文档库 最新最全的文档下载
当前位置:文档库 › 换元法与分部积分法

换元法与分部积分法

不定积分例题及答案 理工类 吴赣昌

第4章不定积分 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!

★(1) ? 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C --==-+? ★(2) dx ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+? ??? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++???() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 22 3311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:422 32233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

一元微积分多元微积分高等数学复习提纲(同济大学版)

(1) 1,补集的记号 2,什么是笛卡尔乘积 3,什么是邻域,记号,中心,半径 4,去心邻域,记号,左邻域,右邻域 5,两个闭区间的直积 6,映射的概念,原像,满射,单射,一一映射7,泛函,变换,函数 8,逆映射,复合映射 9,多值函数,单值分支 10,绝对值,符号函数,取整函数,最值函数11,上界、下界,有界,无界的定义 12,奇偶性、周期性 13,初等函数,基本初等函数 (2) 1,数列极限的定义,用符号语言 2,收敛数列的四个性质 3 (3) 1,函数在某点的极限定义,符号语言 2,函数在无穷大处的极限,符号语言 3,函数极限的性质 (4) 1,无穷小的定义 2,函数极限的充分必要条件,用无穷小表示3,无穷大 4,无穷大和无穷小的定义 (5) 1,有限个无穷小的和 2,有界函数与无穷小的乘积 3,极限的四则运算 4,函数y1始终大于y2,那么极限的关系是 (6) 1,极限存在的夹逼准则 2,单调有界的数列是否存在极限 3,(1+1/x)^x的极限 4,柯西审敛准则

1,什么是高阶无穷小,低阶无穷小,同阶无穷小,k阶无穷小,等价无穷小 2,等价无穷小的充要条件 3,两组等价无穷小之间的比例关系 (8) 1,函数连续性的定义,左连续,右连续 2,什么是连续函数 3,间断点的三种情况 4,第一类间断点,第二类间断点,可去间断点,条约间断点,无穷间断点,振荡间断点 (9) 1,连续函数的四则运算后的连续性 2,反函数和复合函数的连续性 3,初等函数的连续性 (10) 1,有界性与最大最小值定理 2,零点定理 3,介值定理和推论 第二章 (1) 1,导数的定义 2,函数在一点可导的充要条件,用等式表示 3,可导和连续的关系 (2) 1,函数的和差积商如何求导 2,tanx、secx的导数,cscx和cotx 3,反函数的求导法则是什么 4,arcsinx的导数,arccos的导数,arctanx, areccotx的导数 5,复合函数求导法则 (3) 1,二阶导数的微分表示法 2,莱布尼兹公式 3,a^x\sinkx\coskx\x^a\lnx\1/x\的n阶导 4,隐函数的求导 5,对数求导法的应用 6,参数所表示的函数怎样求导 7,什么是相关变化率

换元积分法(第一类换元法)

§4.2 换元积分法 Ⅰ 授课题目 §4.2 换元积分法(第一类换元法) Ⅱ 教学目的与要求: 理解第一类换元法的基本思想,它实际上是复合函数求导法则的逆过程,其关键是“凑微分”, dx x x d )()(?'=? . 掌握几种典型的凑微分的方法,熟练应用第一类换元积分法求有关不定积分. Ⅲ 教学重点与难点: 重点:第一换元法的思想, 难点:熟练应用第一换元法计算有关函数的不定积分. Ⅳ 讲授内容: 一、第一类换元积分法 设)(u f 具有原函数)(u F ,()()f u du F u C =+?.若u 是中间变量,()u x ?=,()x ?可微,则根据 复合函数求导法则,有 (())()[()]()dF x dF du du f u f x x dx du dx dx ???'===。 所以根据不定积分的定义可得: ()[()]()[()][][()]u x f x x dx F x C F u C f u du ????='=++=?? 以上是一个连等式可以改变顺序从新写一遍,就有 [][]()[()]()][()]()u x f x x dx f u du F u C F x C ????='=+=+? ?. 以上就是第一换元积分法。 从以上可以看出,虽然 [()]()f x x dx ??'?是一个整体记号,但是被积表达式中的dx 可当作变量x 的 微分来对待从而上式中的()x dx ?'可以看成是()x ?的微分,通过换元()u x ?=,应用到被积表达式中就得到()x dx du ?'=. 定理1 设)(u f 具有原函数)(u F ,)(x u ?=可导,dx x du )(?'=,则 [()()()()[()]f x x dx f u du F u C F x C ???'==+=+?? (1) 如何应用公式(1),在求不定积分积分()g x dx ? 时 如果被积函数g(x)可以化为一个复合函数与它 内函数的导函数的积的形式[()]()f x x ??'的形式 那么 ()()[()]()[()]x u g x dx f x x dx f u du ???='=??? ()()[()]u x F u C F x C ??==++.

