品质量的重要因素之一。以乙酸乙酯溶剂为例,因为每摩尔的水分会消耗同样摩尔的固化剂。换言之,在复合生产中,1份水分会消耗18份的固化剂,所以微量的水分存在会造成很大破坏。据相关资料记载,乙酸乙酯水分含量的过大可以对复合质量造成以下影响: (1)水分消耗固化剂,使主剂、固化剂配比不准确,影响产品固化,会出现发粘现象。 (2)由于水分与固化剂的反应,快速生成二氧化碳,限制粘合剂的浸润,也容易使产品出现气泡。 (3)水分夺取固化剂,能导致粘合剂生成内聚强度比较高的聚氨酯脲(R-NHCOHN-R),导致产品易出现晶点和变硬现象。 (4)水分溶入溶剂,使乙酯挥发速度减慢,使粘合剂的铺展速率,和硬化速率受到影响,也容易导致溶剂残留。 乙酯中的水分来源主要有两个渠道,其一是产品本身自带,如我国《GB3728-91工业乙酸乙酯》中规定,优等品水分含量小于1000ppm,一等品水分含量小于2000ppm,合格品水分含量小于4000ppm,在市售乙酯中,这些水分都是不可避免的。据笔者经验,购买时最好选择优等品的乙酯,考虑到存放因素,在复合前应使水分含量不大于2000ppm,这样才能保证复合质量。其二,乙酯在存放过程中吸收的水分,因为乙酯属于易挥发液体,在挥发过程中需要吸收热量,表层乙酯的急速挥发主要热量来源就是空气中水蒸气的凝结放热,而凝结的水分则很快溶入乙酯中,进一步增加了其水分含量,这在夏季空气相对湿度大于80%时尤为突出。鉴于这种情况,在复合前事先测定乙酯中的水分含量就显得非常重要了。 各种水分测定仪的比较 市售的水分测定仪有很多,按测试方法分有以下几种: 红外法类仪器,体积小,测定范围比较宽,精确度差,适合水分含量5%-90%的木材、纸张等材料的测定,结构简单,价格低廉。 卡尔费休库仑法类仪器,主要原理:利用化学反应后电导率变化计算,结构复杂,体积较大,测定精确度最高,适合水分含量在100PPm以下的测定。它一般用于阴离子聚合等对水分有非常严格要求的化工、医药等行业产品测定,或用于多频次的大型彩印厂使用,价格较贵。 卡尔费休容量法,结构比较简单,体积和精确度适中,适合水分含量10PPm-10%的测定,一般用于对水分有严格要求的化工、医药和包装等行业产品测定,价格从数千元到数万元不等。 可以看出,对于一般软包装行业,在测定乙酸乙酯等溶剂的水分含量时,使用卡尔费休容量法水分测

羟基自由基清除注意事项

一般而言,对于Fenton试剂与有机化合物氧化能力的影响因素大致上可分为: A.亚铁离子浓度。 B.过氧化氢浓度。 C.溶液于反应时的反应温度。 D.溶液中的pH值。 以下将对此四项变因做详细的探讨: A.亚铁离子浓度的影响 在Fenton试剂的反应中,亚铁离子主要是扮演着催化过氧化氢的角色。因此,若溶液中没有亚铁离子当触媒,则其溶液可能就没有氢氧自由基的生成。所以,大致上分解反应会随亚铁离子的浓度增加而加快,亚铁添加量会影响脱色效率,亚铁剂量愈高效果愈佳,此原因为增加亚铁剂量将使氧化反应更加完全并且可产生混凝机制而进行脱色(26)。但亚铁离子本身会与有机物形成竞争,亚铁离子浓度过高会增加氢氧自由基的消耗,反而造成处理效果的下降,反应式如下: Fe2+ + ·OH Fe3+ + OH- 故当浓度到达某一定值时,则其分解速率便不会在随着亚铁离子浓度的增加而持续加快,且亚铁离子浓度和生成物的比值也将可能会影响生成物的分布。一般而言,亚铁离子浓度皆维持在亚铁离子与其反应物之浓度比值为1:10-50(wt/wt)。 此外,亚铁在Fenton程序中除了扮演催化过氧化氢的角色外,亦具有混凝的功能,因此过量的铁离子加入将会造成过度的混凝,降低Fenton程序处理的效果,其可能的反应如下所示: B.过氧化氢浓度的影响 反应过程中,过氧化氢的浓度会直接影响氧化有机物的效果。一般而言,随着过氧化氢添加量的增加,有机物的氧化效果亦将随之提升,并且过氧化氢的添加浓度不同,则分解反应生成的产物将会有所差异。大致而言,在过氧化氢浓度越高的情况下,则其氧化反应产物,将会更趋近于最终产物。但是,当溶液中的过氧化氢浓度过高时,反而会使过氧化氢与有机物竞争氢氧自由基,而造成反应速率的结果可能不如预期一般增加。此外,当Fenton试剂系统中过氧化氢浓度远高于亚铁离子浓度时,Fenton法所产生的氢氧自由基会与过氧化氢反应产生perhydroxyl radical (HO2.)及一系列反应,且三价铁离子会与HO2.进行氧化还原反应生成superoxide radical anion (O2.),造成过氧化氢消耗量的增加,过量的过氧化氢加药量并不必然增加氢氧自由基的浓度,氢氧自由基达到稳定浓度所需反应时间随加药量增加而增加(27)。因此,若以连续之方式加入低浓度之过氧化氢,减少因为过氧化氢初始浓度过高所导致的抑制效应,亦可得到较好的氧化效果。 C.温度的影响 根据Arrhennius' Law:k=k0exp(-Ea/RT)可得知温度的改变会影响活化能及反应速率常数,进而影响反应速率。 对于Fenton试剂反应而言,一般若选用的反应温度条件是在小于20℃以下时,其对有机物的氧化速率将会随温度升高而加快。但是,倘若将其反应的温度升高至40-50℃时,其Fenton反应将会可能因为温度过高,进而使过氧化氢自行分解成水与氧(2H2O2 → 2H2O + O2 ),造成Fenton试剂对氧化有机物之反应速率减慢。 因此,当过氧化氢浓度超过10-20 g/L时,在其经济与安全的考量下,应谨慎选择适当的温度。在一般商业应用上,通常皆将其反应的温度设定在20-40℃之间。 D. pH值的影响 于Fenton试剂反应中,其反应溶液之pH值对Fenton法之影响,关系到铁离子错合效应、铁

