文档库 最新最全的文档下载
当前位置:文档库 › 神经网络PID毕业设计完整

神经网络PID毕业设计完整

神经网络PID毕业设计完整
神经网络PID毕业设计完整

摘要

目前,由于PID具有结构简单,可通过调节比例积分和微分取得基本满意的控制性能,广泛应用在电厂的各种控制过程中。电厂主汽温的被控对象是一个大惯性大迟延非线性且对象变化的系统。常规汽温控制系统为串级PID控制或导前微分控制,当机组稳定运行时,一般能将主汽温控制在允许的范围内。但当运行工况发生较大变化时,却很难保证控制品质。因此本文研究BP神经网络的PID控制,利用神经网络的自学习、非线性和不依赖模型等特性实现PID参数的在线自整定,充分利用PID和神经网络的优点。本处用一个多层前向神经网络,采用反向传播算法依据控制要求实时输出Kp、Ki、Kd,依次作为PID控制器的实时参数,代替传统PID参数靠经验的人工整定和工程整定,以达到对大迟延主气温系统的良好控制。对这样一个系统在MATLAB平台上进行仿真研究,,仿真结果表明基于BP神经网络的自整定PID控制具有良好的自适应能力和自学习能力,对大迟延和变对象的系统可取得良好的控制效果。

关键词:主汽温,PID,BP神经网络,MATLAB仿真

ABSTRACT

At present, because PID has a simple structure and can be adjusted proportional integral and differential to satisfactory control performance,,it is widely used in power plants of various control process. The system of Power plant main steam temperature is an large inertia、big time-delayed and nonlinear dynamic system. Conventional steam temperature control system adopted cascade PID control or the differential control of lead before, when the unit is stable, general will allow the steam temperature control in the range ,but when operating conditions changed greatly, it is difficult to ensure the quality of control. This article studies PID control based BP neural network . Using such characteristics of neural network self-learning, nonlinear and don't rely on model realize PID parameters online auto-tuning. It can make full use of the advantages of PID and neural network. Here,we use a multilayer feedforward neural network using back propagation algorithm and based on control requirements.This net can real-time output Kp, Ki, Kd as the PID controller parameters ,insteading of the traditional PID parameters determined by experience. So it can obtain good control performance .For such a system ,we can simulate in MATLAB simulation platform.The simulation results show that the PID control based BP neural network has good adaptive ability and self-learning ability.For the system of large delay and free-model can obtain good control effect.

KEY WORDS: main steam temperature ,PID ,BP neural network,MATLAB simulation

目录

摘要......................................................................................................................... I ABSTRACT........................................................................................................................ I I 第一章绪论 (2)

1.1 选题背景和意义 (2)

1.2 国内外研究现状 (3)

1.3 立论依据 (7)

1.4 本文所做的主要工作 (8)

1.5 本论文的章节安排 (8)

第二章神经网络原理和应用 (9)

2.1 MP模型 (10)

2.2 神经网络的学习方式和学习规则 (11)

2.2.1 神经网络的学习方式 (11)

2.2.2 神经网络的学习规则 (11)

2.3 神经网络的特点及应用 (12)

2.4 BP神经网络 (13)

2.4.1 BP神经网络的结构 (13)

2.4.2 BP神经网络算法 (14)

2.4.3 BP神经网络的前向传播算法 (14)

2.4.4 BP神经网络的反向传播计算 (15)

第三章基于BP神经网络的PID控制 (17)

3.1 PID控制器的离散差分方程 (17)

3.2 基于BP神经网络的PID整定原理 (19)

3.3 基于BP网络的PID控制器控制的算法流程 (23)

第四章基于BP神经网络的PID控制在主汽温控制系统中的应用 (23)

4.1 锅炉主汽温的特点 (23)

4.1.1 主汽温的控制任务 (23)

4.1.2 主汽温控制对象的动态特性 (23)

4.2 主汽温的数学模型 (25)

4.2.1 主汽温控制系统调节信号的选择 (25)

4.2.2 减温水扰动下主汽温的数学模型 (25)

4.3 主汽温控制方法 (27)

4.4 主汽温基于BP神经网络的PID控制Matlab仿真 (28)

4.5 仿真结果分析 (37)

结论与展望 (38)

参考文献................................................................................ 错误!未定义书签。附录 A (40)

致谢 (44)

第一章绪论

1.1 选题背景和意义

在控制系统设计中,最主要而又最困难的问题是如何针对复杂、变化及具有不确定性的受控对象和环境作出有效的控制决策。经典控制理论和现代控制理论的基础是建立数学模型,以此进行控制系统设计,然而面对工程实际问题和工程应用对控制要求的不断提高,基于数学模型的控制理论和方法的局限性日益明显。无模型控制能有效提高控制系统的适应性和鲁棒性,因此,走向无模型控制是自动控制发展的另一个重要方向。

在1943年,麦卡洛克和皮茨首次提出了脑模型,其最初动机在于模仿生物的神经系统。随着超大规模集成电路(VLSl)、光电子学和计算机技术的发展,人工神经网络(ANN)己引起更为广泛的注意。近年来,基于神经元控制的理论和机理已获得进一步的开发和应用。尽管基于神经元的控制能力还比较有限,但由于神经网络控制器具有学习能力和记忆能力、概括能力、并行处理能力、容错能力等重要特性,仍然有许多基于ANN的控制器被设计出来,这类控制器具有并行处

理、执行速度快、鲁棒性好、自适应性强和适于应用等优点,广泛的应用在控制领域[1]。

神经网络控制是一种基本上不依赖于模型的控制方法,它比较适用于那些具有不确定性或高度非线性的控制对象,并具有较强的适应和学习功能,它是智能控制的一个重要分支。对于自动控制来说,神经网络有具有自适应功能,泛化功能,非线性映射功,高度并行处理功能等几方面优势〔2〕,这使得神经网络成为当今一个非常热门的交叉学科, 广泛应用在电力,化工,机械等各行各业,并取得了比较好的控制效果。

1.2 国内外研究现状

随着现代工业过程的日益复杂,经典现代控制理论面临严峻挑战,例如被控系统越来越巨大,存在多种不确定因素,存在难以确定描述的非线性特性,而控制的要求越来越高(如控制精度、稳定性、容错、实时性等),因此人们一直在探索如何使控制系统具有更高的智能,使之能够适应各种控制环境。而神经网络源于对人脑神经功能的模拟,它的某些类似人的智能特性有可能被用于解决现代控制面临的一些难题。因此,从20世纪60年代起,人们就开始研究神经网络在控制中的应用了,取得了一定效果。目前,随着神经理论的发展和新算法的相继提出,神经网络的应用越来越广泛。