定积分换元法

定积分换元法 1、先做这个题 H ■算 J* dx (a >0)* 这个题用一般的方法是无法解出来的,因为不知道到底哪个函数求导后是 a 2 ~ JC 1 i 。 我们可以设x=a*sin t ,要x 从0取到a ,只要t 从0取到n /2就行。现在 就用 a*sin t 代替x 。那么,就有 J a 1 _ £ A JT — a 2 COST tdt 求导数等于cos (2t )的函数是很容易求出来的。结果为 总结:所谓的换元思想,就是替换。x 既可以理解成一个自变量,也可以理 解成一 个函数。这个例题中把它当成自变量不好解,就尝试把它看成是一个函数。 这个函数是你自己可以编的。你可以用 x=a*cos t (- n /2

定理假设函数/(刃在区间3』]上连续,函数工二旗门满足条件: (1)卩 5)= 盘,f(p) = 6; (2)护("在4/](或上具有连续导數*且其值域尺申二⑺』]①* 则有^ /(j)d.r = J (t)dt,(1) 公式(1)叫做定积分的换元公式. 正向是第一类,逆向是第二类。 应该能理解了。就是把单独的变量看成一个整体和把整体看成一个变量的事。注意好积分号的上下限。

常见不定积分的求解方法

常见不定积分的求解方法的讨论 马征 指导老师:封新学 摘要介绍不定积分的性质,分析常见不定积分的各种求解方法:直接积分法、第一类换元法(凑微法)、第二类换元法、分部积分法,并结合实际例题加以讨论,以便于在解不定积分时能快速选择最佳的解题方法。 关键词不定积分直接积分法第一类换元法(凑微法)第二类换元法分部积分法。 The discussion of common indefinite integral method of calculating Ma Zheng Abstract there are four solutions of indefinite integration in this discourse: direct integration; exchangeable integration; parcel integration. It discussed the feasibility which these ways in the solution of integration, and it is helpful to solve indefinite integration quickly. Key words Indefinite integration,exchangeable integration, parcel integration.

0引言 不定积分是《高等数学》中的一个重要内容,它是定积分、广义 积分、狭积分、重积分、曲线积分以及各种有关积分的函数的基础, 要解决以上问题,不定积分的问题必须解决,而不定积分的基础就是 常见不定积分的解法。不定积分的解法不像微分运算时有一定的法 则,它要根据不同题型的特点采用不同的解法,积分运算比起微分运 算来,不仅技巧性更强,而且也已证明,有许多初等函数是“积不出 来”的,就是说这些函数的原函数不能用初等函数来表示,例如 ?-x k dx 22sin 1(其中10<

换元积分法(第二类换元法)

