文档库 最新最全的文档下载
当前位置:文档库 › 电子荷质比的测定

电子荷质比的测定

电子荷质比的测定
电子荷质比的测定

方法一数据

图象

方法二数据正向

得到斜率为434.2

得到斜率为424.3

y = 424.34x -19.007

60065070075080085090095010001.500

1.700 1.900

2.100 2.300 2.500

初始更正后线性(更正后)

U/Ic^2的图象(反向)

电子荷质比测定

实验报告 【实验名称】:电子荷质比测定 【实验目的】: 1、了解利用电子在磁场中偏转的方法来测定电子荷质比。 2、通过实验加深对洛伦兹力的认识。 【实验仪器】: FB710型电子荷质比测定仪 【实验原理】: 当一个电荷以速度v垂直进入磁场时,电子要受到洛伦兹力的作用,它的大小可由公式 f=ev*B (1) 所决定,由于力的方向是垂直于速度的方向,则电子的运动的轨迹是一个圆,力的方向指向圆心,完全符合圆周运动的规律,所以作用力与速度的关系为 f=mv^2/r (2) 其中r时电子运动圆周的半径,由于洛伦兹力就是使电子做圆周运动的向心力,因此 evB=mv^2/r (3) 由公式转换可得 e/m=v/rB (4) 实验装置是用一电子枪,在加速电压U的驱使下,射出电子流,因此eU全部转变成电子的输出动能,因此又有 eU=mv^2/2 (5) 由公式(4)、(5)可得 e/m=2U/(r*B)^2 (6) 实验中可采取固定加速电压U,通过改变偏转点了,产生不同的磁场,进而测量出电子束的圆轨迹半径,就能测定电荷的荷质比。 亥姆赫兹线圈产生磁场的原理, B=K*I (7)其中K为磁电变换系数,可表达为 K=μ0(4/5)∧(3/2)*N/R (8)其中μ0是真空导磁率,等于4T*m/A或H/m,R为亥姆赫兹线圈的平均半径,N为单个线圈的匝数,其他参数 R=158mm,N=130匝,因此公式(6)可以改写为 e/m=[125/32]R∧2U/μ0∧2N∧2I∧2r∧2=2.474×10∧12 R∧2U/N∧2I∧2r∧2(C/kg) (9) 【实验内容】: 1、正确完成仪器的连接。 2、开启电源,使加速电压文档于120V。 3、调节偏转电流,使电子束的运行轨迹形成封闭的圆,细心调节聚焦电压,使电子束明亮,缓缓改变亥姆兹线圈中的电流,观察电子束大小、偏转的变化。 4、测量步骤:

电子荷质比测定

实验具体内容与要求 1、理解电子束实验仪面板上各个旋钮的作用,并能够正确使用。 2、主要实验内容包括四部分:电聚焦、电偏转、磁聚焦和磁偏转。要求正确使用电子束实验 仪和数显直流稳压源、完整记录测量数据(包括有效数字和单位)。 3、通过用直角坐标纸作图及求直线的斜率,求得电偏转和磁偏转的灵敏度。 4、正确计算电子的荷质比。 预习基本要求 1、了解示波管的结构和工作原理。 2、明白电聚焦、电偏转和磁聚焦、磁偏转的主要原理、需要测量和记录的物理量。 3、理解电偏转和磁偏转灵敏度的含义和测量、计算方法。 4、理解通过磁聚焦测量电子荷质比的原理。通过查表计算出电子荷质比的理论值。 常见问题与解答 1、实验过程中有时会出现找不到光点(光斑)的情况,可能的原因和解决的办法如下: (1)亮度不够。解决的办法是适当增加亮度。 (2)已经加有较大的电偏电压(x方向或和y方向),使光点偏出示波器的屏幕。此时应通过 调节电偏转旋钮,使偏转电压降为零。

2、在进行负向电偏转实验时,外接电压表指针会反向偏转,造成无法读数。 这时要将电压表的两个接线端对调,同时电压的测量结果要加负号。 预习思考题 1、示波管主要是由哪几部分组成的?各部分的功能是什么? 2、用什么方法能使电子束偏转? 3、用什么方法能使电子束聚焦? 4、电偏转灵敏度与哪些因素有关? 5、磁偏转灵敏度与哪些因素有关? 6、如何发现和消除地磁场对测量电子荷质比的影响? 实验注意事项 1、接通电子束实验仪电源后,严禁用手触摸面板上的金属接线头,以防高压电击。 2、正确选择外接电压表的量程,测U1和U2时用1500V量程,测电偏转电压时用100V量程。 3、开启和关闭外接直流稳压电源前,必须将输出电压调为零,以免自感电动势损坏稳压电源。

实验5 电子荷质比的测定

电子荷质比的测量 一、实验目的 1.观察电子束在电场作用下的偏转。 2.加深理解电子在磁场中的运动规律,拓展其应用。 3.学习用磁偏转法测量电子的荷质比。 二、实验仪器 电子荷质比测定仪及电源 三、实验原理 众所周知当一个电子以速度v 垂直进入均匀磁场时,电子要受到洛仑兹力的作用,它的大小可由公式: e f ?= (2.10-1) 所决定,由于力的方向是垂直于速度的方向,则电子的运动轨迹就是一个圆,力的方向指向圆心,完全符合圆周运动的规律,所以作用力与速度又有: r mv f 2 = (2.10-2) 其中r 是电子运动圆周的半径,由于洛仑兹力就是使电子做圆周运动的向心力,因此可将(2.10-1)、(2.10-2)式联立: r mv evB 2 = (2.10-3) 由(2.10-3)式可得: rB v m e = (2.10-4) 实验装置是用一电子枪,在加速电压u 的驱使下,射出电子流,因此eu 全部转变成电子的输出动能:

22 1mv eu = (2.10-5) 将(2.10-4)与(2.10-5)式联立可得: 2 )(2B r u m e ?= (2.10-6) 实验中可采取固定加速电压u ,通过改变不同的偏转电流,产生出不同的磁场,进而测量出电子束的圆轨迹半径r ,就能测定电子的荷质比——e/m 。 按本实验的要求,必须仔细地调整管子的电子枪,使电子流与磁场严格保持垂直,产生完全封闭的圆形电子轨迹。按照亥姆霍兹线圈产生磁场的原理: I K B ?= (2.10-7) 其中K 为磁电变换系数,可表达为: R N K ?=23 0)54(μ (2.10-8) 式中0μ是真空导磁率,它的值270104--??=A N πμ,R 为亥姆霍兹线圈的平均半径,N 为单个线圈的匝数,由厂家提供的参数可知R=158mm ,N=130匝,因此公式(2.10-6)可以改写成: )(10474.2]32125[222212222202kg C r I N u R r I N u R m e ????=?????=μ (2.10-9) 四、实验步骤 1. 接好线路。 2. 开启电源,使加速电压定于120V ,耐心等待,直到电子枪射出翠绿色的电子束后,将加速电压定于100V 。本实验的过程是采用固定加速电压,改变磁场偏转电流,测量偏转电子束的圆周半径来进行。(注意:如果加速电压太高或偏转电流太大,都容易引起电子束散焦) 3. 调节偏转电流,使电子束的运行轨迹形成封闭的圆,细心调节聚焦电压,使电子束明亮,缓缓改变亥姆霍兹线圈中的电流,观察电子束的偏转的变化。 4. 测量步骤: (1)调节仪器后线圈上反射镜的位置,以方便观察;

电子束聚焦与电子荷质比的测量实验报告

电子束聚焦与电子荷质比的测量实验报告 选做实验2 电子束聚焦与电子荷质比的测量 电子电量e和电子静质量m的比值e/m称为电子的荷质比,又称电子比荷。1897年J.J.汤姆孙利用电磁偏转的方法测量了阴极射线粒子的荷质比,它比电解中的单价氢离子的荷质比约大2000倍,从而发现了比氢原子更小的组成原子的物质单元,定名为电子。 精确测量电子荷质比的值为1.75881962×1库仑/千克,根据测定电子的电荷,可确定电子的质量。 20世纪初W.考夫曼用电磁偏转法测量β射线(快速运动的电子束)的荷质比,发现e/m随速度增大而减小。这是电荷不变质量随速度增加而增大的表现,与狭义相对论质速关系一致,是狭义相对论实验基础之一。 【实验目的】 一、加深电子在电场和磁场中运动规律的理解; 二、了解电子束磁聚焦的基本原理; 三、学习用磁聚焦法测定电子荷质比e/m的值。 【实验原理】 一、示波管 示波管是电子束试验仪和示波器的主要部分,其结构图1

见图1,它由三部分组成: (1)电子枪:它发射电子,把电子加速到一定速度,并聚焦成电子束。 (2)由两对金属板组成的电子束偏转系统。 (3)在电子管末端的荧光屏,用来显示电子的轰击点。所有这些部都封在一个抽成真空的玻璃圆管内。一般管内的真空度为10-4Pa,这样可以使电子通过管子的过程中几乎不与气体分子碰撞。 阴极K是一个表面涂有氧化物的金属圆筒,是电子源,经灯丝加热后温度上升,一部分电子作逸出功后脱离金属表面成为自由电子。自由电子在外电场作用下形成电子流。栅极G为顶端开有小孔的圆筒,套在阴极之外,其电位比阴极低(-5V至-20V),使阴极发射出来具有一定初速的电子,通过栅极和阴极间的电场时减速。初速大的电子可以穿过栅极顶端小孔射向荧光屏,初速小的电子则被电场排斥返回阴极。如果栅极所加电位足够低,可使全部电子返回阴极。这样,调节栅极电位就能控制射向荧光屏的电子射线密度,即控制荧光屏上光点的亮度,这就是亮度调节,记符号为“¤”。 为了使电子以较大的速度打在荧光屏上,使荧光物质发光亮些,在栅极之后装有加速电极。加速电极是一个长形金属圆筒,筒内装有具有同轴中心孔的金属膜片,用于阻挡离开轴线的电子,使电子射线具有较细的截面。加速电极之后是第一阳极A1和

电子比荷的测定.

实验三:电子比荷的测定 一、实验目的 1、观察电子束在电场作用下的偏转。 2、观察运动电荷在磁场中受洛仑兹力作用后的运动规律,加深对此的理解。 3、测定电子的比荷 二、实验仪器 DH4520型电子比荷测定仪包括:洛仑兹力管、亥姆霍兹线圈、供电电源和读数标尺等部分。仪器采用一体化设计,整个安装在木制暗箱内,便于观察、测量、携带和贮存,如图一所示。 1、洛仑兹力管洛仑兹力管又称威尔尼管,是 本实验仪的核心器件。它是一个直径为153mm的大 灯泡,泡内抽真空后,充入一定压强的混合惰性气 体。泡内装有一个特殊结构的电子枪,由热阴极、 调制板、锥形加速阳极和一对偏转极板组成,如图 二所示。经阳极加速后的电子,经过锥形阳极前端 的小孔射出,形成电子束。具有一定能力的电子束 与惰性气体分子碰撞后,使惰性气体发光,从而使 电子束的运动轨迹成为可见。 2、亥姆霍兹线圈亥姆霍兹线圈是由一对绕向 一致,彼此平行且共轴的圆形线圈组成。如图三所示。当两线圈正向串联并通以电流I,且距离a等于线圈的半径r时,可以在线圈的轴线上获得不太强的均匀磁场。如两线圈间的距离a不等于r时,则轴线上的磁场就不均匀。 同学们可根据两个单个线圈轴线 上P点磁感应强度B的叠加,求出当 a=r时,亥姆霍兹线圈轴线上总的磁 感应强度B=9×104 I 3、供电电源供电电源的前面板如图四所示: 偏转电压偏转电压开关分“上正”、“断开”、“下正”三档。置“上正”时上偏转板接正电压,下偏转板接地。置“下正”时则相反。置“断开”时,上下偏转板均无电压接入。观察与测量电子束在洛仑兹力作用下的运动轨迹