自由基及检测方法

ESR 电子顺磁共振(EPR)或称电子自旋共振(ESR)现象最早发现于1944年。它利用具有未成对电子的物质在磁场作用下吸收电磁波的能量使电子发生能级间的跃迁的特征,对顺磁性物质进行检测与分析。 自旋捕集方法是将不饱和的抗磁性化合物(自旋捕集剂)加入反应体系,与反应体系中产生的各种活性高、寿命短的自由基结合形成相对稳定的自旋加合物,以适于ESR检测其原理是利用适当的自旋捕捉剂与活泼的短寿命自由基结合,生成相对稳定的自旋加合物,可以用电子自旋共振波谱法检测自旋加合物的数量,利用自旋加合物的数量来计算原来自由基的多少。 H: V: ESR测自由基是怎么被检测的(细胞,组织,溶液?体内,体外?) (MGD)2 - Fe2 +,是含有10mmol·L- 1MGD 和2mmol·L- 1FeSO4的溶液。 体外捕集:处死后取组织(血液、细胞),加入捕集剂,ESR测定 体内捕集:腹腔注射捕集剂,处死取组织(血液、细胞),ESR测定 腹腔注射几乎没有检测到自由基信号,或者信号很弱,而处死后样品加捕获剂则可以检测到自由基信号。 通用捕获剂 典型的自旋捕捉剂是亚硝基化合物或氮氧化合物,把足够量的自旋捕捉剂加入到产生自由基的体系中,自旋捕获剂就会快速地和任何出现的自由基反应,最后给出稳定的可检测的氮样氧自由基加合物。所形成的自由基加合物的ESR 谱上有被捕自由基基因给出的超精细分裂,可鉴别被捕自由基通用自旋捕获剂所形成的自由基加合物对自由基结构变化相当敏感, ESR 技术检测O-2 O-2可以与1,2-二羟基苯-3,5-二磺酸钠(Tiron)(钛铁试剂)快速反应生成一种称之为“Tiron 半醌自由基”的自旋加合物,比较稳定,可在室温下应用电子顺磁共振波谱仪(EPR)进行检测,从而解决了生理条件下水溶液中寿命极其短暂的O-2·的定性和定量问题 ESR 技术检测·OH DMPO作自由基捕获剂对自由基结构变化相当敏感,可以提供自由基结构的详细信息。它与·OH产生的自旋加合物的ESR谱表现出特别容易识别的特征谱线。在溶液中容易形成的自我捕集产物二聚体自由基不会干扰实验结果。 ESR 技术检测血红蛋白结合的一氧化氮 在组织或血液中,一氧化氮大多与氧或过渡金属反应生成了硝酸盐或亚硝酸盐以及一氧化氮与金属的配合物。一氧化氮与血红蛋白的结合速率常数非常高,而且能够得到有特征的ESR 波谱。利用这一性质,我们可以用血红蛋白作为一氧化氮的捕集剂检测一氧化氮自由基。但是,HbNO 极易氧化,这就限制了这种方法在富氧条件下的应用。 ESR 技术检测生物体系产生的一氧化氮 一氧化氮与含金属蛋白反应产生的亚硝酰的金属配合物,往往会抑制细胞中许多重要的酶,对细胞产生毒害作用。目前应用较多的捕集剂的有Fe2+- (DETC)2,它可与一氧化氮形成稳定的单亚硝酰-铁配合物MNIC,给出特征的ESR 波谱。但由于Fe2+-( DETC)2不溶

4-工业乙酸乙酯中醋酸含量的测定习题及答案(精)

一、选择题 1、用H2 C2 O4 · 2H2O 标定KMnO4溶液时,溶液的温度一般不超过(D ),以防H2 C 2 O 4的分解。 A. 60 ° C B. 75 ° C C. 40 ° C D. 85 ° C 2、用纯水将下列溶液稀释10 倍,其中pH 值变化最大的是(A )。 A. 0.1 mol/L HCl B. 0.1 mol/L HAc C. 1 mol/L NH 3 · H 2 O D. 1 mol/L HAc + 1 mol/L NaAc 3、用同一KMnO 4 标准溶液分别滴定等体积的FeSO 4 和H 2 C 2 O 4 溶液,消耗等体积的标准溶液,则FeSO 4与H 2C 2O 4两种溶液的浓度之间的关系为(A )。 A. B. C. D. 4. 若用0.1000mol/L KOH溶液分别滴定2 5.00mL 某H2SO4和HAc溶液,若消耗的体积相等, 则表示这两种溶液中 ( D ) (A) [H+]相等(B) c(H2SO4) = c(HAc) (C) c(H2SO4) = 2c(HAc) (D) 2c(H2SO4) = c(HAc) 5. 现有一含H3PO4和NaH2PO4的溶液,用NaOH标准溶液滴定至甲基橙变色, 滴定体积为a(mL)。同一试液若改用酚酞作指示剂, 滴定体积为b(mL)。则a 和b 的关系是( C ) (A) a>b(B) b = 2a(C) b>2a(D) a = b 二、简答 1、与其他基准物质比较,邻苯二甲酸氢钾有什么优点? 答案: 邻苯二甲酸氢钾易制得纯品,在空气中不吸水,易保存,摩尔质量大,与NaOH反应的计量比为1:1 2、已标定的NaOH溶液在保存中吸收了二氧化碳,用它来测定HCI的浓度,若以酚酞为指示剂对测定结果有何影响?改用甲基橙,又如何? 答案: 测定C HCI,用酚酞指示剂,偏高(多消耗NaOH)