从神经网络的基本模式看,主要有:前馈型、反馈型、自组织型及随机型神经网络〔3〕。这四种类型各自具有不同的网络模型:前馈网络中主要有Adaline、BP网络及RBF网络;反馈网络主要有Hopfield网络;自组织网络主要有ART网,当前,已经比较成熟的神经网络控制模型主要有神经自校正控制,神经PID控制,神经模型参考自适应控制,神经内膜控制等等[4]

(1) 、神经网络自校正控制

神经自校正控制结构如图,它由两个回路组成:(1)自校正控制器与被控对象构成的反馈回路;(2)神经网络辨识器与控制器设计,以得到控制器的参数。这种方案的设计思想是利用神经网络辨识器的计算估计能力对常规控制器参数进行约束优化求解,从而实现对常规控制器的参数或结构进行调整。方框图如下[5]:

图1-1 神经自校正控制结构图

可见,辨识器与自校正控制器的在线设计是自校正控制实现的关键。(2)、神经网络PID控制。

PID控制要取得好的控制效果,就必须通过调整好比例、积分和微分三种控制作用在形成控制量中相互配合又相互制约的关系,这种关系不一定是简单的“线性组合”,从变化无穷的非线性组合中可以找出最佳的关系。神经网络所具有的任意非线性表示能力,可以通过对系统性能的学习来实现具有最佳组合的PID控制。方框图如下[6]:

图1-2 神经PID控制结构图

对于一般神经PID常采用BP算法,因BP神经网络具有逼近任意非线性函数的能力,而且结构和学习算法简单明确。通过神经网络的自身学习、加权系数调整,从而使其稳定状态对应于某种最优控制律下的PID控制器参数。

(3) 、神经网络模型参考自适应控制

神经网络模型参考自适应控制 ,将神经网络同模型参考自适应控制相结合,就构成了神经网络模型参考自适应控制,其系统的结构形式和线性系统的模型参考自适应控制系统是相同的,只是通过神经网络给出被控对象的辨识模型。根据结构的不同可分为直接与间接神经网络模型参考自适应控制两种类型,分别如图中(a)和(b)所示。间接方式比直接方式中多采用一个神经网络辨识器,其余部分完全相同[7]。

图1-3 神经模型参考自适应控制结构图

NN控制器的权重修正目标是使过程输出最后以零误差跟踪参数模型输出。对于直接方式,由于未知的非线性对象处于误差和NN控制器的中间位置,给参数修正造成困难。为了避免这一问题,增加NN辨识器,变为间接方式

(4)、神经网络内模控制

神经网络内模控制系统如下图所示。NNC称为神经网络控制器,NNI称为神经网络状态估计器。图中的神经网络状态估计器NNI用于充分逼近被控对象的动态模型,相当于正向模型。神经网络控制器NNC不是直接学习被控对象的逆模型,而是间接地学习被控对象的逆动态特性,这样就回避了要估计y(K十1)对u(k)求偏导而造成的困难。

图1-4 神经内膜控制结构图

在神经网络内模控制系统中,NNI状态估计器作为被控对象的近似模型与实际对象并行设置,它们的差值用于反馈,同期望的给定值之差经一线性滤波器处

理后,送给NNC神经网络控制器,经过多次训练,它将间接地学习对象的逆动态特性。此时,系统误差将趋于零[8]。

(5)、神经网络预测控制

由于神经网络可以精确描述非线性动态过程,因此,可用神经网络设计预测控制系统。预测控制是近年来发展起来的一类新型计算机控制算法,它利用内部模型预测被控对象未来输出及其与给定值之差,然后据此以某种优化指标计算当前应加于被控对象的控制量,以期使未来的输出尽可能地跟踪给定参考轨线。下面是神经网络预测控制系统的一般方框图[9]。

图1-5 神经预测控制结构图

这种算法的基本特征是建立预测模型方便,采用滚动优化策略和采用模型误差反馈校正,预测模型根据系统的历史信息和选定的未来输入,预测系统未来的输出。根据预测模型的输出,控制系统采用基于优化的控制策略对被控对象进行控制。

(6) 、其他先进的神经控制

模糊神经网络控制:模糊系统是以模糊集合论、模糊语言变量及模糊逻辑推理的知识为基础,力图在一个较高的层次上对人脑思维的模糊方式进行工程化的模拟。而神经网络则是建立在对人脑结构和功能的模拟与简化的基础上。由于人脑思维的容错能力源于思维方法上的模糊性以及大脑本身的结构特点,因此将两者综合运用便成为自动控制领域的一种自然趋势。模糊系统与神经网络主要采用以下综合方式,既将人工神经网络作为模糊系统中的隶属函数、模糊规则的描述形式[10]。

多层神经网络控制:一个普通的多层神经控制系统如下图所示,基本上是一种前馈控制器。该系统存在两个控制作用:前馈控制和常规反馈控制。前馈控制由神经网络实现,训练目标是使期望输出与受控对象实际输出间的偏差为最小。该误差作为反馈控制器的输入。反馈作用与前馈作用被分别考虑[11]。

图1-6 多层神经网络控制结构图

1.3 立论依据

BP算法就是在模拟生物神经元的基础上建立起来的在人工神经网络上的

一种搜索和优化算法。对于人工神经网络,网络的信息处理是由神经元间的相互作用来实现,知识与信息的存贮表现为网络元件互相联结分布的物理联系,网络的学习和训练决定于各神经元连接权系数的动态调整过程。ANN作为一种新型的信息描述和处理方式,广泛应用在控制领域,其在控制领域的吸引力主要表现在以下几方面:

(l)能够充分逼近任意复杂的非线性关系;

(2)能够学习与适应严重不确定性系统的动态特性;

(3)所有定量或定性的信息都分布存贮于网络的权中,故ANN有很强的鲁棒性和容错性;

(4)采用并行分布处理的方法,使得快速进行大量运算成为可能。

这些特点都表明神经网络在解决高度非线性和严重不确定性系统的控制上有巨大的潜力。而电厂主汽温是典型的具有大迟延、大惯性、非线性及时变性的控制系统,大量的文献资料表明,用神经网络对主汽温进行控制是可行且有效的。

而PID控制是最早发展起来的控制策略之一,历史悠久,理论完善,由于其算法简单、鲁棒性好和可靠性高,被广泛应用于工业控制过程,尤其适用于可建立精确数学模型的确定性控制系统。而实际工业生产过程中往往具有非线性,时变不确定性,如火电厂的锅炉主汽温对象,因而难以建立精确的数学模型,应用常规PID控制器不能达到到理想的控制效果,在实际生产过程中,由于受到参数整定方法繁杂的困扰,常规PID控制器参数往往整定不良,性能欠佳,对运行工况的适应性很差[1]。因此常规PID控制的应用受到很大的限制和挑战。那么是否可以把神经网络和PID结合在一起,充分利用两者的优点呢,使新算法既有神经网络的学习能力又有PID控制的简单性呢?。基于以上种种因素,本文采用神经网络,选取应用最广泛的BP算法,与传统PID控制结合的控制策略来实现对主