时,应置“断开”位置。偏转电压的大小,由偏转电压开关下面的电位器调节。电压值从50~250V,连续可调,无显示。 阳极电压阳极电压接洛仑兹力管内的加速电极,用于加速电子的运动速度。电压值由数字电压表显示,值的大小由电压表下的电位器调节。实验时的电压范围约100~200V。 线圈电流线圈电流(励磁电流)方向开关分“顺时”、“断开”、“逆时”三档。置“顺时”时线圈中的电流方向为顺时针方向,线圈上的顺时批示灯亮,产生的磁场方向指向机内。置“逆时”时则相反。置“断开”时,线圈上的电流方向指示灯全熄灭,线圈中没有电流。电流值由数字电流表指示,值的大小,由电流表下面的电位器调节。 请注意:在转换线圈电流的方向前,应先将线圈电流值调到最小,以免转换电流方向时产生强电弧烧坏开关的接触点。 在观察电子束在电场力的作用下发生偏转时,应将此开关置“断开”位置。 在仪器后盖上设有外接电流表和外接电压表接线柱,以备在作课堂演示时外接大型电压表和电流表。 读数装置在亥姆霍兹线圈的前后线圈上,分别装有单爪数显游标尺和镜子,以便在测量电子束圆周的直径D时,使游标尺上的爪子、电子束轨迹、爪子在镜中的象三者重合,构成一线,以减小视差,提高读数的准确性。游标读数为inch和mm刻度两种,请选mm刻度。 实验原理 对于在均匀磁场B中的以速度v运动的电子,将受到洛仑兹力 f=evB 的作用。不v和B同向时,力F等于零,电子的运动不受磁场的影响。当v和B垂直时,力F垂直于速度v和磁感应强度B,电子在垂直于B的平面内作匀速圆周运动,如图五所示。维持电子作圆周运动的力就是洛仑兹力,即 mv2 EvB= r 式中R为电子运动轨道的半径。得电子比荷 由此可见实验中只要测定了电子运动的速度v,轨道的半径R和磁感应强度B,即可测定电子的比荷。 电子运动的速度v应该由加速电极,即阳极的电压U决定(电子离开阴极时的初速度相对来说很小,可以忽略)。即

电子束的偏转与聚焦实验报告

南昌大学物理实验报告 课程名称:普通物理实验(2) 实验名称:电子束的偏转与聚焦 学院:专业班级: 学生姓名:学号: 实验地点:座位号: 实验时间: 一、实验目的: 1、了解示波管的构造和工作原理。 2、定量分析电子束在匀强电场作用下的偏转情况和在均匀磁场作用下的偏转情况。 3、学会规范使用数字多用表。 4、学会磁聚焦法测量电子比荷的方法。

二、实验仪器: EB—Ⅲ电子束实验仪、直流稳压电源30V,2A、数字多用表。 三、实验原理: 1、示波管的结构 示波管又称为阴极射线管,其密封在高真空的玻璃壳之中,它的构造如图1所示,主要包括三个部分:前端为荧光屏,(S,其用来将电子束的动能变为光),中间为偏转系统(Y:垂直偏转板,X:水平偏转板),后端为电子枪(K:阴极,G:栅极,A1:聚焦阳极,A2:第二阳极,A3:前加速阳极)。灯丝H用交流供电,其作用是将阴极加热,使阴极发射电子,电子受阳极的作用而加速。 2、电聚焦原理 电子射线束的聚焦是电子束管必须解决的问题。在示波管中,阴极被加热发射电子,电子受阳极产生的正电场作用而加速运动,同时又受栅极产生的负电场作用只有一部分电子能够通过栅极小孔而飞向阳极。栅极G的电压一般要比阴极K 的电压低20~100V,由阴极发射电子,受到栅极与阴极间减速电场的作用,初速度小的电子被阻挡,而那些初速度大的电子可以通过栅极射向荧光屏。所以调节栅极电压的高低可以控制射向荧光屏的电子数,从而控制荧光屏上的辉度。当栅极上的电压负到一定的程度时,可使电子射线截止,辉度为0。 加速电极的电压比阴极电位高几百伏至上千伏。前加速阳极,聚焦阳极和第二阳极是由同轴的金属圆筒组成。由于各电极上的电压不同,在它们之间形成了弯曲的等势面、电场线。这样就使电子束的路径发生弯曲,这类似光线通过透镜那样产生了会聚和发散,这种电器组合称为电子透镜。改变电极间的电压分布,可以改变等势面的弯曲程度,从而达到电子束的聚焦。 3、电偏转原理 在示波管中,电子从被加热的阴极K逸出后,由于受到阳极电场的加速作用,使电子获得沿示波管轴向的动能。电场力做的功eU应等于电子获得的动能

实验二十五 电子束偏转与聚焦及电子荷质比的测定

实验二十五 电子束偏转与聚焦及电子荷质比的测定 【实验目的】 1. 了解示波管的基本构造和工作原理。 2. 掌握示波管中电子束电偏转和电聚焦的基本原理。 3. 掌握利用作图法求电偏转灵敏度的数据处理方法。 【实验原理】 1. 示波管的基本构造和工作原理(参见实验----示波器) 2. 电子束的电偏转 电子在两偏转板之间穿过时,如果两板之间电位差为零,电子则笔直穿过偏转板打在荧光屏中央(假定电子枪瞄准荧光屏中心)形成一个小亮斑,如果在两块Y (或X )偏转板上加有电压,电子就会受电场力的作用而发生偏转,如右图所示。 根据理论推导可得在Y 方向上的位移D y : 2y dy a lL D V dV = ? 式中l 是偏转板的长度,d 是偏转板Y 1与Y 2之间的宽度,L 是Y 偏转板的中心点到荧光屏的距离,V a 是阳极电压,V dy 是加在偏转板Y 1与Y 2之间的电压(简称偏转电压)。 3.示波管的电压偏转灵敏度 定义:示波管的电压偏转灵敏度是指偏转电压为1V 时,屏上光点位移的大小。分Y 偏转灵敏度和X 偏转灵敏度。 Y 偏转灵敏度:a dy y y dV lL V D S 2= = X 偏转灵敏度:a dx x x dV lL V D S 2== 【实验内容】 电偏转实验用来验证电子束在固定加速电压a V 下,电偏移量D 与偏转电压d V 之间的线性关系;可用描点法将D -d V 在Y X /坐标系中描绘出来,并依据直线斜率确定加速电压a V 与电偏转灵敏度S 之间的关系。 2、X 电偏转灵敏度测量