食用醋中醋酸含量的测定

食用醋中醋酸含量的测定 一、实验目的 1、了解实样分析的方法 2、掌握碱标准溶液的标定方法; 3、掌握食醋总酸度的测定原理、方法和操作技术。 二、实验原理: 食醋中的酸性物质主要是醋酸,可以用酸碱中和反应原理,以已知浓度的氢氧化钠溶液进行中和滴定。反应方程式为:CH3COOH+NaOH=CH3COONa+H2O NaOH在称量过程中不可避免地会吸收空气中的二氧化碳,使得配制的NaOH溶液浓度比真实值偏高,最终使实验测定结果偏高,因此,为得到更准确的数据,必须将NaOH溶液以标准酸溶液邻苯二甲酸氢钾(KHC8H4O4)标定。标定时遵守酸碱中和反应原理,其中参加反应的NaOH与KHC8H4O4的物质的量之比为1∶1。 三、实验器材 试剂:醋精、糯米甜醋、白醋、陈醋、自制家醋、邻苯二甲酸氢钾、氢氧化钠、活性炭、酚酞。 仪器:烧杯、容量瓶、玻璃棒、锥形瓶、25mL酸式滴定管、25mL碱式滴定管、漏斗、滤纸、铁架台、托盘天平、25mL移液管、婆梅氏重表、分析天平、洗耳球。 四、实验步骤 食醋的中和滴定 1用移液管准确量取上述滤液各25mL,转移到250mL容量瓶中加蒸馏水到刻度线,配制成稀醋酸溶液。 2将上述各种稀醋酸溶液注入酸式滴定管中并调整液面在“0”刻度线或以下,读取刻度。 3用托盘天平准确称取200g NaOH固体,配制成500mL溶液。 4将上述NaOH溶液注入碱式滴定管中,并调整液面读取刻度。

5根据不同食醋的特点,分别从酸式滴定管中放入约20mL、10mL、5mL溶液于锥形中,滴加2~3滴酚酞指示剂,读取滴定管中刻度。 6左手控制碱式滴定者,右手不断摇晃锥形瓶,当锥形瓶里溶液呈浅红色,且在半分钟内不再褪色,停止滴定,读取滴定管刻度。 7重复2、4、5、6操作,再做六次上实验。 标定NaOH溶液 用标准酸溶——邻苯二甲酸氢钾(KHC8H4O4)标定实验所用的NaOH溶液:用分析天平准备称取一定质量的邻苯二甲酸氢钾(02000~03000g),倒入洁净的锥形瓶,加入25mL~30mL蒸馏水使邻苯二甲酸氢钾全部溶解,滴入2滴酚酞试液,然后用待标定的NaOH 溶液滴定,当锥形瓶里溶液呈浅红色,且在半分钟内不再褪色,停止滴定,记录好实验数据。重复标定三次。 五、数据处理及初步实验结果分析 用邻苯二甲酸氢钾标定NaOH溶液的浓度的数据处理 由于KHC8H4O4与NaOH中和时,二者物质的量之比为1∶1,而KHC8H4O4的式量为204,摩尔质量为204g/mol,故: n(NaOH,标)=n(KHC8H4O4)=m(KHC8H4O4)/204g/mol c(NaOH,标)=n(NaOH,标)/V(NaOH,标) 数据处理如表一所示: 用标准酸溶液标定NaOH溶液 实验序数 1 2 3 m(KHC8H4O)(g) 0.2271 0.2494 0.2413 n(NaOH,标)(mol) 0.001113 0.001223 0.001183 V(NaOH,标,始)(mL)0.211 0.10 0.27 V(NaOH,标,末)(mL)11.64 12.66 12.42 V(NaOH,标)(mL) 11.43 12.56 12.15 c(NaOH,标,n)(mol/L) 0.09740 0.09730 0.09740 c(NaOH,标)(mol/L) 0.0009740 用NaOH溶液滴定各种食醋中醋酸含量的数据处理及初步实验结果分析 原各食醋中酸的浓度应为稀释后酸浓度的10倍,即附的数据记录表中食醋中酸浓度的

SOD羟基自由基

SOD,POD,CAT,MDA的活力含量测定方法酶液提取:称取鲜叶样品0.5g于预冷的研钵中,加1ml0.05mol/lpH7.0磷酸缓冲液在冰浴上研磨成浆,加蒸馏水使其在离心管里定容至5ml。将提取液于10000转/分冷冻离心20分钟。上清液用于测定SOD,POD,CAT的活力测定及MDA含量测定。 SOD 测定SOD活性的试剂配制及用量 1.先配制N(根据实验用量确定)倍的混合液,其中一倍的混合液包括: 0.05mol/lPBS(pH7.8):1.5ml 100umol/lEDTA-Na2:0.3ml 0.03721g用PBS定容至1000ml 750mmol/lNBT:0.3ml 0.06133g定容至100ml(避光保存)130mmol/lL-Met:0.3ml 1.9399gMet用PBS定容至100ml 蒸馏水;0.25ml 待试验开始后再加入0.05ml酶液,实验组加入0.3ml20umol/l核黄素,对照组加入等量的磷酸缓冲液(核黄素的配制:0.0753g 用蒸馏水定容至1000ml避光保存)实验组放在光照处,对照组放在黑暗处,20分钟后测定A560的值 SOD总活性(U/gFW)=(Ack-AE)*V/Ack*1/2*W*Vt 其中Ack为照光管的吸光度值,AE为遮光管的吸光度值,V为样品液总体积(ml),W为样品鲜重