汽温的有效控制,可以说这是采用多策略的智能控制与PID结合实现主汽温控制的又一次有益的尝试与探索。

1.4 本文所做的主要工作

首先,本文对神经网络的模型,结构,学习方式和学习算法作了介绍,并阐述了了BP神经网络的结构,算法. 接着结合BP神经网络和PID控制的原理,对二者进行了结合,采用了基于神经网络的自整定PID 控制,即把神经网络的输出当做PID的三个参数,在一定的准则函数下,不断自动调整这三个参数,直到满足一定的性能指标。

紧接着,在主汽温系统上进行仿真分析,锅炉主汽温对象是一个时变的对象,在不同的负荷下有不同的动态特性,因此对其不同的负荷均进行仿真分析。本文采用三层BP神经网络,经典增量式数字PID的控制算法,只要主汽温系统的输入输出之差不为0,就不断调整神经网络的权值,进而调整PID的参数。仿真结果表明:对于不同的要求不同的改进程序会有更好更稳定的仿真结果相比较常规PID。

1.5 本论文的章节安排

第一章、绪论

简单论述了选题的意义和重要性以及主汽温控制的研究现状,并阐述了论文的理论依据,说明了本论文所采用算法的可行性和必要性。最后介绍了本文所作的主要工作和文章的结构安排。

第二章、神经网络的基本理论

本章介绍了神经网络的基础知识,重点对BP神经网络的原理和结构进行了阐述。

第三章、基于BP神经网络的自整定PID控制原理

本章论述了基于BP神经网络的PID自整定控制的基本原理,为以后仿真分析打下基础。

第四章、基于BP神经网络在主汽温控制系统中的应用

本章首先对主汽温的动态特性进行分析,对常见的和改进的主汽温控制策略进行了进行了简单描述和总结,重点对主汽温进行仿真分析。

最后是结论与展望

本部分总结了本论文的成果和不足,提出以后应该注意和改进的地方,为以后的研究指明方向。

神经网络pid控制matlab程序

%Single Neural Adaptive PID Controller clear all; close all; x=[0,0,0]'; xiteP=0.40; xiteI=0.35; xiteD=0.40; %Initilizing kp,ki and kd wkp_1=0.10; wki_1=0.10; wkd_1=0.10; %wkp_1=rand; %wki_1=rand; %wkd_1=rand; error_1=0; error_2=0; y_1=0;y_2=0;y_3=0; u_1=0;u_2=0;u_3=0; ts=0.001; for k=1:1:1000 time(k)=k*ts; yd(k)=0.5*sign(sin(2*2*pi*k*ts)); y(k)=0.368*y_1+0.26*y_2+0.1*u_1+0.632*u_2; error(k)=yd(k)-y(k); %Adjusting Weight Value by hebb learning algorithm M=4; if M==1 %No Supervised Heb learning algorithm wkp(k)=wkp_1+xiteP*u_1*x(1); %P wki(k)=wki_1+xiteI*u_1*x(2); %I wkd(k)=wkd_1+xiteD*u_1*x(3); %D K=0.06; elseif M==2 %Supervised Delta learning algorithm wkp(k)=wkp_1+xiteP*error(k)*u_1; %P wki(k)=wki_1+xiteI*error(k)*u_1; %I wkd(k)=wkd_1+xiteD*error(k)*u_1; %D K=0.12; elseif M==3 %Supervised Heb learning algorithm wkp(k)=wkp_1+xiteP*error(k)*u_1*x(1); %P wki(k)=wki_1+xiteI*error(k)*u_1*x(2); %I wkd(k)=wkd_1+xiteD*error(k)*u_1*x(3); %D K=0.12; elseif M==4 %Improved Heb learning algorithm wkp(k)=wkp_1+xiteP*error(k)*u_1*(2*error(k)-error_1); wki(k)=wki_1+xiteI*error(k)*u_1*(2*error(k)-error_1); wkd(k)=wkd_1+xiteD*error(k)*u_1*(2*error(k)-error_1); K=0.12; end x(1)=error(k)-error_1; %P

BP神经网络在多传感器数据融合中的应用

BP神经网络在多传感器数据融合中的应用 摘要:提出一种基于多传感器神经网络融合的机动目标估计算法,利用BP 神经网络的函数逼近能力,将BP神经网络与卡尔曼滤波器相结合构成一个估计器,该算法可以对来自经不同噪声污染的传感器信息加以充分利用,在改善估计性能的同时又保持估计滤波的计算结构尽可能简单。仿真结果表明所提出的估计滤波算法在估计应用上优于一般的加权估计算法,提高了估计算法的精度。 关键词:BP神经网络卡尔曼滤波数据融合 一、引言 数据融合是指对来自多个传感器的信息进行融合,也可以将来自多个传感器的信息和人机界面的观测事实进行信息融(这种融合通常是决策级融合)。提取征兆信息,在推理机作用下.将征兆与知识库中的知识匹配,做出故障诊断决策,提供给用户。在基于信息融合的故障诊断系统中可以加入自学习模块.故障决策经自学习模块反馈给知识库.并对相应的置信度因子进行修改,更新知识库。同时.自学习模块能根据知识库中的知识和用户对系统提问的动态应答进行推理。以获得新知识。总结新经验,不断扩充知识库,实现专家系统的自学习功能。 多传感器数据融合是20世纪70年代以来发展起来的一门新兴边缘学科,目前已经成为备受人们关注的热门领域。多传感器数据融合是一门新兴技术,在军事和非军事领域中都碍到了广泛应用、多传感器数据融合技术汲取了人工智能、模式识别、统计估计等多门学科的相关技术,计算机技术的快速发展以及数据融合技术的成熟为数据融合的广泛应用提供了基础。 多传感器信息融合状态估计是多传感器信息融合学科的一个重要分支。多传感器数据融合的基本原理就像是人脑综合处理信息的过程一样,它充分利用多个传感器资源,通过对各种传感器及其观测信息的合理支配与使用,将各传感器在空间和时间上的互补与冗余信息依据某种优化准则组合起来,产生对观测环境的一致性解释和描述。目前有两种常用的信息融合方法:一种方法是状态融合方法,另一种方法是观测融合方法。状态融合方法又可分为集中式kalman滤波[1]和分散式kalman滤波。集中式kalman滤波虽然在理论上可获得全局最优融合状态估计,但这种方法计算量大,且容错性能差,而分散式kalman滤波信息融合能克服这些缺点,但这种方法是局部最优的,因此基于此思想我们可以利用BP神经网络来提高融合精度。 BP(Back Propagation)神经网络[2],即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成。输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果。当实际输出与期