§4.2 换元积分法(第二类) Ⅰ 授课题目(章节): §4.2 换元积分法 (第二类换元积分法) Ⅱ 教学目的与要求: 1.了解第二类换元法的基本思想 2.掌握几种典型题的第二类换元积分法解法 Ⅲ 教学重点与难点: 重点:第二换元法中的三角代换及根式代换 难点:积分后的结果进行反代换 Ⅳ 讲授内容: 第一类换元积分法的思想是:在求积分()g x dx ? 时 如果函数g (x )可以化为[()]()f x x ??'的 形式 那么 () ()[()]()[()]() ()u x g x dx f x x dx f x d x f u du ?????='==???? ()F u C =+[()]F x C ?=+ 所以第一换元积分法体现了“凑”的思想.把被积函数凑出形如[()]()f x x ??'函数来.对于某些函数第一换元积分法无能为力,例如? -dx x a 22.对于这样的无理函数的积分我们就得用今天要学 习的第二类换元积分法。 第二类换元的基本思想是选择适当的变量代换)(t x ψ=将无理函数()f x 的积分 ()f x dx ?化为 有理式[()] ()f t t ψψ'的积分[()]()f t t dt ψψ'?。即 ()[()]()f x dx f t t dt ψψ'=?? 若上面的等式右端的被积函数[()] ()f t t ψψ'有原函数()t Φ,则[()]()()f t t dt t C ψψ'=Φ+?, 然后再把()t Φ中的t 还原成1 ()x ψ-,所以需要一开始的变量代换)(t x ψ=有反函数。 定理2 设)(t x ψ=是单调、可导的函数,且0)(≠ψ't ,又设)()]([t t f ψ'ψ有原函数()t Φ,则 ??+ψΦ=+Φ=ψ'ψ=-C x C t dt t t f dx x f )]([)()()]([)(1 分析 要证明 1()[()]f x dx x C ψ-=Φ+? ,只要证明1[()]x ψ-Φ的导数为()f x , 1[()]d d dt x dx dt dx ψ-ΦΦ=? , ?dt dx =

最新定积分的换元积分法与分部积分法

定积分的换元积分法与分部积分法

定积分的换元积分法与分部积分法 教学目的:掌握定积分换元积分法与分部积分法 难点:定积分换元条件的掌握 重点:换元积分法与分部积分法 由牛顿-莱布尼茨公式可知,定积分的计算归结为求被积函数的原函数.在上一章中,我们已知道许多函数的原函数需要用换元法或分部积分法求得,因此,换元积分法与分部积分法对于定积分的计算也是非常重要的.1.定积分换元法 定理假设 (1) 函数?Skip Record If...?在区间?Skip Record If...?上连续; (2) 函数?Skip Record If...?在区间?Skip Record If...?上有连续且不变号的导数; (3) 当?Skip Record If...?在?Skip Record If...?变化时,?Skip Record If...?的值在?Skip Record If...?上变化,且?Skip Record If...?, 则有 ?Skip Record If...?.(1) 本定理证明从略.在应用时必须注意变换?Skip Record If...?应满足定理的条件,在改变积分变量的同时相应改变积分限,然后对新变量积分.例1计算?Skip Record If...?. 仅供学习与交流,如有侵权请联系网站删除谢谢4

仅供学习与交流,如有侵权请联系网站删除 谢谢4 解 令?Skip Record If...?,则?Skip Record If...?.当?Skip Record If...?时,?Skip Record If...?;当?Skip Record If...?时,?Skip Record If...?.于是 ?Skip Record If...? ?Skip Record If...?. 例2 计算?Skip Record If...??Skip Record If...?. 解 令?Skip Record If...?,则?Skip Record If...?.当?Skip Record If...?时,?Skip Record If...?;当?Skip Record If...?时,? ?Skip Record If...??Skip Record If...? ?Skip Record If...? ?Skip Record If...? ?Skip Record If...?. 显然,这个定积分的值就是圆?(图5-8). 例3 计算?Skip Record If...?. 解法一 令?Skip Record If...?,则?Skip Record If...?. 当?Skip Record If...?时,?Skip Record If...?;当?Skip Record If...?时,?Skip Record If...?,于是 ?Skip Record If...?. 解法二 也可以不明显地写出新变量?Skip Record If...?,这样定积分的上、下限也不要改变. 即 ?Skip Record If...? ?Skip Record If...?.