POD 在试管中依次加入 4ml0.3%愈创木酚(0.02mol/l pH6PBS配制而成) 50ul酶液 50ul0.3%(2.5ml30%过氧化氢,用0.05mol/lpH7的PBS定容到250ml) 摇匀,立即计时,1分钟后在470nm波长下比色,每一分钟记录一次吸光度值,连续记录5分钟。以每分钟内A470为一个过氧化物酶活性单位(U),用下面公式计算过氧化物酶活性 过氧化物酶活性(U/gFW.min)=ΔA470*Vt/W*Vs*t*0.01 式中ΔA470为反应时间内吸光度的变化,Vt为提取液总体积(ml),W为样品鲜重(g),Vs为测定时取用酶液体积(ml),t为反应时间(min) CAT 取酶提取液50ul 加入3ml0.05mol/lpH7.0PBS 再加入0.3%过氧化氢200ul 迅速摇匀,立即计时,1分钟后在UV-754分光光度计的240nm 波长下比色,每一分钟记录一次吸光度值,连续记录5分钟。以每分钟内A240下降0.01为一个酶活性单位(U),按下式计算 过氧化氢酶活性(U/gFW.min)=ΔA240*Vt/W*Vs*0.01*t 式中ΔA240为反应时间内吸光度的变化,Vt为提取液总体积

电位滴定法测定食醋中醋酸的含量

电位滴定法测定食醋中醋酸的含量 一、实验目的 1 通过醋酸的电位滴定,掌握电位滴定的基本操作、PH的变化及指示剂的选择。 2 学习食用醋中醋酸含量的测定方法。 二、实验原理 食用醋的主要酸性物质是醋酸(HAC),此外还含有少量其他的弱酸。醋酸的解离常数Ka=×10-5,用NaOH标准溶液滴定醋酸,化学计量点的PH为,可选用酚酞作指示剂,滴定终点时溶液由无色变为微红色。两者的反应方程式为:HAc + NaOH = NaAc + H2O。然而在本实验滴定过程中,由于食用醋的棕色无法使用合适的指示剂来观察滴定终点,所以它的滴定终点用酸度计来测量。 本实验选用邻苯二甲酸氢钾(KHP)作为基准试剂来标定氢氧化钠溶液的浓度。邻苯二甲酸氢钾纯度高、稳定、不吸水、而且有较大的摩尔质量。标定时可用酚酞作指示剂 三、主要试剂和仪器 1 仪器:pHS-2C型酸度计、天平、电子分析天平、电磁搅拌器、容量瓶(150ml)、锥形瓶(250ml)、吸量管( ,25ml)、碱式滴定管、烧杯(250ml)、量筒(50ml) 2 试剂:NaOH、KHC8H4O4基准物质、食用醋、酚酞、去离子水 四、实验内容和步骤 1 酸度计的安装与校正

(1)开机预热30min,连接复合电极,安排好滴定管和酸度计的位置 (2)用标准缓冲溶液校准仪器(测定前要开动搅拌器):将搅拌棒放入标准缓冲溶液中,把电极插入溶液中使玻璃球完全浸没在溶液中,开动搅拌器,注意观察磁棒不要碰到电极。 (3)标准缓冲溶液定位:先将斜率旋钮顺时针调到最大,调节pHl量程至6,按下读数开关,将定位旋钮调至pH至标准缓冲溶液pH值。 (4)标准缓冲溶液调斜率:调节pH量程至8,按下读数开关,将斜率旋钮调至pH至标准缓冲溶液pH值。 (5)标准缓冲溶液定位:再调节pH量程至6,按下开关读数,将定位旋钮调至pH至标准缓冲溶液pH值。 注意事项:以上校正完成后,定位和斜率旋钮位置不能在变动! ○1在将电极插入待测溶液前,要用蒸馏水冲洗干净,用滤纸吸干水分,再放入溶液中 ○2测定应在搅拌的情况下进行 ○3测定前必须根据测量pH范围选择合适的量程 2 粗配氢氧化钠溶液 用天平称量克氢氧化钠于100ml烧杯中,加蒸馏水溶解,搅拌,可加热加速溶解。等放至室温后转移到带胶塞的试剂瓶中,共加500ml蒸馏水稀释。 3 氢氧化钠的标定(常量法)

冰醋酸含量测定报告

冰醋酸含量测定报告 Prepared on 22 November 2020

冰醋酸的成分含量测定方法 实验目的:主要是为了测定供应商提供的冰醋酸的浓度含量是否达到标准要求(CH3COOH%>=98%)。 实验器材:烧杯三个(50ml)锥形瓶两个(带活塞1个)(250ml)酸式滴定管1个100g的精密电子秤一个 .滴管2个 实验原料:100ml的冰醋酸(无色透明液体,具有很强的挥发性,刺激性气味)的氢氧化钠(L的NaoH是无色透明液体,有腐蚀性)酚酞指示剂(主要是为了测 定溶液的碱性)蒸馏水(500ml以上)(注意不能用自来水) 实验原理:主要是通过冰醋酸与氢氧化钠的中和反应,酚酞试剂遇碱变色的原理.往稀释的冰醋酸溶液中滴入的NaOH溶液,直至溶液变成微红色。(通过化学反应, 可知1摩尔的醋酸消耗1摩尔的氢氧化钠。测出消耗多少体积的氢氧化钠, 就可以算出消耗多少摩尔的氢氧化钠,进而计算出消耗多少质量的醋酸,通 过反应消耗醋酸的质量与样品的质量百分比,就求出样品中醋酸的含量百分 比。) 化学反应式: NaOH + CH3COOH = CH3COONa + H2O 计算公式:CH3COOH%={N(NaOH)*V(NaOH)*样品重(g)*1000}*100% 实验步骤:1.先在实验室充分准备好此次实验的器材和实验的原料。(拿一个250ml的锥形瓶(带活塞)到车间的助剂室提取100ml的冰醋酸,并立即盖好塞子。 贴上标签)其他的材料均可在实验室提取。 2. 分别给烧杯编上(1、2、3)号,锥形瓶((装有样品醋酸的为1)、装稀 释的醋酸为2),滴定管(1、2) 3.开电子秤(待电子秤显示数据),接着把烧杯1放到电子称上面称量,调 零。并关闭好各个电子称的各个门。 4.把装有醋酸的锥型瓶半倾,将滴管1伸进醋酸溶液的中间吸取溶液,接着将 滴管1取出,并盖好锥形瓶1瓶子。 5.先打开电子称的顶门,将滴管1伸入电子秤上空中,滴2-3滴()左右的醋 酸溶液,关好电子秤的顶门,待秤上读数稳定,读取读数,并记录读数g。 6.把滴定管放到烧杯2中,迅速打开电子秤的侧门,将烧杯1取出,并用蒸馏 水进行稀释(将蒸馏瓶嘴贴着烧杯1口环绕注入蒸馏水),导入锥形瓶2 中,25ml左右一次,进行四次,共100ml, 7.关闭电子秤,将其他器材与移到滴定管旁边。并在滴定管下方放一张白纸, 防止滴定管漏出的NaOH溶液腐蚀试验台。 8.用滴管2吸取酚酞试剂,往锥形瓶2滴入1—2滴酚酞试剂。 9.倒入适量的氢氧化钠溶液到烧杯3.在将烧杯3的氢氧化钠溶液缓慢的倒入滴 定管中,使得滴定管的液面升到刻度10ml左右。 10.将烧杯3沾取滴定管口溢出的NaOH溶液,读取滴定管的数据,并记录V2. 11.将锥形瓶2放到滴定管的正下方,左手控制滴定管的旋转开关(主要是为 了控制滴定管的滴定速度。)一滴,一滴的放,右手拿着锥形瓶2.晃动锥形