pid神经网络控制器的设计

第三章 PID 神经网络结构及控制器的设计 在控制系统中,PID 控制是历史最悠久,生命力最强的控制方式,具有直观、实现简单和鲁棒性能好等一系列优点。但近年来随着计算机的广泛应用,智能控制被越来越广泛的应用到各种控制系统中。智能控制方法以神经元网络为代表,由于神经网络可实现以任意精度逼近任意函数,并具有自学习功能,因此适用于时变、非线性等特性未知的对象,容易弥补常规PID 控制的不足。将常规PID 控制同神经网络相结合是现代控制理论的一个发展趋势。 3.1 常规PID 控制算法和理论基础 3.1.1 模拟PID 控制系统 PID(Proportional 、Integral and Differential)控制是最早发展起来的控制策略之一,它以算法简单、鲁捧性好、可靠性高等优点而梭广泛应用于工业过程控制中。 PID 控制系统结构如图3.1所示: 图3.1 模拟PID 控制系统结构图 它主要由PID 控制器和被控对象所组成。而PID 控制器则由比例、积分、微分三个环节组成。它的数学描述为: 1() ()[()()]t p D i de t u t K e t e d T T dt ττ=+ +? (3.1) 式中,p K 为比例系数; i K 为积分时间常数: d K 为微分时间常数。 简单说来,PID 控制器各校正环节的主要控制作用如下: 1.比例环节即时成比例地反映控制系统的偏差信号()e t ,偏差一旦产生,控制器立即产生控制作用,以减少偏差。

2.积分环节主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积分时间常数i T ,i T 越大,积分作用越弱,反之则越强。 3.微分环节能反映偏差信号的变化趋势(变化速率),并能在偏差信号值变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调节时间。 具体说来,PID 控制器有如下特点: (1)原理简单,实现方便,是一种能够满足大多数实际需要的基本控制器; (2)控制器能适用于多种截然不同的对象,算法在结构上具有较强的鲁棒性,在很多情况下,其控制品质对被控对象的结构和参数摄动不敏感。 3.1.2 数字PID 控制算法 在计算机控制系统中,使用的是数字PID 控制器,数字PID 控制算法通常又分为位置式PID 控制算法和增量式PID 控制算法。 1.位置式PID 控制算法 由于计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量,故对式(3.1)中的积分和微分项不能直接使用,需要进行离散化处理。按模拟PID 控制算法的算式(3.1),现以一系列的采样时刻点kT 代表连续时间t ,以和式代替积分,以增量代替微分,则可以作如下的近似变换: t kT = (0,1,2,3...)k = ()()()k k t j j e t dt T e jT T e j ==≈=∑∑? ()()[(1)]()(1) de t e kT e k T e k e k dt T T ----≈= (3.2) 式中,T 表示采样周期。 显然,上述离散化过程中,采样周期T 必须足够短,才能保证有足够的精度。为了书写方便,将()e kT 简化表示()e k 成等,即省去T 。将式(3.2)代入到(3.1)中可以得到离散的PID 表达式为: 0(){()()[()(1)]}k D p j I T T u k K e k e j e k e k T T ==+ + --∑ (3.3) 或 0 ()()()[()(1)]}k p I D j u k K e k K e j K e k e k ==++--∑ (3.4) 式中,k ——采样序号,0,1,2...k =; ()u k ——第k 次采样时刻的计算机输出值;

基于神经网络的信息融合技术

基于多传感器信息融合的 数控机床故障诊断研究 1.引言 数控机床具有加工柔性好、加工精度高、加工质量稳定、生产率高等诸多特点,但其结构和运行工况也很复杂,一旦机床发生故障,引起故障的因素众多,有机械方面的,有电气方面的,同时同一种故障往往有不同的表现,同一种症状又常常是几种故障共同作用的结果,故障的多样性、复杂性和各故障之间的复杂联系构成了数控机床故障诊断中的重点和难点。每个传感器都有一定的功能和测量范围,单个传感器的数据从某个侧面反应被测对象或系统的情况,难免带有一定的局限性。仅仅通过单一传感器的特征提取和诊断分析将无法成功完成对数控机床的故障诊断任务。因此多传感器数据融合技术显得尤为重要,它能克服传感器使用的局限性和传感器信息的不准确性,充分地、综合地、更有效地利用多传感器信息,减少信息的模糊性,增加决策可信度,提高对数控机床的故障诊断的准确率。 多传感器数据融合是一种重要的传感器信息处理方法,它起源于20世纪70年代,最早被应用于军事领域,用于解决目标识别与跟踪、状态与身份估计、态势和威胁估计等技术问题。它能充分利用不同时间与空间的多传感器数据资源,在一定准则下进行分析、综合、支配和使用,得到对被测对象的一致性解释和描述,并做出相应的判断、估计和决策。 多传感器数据融合有多种算法,其中,D-S证据理论方法的应用最为广泛。本文主要建立了基于多传感器信息融合的数控机床二级故障诊断系统:基于自适应加权算法的一级融合,基于D-S证据理论的二级融合。然后利用某一论文中的数控机床的测量数据,通过MATLAB软件对其进行分析计算,最后得出结论。 2.基于多传感器信息融合的二级故障诊断系统 本文介绍了一种基于多传感器信息融合的二级故障诊断系统:基于自适应加权算法的一级融合,基于D-S证据理论的二级融合,如图1所示。

基于S函数的RBF神经网络PID控制器

基于径向基函数的神经网络的PID控制器 摘要 RBF神经网络在分类问题中得到了广泛的应用,尤其是模式识别的问题。许多模式识别实验证明,RBF具有更有效的非线性逼近能力,并且RBF神经网络的学习速度较其他网络快。本文在具有复杂控制规律的S函数构造方法的基础上,给出了基于MATLAB语言的RBF神经网络PID控制器,及该模型的一非线性对象的仿真结果。 关键词:S函数;RBF神经网络PID控制器;Simulink仿真模型径向基函数(RBF-Radial Basis Function)神经网络是由J.Moody和C.Darken 在20世纪80年代末提出的一种神经网络,它具有单隐层的三层前馈网络。由于它模拟了人脑中局部调整、相互覆盖接受域(或称野-Receptive Field)的神经网络结构,因此,RBF神经网络是一种局部逼近网络,已证明它能以任意精度逼近任意连续函数。 1.S函数的编写方法 S函数是Simulink中的高级功能模块,Simulink是运行在MATLAB环境下用于建模、仿真和分析动态系统的软件包。只要所研究的系统模型能够由MATLAB语言加以描述,就可构造出相应的S函数,从而借助Simulink中的S 函数功能模块实现MATLAB与Simulink之间的沟通与联系,这样处理可以充分发挥MATLAB编程灵活与Simulink简单直观的各自优势。当系统采用较复杂的控制规律时,Simulink中没有现成功能模块可用,通常都要采用MATLAB编程语言,编写大量复杂而繁琐的源程序代码进行仿真,一是编程复杂、工作量较大,二来也很不直观。如果能利用Simulink提供的S函数来实现这种控制规律,就可以避免原来直接采取编程的方法,不需要编写大量复杂而繁琐的源程序,编程快速、简捷,调试方便,则所要完成的系统仿真工作量会大大减少。 RBF神经网络PID控制器的核心部分的S函数为: function [sys,x0,str,ts]=nnrbf_pid(t,x,u,flag,T,nn,K_pid,eta_pid,xite,alfa,beta0,w0) switch flag,