换元法在不定积分和定积分中的联系与区别

换元法在不定积分和定积分中的联系与区别 1.第一换元法在不定积分和定积分中的联系与区别 1.1不定积分中第一换元法的定理形式 定理1若,且的原函数容易求出,记 , 则 . 证明若,令,于是有 因而 得证。 1.2定积分中第一换元法的定理形式 定理2若连续,在上一阶连续可导,且,在构成的区间上连续,其中,则 . 证明令,由于在构成的区间上连续,记,则 得证。 1.3 第一换元法在不定积分和定积分中的联系与区别 区别:第一换元法在定积分中对未知量给出了定义范围,要求换元函数在该定义域内一阶连续可导即可,对积分要求变弱。

联系:不定积分的实质是求一个函数的原函数组成的集合,部分定积分的计算可以利用不定积分的第一换元法求出简单函数的任意一个原函数,再用原函数在定义域的上下限的函数值取差值。 例1求. 解因为 即有一个原函数,所以 例2 计算积分. 解由于 于是 2.第二换元法在不定积分和定积分中的联系与区别 2.1不定积分中第二换元法的定理形式 定理3设连续,及都连续,的反函数存在且连续,并且 ,(1)则 (2)

证明将(2)式右端求导同时注意到(1)式,得 , 这便证明了(2)式。 2.2定积分中第二换元法的定理形式 定理 4 设在连续,作代换,其中在构成的区间上有连续导数,且,则 证明设是的一个原函数,则是的一个原函数。于是 , 定理得证。 2.3 第二换元法在不定积分和定积分中的联系与区别 区别:由不定积分中第二换元法的证明过程可知,不定积分中第二换元法要求变换的反函数存在且连续,并且。而在定积分的第二换元法则不这样要求,它通过换元法写出关于新变量的被积函数与新变量的积分上下限后可以直接求职,不像不定积分的计算最终需要对变量进行还原。 例3用第二换元法求解 解令,则

不定积分换元法例题

【不定积分的第一类换元法】 已知 ()()f u du F u C =+? 求()(())'()(())()g x dx f x x dx f x d x ????= =? ?? 【凑微分】 ()()f u du F u C = =+? 【做变换,令()u x ?=,再积分】 (())F x C ?=+ 【变量还原,()u x ?=】 【求不定积分()g x dx ? 的第一换元法的具体步骤如下:】 (1)变换被积函数的积分形式:()(())'()dx g x f x x dx ??=?? (2)凑微分:()(())((')))(()x g x dx d x dx f x f x ????= =??? (3)作变量代换()u x ?=得:()(())'()()()()g x dx f x x x x dx f d ????==? ??()u f u d =? (4)利用基本积分公式()()f u du F u C =+?求出原函数: ()(())'()(())()g x dx f x x dx f x d x ????==???()()d u u C f u F ==+? (5)将()u x ?=代入上面的结果,回到原来的积分变量x 得: ()(())'()(())()g x dx f x x dx f x d x ????==???()()f u du F u C ==+?(())F x C ?=+ 【注】熟悉上述步骤后,也可以不引入中间变量()u x ?=,省略(3)(4)步骤,这与复合函数的求导法则类似。 __________________________________________________________________________________________ 【第一换元法例题】 1、9 9 9 9 (57)(57)(5711(57)(57)55 )(57)dx d x d x dx x x x x +=+?=+?= +?++? ? ? ? 110091(57)(57)(57)10111 (57)5550 d C x x x x C =?=?+=+++++? 【注】1 (57)'5,(57)5,(57)5 x d x dx dx d x +=+==+?? 2、1ln ln ln ln dx d x x x dx x x x =?=???? 221 (l 1ln ln (ln )2n )2x x x d C x C =?=+=+? 【注】111 (ln )',(ln ),(ln )x d x dx dx d x x x x ===?? 3(1)sin tan cos co si s cos cos n cos cos xdx d x xdx dx x d x x x x x --= ===? ???? cos ln |cos |c ln |co s |o s x x d C x C x =-=-+=-+?

