文档库 最新最全的文档下载
当前位置:文档库 › 基于DSP2812的三相SPWM波形实现

基于DSP2812的三相SPWM波形实现

基于DSP2812的三相SPWM波形实现
基于DSP2812的三相SPWM波形实现

第28卷第5期2010年9月

西安航空技术高等专科学校学报

Journal of Xi an Aerotechnical College

Vol 28No 5Sept .2010

收稿日期:2010 04 12

基金项目:西安航专校级科研立项(08112)。

作者简介:王成(1977-),男,陕西省西安市人,硕士研究生,西安航专讲师,主要从事测控技术研究。

基于DSP2812的三相SPWM 波形实现

王 成,苏 力,杨亚萍

(西安航空技术高等专科学校电气工程系,陕西西安710077)

摘 要:针对变频技术的核心 SPWM 波形的产生和控制,详细介绍了SPWM 波形的产生方法,并给出了软件编程。通过以DSP 芯片T M S320F2812为核心,利用规则采样法产生SPWM 波形,具有速度快,精度高,实时控制能力强,易于频率变换等优点。

关键词:SPW M ;规则采样法;DSP ;T M S320F2812

中图分类号:T P311.1 文献标识码:A 文章编号:1008 9233(2010)05 0030 04

由于工频并不是所有用电设备的最佳工作频率,在实际应用中,为了满足各种不同电气设备不同速度等方面的工作需要,就要对频率进行调整,否则,设备将处于低效率,低功率因数的运行状态。变频控制因此成为改变此种情况的技术,而正弦脉宽调制(Sinusoidal Pulse Width Modulation 简称SP WM)波形的产生和控制则是变频技术的核心[1]。T MS320F2812是T I 公司的一款高性能定点32位数字信号处理芯片(DSP),适合于大量数据处理的测控和控制场合,易实现产生SPWM 波形。

1 自然采样法

自然采样法是一种基于面积等效的能量转换形式,其基本原理如下:当正弦调制波与等幅的三角载波在时间轴上相交时,令正弦调制波的零点与三角载波的顶点同相位,所得交点为时间意义上的相位角和对应的瞬时幅值,交点间的相位区间段表示以正弦部分为有效输出的矩形脉冲。

按照SPWM 控制的基本思想,在正弦波和三角波的自然交点时刻控制功率开关器件的通断,这种生成SPWM 波形的方法称为自然采样法。正弦波在不同相位角时其值不同,因而与三角波相交所得

到的脉冲宽度也不相同。另外当正弦波频率变化或幅值变化时,各脉冲宽度也相应变化。要准确生成SPWM 波形,就应准确地计算出正弦波和三角波的

交点。

图1 SPW M 波形的自然采样法

图1给出了使用自然采样法生成SPWM 波形的方法。图中取三角波的相邻两个正峰值之间作为一个周期,为了简化计算,可设三角波峰值为1,正弦调制波为:u r =a sin r t 。式中,a 为调制度,0!a !1, r 为正弦调制信号的角频率。

在同步调制方式中,如图1所示,使正弦调制波上升段的过零点和三角波下降段过零点重合,并把该时刻作为零时刻。同时,把该点所在的三角波周期

作为正弦调制波一周期内的第一个三角波周期,则第n 个周期的三角波方程可表示如下:

u c =1-4T C t -(n -5

4

)T C ]

(n -54)T C !t !(n -34

)T C (1)

或 u c =-1-4T C t -(n -3

4

)T C

(n -34)T C !t !(n -1

4)T C (2)

这样,正弦调制波和第n 个周期三角波的交点

时刻t A 和t B 可分别由下式求得:

1-4T C t A -(n -5

4)T C =a sin r t A (3)

-1+4T C

t B -(n -3

4T C )=a sin r t B (4)

给定T C 和a 后,求解上面两式即可求得t A 和

t B 。

脉冲宽度 可由下式求得: =t B -t A

(5)

式(3)和式(4)都是超越方程,求解时需要花费较多的计算时间,因而难以在实时控制中在线计算。

2 规则采样法

自然采样法是最基本的SPWM 波形生成法,它以SPWM 控制的基本原理为出发点,可以精确地计算出各功率开关器件的通断时刻,所得到的波形很接近正弦波。但是这种方法计算量过大,因而在工程上实际使用并不多。

规则采样法是一种应用较广的工程实用方法,它的效果接近于自然采样法,但计算量却比自然法小得多。规则采样法中采用三角波作为载波。在自然采样法中,每个脉冲的中点并不和三角波中点(即负峰点)重合。规则采样法则使两者重合,即使每个脉冲的中点都以对应的三角波的中点对称,这样就使计算大为简化。图2是此方法的示意图。

在图2的三角波负峰时刻t D 对正弦调制波采样而得到D 点,过D 点作一水平直线和三角波分别交于A 点和B 点,在A 点的时刻t A 和B 点的时刻t B 控制功率开关器件的导通或关断。可以看出,用这种规则采样法所得到的脉冲宽度 和用自然采样法所得到的脉冲宽度非常接近。

从图2可得到以下关系式:1+a sin r t D

/2

=

2

T c /2(6)

由此可得 =

T c

2

(1+a sin r t D )(7)在三角波一个周期内,脉冲两边的间隙宽度 ?=12(T c - )=T c

4

(1-a sin r t D )

(8)

图2 使用三角波载波的规则采样法

对于三相桥式逆变电路来说,应该形成三相SPWM 波形。通常三相的三角波载波是公用的,三相正弦调制波依次相差120#相位。设在同一个三角波周期内三相的脉冲宽度分别为 U 、 V 、 W ,间隙宽度分别为 U ?、 V ?、 W ?,由于在同一时刻,三相正弦调制波电压之和为零,故由式(7)可得:

U + V + W =3

2T C

(9)同样,由式(8)可得: ?U + ?V + ?W

(10)

利用式(9)、(10)式可简化生成三相SPWM 波

形时的计算。

3 基于TM S320F2812的SPWM 波形产生

3.1 硬件原理图

TM S320F2812有两个时间管理模块(EVA 和EVB)。在时间管理模块中,比较单元,通用定时器,死区单元及输出逻辑电路可在两个功率器件的控制引脚上产生一对具有可编程死区及输出极性控制的PWM 输出驱动信号。