dy dx 数S y、S x.分析在不同阳极电压Va的情况下灵敏度系数的大小。作业:教材P219:分析讨论题2) 电子束测试仪面板图

磁聚焦法测电子荷质比

磁聚焦法测电子荷质比 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

电子荷质比的测量 胡洋洋 电子荷质比的测量———实验简介 带电粒子的电荷量与质量的比值,称为荷质比。荷质比是带电粒子的基本参量之一,是研究物质结构的基础。目前测得的电子荷质比的数值为。 带电粒子在磁场中受电场力的作用,在磁场中受磁场力的作用,带电粒子的运动状态将发生变化。这种现象的发现,为科学实验及工程技术带来了极大的应用价值。受电场力或磁场力的作用,带电粒子可以聚焦,形成细束流,这是示波管和显像管的工作基础。利用带电粒子在磁场和电场中的受力聚焦而形成的电透镜或磁透镜,是构成电子显微镜的基层本组件。带电粒子受力加速或改变运动方向,这又是直线加速器或回旋加速器的工作原理。此类电磁元件和仪器设备极大地丰富了科学研究和工程技术的方法和手段,推动了科学技术的发展。 实验原理 磁聚焦法测定电子荷质比 1.带电粒子在均匀磁场中的运动: a.设电子e在均匀磁场中以匀速V运动。当时,则在洛仑兹力f作用下作圆周运动,运动半径为R,由 (1) 得 (2)

如果条件不变,电子将周而复始地作圆周运动。可得出电子在这时的运动周期T: (3) 由此可见:T只与磁场B相关而与速度V无关。这个结论说明:当若干电子在均匀磁场中各以不同速度同时从某处出发时,只要这些速度都是与磁场B垂直,那么在经历了不同圆周运动,会同时在原出发地相聚。不同的只是圆周的大小不同,速度大的电子运动半径大,速度小的电子运动半径小(图1)。 图1 v垂直于B 图2 v与B成角 b.若电子的速度V与磁场B成任一角度: 我们可以把V分解为平行于磁场B的分量和垂直于B的分量;这时电子的真实运动是这两种运动的合成:电子以作垂直于磁场B的圆周运动的同时,以作沿磁场方向的匀速直线运动。从图2可看出这时电子在一条螺旋线上运动。 可以计算这条螺旋线的螺距: 由式3得 (4) 由此可见,只要电子速度分量大小相等则其运动的螺距就相同。这个重要结论说明如果在一个均匀磁场中有一个电子源不断地向外提供电子,那么不论这些电子具有怎样的初始速度方向,他们都沿磁场方向作不同的螺旋线运动,而只要保持它们沿磁场方向的速度分量相等,它们就具有相同的由式4决定的螺距。这就是说,在沿磁场方向上和电子源相距处,电子要聚集在一起,这就是电子的旋进磁聚焦现象。

电子束测量地磁场强度和电子荷质比测量

实验名称:电子束测量地磁场强度和电子荷质比测量 实验者:毛帅 同组实验者:郭玉柱 指导教师:尹会听 班级:A09轮机(2)班 学号:090204243 联系号:664622 【摘要】本实验利用电子束试验仪,根据运动的电子在不与之平行的磁场中受到洛伦磁力会偏转等原理,测得不同方位下电子的偏转量,求出地磁场强度。运用磁聚焦法,通过记录聚焦励磁电流的大小,利用公式计算出电子的荷质比,并于实际值做比较,讨论实验误差产生的原因及得出结论。 【关键词】地磁场强度 电子束 荷质比 聚焦 偏转量 引言:电子受磁场中的洛伦磁力会偏转的原理,在现实生活中广泛的应用。不管是电脑的显示器及电视的屏幕上显示的画面,都利用到该原理。同样我们的实验为了测量地磁场强度也利用到了电子的偏转。因此研究电子的性质十分重要,所以我们做了关于电子荷质比的测量实验,。 【实验原理】(一)测地磁场强度水平分量原理 当电子管中的偏转电压为零时,电子将在加速电压加速后打在荧光屏中心上。当改变加速电压但是不存在偏转电压时,电子打在荧光屏上的位置发生改变。研究发现次现象是由地磁场引起的。因此可利用次现象测量地磁场的强度。电子束从电子枪中发射出来时,速度v 可有 2 2 1m v eu 2 =求的 (其中u ?是加速电压) 由于电子所受的重力远小于洛伦磁力,忽略重力因素,由于在洛伦磁力作用下做圆弧运动,有式子 R=m v/e B 可求得圆弧的半径。电子在磁场中沿弧线大到荧光屏上一点,这一点相对于没有偏转的电子束的位置移动了距离D,有式子 m v 1-c o s D =R -R c o s =R (1-c o s )=eB θθθ() (2) 因为偏转角θ很小,上式可写成 2 s i n c o s 2 θ θθθ=,=1- 带入(2)式中得 2 2 mv mvsin D = 2eB 2eB θθ= 又有 L L e B s i n R m v θ== 所以的求得距离D 即 2 (3)。 其中L 是加速极到荧光屏的距离。调节加速电压和聚焦电压,在屏幕上得到一亮点,将 X,Y 偏转电压调为0,将光调到水平轴上,保持u ?不变,原地转动仪器,当地磁场的水平分量与电子束垂直是,光电的偏转量最大。记录光点的最高和最低的两个偏移量D ?,D ?取 D= 12 2 D D + 作为加速电压u ?时的偏转量,带人(3)式中可得地磁场的水平分量B. (二)电子的荷质比测量原理 当电子速度为v 时,进入磁场时收到的磁力为 ×f B ev = .当速度v 的方向与B 有夹角时可将v 分成与B 平行的v ?,与B 垂直的v ?。此时电子收到的磁场力为2f ev B =.在此