定积分换元法与分部积分法习题

1.计算下列定积分: ⑴ 3sin()3x dx π ππ +?; 【解法一】应用牛顿-莱布尼兹公式 3sin()3x dx π ππ +?3sin()()33x d x π πππ=++?3 cos() 3x πππ =-+ [cos()cos()]333π π π π=-+-+[cos (cos )]033 π π =----=。 【解法二】应用定积分换元法 令3 x u π + =,则dx du =,当x 从 3 π单调变化到π时,u 从 23π单调变化到43π ,于是有 3sin()3x dx π ππ +?4323 sin udu ππ=? 4323 cos u π π=-42[cos cos ]33 ππ=-- [cos (cos )]033 π π =----=。 ⑵ 1 32(115)dx x -+?; 【解法一】应用牛顿-莱布尼兹公式 1 32(115)dx x -+?13 2 1(115)(115)5x d x --=++?212 11(115)52 x --=?+- 22111[]10(1151)(1152)=- -+?-?211(1)1016 =--51512=。 【解法二】应用定积分换元法 令115x u +=,则1 5 dx du = ,当x 从2-单调变化到1时,u 从1单调变化到16,于是有 1 32(115)dx x -+?1631 15u du -=?2 161 1152 u -=?-211 (1)1016 =- -51512=。 ⑶ 32 sin cos d π ???? ; 【解法一】应用牛顿-莱布尼兹公式 3 20sin cos d π????3 2 cos cos d π??=-?420 1cos 4 π?=-441[cos cos 0]42 π =--

第二型曲线积分的分部积分方法

一[收稿日期]2018G03G15;一[修改日期]2018G06G30一[基金项目]山东科技大学教学团队项目(J X T D 20180504);山东科技大学青年教师支持计划项目(B J 162)一[作者简介]董浩宇(1997-),男,本科在读,数学专业.E m a i l :d o n g d o n g 971122@163.c o m 一[通讯作者]高德智(1963-),男,博士,教授,从事应用泛函分析方面的教学与研究工作.E m a i l :d h h s h h @163.c o m 第34卷第5期大一学一数一学V o l .34,?.52018年10月C O L L E G E MA T H E MA T I C S O c t .2018 第二型曲线积分的分部积分方法 董浩宇,一高德智(山东科技大学数学与系统科学学院,山东青岛266590 )一一[摘一要]利用乘积函数的全微分法,给出了平面和空间中第二型曲线积分的分部积分公式.通过几个实例说明所给的方法在计算曲线积分中是方便有效的.[关键词]全微分;曲线积分;分部积分[中图分类号]O 173.1一一[文献标识码]C 一一[文章编号]1672G1454(2018)05G0114G04 1一引一一言 微积分方法由于有其深刻的实际背景和系统的计算公式,因而在实际中得到非常广泛的应用[1-3].计算定积分的值是微积分的一个重要内容,对于定积分,一般可以通过求原函数利用牛顿-莱布尼茨公式得到.多重积分和曲线曲面积分可以通过累次积分和参数方程形式化为定积分逐步求出.因此,定积分的计算是最基本和最重要的内容.然而,有些看似很简单的函数要直接求出原函数有一定的难度,有时可以借助分部积分方法进行一些转换,使得求积分变得简单易行.例如,?l n x d x ,?a r c t a n x d x 等等[4].然而,这个重要的方法在多元函数积分和线积分中还没有被提到,这样在计算多元积分时就少了一些选项.由于第二型曲线积分与定积分有一定的关系,如果知道积分路径,并且路径能用参数方程表示,就 可以化为定积分;或者积分与路径无关时,也可以有很好的积分方法.文[5]利用线积分的某些对称性可以在特殊情形下简化计算过程,文[6]利用换元法讨论了曲线积分的计算问题.本文试图把分部积分法应用在第二型曲线积分上,以此拓展积分计算的范围,并通过几个例子说明本文所给的方法在某些问题 中是非常方便的. 2一第二型曲线积分的分部积分公式 先考虑二元函数情形.假设u (x ,y )和v (x ,y )是两个可微的二元函数, 由全微分公式知:d [u (x ,y )v (x ,y )]=v (x ,y )d u (x ,y )+u (x ,y )d v (x ,y ).另一方面,对于第二型曲线积分?A B ︵p (x ,y )d x +q (x ,y )d y ,如果被积表达式满足d u (x ,y )=p (x ,y )d x +q (x ,y )d y ,