驱动电路部分使用FAIRCH ILD 公司的低电压16位3态输出收发器74lvth16245。该芯片包含具有3态输出的16位非反相双向缓冲器,并有为总线导向的应用。这些非反相的收发器被设计为低电压(3.3V)应用,但是具有提供一个TTL 电平的接口以达到5V 环境。74lvth16245制造采用先进的双极型CM OS 工艺,以达到高速操作与5V 相似而保持低能量耗散[5]。TMS320F2812采用高性能静态

31

第5期王成,等:基于DSP2812的三相SPWM 波形实现

CM OS 技术,I/O 供电电压及Flash 编程电压为3.3V,与74lvth16245供电电压相同,使用起来就会更加方便[6](见图3)。3.2 软件编程

比较单元和相关电路产生PWM 波形需要对相

同的时间管理寄存器进行配置。当通用定时器选择连续增/减计数模式时,将在每一个周期内产生两次电平翻转,即PWM 引脚输出一个脉冲。若要实时改变输出脉冲的占空比,在每个脉冲周期内在线计算并改写比较寄存器CMPRx 的值即可[2]

图3 DSP2812系统原理图及PW M 输出驱动电路

比较单元和相关电路产生PWM 波形需要对事件管理寄存器进行配置。产生SPWM 输出的设置过程如下:

?设置并装载ACTRx 寄存器;%如果要使用死区,则设置并装载DBTCONx 寄存器;&设置并装载Tx PR 寄存器,设定载波周期;?初始化CM PRx 寄存器;(设置并装载COM CONx 寄存器;)设置并装载T xCON 寄存器,来启动操作;?用在线计算值更新CM PRx 寄存器,改变占空比。

整个程序由主程序和T1定时器中断子程序组成,主程序用于DSP TM S320F2812系统初始化及在线计算,T1定时器中断子程序用于更新PWM 输

出的占空比[3]。

占空比的计算方法为式(7),程序段如下:w hile (n<=NX)//NX 为载波比{

q=q*2*PI;q/=NX;j=sin (q);

l=(T xPR/2)*(1+M*j);//M 为调制比if(l>=C1&l<=C2)//C1,C2为常数,通过Tx PR 寄存器值和调制比计算得出

a[n]=l;else

32

西安航空技术高等专科学校学报第28卷

{if(l>C2)a[n]=C2;else a[n]=C1;}n=n+1;}

主程序流程图如图4所示

:

图4 主程序流程图

4 试验结果

在CCS 集成开发环境中编辑并调试程序,通过DSP2812的PWM 1-6管脚可实时分析输出。由示

波器观察芯片74lvth16245的12管脚(XPWM1),得到A 相SPWM 输出波形如图5所示。其波形占空比变换符合正弦变化规律。其余B 相、C 相管脚输出波形相同,只是彼此相位相差120#。

实验表明,以T I 公司的T MS320F2812为核心的基于规则采样法生成SPWM 波形是成功的。且该系统具有良好的控制精度和实时控制能力。通过修改T 1PR 寄存器的值和载波比,可以实现频率的在线修改,

满足不同电气设备的不同需求。

图5 PW M1管脚波形图

参 考 文 献

[1] 张燕宾.SPWM 变频调速应用技术[M ].北京:机械工

业出版社,2001:64 69.

[2] 苏奎峰.T M S320X 281X DSP 应用系统设计[M ].北

京:北京航空航天大学出版社,2008:76 78.

[3] 刘和平.数字信号处理器原理、结构及应用基础

T MS320F28X[M ].北京:机械工业出版社,2007:256 268.

[4] 张立新,袁红霞.基于DSP 的SPW M 产生方法[J].微

计算机信息,2007(8):194 195.

[责任编辑、校对:郝 杰]

Realization of Three -phase SPWM Waveform Based on DSP 2812

WAN G Cheng ,S U L i ,YAN G Ya p ing

(Department of Electrical Eng ineering,X i an A erot echnical College,710077,Xi an,Shaanx i,China)

Abstract :Directed at the generation and control of SPWM w aveform the core of frequency conversion technolo

g y,the article introduces the method for the generation of SPWM waveform,and offers the softw are program m ing.Taking DSP core T MS320FR2812as the core,the article makes use of the regular sampling method to g enerate SPWM waveform,w hich has the advantages such as high speed,hig h precision,real-time control ca pability,and easy frequency conversion.

Key Words :SPWM;Reg ular sampling method;DSP;TMS320F2812

33

第5期王成,等:基于DSP2812的三相SPWM 波形实现

三相PWM逆变器的设计_毕业设计

湖南文理学院 课程设计报告 三相PWM逆变器的设计 课程名称:专业综合课程设计 专业班级:自动化10102班

摘要 本次课程设计题目要求为三相PWM逆变器的设计。设计过程从原理分析、元器件的选取,到方案的确定以及Matlab仿真等,巩固了理论知识,基本达到设计要求。 本文将按照设计思路对过程进行剖析,并进行相应的原理讲解,包括逆变电路的理论基础以及Matlab仿真软件的简介、运用等,此外,还会清晰的介绍各个环节的设计,比如触发电路、控制电路、主电路等,其中部分电路的绘制采用Proteus软件,最后结合Matlab Simulink仿真,建立了三相全控桥式电压源型逆变电路的仿真模型,进而通过软件得到较为理想的实验结果。 关键词:三相PWM 逆变电路Matlab 仿真

Abstract The curriculum design subject requirements for the design of the three-phase PWM inverter. Design process from the principle of analysis, selection of components, to scheme and the Mat-lab simulation, etc., to consolidate the theoretical knowledge, basic meet the design requirements. This article will be carried out in accordance with the design of process analysis, and the corresponding principles, including the theoretical foundation of the inverter circuit and introduction, using Matlab simulation software, etc., in addition, will also clearly introduces the design of every link, such as trigger circuit, control circuit, main circuit, etc., some of the drawing of the circuit using Proteus software, finally combined with Matlab Simulink, established a three-phase fully-controlled bridge voltage source type inverter circuit simulation model, and then through the software to get the ideal results. Keywords: Matlab simulation, three-phase ,PWM, inverter circuit