羟自由基清除率测定

抗氧化活性的测定(参考)——测定活性物质对羟自由基的清除率 (羟自由基清除试验) 采用Fenton 试剂:过氧化氢/亚铁盐。 原理:H 2O 2与亚铁离子反应生成·OH,·OH 自由基一般存活时间比较短,具有较高的反应活性。当在反应体系中添加水杨酸,便能快速的捕捉·OH 而产生紫色化合物(2,3-二羟基苯甲酸),该有色化合物在510nm 处有较大吸收峰,测其吸光度可表示羟自由基(?OH )的多少,吸光度与羟自由基(?OH )的量成正比。反应体系中若加入羟自由基(?OH )清除剂后,被氧化的水杨酸减少,则体系颜色变浅甚至消失,吸光度变小。 操作: 样品处理:蔬菜水果切分,榨汁(切分后可放在2%的盐酸或草酸溶液中护色)。将蔬菜汁或果汁放入50ml 离心管中(如有颜色加适量活性炭或白陶 土),在3000~ 4000rpm 下离心10min~ 20min 后(若样品蛋白含量较高,需加适量乙酸锌,亚铁氰化钾)快速过滤,滤液备用。 取25ml 比色管2支(样品管、空白管),分别加入5ml 1mmol/L 硫酸亚铁溶液、5ml 3mmol/L H2O2溶液,样品管中加入1ml 样品溶液,空白管中加入1ml 蒸馏水,混合均匀后用3mmol/L 水杨酸溶液定容至刻度,在37℃(0.1±℃)的恒温水中反应15min 后,用分光光度计在510nm 的波长下测定各管的吸光度。以3mmol/L 水杨酸溶液调零。 其对?OH 自由基的清除率SA (%),可根据下式进行计算:式中: A0—不加样品的吸光度; A1—加入样品的吸光度 100A0A1-A0= SA(%)?清除率 ###【以往经验,不一定全适用】:若样品不进行脱色处理,则操作如下:在3支25ml 的比色管中(样品管、空白管、样品本底管)依次加入5ml1mmol/L 硫酸亚铁溶液,空白管和样品管中各加入5ml3mmol/L H 2O 2溶液,本底管中H 2O 2溶液用蒸馏水代替。

羟自由基测定试剂盒使用说明

羟自由基测定试剂盒使用说明 货号:LA1950 规格:50管/48样 产品内容: 试剂一:3%H2O2标准品贮备液0.5mL×1支,4℃保存3个月。 0.03%标准品应用液的配置:3%H2O2标准品贮备液:双蒸水=1:99稀释,现用现配。 试剂二:底物贮备液1mL×1支,4℃保存3个月。 底物应用液的配制: 如果您的样本为抑制羟自由基,即测定管吸光度比对照管吸光度低,则底物反应液的配制:底物贮备液:双蒸水=1:99稀释,现用现配。 如果您的样本为产生羟自由基,即测定管吸光度比对照管吸光度高,则底物反应液的配制:底物贮备液:双蒸水=1:299稀释,现用现配。 试剂三:甲液贮备液2mL×1支,4℃保存3个月。用时用双蒸水稀释至1:9稀释成应用液。乙液7mL×2支,4℃保存3个月。 试剂三应用液的配制:甲液应用液与乙液等比列混合,按需配置,剩余的4℃保存。 试剂四:液体10mL×1瓶,4℃保存3个月。用时加双蒸水稀释至100mL制备应用液,4℃保存。若有结晶,则放置37℃水浴至全部溶解后再稀释。 试剂五:液体30mL×1瓶,避光4℃保存3个月。 试剂六:液体30mL×1瓶,避光4℃保存3个月。 试剂七:分析纯的冰乙酸自备。 显色剂的配制:试剂四应用液:试剂五:试剂六:冰乙酸=8:3:3:2,现用现配。 抑制羟自由基的物质如:血清(浆)、各种组织匀浆液、口服液等