神经网络PID控制

基于神经网络PID控制算法在多缸电液伺服系统同步控制中的仿真 研究 丁曙光,刘勇 合肥工业大学,合肥,230009 摘要:本文介绍了神经网络控制原理,提出了神经网络PID算法,通过选定三层神经网络作为调节函数,经过Simulink仿真确定了神经网络PID控制器的参数,设计了神经网络PID控制器。推导出多缸液压同步控制系统在各种工况下的传递函数,并把该控制器应用到多缸液压同步控制系统中。经过仿真研究表明该控制器控制效果良好,能满足多缸液压同步的控制要求。 关键词:多缸同步;PID算法;仿真;神经网络 Study on the simulation and appllication of hydraulic servo system of straihtening machine based on Immune Neural network PID control alorithm DING Shu-guang, GUI Gui-sheng,ZHAI Hua Hefei University of Technology, Hefei 23009 Abstract:The principle of immune feedback and immune-neural network PID algorithm was respectively.An immune-neural network PID controller was designed by which an adaline neural network was selected as antibody stay function and parameters of the immune-neural network PID controller were determined by simulation.The transfer function of the hydraulic servo system of crankshaft straightenin on were introduced in different working conditions.The immune-neural network PID controller was applied to hydraulic system of crankshaft straightenin.The simulation and equipment were done,and results show that its control effectiveness is better and can meet the needs of he hydraulic servo-system of crankshaft straightening hydraulic press. Key words:straightening machine; Immune control arithmetic; simulation;neural network 0引言 精密校直液压机(精校机)液压伺服系统是精校机的执行环节,高精度液压位置伺服控制是精校机的关键技术之一,它保证了液压伺服控制系统的控制精度、稳定性和快速性,是完成校直工艺的必要条件。因此,精校机液压伺服控制系统的研究,为精校机产品的设计和制造提供了理论依据,对校直技术和成套设备的开发具有重大的意义[1]。 精校机液压位置伺服系统是一个复杂的系统,具有如下特点:精确模型难建立,要求位置控制精度高、超调量小、响应快、参数易变且难以确定[1]。因此该系统的控制有较大的难度。传统的PID控制虽然简单易行,但参数调整困难,具有明显的滞后特性,PID 控制很难一直保证系统的控制精度,Smith预估补偿 国家重大科技专项资助(项目编号:2009ZX04004-021)安徽省自然科学基金资助(项目编号:090414155)和安徽省科技攻关项目资助(项目编号:06012019A)制方法从理论上为解决时滞系统的控制问题提供了一种有效的方法,但是Smith预估器控制的鲁棒性差,系统性能过分依赖补偿模型的准确性,限制了它在实际过程中的应用[1~5]。 近年来,人们开始将生物系统的许多有益特性应用于各种控制中[1~5],取得了一定成果。自然免疫系统使生物体的一个高度进化、复杂的功能系统,它能自适应地识别和排除侵入肌体的抗原性异物,并且具有学习、记忆和自适应调节功能,以维护肌体内环境的稳定。自然免疫系统非常复杂,但其抵御抗原(antigen)的自适应能力十分显著。生物信息的这种智能特性启发人们利用它来解决一些工程难题,这就引起多种免疫方法的出现。人工免疫系统就是借鉴自然免疫系统自适应、自组织的特性而发展起来的一种智能计算技术。该算法在大量的干扰和不确定环境中都具很强的鲁棒性和自适应性,在控制、优化、模式识别、分类

基于神经网络的PID控制

基于神经网络的PID控制 课程名称:智能控制 任课教师: 学生姓名: 学号: 年月日

摘要:本文基于BP神经网络的PID控制方法设计控制器,通过BP神经网络与PID的控制相结合的神经网络控制基本原理和设计来自适应的功能调节PID的的三个参数,并根据被控对象的近似数学模型来输出输入与输出并分析BP神经网络学习速率η,隐层节点数的选择原则及PID参数对控制效果的影响。计算机的仿真结果表示,基于BP神经网络的PID控制较常规的PID控制具有更好的自适应性,能取得良好的的控制结果。 关键字:BP算法神经网络 PID控制 Abstract:In this paper, based on BP neural network PID control method designed controller, through the BP neural network PID control with a combination of neural network control basic principles and design features adaptively adjusting the PID of the three parameters, and based on the controlled object approximate mathematical model to analyze the output and the input and output BP n eural network learning rate η, hidden layer nodes and PID parameter selection principle effect of the control . Computer simulation results indicated that based on BP neural network PID control compared with conventional PID control has better adaptability , can achieve good control results . Keyword:BP algorithms neural networks PID control 1引言 PID控制是最早发展起来的应用经典控制理论的控制策略之一,由于算法简单,鲁棒性好和可靠性高,被广泛应用于工业过程并取得了良好的控制效果。随着工业的发展,对象的复杂程度不断加深,尤其对于大滞后、时变的、非线性的复杂系统,常规PID控制显得无能为力。因此常规PID控制的应用受到很大的限制和挑战。 神经网络在控制系统中的应用提高了整个系统的信息系统处理能力和适应能力,提高了系统的智能水平。此外,神经网络具有逼近任意连续有界非线性函数的能力,对于非线性系统和不确定性系统,无疑是一种解决问题的有效途径。本文将常规PID控制与神经网络控制相结合,发挥各自的优势,形成所谓的智能PID控制。采用BP神经网络方法设计的控制系统具有更快的速度(实时性)、更强的适应性和更好的鲁棒性。 2 基于BP神经网络的PID控制 PID控制要取得较好的控制结果,必须通过调整好比例、积分和微分三种控制作用,形成控制量中既要相互配合又相互制约的关系。神经网络所具有的任意非线性表达能力,可以通过对系统性能的学习来实现最佳组合的PID控制。采用BP网络,可以建立参数Kp、Ki、Kd自学习的PID控制器。基于BP神经网络的PID控制系统结构由常规的PID控制器和神经网络两个部分构成。 2.1常规的PID控制器 PID控制器由比例(P)、积分(I)、微分(D)3个部分组成,直接对被控对象进行闭环控制,并且三个参数 Kp、Ki、Kd为在线调整方式。 2.2 神经网络 根据系统的运行状态,调节PID控制器的参数,以期达到某种性能指标的最