SPWM变频器 Matlab仿真

2011-2012学年第二学期 工作室项目研究报告 研究题目:SPWM变频器Matlab仿真 班级: 姓名: 指导教师: 2012年6月10日

1、前言 随着现代电力电子技术的发展,变频器输出电压靠调节直流电压幅度(PAM)的控制方式已让位于输出电压调宽不调幅(PWM)的控制方式。 所谓脉宽调制(Pulse Width Modulation—PWM)技术是指利用全控型电力电子器件的导通和关断把直流电压变成一定形状的电压脉冲序列,实现变压、变频控制并且消除谐波的技术。 1946年,德国的A.Schonung等人率先提出了脉宽调制变频的思想,他们把通信系统中的调制技术推广应用于变频调速中,为现代交流调速技术的发展和实用化开辟了新的道路。40多年来,PWM控制技术经历了一个不断创新和不断完善的过程。 目前,实际工程中主要采用的PWM技术是正弦PWM(SPWM),这是因为变频器输出的电压或电流波形更接近于正弦波形。SPWM方案多种多样,归纳起来可分为电压SPWM、电流SPWM和磁通SPWM等三种基本类型,其中电压SPWM和电流SPWM是从电源角度出发的SPWM,磁通SPWM是从电机角度出发的SPWM方法。 SPWM变频器的主要特点是: 1、主电路只有一个可控的功率环节,开关元件少,控制线路结构得以 简化; 2、整流侧使用了不可空整流器,电网功率因数于逆变器输出电压无 关,基本上接近于1; 3、VVVF(Variable Voltage Variable Frequency)在同一环节实现, 与中间储能元件无关,变频器的动态响应加快; 4、通过对SPWM控制方式的控制,能有效地抑制或消除低次谐波。 本文是在熟悉SPWM变频器工作原理的基础上,通过在MATLAB 仿真环境下,运用SIMULINK 电力系统工具箱的各种元件模型建立SPWM变频器电路的仿真模型,并对其进行测试分析。 可视化图形仿真功能是在Simulink环境下进行的。进入Matlab系统后打开模块库浏览窗口,用鼠标左键双击其中的Power System Blocks即可弹出电力系统工具箱模块库,它包括连接元件库(Connectors),电源库(Electrical Sources),基本元件库(Elements),其它元件库(Extra Library),电机元件库(Machines),测量元件库(Lvbasure ments)和电力电子元件库(Power Electronics)。这些模块库包含了大多数常用电力系统元件的模块。利用这些库模块及其它库模块,用户可方便、直观地建立各种系统模型。 2﹑SPWM变频器的工作原理 1、电压脉宽调制原理 电压正弦脉宽调制法的基本思想是用与正弦波等效的一系列等幅不等宽的矩形脉冲波形来等效正弦波,具体是把一个正弦半波分作n等分,然后把每一等分正弦曲线与横轴所包围的面积都用一个与之面积相等的矩形脉冲来代替,矩形脉冲的幅值不变,各脉冲的中点与正弦波每一等分的中点重合。这样,由n个等幅不等宽的矩型脉冲所组成的波形就与正弦波的半周波形等效,称作SPWM波形。 原始的脉宽调制方法是利用正弦波作为基准的调制波,受它调制的信号称为

直流斩波电路建模仿真

目录 一、降压式直流斩波电路(Buck) (1) 1 原理图 (1) 2 建立仿真模型 (1) 3 仿真波形 (5) 4 小结 (6) 二、升压式直流斩波电路(Boost) (7) 1 原理图 (7) 2建立仿真模型 (7) 3 仿真波形 (8) 4 小结 (9)

一、 降压式直流斩波电路(Buck ) 1 原理图 在控制开关IGBT 导通t on 期间,二极管VD 反偏,电源E 通过电感L 向负载R 供电,此间i L 增加,电感L 的储能也增加,导致在电感两端有一个正向电压Ul=E-u 0,左正右负,这个电压引起电感电流i L 的线性增加。 在控制开关IGBT 关断t off 期间,电感产生感应电势,左负右正,使续流二极管VD 导通,电流i L 经二极管VD 续流,u L =-u 0,电感L 向负载R 供电,电感的储能逐步消耗在R 上,电流i L 线性下降,如此周而复始周期变化。如图1-1。 + -U0E 图1 -1降压式直流斩波电路的电路原理图 2 建立仿真模型 根据原理图用MATLAB 软件画出正确的仿真电路图,如图2。

图1-2降压式直流斩波电路的MATLAB仿真模型 仿真参数,算法(solver)ode15s,相对误差(relativetolerance)1e-3,开始时间0.0结束时间2.0如图1-3。 图1-3 仿真时间参数 电源参数,电压100v,如图1-4。

图1-4 交流电源参数晶闸管参数,如图1-5。 图1-5 晶闸管参数电感参数,如图1-6。 图1-6 电感参数

电阻参数,如图1-7。 图1-7 电阻参数二极管参数设置,如图1-8。 图1-8 二极管参数电容参数设置,如图1-9。

(完整版)三相逆变器matlab仿真

三相无源逆变器的构建及其MATLAB仿真1逆变器 1.1逆变器的概念 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。 1.3逆变器的分类 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。 2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4)……………. 2 三相逆变电路 三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。 图 1 三相逆变电路

日常生活中使用的电源大都为单相交流电,而在工业生产中,由于诸多电力能量特殊要求的电气设备均需要使用三相交流电,例如三相电动机。随着科技的日新月异,很多设备业已小型化,许多原来工厂中使用的大型三相电气设备都被改进为体积小、耗能低且便于携带的小型设备。尽管这些设备外形发生了很大的变化,其使用的电源类型——三相交流电却始终无法被取代。在一些条件苛刻的环境下,电力的储能形式可能只有直流电,如若在这样的环境下使用三相交流电设备,就要求将直流电转变为特定要求的三相交流电以供使用。这就催生了三相逆变器的产生。 4MATLAB仿真 Matlab软件作为教学、科研和工程设计的重要方针工具,已成为首屈一指的计算机仿真平台。该软件的应用可以解决电机电器自动化领域的诸多问题。利用其中的Simulink模块可以完成对三相无源电压型SPWM逆变器的仿真,并通过仿真获取逆变器的一些特性图等数据。 图 2 系统Simulink 仿真 所示为一套利用三相逆变器进行供电的系统的Matlab仿真。系统由一个380v的直流电源供电,经过三相整流桥整流为三相交流电,并进行SPWM正弦脉宽调制。输出经过一个三相变压器隔离后通入一个三相的RLC负载模块(Three phase parallel RLC)。加入了两个电压测量单元voltage measurement和voltage measurement1,并将结果输出到示波器模块Scope1.