电子荷质比测量

实验6. 电子荷质比测量 带电粒子的电量与质量的比值--荷质比(又称:比荷),是带电微观粒子的基本参量之一。荷质比的测定在近代物理学的发展中具有重大的意义,是研究物质结构的基础。1897年,J.J.汤姆逊正是在对“阴极射线”粒子荷质比的测定中,首先发现电子的。测定荷质比的方法很多,汤姆逊所用的是磁偏转法,而本实验采用磁聚焦法。 一.实验目的 1.了解示波管的基本构造和工作原理。 2.理解示波管中电子束电聚焦的基本原理。 3.掌握利用作图法求电磁偏转灵敏度的数据处理方法。 二.实验原理 1.示波管的基本结构 示波管又叫阴极射线管,以8SJ31J为例,它的构造如图6.1所示,主要包括三个部分:前端为荧光屏,中间为偏转系统,后端为电子枪。 图6.1 示波管结构示意图 (1)电子枪 电子枪的作用是发射电子,并把它们加速到一定速度聚成一细束。电子枪由灯丝、阴极K、控制栅极G、第一阳极A l、第二阳极A2等同轴金属圆筒和膜片组成。灯丝通电后加热阴极K,使阴极K 发射电子。控制栅极G的电位比阴极低,对阴极发出的电子起排斥作用,只有初速度较大的电子才能穿过栅极的小孔并射向荧光屏,而初速度较小的电子则被电场排斥回阴极。通过调节栅极电位可以控制射向荧光屏的电子流密度,从而改变荧光屏上的光斑亮度。阳极电位比阴极电位高很多,对电子起加速作用,使电子获得足够的能量射向荧光屏,从而激发荧光屏上的荧光物质发光。第一阳极A l称为聚焦阳极;第二阳极A2称为加速阳极,增加加速电极的电压,电子可获得更大的轰击动能,荧光屏的亮度可以提高,但加速电压一经确定,就不宜随时改变它来调节亮度。 (2)偏转系统 偏转系统由两对互相垂直的偏转板(平板电容器)构成,其中一对是上下放置的Y轴偏转板(或称垂直偏转板),另一对是左右放置的x轴偏转板(或称水平偏转板)。若在偏转板的极板间加上电压,则板间电场会使电子束偏转,使相应荧光屏上光点的位置发生偏移,偏移量的大小与所加电压成正比。其中,X轴偏转板使电子束在水平方向(X轴)上偏移,Y轴偏转板使电子束在垂直方向(Y轴)上偏移。 (3)荧光屏 荧光屏是用来显示电子束打在示波管端面的位置。屏上涂有荧光物质,在高速电子轰击下发出荧光。当电子射线停止作用后,荧光物质将持续一段时间后才停止发光,这段时间称为余辉时间。不同材料的荧光粉发出的颜色不同,余辉时间也不同。如果电子束长时间轰击荧光屏上固定一点,则这一点会被烧坏而形成暗斑,所以当电子束光斑需要长时间停留在屏上不动时,应将光点亮度减弱。示波管内部表面涂有石墨导电层,叫屏蔽电极,它与第二阳极连在一起,可避免荧光屏附近电荷积累。

测定电子荷质比

设计性实验十 测定电子荷质比 实验目的 1.了解热电子发射(thermal emission)的概念。 2.理解磁控法测量电子荷质比(charge to mass ration)的原理。 3.加强学生作图法处理实验数据的训练。 4.训练学生用计算机软件采集和处理实验数据。 实验过程中重点学习内容 1.热电子发射的概念。 2.磁控法测量电子荷质比的原理。 3.磁控法测量电子荷质比计算机软件原理。 实验原理 若真空二极管的阴极(用被测金属钨丝做成)通以电流加热,并在阳极外加以正电压时,在连接这两个电极的外电路中将有电流通过。如图1所示:这种电子从热金属丝发射的现象,称热电子发射。 图1 热电子发射 图2 与成线性关系 a U 2 c I 如果将理想二极管置于磁场中,二极管中径向运动的电子将受到洛仑兹力的作用而作曲线运动。当磁场强度达到一定值时,作曲线运动的径向电子流将不再能达到阳极而“断流”。我们将利用这一现象来测定电子的荷质比。此种方法称为磁控法。 在单电子中,从阴极发射出质量为m 的电子的动能应由阳极加速电场能eUa 和灯丝加热后电子“热激发”所具有能量E 两部分构成,根据能量守恒定律有:

E eU m a +=22 1 υ ---- (1) 电子在磁场的作用下做半径为R 的圆周运动,应满足 B e R m υυ=2 ------ (2) 而螺线管线圈的磁感强度B 与励磁电流(field current)I s 成正比 ------ (3) s I K B ' =由(1), (2), (3)式可得: 2'2 2 2 K R m e I e E U s a ××=+ ------ (4) 设:K 2'2 2 K R m e ××= ----- (5) (K 为一—常量) 并设阳极内半径为r ,阴极(灯丝)半径忽略不计,则处于临界状态下有:R=2 r ; ,阳极电压与关系可写为:c s I I =a U c I e E KI U c a ?=2 ----- (6) 显然与成线性关系。改变不同的有不同的值与之对应,如图2所示,用同一个理想二极管在不同的阳极电压下用图解法可测得不同的值。根据数据组,求得斜率K ,由K 的值即可求得电子的荷质比a U 2 c I a U c I c I 2 c a I U ?2'21 2K R K m e ×× = 其中 ; n K 0' μ= m H 70104?×=πμ真空磁导率,n=线圈匝数T 。 按表1数据绘制图2,从图中求出并将、和列表2。由Is~Ia 曲线求切线,其交点对应的Ia 即Ic 。 c I a U c I 2 c I 表1 不同下的Is 和I a U a 数据 s I (mA ) a U =2.0V a I (μA) s I (mA) a U =3.0V a I (μA) s I (mA) a U =4.0V a I (μA) a U =5.0V s I (mA)