MATLAB基于BP神经网络PID控制程序

MATLAB基于BP神经网络PID控制程序>> %BP based PID Control clear all; close all; xite=0.20; %学习速率 alfa=0.01; %惯性因子 IN=4;H=5;Out=3; %NN Structure wi=[-0.6394 -0.2696 -0.3756 -0.7023; -0.8603 -0.2013 -0.5024 -0.2596; -1.0749 0.5543 -1.6820 -0.5437; -0.3625 -0.0724 -0.6463 -0.2859; 0.1425 0.0279 -0.5406 -0.7660]; %wi=0.50*rands(H,IN); %隐含层加权系数wi初始化 wi_1=wi;wi_2=wi;wi_3=wi; wo=[0.7576 0.2616 0.5820 -0.1416 -0.1325; -0.1146 0.2949 0.8352 0.2205 0.4508; 0.7201 0.4566 0.7672 0.4962 0.3632]; %wo=0.50*rands(Out,H); %输出层加权系数wo初始化 wo_1=wo;wo_2=wo;wo_3=wo; ts=20; %采样周期取值 x=[0,0,0]; %比例,积分,微分赋初值 u_1=0;u_2=0;u_3=0;u_4=0;u_5=0; y_1=0;y_2=0;y_3=0; Oh=zeros(H,1); %Output from NN middle layer 隐含层的输出I=Oh; %Input to NN middle layer 隐含层输入 error_2=0; error_1=0; for k=1:1:500 %仿真开始,共500步 time(k)=k*ts;

BP神经网络在信息融合技术中的应用

BP神经网络信息融合技术中的应用 宋志英 辽宁工程技术大学测绘与地理科学学院,辽宁阜新(123000) 摘要:主要介绍了组合导航系统中GPS/INS(卫星导航定位/惯性系统制导)中的传感器信息融合方法,并提出了多源图像融合制导的思想与方法.本文指出比较有应用前景的信息融合研究方法是基于模糊逻辑、小波分析等方法。为此提出了引入Elman神经网络,描述了它的状态估计的设计方法。,进而用Matlab程序实现神经网络的训练过程。 关键词:多传感器;组合导航;信息融合;BP神经网络;卡尔曼滤波 1. 引言 全球定位系统(GPS)是一种高精度的全球实时的卫星导航定位系统, 它是当前应用最为广泛的卫星导航定位系统,使用方便、成本低廉,操作简便。但它存在着动态响应能力较差, 易受外界信号干扰、动态环境中可靠性差以及数据输出频率低及等及完善性较差的缺点。惯性导航系统(INS)由于工作的完全自主性,成为目前航行体上的主要导航设备之一,但存在着误差会随时间增大的缺点。为克服这些缺点,根据INS和GPS导航功能优势互补的特点,以适当的方法将两者组合起来提高系统的整体导航精度。GPS接收机在惯导位置和速度信息的辅助下,也将改善捕获、跟踪和再捕获的能力,并在卫星分布条件差或可见星少的情况下导航精度不致下降过大[1]。由于优点显著,GPS/INS组合系统被一致认为是飞行载体最理想的组合导航系统,GPS和INS数据融合算法中最常用的工具是卡尔曼滤波器[2],但是在使用卡尔曼滤波器时,尚有许多问题有待解决,如处理速度等。本文设计了实现车载GPS/INS组合导航系统最优综合的联合卡尔曼滤波器,并给出了滤波算法。提出了一种自适应联合卡尔曼滤波器结构及其算法,并应用于GPS/INS组合导航系统的最优综合校正中。因此,将GPS的长期高精度特性与INS的短期高精度特性进行有机结合,使两者的组合起到优势互补的作用。 2. INS/GPS组合系统模糊推理规则 由于GPS/INS的系统误差以及外界干扰的影响,因此,组合导航系统模型的系统误差和量测噪声事先是未知的或难以精确确定的信号。模糊推理(如图1所示)是以模糊逻辑为基础模拟人的思维并进行知识处理,模糊系统的隶属度函数等设计参数依靠经验进行。通常,卡尔曼滤波器用于解决导航系统的参数估计问题,它可以从被噪声污染的观测值中实时地估计出系统的状态。但是,实际系统是一个复杂的非线性系统模型,难以用精确的数学模型描述。由于惯性元器件、GPS接收机输出数据误差的不确定性,系统噪声和量测噪声是事先未知或不能确定的信号。因此,使用卡尔曼滤波进行导航参数的估计时,系统参数估计的精度及可靠性受到很大的限制。模糊聚类多用于图像融合与图像边缘检测.聚类是按照一定的标准对用一组参数表示的样本群进行分类的过程.其中比较常用的是模糊c-均值聚类算法.模糊聚类的过程,也就是样本中的特征参数被融合、样本按标准被分类的过程.当选定一种相似性度量、差别检验以及停止规则后,就可得到一种特定的聚类分析算法.一般来讲,相似性度量的定义、聚类算法的选择、数据的排列方位,甚至输入数据的次序,都可能影响聚类的结果.因此,在使用聚类分析法时,应对其有效性和可重复性进行分析,已形成有意义的属性聚类结果.

神经网络PID

BP神经网络PID控制方法研究 引言 所谓“神经网络”是以一种简单计算处理单元(即神经元)为节点,采用某种网络拓扑结构构成的活性网络,可以用来描述几乎任意的非线性系统;不仅如此,神经网络还具有学习能力、记忆能力、计算能力以及各种智能处理能力,在不同程度和层次上模仿人脑神经系统的信息处理、存储和检索功能。 神经网络在控制系统中的应用提高了整个系统的信息系统处理能力和适应能力,提高了系统的智能水平。由于神经网络己具有逼近任意连续有界非线性函数的能力,对于长期困扰控制界的非线性系统和不确定性系统来说,神经网络无疑是一种解决问题的有效途径。采用神经网络方法设计的控制系统具有更快的速度(实时性)、更强的适应能力和更强的鲁棒性。 正因为如此,近年来在控制理论的所有分支都能够看到神经网络的引入及应用,对于传统的PID控制当然也不例外,以各种方式应用于PID控制的新算法大量涌现,其中有一些取得了明显的效果。 传统的控制系统设计是在系统数学模型己知的基础上进行的,因此,它设计的控制系统与数学模型的准确性有很大的关系。神经网络用于控制系统设计则不同,它可以不需要被控对象的数学模型,只需对神经网络进行在线或离线训练,然后利用训练结果进行控制系统的设计。神经网络用于控制系统设计有多种类型,多种方式,既有完全脱离传统设计的方法,也有与传统设计手段相结合的方式。 一般来说,基于神经网络的PID控制器的典型结构主要有两种,单神经元网络PID控制器和神经网络PID控制器两种控制算法。本章将详细介绍基于BP神经网络的PID控制算法,然后对单闭环调速系统的进行设计,对其进行Matlab 算法仿真。 基于BP神经网络的PID整定原理 PID控制要取得好的控制效果,就必须通过调整好比例、积分和微分三种控制作用在形成控制量中相互配合又相互制约的关系,这种关系不一定是简单的“线性组合”,而是从变化无穷的非线性组合中找出最佳的关系。BP神经网络具有逼近任意非线性函数的能力,而且结构和学习算法简单明确。通过网络自身的学习,可以找到某一最优控制规律下的P、I、D参数。 基于BP神经网络的PID控制系统结构如图3-1所示。控制器由两部分组成:

BP神经网络PID控制

BP 神经网络PID 控制 BP 神经网络的原理不再赘述,采用BP 神经控制对PID 进行参数整定的原理框图如下: BP 神经网络可以根据系统运行的状态,对PID 参数Kp,Ki 和Kd 进行调节,使系统达到最优的控制状态。经典的增量式数字PID 的控制算法为: ()(1)() ()(()(1))()(()2(1)(2))p I D u k u k u k u k K e k e k K e k K e k e k e k =-+??? ?=--++--+-? 采用三层BP 神经网络结构。 输入层神经元个数可根据被控系统的复杂程度选取。可从如下参数中选取,系统输入 in r ,系统输出out y ,系统误差e ,和误差变量e ?,可在系统误差e 的基础之上再加上其他 参数输入,使BP 神经网络能够适应更为复杂的系统的PID 参数整定。 隐层神经元的个数视被控系统的复杂程度进行调整,一本系统复杂时,就需选用更多的隐层神经元。 输出层的神经元个数为3个,输出分别为Kp,Ki 和Kd 。 隐层神经元函数一般选取正负对称的sigmoid 函数: (2) ()x x s x x e e f x e e ---= + 由于Kp,Ki 和Kd 必须为正,则输出层神经元函数的输出值一般可以选取正的sigmoid 函数: (3) 1()1s x f x e -= + 系统性能指标取:1()(()())2 in out E k r k y k = -

采用梯度下降法对BP 神经网络的参数进行调整: 设输入层的个数为N ,输出向量为(1)O ,隐层个数为H ,输入阵为(2) W ,为H ×N 维 向量,输出层的个数为3,输入阵设为(3) W 。 令(1)(1)(1)(1)12[,,,]T N O O O O = 设隐层的输入向量为(2)(1)hi W O =,hi 为列向量,第j 个隐层神经元的输入: (2) (1) 1 N j ji i i hi w O == ∑,(12,j H = ) 第j 个神经元的输出为(2) ()j s j ho f hi =; 输出层的输入(3)(3)I W ho =,输出为(3) (3) (3) ()[,,]T s p I D O f I K K K == 按照梯度下降法修正网络权系数,按E(k)的负方向调整系统,并且加一个是搜索加快的收敛全局极小的惯性量: (3) (3) (3) ()()(1)oj oj oj E k W k W k W η α??=-+?-?,其中η为学习速率,α为平滑因子; (3)(3) (3) (3)(3)(3)()() ()()() ()()()()()() o o oj o o oj O k I k E k E k y k u k W y k u k O k I k W k ???????= ???????(1,2,3o =,1,2,j H = ) 其中(3) o j W 为(3) W 的第o 行和第j 列。由于 ()() y k u k ???未知,通常由符号函数()sgn( ) () y k u k ???来代替,所带来的误差可以通过调整η来补偿; (3) 1(3) 2(3) 3() ()(1)()() ()()() ()2(1)(2)() u k e k e k O k u k e k O k u k e k e k e k O k ???=--??? ???=??? ???=--+-??? 若(3)()s f x 对应的梯度为(3) ()g x ,则 (3)(3)(3) ()T o o o O g x I ?=?, (3) (3)()() o j oj I k ho W k ?=?, 令(3) (3) (3) () () ()sgn( ) ()()() o o o y k u k e k g x u k O k δ???=??? 则最终(3) (3) (3) ()(1)oj o j oj W k ho W k ηδα?=+?-

神经网络PID

BP神经网络PID控制方法研究 3.1引言 所谓“神经网络”是以一种简单计算处理单元(即神经元)为节点,采用某种网络拓扑结构构成的活性网络,可以用来描述几乎任意的非线性系统;不仅如此,神经网络还具有学习能力、记忆能力、计算能力以及各种智能处理能力,在不同程度和层次上模仿人脑神经系统的信息处理、存储和检索功能。 神经网络在控制系统中的应用提高了整个系统的信息系统处理能力和适应能力,提高了系统的智能水平。由于神经网络己具有逼近任意连续有界非线性函数的能力,对于长期困扰控制界的非线性系统和不确定性系统来说,神经网络无疑是一种解决问题的有效途径。采用神经网络方法设计的控制系统具有更快的速度(实时性)、更强的适应能力和更强的鲁棒性。 正因为如此,近年来在控制理论的所有分支都能够看到神经网络的引入及应用,对于传统的PID控制当然也不例外,以各种方式应用于PID控制的新算法大量涌现,其中有一些取得了明显的效果。 传统的控制系统设计是在系统数学模型己知的基础上进行的,因此,它设计的控制系统与数学模型的准确性有很大的关系。神经网络用于控制系统设计则不同,它可以不需要被控对象的数学模型,只需对神经网络进行在线或离线训练,然后利用训练结果进行控制系统的设计。神经网络用于控制系统设计有多种类型,多种方式,既有完全脱离传统设计的方法,也有与传统设计手段相结合的方式。 一般来说,基于神经网络的PID控制器的典型结构主要有两种,单神经元网络PID控制器和神经网络PID控制器两种控制算法。本章将详细介绍基于BP神经网络的PID控制算法,然后对单闭环调速系统的进行设计,对其进行Matlab 算法仿真。 3.2基于BP神经网络的PID整定原理 PID控制要取得好的控制效果,就必须通过调整好比例、积分和微分三种控制作用在形成控制量中相互配合又相互制约的关系,这种关系不一定是简单的“线性组合”,而是从变化无穷的非线性组合中找出最佳的关系。BP神经网络具有逼近任意非线性函数的能力,而且结构和学习算法简单明确。通过网络自身的学习,可以找到某一最优控制规律下的P、I、D参数。 基于BP神经网络的PID控制系统结构如图3-1所示。控制器由两部分组成:

神经网络PID毕业设计完整

摘要 目前,由于PID具有结构简单,可通过调节比例积分和微分取得基本满意的控制性能,广泛应用在电厂的各种控制过程中。电厂主汽温的被控对象是一个大惯性大迟延非线性且对象变化的系统。常规汽温控制系统为串级PID控制或导前微分控制,当机组稳定运行时,一般能将主汽温控制在允许的范围内。但当运行工况发生较大变化时,却很难保证控制品质。因此本文研究BP神经网络的PID控制,利用神经网络的自学习、非线性和不依赖模型等特性实现PID参数的在线自整定,充分利用PID和神经网络的优点。本处用一个多层前向神经网络,采用反向传播算法依据控制要求实时输出Kp、Ki、Kd,依次作为PID控制器的实时参数,代替传统PID参数靠经验的人工整定和工程整定,以达到对大迟延主气温系统的良好控制。对这样一个系统在MATLAB平台上进行仿真研究,,仿真结果表明基于BP神经网络的自整定PID控制具有良好的自适应能力和自学习能力,对大迟延和变对象的系统可取得良好的控制效果。 关键词:主汽温,PID,BP神经网络,MATLAB仿真

ABSTRACT At present, because PID has a simple structure and can be adjusted proportional integral and differential to satisfactory control performance,,it is widely used in power plants of various control process. The system of Power plant main steam temperature is an large inertia、big time-delayed and nonlinear dynamic system. Conventional steam temperature control system adopted cascade PID control or the differential control of lead before, when the unit is stable, general will allow the steam temperature control in the range ,but when operating conditions changed greatly, it is difficult to ensure the quality of control. This article studies PID control based BP neural network . Using such characteristics of neural network self-learning, nonlinear and don't rely on model realize PID parameters online auto-tuning. It can make full use of the advantages of PID and neural network. Here,we use a multilayer feedforward neural network using back propagation algorithm and based on control requirements.This net can real-time output Kp, Ki, Kd as the PID controller parameters ,insteading of the traditional PID parameters determined by experience. So it can obtain good control performance .For such a system ,we can simulate in MATLAB simulation platform.The simulation results show that the PID control based BP neural network has good adaptive ability and self-learning ability.For the system of large delay and free-model can obtain good control effect. KEY WORDS: main steam temperature ,PID ,BP neural network,MATLAB simulation

基于BP神经网络的PID控制器设计

基于BP神经网络的PID控 制器设计 班级:21班 学号:2014561 姓名:常临妍

摘要 常规PID控制技术是工业控制中一种常用的控制方法。其结构简单、容易实现、控制效果良好,且能对相当一些工业对象或过程进行有效的控制,已得到广泛应用。但其局限性在于:当控制对象不同,或被控对象具有复杂的非线性特性时,难以建立精确的数学模型。控制器的参数难以自动调整以适应外界环境的变化。且由于对象和环境的不确定性,往往难以达到满意的控制效果。为了使控制器具有较好的自适应性,实现控制器参数的自动调整,可以借助BP神经网络控制的方法。BP神经网络已被证明具有逼近任意连续有界非线性函数的能力,给非线性控制带来了新的思路。利用人工神经网络的自适应能力,并结合传统的PID控制理论,构造神经网络PID控制器,实现控制器参数的自动调整。本文研究了基于BP神经网络的PID控制器设计,利用BP神经网络的自适应能力进行在线参数整定。其实现具有自适应性等特点,网络的收敛速度快,能够对非线性对象有很好的控制,系统的跟踪性能好。其参数设定无需知道被控对象的具体参数及其数学模型,对不同的对象具有适应性。 关键词:PID控制BP神经网络控制器设计

一.绪论 1.1神经元网络PID的发展历程 1934年,美国心理学家W.McCulloch和数学家W.Pitts用数学模型对神经系统中的神经元进行理论建模,建立了MP神经元模型。MP神经元模型首次用简单的数学模型模仿出生物神经元活动功能,并揭示了通过神经元的相互连接和简单的数学计算,可以进行相当复杂的逻辑运算这一事实。 1957年,美国计算机学家F.Rosenblatt提出了著名的感知器模型。它是一个具有连续可调权值矢量的MP神经网络模型,经过训练可达到对一定输入矢量模型进行识别的目的。 1959年,美国工程师B.Widrow和M.Hoff提出了自适应线性元件。它与感知器的主要不同之处在于其神经元有一个线性激活函数,这允许输出可以是任意值,而不仅仅只是像感知器中那样只能取0或1。提高了训练收敛速度和精度。他们从工程实际出发,不仅在计算机上模拟了这种神经网络,而且还做成了硬件,并将训练后的人工神经网络成功的用于小通讯中的回波和噪声,成为第一个用于解决实际问题的人工神经网络。 1969年,人工智能的创始人之一M.Minsky和S.Papert在合著《感知器》一书中,对以单层感知器为代表的简单人工神经网络的功能及局限性进行了深入分析,指出,单层感知器只能进行线性分类,对线性不可分的输入模式无效。而解决方法是设计出具有隐含层的多层神经网络。但要找到一个有效修正权矢量的学习算法并不容易。这一结论使当时许多神经网络研究者感到迷茫,对神经网络理论的发展起了消极作用。 1982年,美国学者J.Hopfield提出了霍普菲尔德网络模型,将能量函数引入到对称反馈网络中,使网络稳定性有了明显判据,并利用提出的网络的神经计算能力来解决条件优化问题。此模型可以用电子模拟线路实现,还兴起了对新一代电子神经计算机的研究。 1986年,D.E.Rumelhart等人提出的解决多层神经网络权值修正的算法——误差反向传播法,简称BP算法,找到了解决M.Minsky和S.Papert提出的问题的办法,给人工神经网络增添了新活力。 1.2神经网络的概念与特点 神经网络系统是指利用工程技术手段,模拟人脑神经网络结构和功能的一种技术系统,它是一种大规模并行的非线性动力学系统。由于它是由人工方式构造的网络系统,因此也称为人工神经网络系统。基于人工神经网络的控制简称为神经网络控制。神经网络控制是一种基本上不依赖于模型的控制方法,它适用于具有不确定性、事变的对象与环境,并具有较强的自适应能力、学习能力、非线性影射能力、鲁棒性和容错能力。 人工神经网络有以下几个突出的优点: ①能逼近任意L2上的非线性函数;②信息的并行分布式处理与存储;③可以多输入、多输出;④便于用超大规模集成电路或光学集成电路系统实现,或用现有的计算机技术实现;⑤能进行学习,以适应环境的变化。 人工神经网络还有以下优越性: 一、具有自学习功能。实现图像识别时,先把许多不同的图像样板和对应的

相关文档