定积分换元法与分部积分法习题教学文稿

定积分换元法与分部积分法习题

1 ?计算下列定积 分: ⑴ g 3)dx; 【解法 一】 应用牛顿-莱布尼兹公式 【解法二】 化到 sin( x 3 )dx sin(x 3 3 [cos( 应用定积分换元法 于是有 dx ; 2(11 5x)3; 【解法一】应用牛顿 u,则dx du , sin(x )dx 3 3 [cos 3 -莱布尼兹公式 1 dx 2(11 5x)31 (1 1 2 【解法二】应用定积分换元法 令11 5x u, 变化到16,于是有 1 dx 3 2(11 5x) 3)d(x 3)cos(x 3) cos(—一)] [ cos 3 3 3 当x从3单调变化到 4 2 3sinudu 3 (cos3)] 3 5x) 3d(11 1^(11 5 1 1)2 cosu 4 3 2 3 5x) 1(11 2 (11 5 2)2] 则dx 1du, 5 (cos )] 。 3 2 时,u从3单调变 [cos4 3 cos2] 3 5x) 2 1( 12 1) 10 162 51 512 当x从2单调变化到1时,u从1单调 16 u 1 3du 1 5 2 16 1 1o(卡1)誥。

⑶ 0%in cos 1 2 3 d ; 【解法一】应用牛顿-莱布尼兹公式 1 4 4 [cos cos 0] 4 2 【解法二】应用定积分换元法 单调变化到0,于是有 ⑷ o (1 sin 3 )d ; 由于1是独立的,易于分离出去独立积分,于是问题成为对 sin 3 d 的积分, 这是正、余弦的奇数次幕的积分,其一般方法是应用第一换元法,先分出一次 式以便作凑微分: sin d d cos ,余下的sin 2 1 cos 2 ,这样得到的 1 -cos 3 1] 令cos u , sin du , 单调变化到 2时,u 从1 2 sin cos 3 :u 3du 0u 3 du (1 cos 2 )d cos 便为变量代换做好了准备。 具体的变换方式有如下两种: 【解法一】 应用牛顿-莱布尼兹公式 3 0 (1 sin )d 1d °sin 2 sin d 0 o (1 cos 2 )d cos (cos (cos cos0) 1 (cos 3 3 cos 3 0) 【解法二】 应用定积分换元法 1) 1(1 1) 2 ? 3 2 sin cos d 2 3 2 cos dcos 1 4 cos 4 【解】被积式为(1 sin 3 )d ,不属于三角函数的基本可积形式,须进行变换。

定积分的换元积分法与分部积分法

定积分的换元积分法与分部积分法 教学目的:掌握定积分换元积分法与分部积分法 难 点:定积分换元条件的掌握 重 点:换元积分法与分部积分法 由牛顿-莱布尼茨公式可知,定积分的计算归结为求被积函数的原函数.在上一章中,我们已知道许多函数的原函数需要用换元法或分部积分法求得,因此,换元积分法与分部积分法对于定积分的计算也是非常重要的. 1.定积分换元法 定理 假设 (1) 函数)(x f 在区间],[b a 上连续; (2) 函数)(t x ?=在区间],[βα上有连续且不变号的导数; (3) 当t 在],[βα变化时,)(t x ?=的值在],[b a 上变化,且b a ==)(,)(β?α?, 则有 []dt t t f dx x f b a ?? '=β α ??)()()(. (1) 本定理证明从略.在应用时必须注意变换)(t x ?=应满足定理的条件,在改变积分变量的同时相应改变积分限,然后对新变量积分. 例1 计算? -2 1 1 dx x x . 解 令t x =-1,则tdt dx t x 2,12=+=.当1=x 时,0=t ;当2=x 时, 1=t .于是 ??? ?? ? ??+-=?+=-1021022 1 1112211dt t tdt t t dx x x ??? ? ?-=-=412)a r c t a n (210 πt t . 例2 计算? -a dx x a 0 22)0(>a .