国产函数、任意波形发生器大比拼

国产函数、任意波形发生器大比拼 典型的DDS原理框图如图所示。 其实质是数模转换,仍然要遵循奈奎斯特采样定理。即输出的频率不超过采样率的一半,事实上商用的采用DDS技术的函数/任意波形发生器由于受到低通滤波器设计以及杂散分布的影响限制,输出波形的最高频率均不超过采样率的40%。相对于直接模拟频率合成,锁相频率合成,其优点如下: ·频率分辨率高。若时钟频率不变,DDS频率分辨率仅由相位累加器位数来决定,也就是理论上的值越大,就可以得到足够高的频率分辨率。目前,大多数DDS的分辨率在1Hz数量级,许多都小于1mHz甚至更小,这是其他频率合成器很难做到的。 ·工作频带较宽。根据Nyquist定律,只要输出信号的最高频率分辨率分量小于或等于fclk/2就可以实现。而实际当中由于受到低通滤波器设计以及杂散分布的影响限制,仅能做到40% fclk左右。 ·超高速频率转换时间。DDS是一个开环系统,无任何反馈环节,这种结构使得DDS的频率转换时间极短。DDS 的频率转换时间可达到纳秒数量级,比使用其它的频率合成方法都要小几个数量级。 ·相位变化连续。改变DDS输出频率,实际上改变的是每一个时钟周期的相位增量,相位函数的曲线是连续的,只是在改变频率的瞬间其频率发生了突变,因而保持了信号相位的连续性。 ·具有任意输出波形的能力。只要ROM中所存的幅值满足并且严格遵守Nyquist定律,即可得到输出波形。例如三角波、锯齿波和矩形波。 ·具有调制能力。由于DDS是相位控制系统,这样也就有利于各种调制功能。 同时DDS合成技术也有一些固有的缺点,如下: ·杂散分量丰富。这些杂散分量主要由相位舍位、幅度量化和DAC的非理想特性所引起。因为在实际的DDS电路中,为了达到足够小的频率分辨率,通常将相位累加器的位数取大。但受体积和成本的限制,即使采用先进的存储方法,ROM的容量都远小于此,因此在对ROM寻址时,只是用相位累加器的高位去寻址,这样不可避免地引起误差,即相位舍位误差。另外,一个幅值在理论上只能用一个无限长的二进制代码才能精确表示,由于ROM的存储能力,只采用了有限比特代码来表示这一幅值,这必然会引起幅度量化误差。另外,DAC的有限分辨率以及非线性也会引起误差。所以对杂散的分析和抑制,一直是国内外研究的特点,因为它从很大程度上决定了DDS的性能。 ·频带受限。由于DDS内部DAC和ROM的工作速度限制,使得DDS输出的最高频率有限。目前市场上采用CMOS、TTL等工艺制作的DDS芯片工作频率一般在几十MHz至几百MHz左右。但随着高速GaAs器件的出现,频带限制已明显改善,芯片工作频率可达到2GHz范围左右。 以上摘自:《现代DDS的研究进展与概述》一文,https://www.wendangku.net/doc/e114290403.html,/event/emag/20080226.htm。 将DDS应用于波形发生器,能非常方便的产生任意波形。一般除了具备常规函数发生器所具备的正弦波、方波、锯齿波、脉冲、噪声外,还有指数上升、指数下降、Sinc波、心电图波、直流,以及地震波等任意波形。能采用直接在仪器上手动编辑或windows 下软件编辑的方式产生任意波形,用于模拟电路或应用环境中可能发生的情况,此外还具备非常丰富的调制功能,甚至有些调制功能是以往只能在高端信号源上才能看到的。 下面找出主要以国产厂商为主的函数/任意波形发生器做一个对比,以此来了解国内DDS的应用水平,并给出一个大概的选购指南,以便您在需要的时候能够快捷的找到合手的信号源。Agilent在很早之前就推出了33200系列

BUCK电路闭环控制系统的MATLAB仿真..

BUCK 电路闭环PID 控制系统 的MATLAB 仿真 一、课题简介 BUCK 电路是一种降压斩波器,降压变换器输出电压平均值Uo 总是小于输入电压U i 。通常电感中的电流是否连续,取决于开关频率、滤波电感L 和电容C 的数值。 简单的BUCK 电路输出的电压不稳定,会受到负载和外部的干扰,当加入PID 控制器,实现闭环控制。可通过采样环节得到PWM 调制波,再与基准电压进行比较,通过PID 控制器得到反馈信号,与三角波进行比较,得到调制后的开关波形,将其作为开关信号,从而实现BUCK 电路闭环PID 控制系统。 二、BUCK 变换器主电路参数设计 2.1设计及内容及要求 1、 输入直流电压(VIN):15V 2、 输出电压(VO):5V 3、 输出电流(IN):10A 4、 输出电压纹波峰-峰值 Vpp ≤50mV 5、 锯齿波幅值Um=1.5V 6、开关频率(fs):100kHz 7、采样网络传函H(s)=0.3 8、BUCK 主电路二极管的通态压降VD=0.5V ,电感中的电阻压降VL=0.1V ,开关管导通压降 VON=0.5V,滤波电容C 与电解电容 RC 的乘积为 F *Ωμ75

2.2主电路设计 根据以上的对课题的分析设计主电路如下: 图2-1 主电路图 1、滤波电容的设计 因为输出纹波电压只与电容的容量以及ESR 有关, rr rr C L N 0.2V V R i I == ? (1) 电解电容生产厂商很少给出ESR ,但C 与R C 的乘积趋于常数,约为50~80μ*ΩF [3]。在本课题中取为75μΩ*F ,由式(1)可得R C =25mΩ,C =3000μF 。 2、滤波电感设计 开关管闭合与导通状态的基尔霍夫电压方程分别如式(2)、(3)所示: IN O L ON L ON /V V V V L i T ---=?(2) O L D L OFF /V V V L i T ++=? (3) off 1/on s T T f += (4) 由上得: L in o L D on V V V V L T i ---=? (5) 假设二极管的通态压降V D =0.5V ,电感中的电阻压降V L =0.1V ,开关管导通压降V ON =0.5V 。利用ON OFF S 1T T f +=,可得T ON =3.73μS ,将此值回代式(5),可得L =17.5μH