电子束(荷比)实验

电子束(荷质比)实验 测量物理学方面的一些常数(例如光在真空中的速度c,阿伏加德罗常数N,电子电荷e,电子的静止质量m )是物理学实验的重要任务之一,而且测量的精确度往往会影响物理学的进一步发展和一些重要的新发现。本实验将通过较为简单的方法,对电子e/m进行测量。 一、实验目的 1、了解示波管的结构; 2、了解电子束发生电偏转、电聚焦、磁偏转、磁聚焦的原理; 3、掌握一种测量荷质比的方法。 二、原理 (一)、电子束实验仪的结构原理 电子束实验仪的工作原理与示波管相同,它包括抽成真空的玻璃外壳、电子枪、偏转系统与荧光屏四个部分。 图1 1、电子枪 电子枪的详细结构如图1所示。电子源是阴极,它是一只金属圆柱筒,里面装有一根加热用的钨丝,两者之间用陶瓷套管绝缘。当灯丝通电(6.3伏交流)被加热到一定温度时,将会在阴极材料表面空间逸出自由电子(热电子)。与阴极同轴布置有四个圆筒的电极,它们是各自带有小圆孔的隔板。电极G称为栅极,它的工作电位相对于阴极大约是5-20V的负电位,它产生一个电场是要把从阴极发射出的电子推回到阴极去,只有那些能量足以克服这一阻止电场作用的电子才能穿过控制栅极。因此,改变这个电位,便可以限制通过G小孔的电子的数量,也就是控制电子束的强度。电极G′在管内与A2相连,工作电位V2相对于K一般是正几百伏到正几千伏。这个电位产生的电场是使电子沿电极的轴向加速。电极A1相对于K 具有电位V1,这个电位介于K和G′的电位之间。G′与A1之间的电场和A1与A2之间的电场为聚焦电场(静电透镜),可使从G发射出来的不同方向的电子会聚成一细小的平行电子束。这个电子束的直径主要取决于A1的小孔直径。适当选取V1和V2,可获得良好的聚焦。 2、偏转系统 电偏转系统是由一对竖直偏转板和一对水平偏转板组成,每对偏转板是由两块平行板组成,每对偏转板之间都可以加电势差,使电子束向侧面偏转。磁偏转系统是由两个螺线管形成的。 3、荧光屏 荧光屏是内表面涂有荧光粉的玻璃屏,受到电子束的轰击会发出可见光,显示出一个小光点。

磁聚焦和电子荷质比的测量

磁聚焦和电子荷质比的测量 【实验目的】 1、学习测量电子荷质比的一种方法。 【实验原理】 1、示波管的简单介绍: 示波管结构如图1所示 示波管包括有: (1)一个电子枪,它发射电子,把电子加速到一定速度,并聚焦成电子束; (2)一个由两对金属板组成的偏转系统; (3)一个在管子末端的荧光屏,用来显示电子束的轰击点。 所有部件全都密封在一个抽成真空的玻璃外壳里,目的是为了避免电子与气体分子碰撞而引起电子束散射。接通电源后,灯丝发热,阴极发射电子。栅极加上相对于阴极的负电压,它有两个作用:①一方面调节栅极电压的大小控制阴极发射电子的强度,所以栅极也叫控制极;②另一方面栅极电压和第一阳极电压构成一定的空间电位分布,使得由阴极发射的电子束在栅极附近形成一个交叉点。第一阳极和第二阳极的作用一方面构成聚焦电场,使得经过第一交叉点又发散了的电子在聚焦场作用下又会聚起来;另一方面使电子加速,电子以高速打在荧光屏上,屏上的荧光物质在高速电子轰击下发出荧光,荧光屏上的发光亮度取决于到达荧光屏的电子数目和速度,改变栅压及加速电压的大小都可控制光点的亮度。水平偏转板和垂直偏转板是互相垂直的平行板,偏转板上加以不同的电压,用来控制荧光屏上亮点的位置。 2、电子的加速和电偏转: 为了描述电子的运动,我们选用了一个直角坐标系,其z轴沿示波管管轴,x轴是示波管正面所在平面上的水平线,y轴是示波管正面所在平面上的竖直线。

从阴极发射出来通过电子枪各个小孔的一个电子,它在从阳极2A 射出时在z 方向上具有速度Z v ;Z v 的值取决于K 和2A 之间的电位差C B 2V V V +=(图2)。 电子从K 移动到2A ,位能降低了2V e ?;因此,如果电子逸出阴极时的初始动能可 以忽略不计,那么它从2A 射出时的动能 2z v m 2 1? 就由下式确定: 22 z V e v m 21?=? (1) 此后,电子再通过偏转板之间的空间。如果偏转板之间没有电位差,那么电子将笔直地通过。最后打在荧光屏的中心(假定电子枪描准了中心)形成一个小亮点。但是,如果两个垂直偏转板(水平放置的一对)之间加有电位差d V ,使偏转板之间形成一个横向电场y E ,那么作用在电子上的电场力便使电子获得一个横向速度y v ,但却不改变它的轴向速度分量z v ,这样,电子在离开偏转板时运动的方向将与z 轴成一个夹角θ,而这个θ角由下式决定: z y v v tg =θ (2) 如图3所示。果知道了偏转电位差和偏转板的尺寸,那么以上各个量都能计算出来。 设距离为d 的两个偏转板之间的电位差d V 在其中产生一个横向电场d /V E d y =,从而对电子作用一个大小为d /eV eE F d y y == 的横向力。在电子从偏转板之间通过的时间t ?内,这个力使电子得到一个横向动量y mv ,而它等于力的冲量,即

E.电子比荷的测量

实验名称电子比荷的测量 一、前言 19世纪80年代英国物理学家J.J汤姆孙做了一个著名的实验:将阴极射线受强 磁场的作用发生偏转,显示射线运行的曲率半径;并采用静电偏转力与磁场偏转力平 衡的方法求得粒子的速度,结果发现了“电子”,并得出了它的电荷量与质量之比 e m。 电子荷质比是电子的电荷量与其质量的比值,是研究物质结构的基础,其测定在 物理学发展史上占有重要的地位。经现代科学技术测定的电子荷质比的标准值是:11 1.75910C/kg 。测定电子荷质比的方法有很多,如磁偏转法、磁聚焦法、磁控管法、 滤速器法等。本实验仪沿用当年英国物理学家汤姆孙思路,利用电子束在磁场中运动 偏转的方法来测量电子的荷质比。 二、教学目标 1、了解电子在电场和磁场中的运动规律。 2、测量电子的荷质比。 3、掌握电子荷质比测试仪的测量原理及方法。 4、通过实验加深对洛伦兹力的认识。 三、教学重点 1、电子在磁场中的运动规律。 四、教学难点 1、电子圆运动轨道半径的测量。 五、实验原理 图1 电子在磁场中受力图当一个电子以速度v垂直进入均匀磁场时,电子就要受到洛 仑兹力的作用(图1):