解 令t a x sin =,则t d t a dx cos =.当0=x 时,0=t ;当a x =时,2 π = t .故 ? -a dx x a 0 22dt t a t a ??=20 cos cos π dt t a )2cos 1(2 20 2 += ? π 20 2 2s i n 212π ??????+= t t a 4 2 a π= . 显然,这个定积分的值就是圆222a y x =+在第一象限那部分的面积(图5-8). 例3 计算?20 5sin cos π xdx x . 解法一 令x t cos =,则xdx dt sin -=. 当0=x 时,1=t ;当2 π =x 时,0=t ,于是 6 1 6 1 sin cos 01 6 50120 5= -=-=?? t dt t xdx x π . 解法二 也可以不明显地写出新变量t ,这样定积分的上、下限也不要改变. 即 x d x x d x x c o s c o s s i n c o s 20 5 20 5 ?? -=π π 61610cos 61206 =??? ? ?--=-=π x . 此例看出:定积分换元公式主要适用于第二类换元法,利用凑微分法换元 不需要变换上、下限. 例4 计算dx x ?-π sin 1. 解 dx x ? -π sin 1?-=π02 c o s 2s i n dx x x 注去绝对值时注意符号.

用换元法求不定积分

用换元法求不定积分()f x dx ? 一、用第一类换元法 1、1()()()f ax b dx f ax b ax b dx a '+=++?? 1 ()f u du a u ax b =+? 例如 2、2221()()()2xf ax b dx f ax b ax b dx a '+=++?? 21 () 2f u du a u ax b =+? 例如 111()()()()n n n n n x f ax b dx f ax b a u x b dx f u du na na ax b -'+=++=+??? 3、sin (cos )(cos )(cos )xf x dx f x x dx '=-?? (os )c f u du u x -=? 例如 sin cos x e xdx ? cos (sin )(sin )(sin )xf x dx f x x dx '=?? sin ()f u u u x d =? 例如 ()32cos 1sin cos xdx x xdx =-?? 4、1()()()x x x x e f ae b dx f ae b ae b dx a '+=++? ? 1 ()x u ae f u a b du =+? 例如 e ? (ln )1(ln )(ln )f a x b dx f a x b a x b dx x a +'=++?? 1 ln ()f u du a u a x b =+? 例如 ()12ln 3dx x x +? 5、2(arctan )(arctan )(arctan )1f x dx f x x dx x '=+? ? arct an ()u f u u x d =? 2(arccot )(arccot )(arccot )1f x dx f x x dx x '=-+?? arc cot ()u f u du x =-? (arcsin )(arcsin )f x x dx '=?

不定积分换元法例题

【不定积分的第一类换元法】 已知()()f u du F u C =+? 求()(())'()(())()g x dx f x x dx f x d x ????==??? 【凑微分】 ()()f u du F u C ==+? 【做变换,令()u x ?=,再积分】 (())F x C ?=+ 【变量还原,()u x ?=】 【求不定积分()g x dx ?的第一换元法的具体步骤如下:】 (1)变换被积函数的积分形式:()(())'()dx g x f x x dx ??=?? (2)凑微分:()(())((')))(()x g x dx d x dx f x f x ????==??? (3)作变量代换()u x ?=得:()(())'()()()()g x dx f x x x x dx f d ????==???()u f u d =? (4)利用基本积分公式()()f u du F u C =+?求出原函数: ()(())'()(())()g x dx f x x dx f x d x ????==???()()d u u C f u F ==+? (5)将()u x ?=代入上面的结果,回到原来的积分变量x 得: ()(())'()(())()g x dx f x x dx f x d x ????==???()()f u du F u C ==+?(())F x C ?=+ 【注】熟悉上述步骤后,也可以不引入中间变量()u x ?=,省略(3)(4)步骤,这与复合函数的求导法则类似。 __________________________________________________________________________________________ 【第一换元法例题】

相关文档
相关文档 最新文档