三相SVPWM逆变电路MATLAB仿真

基于电压空间矢量控制的三相逆变器的研究 1、SVPWM逆变电路的基本原理及控制算法 图1.1中所示的三相逆变器有6个开关,其中每个桥臂上的开关工作在互补状态,三相桥臂的上下开关模式得到八个电压矢量,包括6个非零矢量(001)、(010)、(011)、(100)、(101)、(110)和两个零矢量(000)、(111). 图1.-1 三相桥式电压型有源逆变器拓扑结构 在平面上绘出不同的开关状态对应的电压矢量,如图1.2所示。由于逆变器能够产生的电压矢量只有8个,对与任意给定的参考电压矢量,都可以运用这8个已知的参考电压矢量来控制逆变器开关来合成。 3 U(011) 1 U(001)5 U(101) 4 U(100) 6 U(110) 2 U(010) Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ U(000) 7 U(111) β c U θ β u α u 1 sv U2 sv U 3 sv U 图1.2 空间电压矢量分区 图1.2中,当参考电压矢量在1扇区时,用1扇区对应的三个空间矢量U sv1、U sv2、U sv3 来等效参考电压矢量。若1.2 合成矢量 ref U所处扇区N的判断 三相坐标变换到两相β α-坐标: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ) ( ) ( ) ( 2 3 - 2 3 2 1 - 2 1 - 1 3 2 ) ( ) ( t t t t t u u u u u co bo ao β α (1.1)

根据u α、u β的正负及大小关系就很容易判断参考电压矢量所处的扇区位置。如表1.1所示。 表1.1 参考电压矢量扇区位置的判断条件 可以发现,扇区的位置是与u β、 u u βα-3及u u βα--3的正负有关。为判断方便,我们设空间电压矢量所在的扇区N N=A+2B+3C (1.2) 其中,如果u β >0,那么A=1,否则A=0 如果u u βα-3 >0,那么B=1,否则B=0 如果u u βα--3 >0,那么C=1,否则C=0 1.3 每个扇区中基本矢量作用时间的计算 在确定参考电压矢量的扇区位置后,根据伏秒特性等效原理,采用该扇区三个顶点所对应的三个电压空间矢量来逼近参考电压矢量。以参考电压矢量位于3扇区为例,如图1.3所示,参考电压U ref 与U 4的夹角为γ。 β 1 4 图1.3 电压空间矢量合成示意图 根据伏秒特性等效原理算出 () ???? ? ? ? ?? ????--==-=T T T T V T u T V T u u T s dc s ref dc s ref ref 21021 33321 β β α (1.3)

H桥逆变器SPWMMATLAB仿真

H桥逆变器 S P W M M A T L A B仿真文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

MATLAB仿真技术大作业 题目:H桥逆变器SPWM仿真 单相逆变器(H桥)。直流电压500V,使用直流电压源模块;逆变器用Universal Bridge模块,器件选IGBT。负载用阻感串联负载,电阻1,电感15mH。 使用三角波作为载波,载波频率750Hz,调制度,基波频率50Hz。仿真时间秒,使用ode23tb求解器。 本次仿真关注稳态时的情况。分析谐波成分时,取秒之后的2个工频周期的波形进行分析,基波频率50Hz,最大频率3500Hz。 1、双极性SPWM仿真 采用双极性SPWM,完成以下内容:

(1)在同一副图中,画出载波与调制波的波形 ; (2)记录逆变器的输出电压(即负载两端的电压)波形,采用Powergui模块中FFT Analysis子模块进行谐波分析, (3) (a)分析基波电压是否与理论公式相符; 基本相符,理论值为500*=400,实际值,相对误差% (b) 分析电压谐波成分,并给出结论; 谐波集中在载波频率(750hz)及其整数倍附近

(3)记录负载电流的波形,并进行谐波分析。 谐波分析 负载电流谐波成分与电压基本一致。 2、单极性SPWM仿真 采用单极性SPWM,重复上述仿真,即,完成以下内容: (1)在同一副图中,画出载波与调制波的波形; (2) 记录逆变器的输出电压(即负载两端的电压)波形,采用Powergui模块中FFT Analysis子模块进行谐波分析, 谐波分析 (a) 分析基波电压是否与理论公式相符; 基本相符 (b) 分析电压谐波成分,并给出结论; 谐波分别很散,与理论不符 (3)记录负载电流的波形,并进行谐波分析。 (4)对比分析单极性SPWM,双极性SPWM输出电压谐波成分的特点,在相同LC 滤波器参数时,其负载电流THD的情况。 单极性谐波应该少,实际仿真结果反而多 3、级联H桥逆变器仿真 两个H桥级联,每个桥的逆变器参数都与前面的相同。负载为阻感串联负载,电阻1,电感15mH。

使用任意波形发生器-Tektronix

使用任意波形发生器 创建无线信号 入门手册

使用任意波形发生器创建无线信号入门手册 2 https://www.wendangku.net/doc/e114290403.html,/signal_generators

使用任意波形发生器创建无线信号 入门手册 目 录 摘要??????????????????????????????????????????????4简介??????????????????????????????????????????????4无线应用与数字调制??????????????????????????????????????5-12无线发射面临的挑战?????????????????????????????????????5为什么要数字调制??????????????????????????????????????6什么是数字调制???????????????????????????????????????7数字调制应用????????????????????????????????????????12数字无线测试?????????????????????????????????????????12-19发射机-I-Q调制器测试???????????????????????????????????13 IF滤波器效率和损伤测试???????????????????????????????????14发射机-RF功率放大器线性度?????????????????????????????????15接收机-IF解调器测试????????????????????????????????????16接收机-RF功能测试????????????????????????????????????17接收机-平衡器特性评估???????????????????????????????????18接收机-干扰灵敏度?????????????????????????????????????18 RF频谱环境仿真???????????????????????????????????????19使用任意波形发生器(AWG)生成调制信号????????????????????????????19-25生成基带I-Q信号??????????????????????????????????????19 IF生成???????????????????????????????????????????20 RF生成???????????????????????????????????????????21编译复合信号????????????????????????????????????????23回绕式考虑?????????????????????????????????????????24展望??????????????????????????????????????????????26 https://www.wendangku.net/doc/e114290403.html,/signal_generators 3