产生羟自由基的物质如:中性白细胞、某些药物、部分植物等。 产品简介: Fenton反应是最常见的产生羟自由基的化学反应,H2O2的量和Fenton反应产生的OH·量成正比,当给予电子受体后,用griess试剂显色,形成红色物质,其呈色与OH·的多少成正比列关系。 操作步骤: 以上配制好的应用液,先在37℃水浴中温育3min,一下操作在37℃水浴中进行。 空白管标准管对照管测定管 双蒸水(mL)0.40.20.2 0.03%H2O2标准应用液(mL)0.2 底物应用液(mL)0.20.2 样本(mL)0.2 试剂三应用液(mL)0.40.40.40.4 混匀,37℃反应1min(准确以秒表计时),从加完试剂三开始到1min结束,立即加入显色剂终止反应,一次只能做一个管子。 显色剂2222 混匀,室温放置20min,波长550nm,1cm光径,双蒸水调零,测定各管吸光度值。 参考取样量:血清(浆)样本用生理盐水20倍稀释后取0.2mL做检测;如果您有精确微量移液器,可直接取0.010mL血清(浆),再加0.190mL生理盐水。组织匀浆上清,取0.2mL 检测。具体取样量根据您自己做的预实验确定。 计算:

醋酸含量的测定

醋酸含量的测定 The Standardization Office was revised on the afternoon of December 13, 2020

食醋中醋酸含量的测定 【实验目的】 1. 了解基准物质邻苯二甲酸氢钾()的性质及其应用。 2. 掌握NaOH标准溶液的配制、标定及保存要点。 3. 掌握强碱滴定弱酸的滴定过程、突跃范围及指示剂的选择原理。 【实验用品】 仪器:50mL碱式滴定管,移液管,250mL容量平,250mL锥形瓶,分析天平,托盘天平。 试剂:邻苯二甲酸氢钾(),L ,NaOH溶液,%酚酞指示剂。【实验步骤】 溶液的标定 (1)在电子天平上,用差减法称取三份邻苯二甲酸氢钾基准物分别放入三个250mL锥形瓶中,各加入30-40mL去离子水溶解后,滴加1-2滴%酚酞指示剂。 (2)用待标定的NaOH溶液分别滴定至无色变为微红色,并保持半分钟内不褪色即为终点。 (3)记录滴定前后滴定管中NaOH溶液的体积。计算NaOH溶液的浓度和各次标定结果的相对偏差。 2. 食醋中醋酸含量的测定 (1)用移液管吸取食用醋试液一份,置于250mL容量瓶中,用水稀释至刻度,摇匀。

(2)用移液管吸取稀释后的试液,置于250mL锥形瓶中,加入%酚酞指示剂1-2滴,用NaOH标准溶液滴定,直到加入半滴NaOH标准溶液使试液呈现微红色,并保持半分钟内不褪色即为终点。 (3)重复操作,测定另两份试样,记录滴定前后滴定管中NaOH溶液的体积。测定结果的相对平均偏差应小于。 (4)根据测定结果计算试样中醋酸的含量,以g/L表示。 【实验研讨】 1. 醋酸是一种有机弱酸,其离解常数Ka = ×,可用标准碱溶液直接滴定,反应如下: 化学计量点时反应产物是NaAc,是一种强碱弱酸盐,其溶液pH在左右,酚酞的颜色变化范围是8-10,滴定终点时溶液的pH正处于其内,因此采用酚酞做指示剂,而不用甲基橙和甲基红。 2. 食用醋中的主要成分是醋酸(乙酸),同时也含有少量其他弱酸,如乳酸等。凡是CKa >的一元弱酸,均可被强碱准确滴定。因此在本实验中用NaOH滴定食用醋,测出的是总酸量,测定结果常用: 3. 食用醋中约含3%-5%的醋酸,可适当稀释后再进行滴定。白醋可以直接滴定,一般的食醋由于颜色较深,可用中性活性炭脱色后再行滴定。 4. 是标定NaOH的基准物质,因此称取时要用电子天平,并要用差减法,使其称量结果尽量精确。而称量NaOH就不需要十分准确,用托盘天平即可。

羟基自由基

羟基自由基(·OH)因其有极高的氧化电位(2.80EV),其氧化能力极强,与大多数有机污染物都可以发生快速的链式反应,无选择性地把有害物质氧化成CO2、H2O或矿物盐,无二次污染。 非净化风在高级氧化机房内,经过净化、稳压等预处理步骤,在活化能发生器中采用电磁波振荡处理,产生有负离子的高级氧化活化气。 活化气进入催化床后与加压回流水混合,再一起进入纳米级催化剂的微晶空穴环境中获得羟基自由基,形成活化溶气水。 活化溶气水经溶气释放系统后产生微气泡的活化气,在浮选中与悬浮物及油类结合后实现气浮分离。 流程概述:一级浮选出水自流进入二级催化气浮催化系统,经电解催化处理