f ev B =? (1) 由于力的方向是垂直于速度的方向,则电子的运动轨迹就是一个圆,力的方向指向圆心,完全符合圆周运动的规律,所以作用力与速度又有: 2f mv r = (2) 其中r 是电子运动圆周的半径,由于洛仑兹力就是使电子做圆周运动的向心力,因此可将(1)、(2)式联立: 2evB mv r = (3) 由(3)式可得: e v m rB = (4) 实验装置是用一电子枪,在加速电压U 的驱使下,射出电子流,因此加速电场所做功eU 全部转变成电子的输出动能: 22eU mv = (5) 将(4)与(5)式联立可得: 2 2()e U m r B =? (6) 实验中可采取固定加速电压U ,通过改变不同的偏转电流,产生出不同的磁场,进而测量出电子束的圆轨迹半径r ,就能测定电子的荷质比e m 。 按本实验的要求,必须仔细地调整管子的电子枪,使电子流与磁场严格保持垂直,产生完全封闭的圆形电子轨迹。按照亥姆霍兹线圈产生磁场的原理: B K I =? (7) 其中K 为磁电变换系数,可表达为: 3204()5N K R μ=? (8) 式中0μ是真空导磁率,它的值720410N A μπ--=??,R 为亥姆霍兹线圈的平均半径,N 为单个线圈的匝数,由厂家提供的参数可知158R mm =,130N =匝,将(7)和(8)代入公式(6)可得:

实验报告-磁聚焦法测定电子荷质比

实验报告-磁聚焦法测定电子荷质比 篇一:电子荷质比的测定(实验报告) 大学物理实验报告 实验名称磁聚焦法测电子荷质比实验日期 2020-04-24实验人员袁淳(202002120406) 【实验目的】 1. 了解电子在电场和磁场中的运动规律。 2. 学习用磁聚焦法测量电子的荷质比。 3. 通过本实验加深对洛伦兹力的认识。 【实验仪器】 FB710电子荷质比测定仪。 【实验原理】 当螺线管通有直流电时,螺线管内产生磁场,其磁感应强度B的方向,沿着螺线管的方向。电子在磁场中运动,其运动方向如果同磁场方向平行,则电子不受任何影响;如果电子运动力向与磁场方向垂直,则电子要受到洛伦兹力的作用,所受洛伦兹力为: F?evB 将运动速度分解成与磁感应强度平行的速度 v//和与磁感应强度垂直的速度v?。v//不受洛伦兹力的影响,继续 沿轴线做匀速直线运动。?在洛伦兹力的作用下做匀速圆周运动,其方程为:

2 mv F?evB? r 则 由阴极发射的电子,在加速电压U的作用下获得了动能,根据动能定理, 2 e2U ?则 2m(rB) 保持加速电压U不变,通过改变偏转电流I,产生不同大小磁场,保证电子束与磁场严格垂直,进而测量电子 v e?? mrB 1 mv?eU2 束的圆轨迹半径,就能测量电子的 r m值。

32 4?0NIB?()?螺线管中磁感应强度的计算公式以 5R 数=130匝; R为螺线管的平均半径=158mm。得到最终式: 表示,式中?0=4?×10 -7 H/m。N是螺线管的总匝 e?125?UR2U12 ???3.65399?10?22?C/kg??2m?32??0NIrIr 测出与U与I相应的电子束半径,即可求得电子的荷质比。 r 【实验步骤】 —第 1 页共 2 页— 1. 接通电子荷质比测定仪的电源,使加速电压定于120V,至能观察到翠绿色的电子束后,降至100V; 2. 改变偏转电流使电子束形成封闭的圆,缓慢调节聚焦电压使电子束明亮,缓慢改变电流观察电子束大小和偏转的变化; 3. 调节电压和电流,产生一个明亮的电子圆环; 4. 调节仪器后线圈的反光镜的位置以方便观察; 5. 移动滑动标尺,使黑白分界的中心刻度线对准电子枪口与反射镜中

用纵向磁聚焦法测定电子荷质比

2、::用纵向磁聚焦法测定电子荷质比::. 图一用纵向磁聚焦法测定电子荷质比实验装置全图 带电粒子的电量与质量的比值称荷质比,是带电微观粒子的基本参量之一。荷质比的测定在近代物理学的发展中具有重大的意义,是研究物质结构的基础。1897年,汤姆逊(J.J. Thomson)正是在对“阴极射线”粒子荷质比的测定中,首先发现电子的。测定荷质比的方法很多,汤姆逊所用的是磁偏转法,而本实验采 用磁聚焦法。 .::实验预习::.

图1 示波管结构 1.示波管的简单介绍 本实验所用的8SJ31型示波管的构造以及有关几何参数如图1所示. 阴极K是一个表面涂有氧化物的金属圆筒,经灯丝加热后温度上升,一部分电子作逸出功后脱离金属表面成为自由电子发射.自由电子在外电场作用下形成电子流.栅极G为顶端开有小孔的圆筒,套在阴极之外,其电位比阴极低,使阴极发射出来具有一定初速的电子,通过栅极和阴极间的电场时减速.初速大的电子可以穿过栅极顶端小孔射向荧光屏,初速小的电子则被电场排斥返回阴极.如果栅极所加电位足够低,可使全部电子返回阴极.这样,调节栅极电位就能控制射向荧光屏的电子射线密度,即控制荧光屏上光点的亮度,这就是亮度调节.记符号为“¤”. 为了使电子以较大的速度打在荧光屏上,使荧光物质发光亮些,在栅极之后装有加速电极,相对于阴极,其电压一般为1 KV至2 KV.加速电极是一个长形金属圆筒,筒内装有具有同轴中心孔的金属膜片,用于阻挡离开轴线的电子,使电子射线具有较细的截面.加速电极之后是第一阳极A1和第二阳极A2.第二阳极通常和加速电极相连,而第一阳极对阴极的电压一般为几百伏特.这三个电极所形成的电场,除对阴极发射的电子进行加速外,并使之会聚成很细的电子射线,这种作用称为聚焦作用.改变第一阳极的电压,可以改变电场分布,使电子射线在荧光屏上聚焦成细小的光点,这就是聚焦调节,记符号为“⊙”.当然,改变第二阳极的电压,也会改变电场分布,从而进一步改变电子射线在荧光屏上聚焦的好坏,这是辅助聚焦调节,记符号为“○”.