(完整版)三相SPWM逆变器仿真

三相SPWM逆变器仿真 一、原理分析 1、基本原理 按照输出交流电压半周期内的脉冲数,脉宽调制(PWM)可分为单脉冲调制和多脉冲调制;按照输出电压脉冲宽度变化规律,PWM可分为等脉宽调制和正弦脉 宽调制(SPWM)。 等脉宽调制产生的电压波形中谐波含量仍然很高,为了使输出电压波形中基波含量增大,应选用正弦波作为调制信号u R。这是因为等腰三角形的载波u T上、下 宽度线性变化,任何一条光滑曲线与三角波相交时,都会得到一组脉冲宽度正比于 该函数值的矩形脉冲。而且在三角载波u T不变条件下,改变正弦调制波u R的周期 就可以改变输出脉冲宽度变化的周期;改变正弦调制波u R的幅值,就可改变输出脉 冲的宽度,进而改变u D中基波u D1的大小。这就是正弦脉宽调制(sine pulse width modulated,SPWM)。 2、正弦脉宽调制方法(此处仅介绍了采样法) SPWM是以获得正弦电压输出为目标的一种脉宽调制方式。这里就以应用最普遍的三相电压源型逆变电路来讨论SPWM具体实现方法。 下图就是三相电压源型PWM逆变器主电路结构图: 图—1 上图为一三相电压源型PWM逆变器,VT1~VT6为高频自关断器件,VD1~VD6为与之 反并联的快速恢复二极管,为负载感性无功电流提供通路。两个直流滤波电容C串 联接地,中点O’可以认为与三相Y接负载中点O等电位。逆变器输出A、B、C三 相PWM电压波形取决于开关器件VT1~VT6上的驱动信号波行,即PWM的调制方式。 假设逆变电路采用双极性SPWM控制,三相公用一个三角形载波u T,三相正弦调制信号u RA、u RB、u RC互差120o,可用A相来说明功率开关器件的控制规律,正如 下图中所示。当u RA>u T时,在两电压的交点处,给A相上桥臂元件VT1导通信号、下桥臂元件VT4关断信号,则A相与电源中点O’间的电压u AO’=E/2。当u RA

直流斩波PWM控制Matlab仿真

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 直流斩波PWM控制Matlab仿真 初始条件: 输入200V直流电压。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、要求得到0~100V直流电压。 2、在Matlab/simulink中建立电路仿真模型; 3、对电路进行仿真; 4、得到结果并对结果进行分析; 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (1) 1 概述及设计要求 (2) 1.1 概述 (2) 1.2 设计要求 (2) 2 降压斩波电路拓扑分析 (3) 2.1 降压斩波器基本拓扑 (3) 2.2 buck开关型调整器拓扑分析 (3) 2.3 降压斩波电路的重要参数计算方法 (4) 2.3.1 buck调整器的效率 (4) 2.3.2 buck调整器的理想开关频率 (4) 2.3.3 输出滤波电感的选择 (5) 2.3.4 输出滤波电容的选择 (5) 3 电路设计 (6) 3.1 buck主电路设计 (6) 3.2 脉宽调制电路设计 (7) 3.3 MOS管驱动电路设计 (8) 3.4 系统工作总电路 (8) 4 Matlab建模仿真及分析 (9) 4.1 Matlab仿真模型的建立 (9) 4.2 Matlab仿真结果及分析 (10) 结束语 (14) 参考文献 (15)

PWM逆变器Matlab仿真设计

PWM逆变器MATLAB仿真 1设计方案的选择与论证 从题目的要求可知,输入电压为110V直流电,而输出是有效值为220V的交流电,所以这里涉及到一个升压的问题,基于此有两种设计思路第一种是进行DC-DC升压变换再进行逆变,另一种是先进行逆变再进行升压。除此之外,要得到正弦交流电压还要考虑滤波等问题,所以这两种方案的设计框图分别如下图所示: 图1-1方案一:先升压再逆变 图1-2方案二:先逆变,再升压 方案选择: 方案一:采用DC-DC升压斩波电路其可靠性高、响应速度、噪声性能好,效率高,但不适用于升压倍率较高的场合,另外升压斩波电路在初期会产生超调趋势(这一点将在后文予以讨论),在与后面的逆变电路相连时必须予以考虑,我们可以采用附加控制策略的办法来减小超调量同时达到较短的调节时间,但这将增加逆变器的复杂度和设计成本。 方案二:采用变压器对逆变电路输出的交流电进行升压,这种方法效率一般可达90%以上、可靠性较高、抗输出短路的能力较强,但响应速度较慢,体积大,波形畸变较重。 从以上的分析可以看出两种方案有各自的优缺点,但由于方案二设计较为简便,因此本论文选择方案二作为最终的设计方案,但对于方案一的相关容也会在后文予以讨论。 2逆变主电路设计 2.1逆变电路原理及相关概念

逆变与整流是相对应的,把直流电变为交流电的过程称为逆变。根据交流侧是否与交流电网相连可将逆变电路分为有源逆变和无源逆变,在不加说明时,逆变一般指无源逆变,本论文针对的就是无源逆变的情况;根据直流侧是恒流源还是恒压源又将逆变电路分为电压型逆变电路和电流型逆变电路,电压型逆变电路输出电压的波形为方波而电流型逆变电路输出电流波形为方波,由于题目要求对输出电压进行调节,所以本论文只讨论电压型逆变电路;根据输出电压电流的相数又将逆变电路分为单相逆变电路和三相逆变电路,由于题目要求输出单相交流电,所以本论文将只讨论单相逆变电路。 2.2逆变电路的方案论证及选择 从上面的讨论可以看出本论文主要讨论单相电压型无源逆变电路,电压型逆变电路的特点除了前文所提及的之外,还有一个特点即开关器件普遍选择全控型器件如IGBT,电力MOSFET等,有三种方案可供选择,下面分别予以讨论: 方案一:半桥逆变电路,如下图所示,其特点是有两个桥臂,每个桥臂有一个可控器件和一个反并联二极管组成。在直流侧接有两个相互串联的足够大的电容,两个电容的连接点为直流电源的中点。反并联二极管为反馈电感中储存的无功能量提供通路,直流侧电容正起着缓冲无功能量的作用。其优点为简单,使用器件少,缺点为输出交流电压的幅值仅为直流电源电压的一半,且直流侧需要两个电容器串联,工作时还要控制两个电容器电压的均衡,因此它只适用于几千瓦以下的小功率逆变电路。 VD2 图2-1 半桥逆变电路 方案二:全桥逆变电路,如下图所示:其特点是有四个桥臂,相当于两个半桥电路的组合,其中桥臂1和4作为一对,桥臂2和3作为一对,成对的两个桥臂同时导通,两对