后进入进水间。催化系统电催化反应器风源采用高级氧化活化气,来自配套的高级氧化机房。非净化风在高级氧化机房内,经过净化、稳压等预处理步骤,在活化能发生器中采用电磁波振荡处理,产生有负离子的高级氧化活化气。进水间设加药管线和污泥进料线,配备搅拌机一套,为加药搅拌区。催化气浮主体池体前端配置微风搅拌系统,为微风搅拌区;中段和后段为溶气催化系统,为活化水气浮分离区域。污水在进水间投加絮凝剂或活性污泥后进入主体池体,絮凝剂来自1#或2#浮选加药中心,活性污泥来自氧化沟回流污泥。通过加药搅拌区及微风搅动混合区,使悬浮物及油类混凝,通过活化水气浮分离区实现浮渣分离。活化气进入催化床后与加压回流水混合,再一起进入纳米级催化剂的微晶空穴环境中获得羟基自由基,形成活化溶气水。活化溶气水经溶气释放系统后产生微气泡的活化气,在浮选中与悬浮物及油类结合后实现气浮分离。污水通过溢流堰板进入出水间,出水间设回流溶气水泵P-23/1、2、3和均质罐提升泵P-6/1、2、3、4。微风搅拌系统风源来自MBBR单元配套风机。溶气催化系统溶气水源采用P23泵回流水;气源采用高级氧化活化气。二浮出水间设污泥进料线,可引入活性污泥。二浮出水或混合活性污泥的出水通过P6泵送入均质罐,实现污水进入浮选后工序和均质罐活性污泥供料。二浮出水间设在线液位计,并与变频机泵P-6/1实现连锁。浮渣由刮渣机自池面刮入集渣槽,自管道自流去浮渣池,通过浮渣泵P19/1、2送入三泥处理单元。 浮选池体为封闭形式,设有臭气收集设施。主要机泵开停状态、液位、报警等信号远传污水DCS。 高级氧化单元升级改造工程主要是对污水场原有的高级氧化单元内部分设施根据青岛石化高酸原油适应性改造消缺污水处理场适应性改造的要求进行升级,同时对工艺流程重新优化和设定。 本次升级改造内容包含:OH催化反应器升级2台新增2台、活化能发生器升级3台新增1台、富氧机升级2套、低压配电箱1台,其它原有设施均保留。 高级氧化单元升级改造后工艺流程设定在MBBR工序前,此为优化后主流程。 优化流程概述:监测池污水经出水提升泵提升进入石英砂过滤器,去除悬浮物后进入高级氧化系统的预催化床,在预催化床与活化气混合后流经两级OH催化反应器配合活化气和高频电场对水质进行处理,活化气在两级OH催化床内通过纳米级催化剂的微晶空穴环境获得羟基自由基。其出水经活化能反应器、纳米催化反应器、催化混合器在纳米级催化剂的微晶空穴环境中再次获得羟基自由基用于难降解污染物反应,并从活化气中获得高电位氧化剂,使得污染物得到初步降解。 高级氧化单元出水进入MBBR,进行生化处理后泵送活性炭床,经生物活

羟自由基清除率测定

抗氧化活性的测定(参考)——测定活性物质对羟自由基的清除率 (羟自由基清除试验) 采用Fenton 试剂:过氧化氢/亚铁盐。 原理:H 2O 2与亚铁离子反应生成·OH,·OH 自由基一般存活时间比较短,具有较高的反应活性。当在反应体系中添加水杨酸,便能快速的捕捉·OH 而产生紫色化合物(2,3-二羟基苯甲酸),该有色化合物在510nm 处有较大吸收峰,测其吸光度可表示羟自由基(?OH )的多少,吸光度与羟自由基(?OH )的量成正比。反应体系中若加入羟自由基(?OH )清除剂后,被氧化的水杨酸减少,则体系颜色变浅甚至消失,吸光度变小。 操作: 样品处理:蔬菜水果切分,榨汁(切分后可放在2%的盐酸或草酸溶液中护色)。将蔬菜汁或果汁放入50ml 离心管中(如有颜色加适量活性炭或白陶土),在3000~ 4000rpm 下离心10min~ 20min 后(若样品蛋白含量较高,需加适量乙酸锌,亚铁氰化钾)快速过滤,滤液备用。 取25ml 比色管2支(样品管、空白管),分别加入5ml 1mmol/L 硫酸亚铁溶液、5ml 3mmol/L H2O2溶液,样品管中加入1ml 样品溶液,空白管中加入1ml 蒸馏水,混合均匀后用3mmol/L 水杨酸溶液定容至刻度,在37℃(0.1±℃)的恒温水中反应15min 后,用分光光度计在510nm 的波长下测定各管的吸光度。以3mmol/L 水杨酸溶液调零。 其对?OH 自由基的清除率SA (%),可根据下式进行计算:式中: A0—不加样品的吸光度; A1—加入样品的吸光度 ###【以往经验,不一定全适用】:若样品不进行脱色处理,则操作如下:在3支25ml 的比色管中(样品管、空白管、样品本底管)依次加入5ml1mmol/L 硫酸亚铁溶液,空白管和样品管中各加入5ml3mmol/L H 2O 2溶液,本底管中H 2O 2溶液用蒸馏水代替。 本底管和样品管分别加入1ml 样品溶液,空白管中加入1ml 蒸馏水,混合均匀后用3mmol/L 水杨酸溶液定容至刻度。在37℃(0.1±℃)的恒温水中反应15min 100A0A1-A0= SA(%)?清除率

巯基乙酸钠含量的测定

巯基乙酸钠含量的测定 1、主题内容与适用范围 本主题的内容是用碘酸钾与碘化钾氧化法测定巯基乙酸含量的方法,适用于分析生产过程中含巯基乙酸(或其盐类)的各种物料,如尾液、酸化液、除臭液、萃取尾液以及各种含巯基乙酸的产品,分析结果均以巯基乙酸百分含量表示。2、原理 碘酸钾在弱酸性溶液中与碘化钾作用,析出的碘氧化巯基乙酸成二硫撑酯酸,反应式如下: KIO3 + 5KI+ 3H2SO4 →3I2 + 3K2SO4 + 3H2O 2HSCH2COOH + I2 →HOOCCH2SSCH2COOH + 2HI 3、试剂及标准溶液 3.1、硫酸溶液,1+1 将100 ml 浓硫酸慢慢地加入100 ml 水中,冷却后使用。 3.2、硫酸溶液,20% 量取128 ml 浓硫酸,慢慢地加入约700 ml 水中,冷却稀释到1000 ml。3.3、碘化钾 3.4、淀粉指示剂,5 g/L 称取0.5g淀粉,加入5ml 水使成糊状。在搅拌下将糊状物加到90ml沸腾的水中,煮沸1-2分钟,冷却稀释到100 ml。 3.5、硫代硫酸钠标准溶液,C(NaS2O3)-0.1mol/L 3.5.1 配制: 称取26g硫代硫酸钠,溶于1000ml水中,缓缓煮沸10分钟。冷却放置两周后过滤备用。 3.5.2 标定: 称取0.15g于120℃烘至恒重的基准试剂重铬酸钾,称准至0.001g,置于500ml碘量瓶中,溶于25ml水中,加2g 碘化钾及20 ml 硫酸溶液(20%),摇匀,于暗处放置10分钟加150ml水,用配好的硫代硫酸钠溶液滴定,近终点时加3ml淀粉指示剂,继续滴定至溶液由蓝色变为亮绿色,同时作空白试验。 3.5.3 计算 硫代硫酸钠标准溶液浓度按下式计算: C(NaS 2O 3 )= m/(V1-V2)*0.04903 式中: V1---硫代硫酸钠溶液之用量,ml V2---空白试验硫代硫酸钠溶液之用量,ml C(NaS 2O 3 )---硫代硫酸钠标准溶液之物之的量浓度,mol/L m---称取重铬酸钾的量,g 0.04903---重铬酸钾,1/6 重铬酸钾之毫摩尔质量,g/m mol 3.5.4 标定允差,平行测定不得少于四次,四次平行测定值的极差不大于0.0001 mol/L时取平均值。 注:也可以准确称取5g烘至恒重的重铬酸钾溶于1000ml容量瓶中,在此准确量取30ml重铬酸钾标准溶液用以标定硫代硫酸钠溶液。