实验报告--磁聚焦法测定电子荷质比

实验报告 姓名:张伟楠班级:F0703028 学号:5070309108 实验成绩: 同组姓名:实验日期:2008.04.14 指导老师:批阅日期: 磁聚焦法测定电子荷质比 【实验目的】 1.学习测量电子荷质比的方法; 2.了解带电粒子在电磁场中的运动规律及磁聚焦原理。 【实验原理】 1、示波管 本实验所用的8SJ31型示波管由阴极K、栅极G、加速电极、第一阳极A1和第二阳极A2、X向偏转板D x、Y向偏转板D y组成。 2、电子射线的磁聚焦原理(偏转电场为零) I.在示波管外套一个通用螺线管,使在电子射线前进的方向产生一个均匀磁场,可以认为电子离开第一聚焦点F1后立即进入电场为零的均匀磁场中运动. II.在均匀磁场B中以速度运动的电子,受到洛仑兹力F的作用(1)

当v和B平行时,F等于零,电子的运动不受磁场的影响,仍以原来的速度v作匀速直线运动.当v和B垂直时,力F垂直于速度v和磁感应强度B,电子在垂直于B的平面内作匀速圆周运动.维持电子作圆周运动的力就是洛仑兹力,即 (2) 电子运动轨道的半径为:(3) 电子绕圆一周所需的时间(周期)T为(4) 从(3)、(4)两式可见,周期T和电子速度v无关,即在均匀磁场中不同速度的电子绕圆一周所需的时间是相同的.但速度大的电子所绕圆周的半径也大.因此,已经聚焦的电子射线绕一周后又将会聚到一点. III.在一般情况下,电子束呈圆锥形向荧光屏运动,如电子速度v和磁感应强度B之间成一夹角,此时可将v分解为与B平行的轴向速度v// (v// = v cosθ )和与B垂直的径向速度v θ ).v// 使电子沿轴方向作匀速运动,而v┴在洛仑兹力的作用下使电子绕轴作圆┴(v┴= v sin 周运动,合成的电子轨迹为一螺旋线,其螺距为 (5) 对于从第一聚焦点F1出发的不同电子,虽然径向速度v┴不同,所走的圆半径R也不同,但只要轴向速度v//相等,并选择合适的轴向速度v//和磁感应强度B(改变v的大小,可通过调节加速电压Ua;改变B的大小可调节螺线管中的励磁电流I),使电子在经过的路程l中恰好包含有整数个螺距h,这时电子射线又将会聚于一点,这就是电子射线的磁聚焦原理. 3、零电场法测定电子荷质比 因为θ 很小,可以近似认为电子在均匀磁场中运动时,具有相同的轴向速度v//=,由前述原理,通过改变励磁电流I,可以改变螺距h=,而增大B,使电子在磁场作

电子束的偏转和聚焦现象实验报告

南昌大学物理实验报告 课程名称:大学物理实验(下)_____________ 实验名称:电子束的偏转和聚焦现象 学院:信息工程学院专业班级: 学生姓名:学号: 实验地点:基础实验大楼B213 座位号: 实验时间:第11周星期三下午三点四十五分_______

一、实验目的: 1、了解示波管的基本结构和工作原理; 2、定量分析电子束在匀强电场作用下的偏转情况和在均匀磁场作用下的偏 转情况; 3、学会规范使用数字万用表; 4、学会磁聚焦原理测量电子的荷质比的方法。 二、实验原理: 1、示波管的基本结构 阳极电压U 2 :改变电子束的加速电压的大小。 聚焦电压U 1:用以调节聚焦极A 1 上的电压以调节电极附近区域的电场分布, 从而调节电子束的聚焦和散焦。 栅极电压U G (辉度):用以调节加在示波管控制栅极上的电压大小,以控制阴极发射的电子数量,从而控制荧光屏上光点的辉度。 U dX 偏转电压调节:-80V~80V。 调零X:用来调节光点水平距离。 U dY 偏转电压调节:-80~80V。 调零Y:用来调节光点上下距离。 2、电聚焦 电子射线束的聚焦是电子束管必须解决的问题。在示波管中,阴极被加热发射电子,电子受阳极产生的正电场作用而加速运动,同时又受栅极产生的负电场作用只有一部分电子能够通过栅极小孔而飞向阳极。栅极 G 的电压一般要比阴

极 K 的电压低 20~100V,由阴极发射电子,受到栅极与阴极间减速电场的作用,初速度小的电子被阻挡,而那些初速度大的电子可以通过栅极射向荧光屏。所以调节栅极电压的高低可以控制射向荧光屏的电子数,从而控制荧光屏上的辉度。当栅极上的电压负到一定的程度时,可使电子射线截止,辉度为 0。 加速电极的电压比阴极电位高几百伏至上千伏。前加速阳极,聚焦阳极和第二阳极是由同轴的金属圆筒组成。由于各电极上的电压不同,在它们之间形成了弯曲的等势面、电场线。这样就使电子束的路径发生弯曲,这类似光线通过透镜那样产生了会聚和发散,这种电器组合称为电子透镜。改变电极间的电压分布,可以改变等势面的弯曲程度,从而达到电子束的聚焦。 3、电偏转 电子在均匀电场内以从平行于板的方向进入电场,在电场力的作用下,在方向(垂直方向)产生偏离位移。 ——偏转电压(平行板间电位差) ——板间距离 ——板长 电子离开电场后不受电场力作用,将作匀速直线运动,等效直接从A 点(板 中点位置)直接射出(如图b 所示),故θ tg L l D ?? ? ??+='2 00''22v v L m d eU L l v v L l x y ? ??? ??? ?? ? ??+=??? ??+=20'2m dv eUl L l ??? ??+= 令L L l =+'2有 2 0m dv eUlL D = 如果加速电压为U 2

相关文档