任意波形发生器

基于CPLD和单片机的任意波形发生器设计 在电子工程设计与测试中,常常需要一些复杂的、具有特殊要求的信号,要求其波形可任意产生,频率方便可调。通常的信号产生器难以满足要求,市场上出售的任意信号产生器价格昂贵。结合实际需要,我们设计了一种任意波形发生器。电路设计中充分利用MATLAB的仿真功能,将希望得到的波形信号在MATLAB中完成信号的产生、抽样和模数转换,并将得到的数字波形数据存放在数据存储器中,通过单片机和CPLD控制,将波形数据读出,送入后向通道进行A/D转换和放大处理后得到所需的模拟信号波形。利用上述方法设计的任意波形发生器,信号产生灵活方便、功能扩展灵活、信号参数可调,实现了硬件电路的软件化设计。具有电路结构简单、实用性强、成本低廉等优点。 任意波形发生器的设计思想,是利用MATLAB的强大仿真功能,方便、快捷的生成给定频率、周期、脉宽的任意波形数据;并将数据预存在数据存储器中。在单片机控制下,利用CPLD电路产生地址读出数据,送入D/A转换电路,得到所需的任意波形信号。系统结构框图如图1;图中分频电路和地址发生器由CPLD实现。 图1 系统框图 单片机采用AT89C52芯片,通过软件编程产生所要求的控制信号。主要的控制参数包括:信号周期、脉宽;分频电路的开始信号、地址发生器的复位信号;E2PROM的选通信号;D/A转换电路的选通信号。在具体电路中,端口P1.0控制分频电路的启动、P1.1控制地址发生器的清零,P2.0控制 28C256和AD7545的选通信号。单片机工作在定时器0方式,软件设计利用C语言实现。流程图如图2所示。 图2 软件流程图 MATLAB作为一款优秀的数学工具软件,具有强大的运算功能;可以方便的产生各种信号波形,在软件中实现波形信号的产生、抽样和模数转换。设计的任意波形发生器,数据存储器选用28C256芯片,信号波形通过MATLAB仿真产生;得到的波形数据存放在数据存储器28C256中。具体设计中,我们要求产生周期为200ms,脉宽为5ms的单/调频混合信号,其中单频信号的脉宽为4ms,频率为 30KHz;调频信号的脉宽为1ms,频率为30KHz_35KHz。在MATLAB中设定抽样率为500KHz,得到了

直流升压变换器的MATLAB仿真

学号 天津城建大学 控制系统仿真 大作业 直流升压变换器的MATLAB仿真 学生姓名 班级 成绩 控制与机械工程学院 2014年6 月20 日

目录 一、绪论1 二、仿真电路原理图及原理1 三、所使用的Matlab工具箱与模块库2 四、模块参数设定2 五、模块封装与仿真框图搭建2 六、仿真结果6 七、结论6 八、参考文献7

一、绪论 在电力电子技术中,将直流电的一种电压值通过电力电子变换装置变换为另一种固定或可调电压值的变换,成为直流-直流变换。直流变换的用途非常广泛,包括直流电动机传动、开关电源、单相功率因数校正,以及用于其它领域的交直流电源。 根据电力电子技术原理,升压式(Boost )斩波器的输出电压0u 高于输入电源电压s u ,控制开关与负载并联连接,与负载并联的滤波电容必须足够大,以保证输出电压恒定,储能电感也要很大,以保证向负载提供足够的能量。 若升压式斩波器的开关导通时间on t ,关断时间off t ,开关工作周期off on t t T +=。定义占空比或导通比/T t D on =,定义升压比S o /U U =α。根据电力电子技术的原理,理论上电 感储能与释放能量相等,有s s off o u 1 u t T β = = U ,升压比的倒数T t 1 off = = α β。还有,1D =+β 。由此可见,当s u 一定时,改变 β就可以调节0u 。当const T =时,调β就 是调off t ,或调on t 也是调β,也就改变了0u ,这就是升压式斩波器的升压工作原理。 二、仿真电路原理图及原理 原理图如图1所示:假设L 值、C 值很大,V 通时,E 向L 充电,充电电流恒为1 I ,同时C 的电压向负载供电,因C 值很大,输出电压0u 为恒值,记为0u 。设V 通的时间为on t ,此阶段L 上积蓄的能量为on 1t EI 。 图1 V 断时,E 和L 共同向C 充电并向负载R 供电。设V 断的时间为off t ,则此期间电感L 释放能量为 ()off 10t I E -u ,稳态时,一个周期T 中L 积蓄能量与释放能量能量相等。化简得 ()off 10on 1t I E -u t EI =,E t T E t t t off off off on o =+=U ,1T/t off ≥,输出电压高于电源电

升、降压直流斩波电路及matlab仿真

目录 绪论 (3) 一.降压斩波电路 (6) 二.直流斩波电路工作原理及输出输入关系 (12) 三.D c/D C变换器的设计 (18) 四.测试结果 (19) 五.直流斩波电路的建模与仿真 (29) 六.课设体会与总结 (30) 七.参考文献 (31)