羟基自由基发生器(完整资料).doc

【最新整理,下载后即可编辑】 羟基自由基发生器 说明书

江苏恩飞特环保工程有限公司 目录 一、羟基自由基技术简介 (2) 二、羟基自由基(.OH)产生的方法及其原理 (3) 三、羟基自由基的特点 (4) 四、废水处理效果及能耗 (5) 五、公司信息 (5)

一、羟基自由基技术简介 有机污染物种类繁多,不少难于生化降解,尤其“三致”有机污染物,由于在水体中浓度低至10—9级对人类健康危害仍很大,因此对于这类毒性大,浓度高且难于生化降解的有机废水处理已是当前世界水处理领域的热点。 80年代末,随着有机电化学理论研究的深入,证实不少有机物的氧化还原、加成或分解都可在电极上进行,是去除水中有机污染物很有发展潜力的新方法,并被誉为“清洁处理法”,对一些成份复杂、生物难降解的有机废水,用生物法或一般物理化学方法难于奏效,而电解法则有可能获得较好的结果。 比较国内外有机废水众多的处理技术,从经济和技术统一的观点考虑,认为电解法和催化氧化法均有巨大的潜力。因此,从三维电极的基本原理出发,巧妙配以催化氧化技术,构成一种新的很具特式的羟基絮凝复合床(即多维电极羟基发生器)水处理技术。这种充分利用一些已有的原理和技术进行“巧妙的组合”达到1+1>2的目的,以求获得更佳效果的方法也是当前学术和工业领域的新思想。这种新技术是根据水中需要去除污染物的种类和性质,在两个主电极之间充填高效、无毒的颗粒状专用材料、催化剂(或催化手段)及一些辅助剂、组成去除某种或某一类有机或无机污染物最佳复合填充材料作为粒子电极,将它们置于结构为方型或圆型的复合床内,当需要处理的废水流经羟基絮凝复

工业冰乙酸中甲酸含量的测定

工业冰乙酸中甲酸含量的测定 范围1 本标准规定了测定工业冰乙酸中甲酸含量的气相色谱法。本标准适用于工业冰乙酸产品中甲酸含量的测定。方法提要2 柱上分离,热导检测器检测,乙酸乙酯为内标物,内标法定量。工业冰乙酸中各组分在癸二酸/GDX 103试剂和材料3 。99.9%(V/V)3.1氢气:纯度试剂3.2甲酸:色谱纯。 乙酸乙酯:色谱纯。 冰乙酸:优级纯。 高锰酸钾:分析纯。 无水乙醇:分析纯。 仪器4 4.1气相色谱仪:创宇GC-系列 检测器:热导检测器。4.2工作站记录仪:N20004.3的不锈钢管。色谱柱:1.5m*3.mm4.44.5填充物。=7:100。固定液:载体固定液:癸二酸。载体:GDX103,孔径0.18~0.25mm分析步骤5 5.1 色谱仪操作条件℃。150 汽化室温度:℃。150检测室温度: ℃。柱箱温度:110。135mA 桥电流:。50mL/min 载气流速:定量方法5.2 内标法。5.2.1. 标准样品的制备高锰酸钾,分解甲酸,然后再蒸馏,除去甲酸。1g1000mL冰乙酸试剂中加入不含甲酸的冰乙酸:在标准样品的配制:吸取20mL不含甲酸的冰乙酸于清洁、干燥的4~5个磨口玻璃瓶中,用微量注射器加入甲酸标准样品、乙酸乙酯标准样品(加入量多于甲酸,使两组分峰面积接近),用增量法依将称量,精确至0.0002g,混匀。测定时配制。校正因子的测定5.2.2待仪器操作条件稳定后,分别吸取5μ,各标准样品,进样分析,第一针使色谱柱饱和,待出峰完毕,计算校正因取舍,求出平均值,应定期校准校正因子。子。测定结果按置信度95%校正因子计算5.2.3 )计算:按式(1甲酸的相对校正因子fi As?mi =—————fi Ai?mi ——甲酸与内标物乙酸乙酯的质量相对校正因子;fi式中:;cm2 As——甲酸乙酯的峰面积, ;gmi——甲酸标准样品的质量, 。cm2Ai——甲酸的峰面积, 试验5.3 试样的制备5.3.1 吸取10mL样品于具塞小三角瓶中称量,精确至0.0002g,加入10μL内标物乙酸乙酯(或与甲酸峰面积相当的量),混匀样品。0.0002g称量,精确至进样5.3.2 待仪器操作条件稳定后进行分析。先进一针样品,使色谱柱饱和,然后再进两针样品分析。进样量为5μL (或根据样品中甲酸含量多少确定)。色谱图和相对保留时间6 暂无)色谱图(6.1 相对保留时间6.2 各组分在色谱柱,(癸二酸/GDX-103)上相对保留时间见表1 相对保留时间

相关文档