绪论 1. 电力电子技术的内容 电力电子学,又称功率电子学(Power Electronics)。它主要研究各种电力电子器件,以及由这些电力电子器件所构成的各式各样的电路或装置,以完成对电能的变换和控制。 它既是电子学在强电(高电压、大电流)或电工领域的一个分支,又是电工学在弱电(低电压、小电流)或电子领域的一个分支,或者说是强弱电相结合的新科学。电力电子学是横跨“电子”、“电力”和“控制”三个领域的一个新兴工程技术学科。 电有直流(DC)和交流(AC)两大类。前者有电压幅值和极性的不同,后者除电压幅值和极性外,还有频率和相位的差别。 实际应用中,常常需要在两种电能之间,或对同种电能的一个或多个参数(如电压,电流,频率和功率因数等)进行变换。 变换器共有四种类型: 交流-直流(AC-DC)变换:将交流电转换为直流电。 直流-交流(DC-AC)变换:将直流电转换为交流电。这是与整流相反的变换,也称为逆变。当输出接电网时,称之为有源逆变;当输出接负载时,称之为无源逆变。 交-交(AC-AC)变换,将交流电能的参数(幅值或频率)加以变换。其中:改变交流电压

有效值称为交流调压;将工频交流电直接转换成其他频率的交流电,称为交-交变频。直流-直流(DC-DC)变换,将恒定直流变成断续脉冲输出,以改变其平均值。 2. 电力电子技术的发展 在有电力电子器件以前,电能转换是依靠旋转机组来实现的。与这些旋转式的交流机组比较,利用电力电子器件组成的静止的电能变换器,具有体积小、重量轻、无机械噪声和磨损、效率高、易于控制、响应快及使用方便等优点。 1957年第一只晶闸管—也称可控硅(SCR)问世后,因此,自20世纪60年代开始进入了晶闸管时代。 70年代以后,出现了通和断或开和关都能控制的全控型电力电子器件(亦称自关断型器件),如:门极可关断晶闸管(GTO)、双极型功率晶体管(BJT/ GTR)、功率场效应晶体管(P-MOSFET)、绝缘栅双极型晶体管(IGBT)等。 控制电路经历了由分立元件到集成电路的发展阶段。现在已有专为各种控制功能设计的专用集成电路,使变换器的控制电路大为简化。 微处理器和微型计算机的引入,特别是它们的位数成倍增加,运算速度不断提高,功能不断完善,使控制技术发生了根本的变化,使控制不仅依赖硬件电路,而且可利用软件编程,既方便又灵活。 各种新颖、复杂的控制策略和方案得到实现,并具有自诊断功能,并具有智能化的功能。将新的控制理论和方法应用在变换器中。 综上所述可以看出,微电子技术、电力电子器件和控制理论则是现代电力电子技术的发展动力。 3.电力电子技术的重要作用 (1) 优化电能使用。通过电力电子技术对电能的处理,使电能的使用达到合理、高效

任意波形函数发生器

任意波形/函数发生器 1.目的:规范设备操作,确保检测质量和人身安全。 2.适用范围:适用于任意波形/函数发生器。 3.责任人:设备操作人员。 4.程序: 4.1 仪器开机和关机 4.1.1 开机 4.1.1.1将交流电源线插入后面板上的电源插座中。 4.1.1.2使用前面板电源按钮打开仪器电源。请等待前面板显示屏显示仪器己通过所有开机自检。4.1.2 关机 使用前面板电源按钮关闭仪器电源。 4.2 更改开机时的仪器设置 仪器开机时将恢复默认设置。可将开机设置更改为上次关机时的设置。使用Utility (辅助功能)菜单更改开机设置。 4.2.1 按下前面板Utility (辅助功能)按钮。 4.2.2 接下System (系统) bezel 钮。 4.2.3 按下Power 00 (开机) bezel钮,选择开机设置。 4.2.3.1 Default (默认)选择默认,仪器开机时将恢复默认设置。 4.2.3.2 Last (上次)选择上次,将恢复到仪器上次关机时的设置。 4.3 自检和自我校准 任意波形/函数发生器在开机时执行一部分有限的硬件检测。也可以使用Utility (辅助功能〉菜单进行手工诊断和/或自我校准。 诊断(自检) :执行自检,验证您的仪器是否正常工作。 校准(自我校准) : 自我校准主要通过内部校准例程检查直流精度。 4.3.1 按下前面板Utility (辅助功能)按钮。 4.3.2 按下-more- ( -更多- ) bezel 钮。 4.3.3 按下bezel 钮Diagnostics/Calibration(诊断/校准〉。

4.3.4 要执行仪器诊断,请按下ExecuteDiagnostics (执行诊断) bezel 钮。要执行自我校准,请 按下ExecuteCalibration (执行校准) bezel 钮。 4.3.5 如果诊断顺利完成,则将显示"PASSED" ("通过" )信息。 4.3. 5.1执行自我校准前,要确保环境混度在+20 0 C 到+30 0 C (+68 OF 到+8 6 0 F) 之间请在执 行自我校准前暖机20 分钟。 4.3. 5.2在执行自测或自校正时,请从仪器断开所有电缆的连接。 4.3. 5.3至少每年进行一次自我校准,从而保持直流精度。建议应在定期检查时一起执行自我校准。 4.4 ArbExpress的基本操作 4.4.1 要新建波形,请使用Fi le 菜单。 4.4.2 Blank sheet 将在窗口中打开一个具有1024 点波形长度的空表单。在Wavefonn 菜单中通 过Properties... 可更改点数。 4.4.3 使用Standard Waveform 对话框创建可用的任何标准波形。使用Settings选择所需波形和 仪器类型。 4.4.4 使用Vertical 设置波形垂直参数。 4.4.5 使用Horizontal 设置波形水平参数。 4.4.6 单击Preview 查看波形 4.4.7 也可以使用Equation Editor 创建波形。应用程序提供了一组公式范例,可直接使用或对其 进行修改。 4.4.8 使用Command List 选择命令、函数、仪器和操作。 4.4.9 使用Preview 查看编译公式后的波形。 4.4.10 也可以使用波形数学运算工具。在Math 菜单中,选择WaveformMath…' ,显示Waveform Math 对话框。 4.4.11 在Waveform Library 中选择一个数学信源。此示例中选择Noise 。 4.4.12 计算结果显示在ResultantWaveform 窗格中。这是一个将噪声附加到方波的示例。 4.4.13 可以使用ArbExpress 远程控制Tektronix AWG/AFG 仪器。在Communication 菜单中,选择 AWG/AFG File Transfer &Control…,显示其对话框。 4.4.14 所连接的仪器将列在Arb List 中。 4.4.15 Instrument Control 窗格仅在仪器连接后才会出现,否则会隐藏。 4.5 保护DUT

相关文档
相关文档 最新文档