文档库 最新最全的文档下载
当前位置:文档库 › 探究抛物线的隐含性质(于涵定理)

探究抛物线的隐含性质(于涵定理)

探究抛物线的隐含性质(于涵定理)
探究抛物线的隐含性质(于涵定理)

探索“抛物线”的几何性质(于涵定理)

-----临海市杜桥实验中学徐君斌

一、以小见大,培育探究精神

1.如图,抛物线)(0≠++=2a c bx ax y 与x 轴交于点A (1-,0),B (3,0),与y 轴 交于点C (0,2),则该抛物线的解析式为.

2.解题后探究:

(1)猜想:上题中,||a ,OA ,OB ,OC 存在某种关系,该关系可以表示为: =OC ,=||a .

(2)论证:若抛物线)(0≠++=2a c bx ax y 与x 轴交于点A (1x ,0),B (2x ,0),

与y 轴交于点C (0,c ),求证:21??=x x a c .

3.简单应用:

(1)抛物线)(0≠++=2

a c bx ax y 与x 轴交于点A (1,0),B (3,0),与y 轴交 于点C (0,2),则该抛物线的解析式为;

(2)抛物线)(0≠++=2a c bx ax y 与x 轴交于点A (1-,0),B (4,0),与y 轴 交于点C ,且o ACB 90=∠,则该抛物线的解析式为. 二、进一步探究(特殊→一般):

1.如图,抛物线))((3-1+3

2=x x y -与x 轴交于点A ,B ,与y 轴交于点C ,点P 在A , B 之间的抛物线上运动.

(1)P 的横坐标为1时,比较大小:PQ BQ AQ a ??||;

(2)P 的横坐标为m 时,比较大小:PQ BQ AQ a ??||;

(3)当o PAQ 45=∠时,=BQ . (o

PAQ 30=∠呢?)

2.如图,抛物线))((3-1=x x y --与x 轴交于点A ,B ,与y 轴交于点C ,CD ∥x 轴交 抛物线于另一点D ,CD AE ⊥轴于点E ,P 为CD 上方的抛物线上任意一点,CD PQ ⊥ 于点Q .

(1)比较大小:AE DE CE a ??||;

(2)比较大小:PQ DQ CQ a ??||;

(3)当o PCQ 30=∠时,=DQ .

3.如图,抛物线))((3-1=x x y --与x 轴交于点A ,B ,与y 轴交于点C ,P 为BC 上方 的抛物线上一点,PQ ∥y 轴,PQ CQ ⊥于点Q ,PQ 分别交x 轴,BC 于点D ,E . 请通过特殊点进行探究,并选出一个正确的式子( )

A.=PE BE CE a ??||

B.=PE BD CQ a ??||

C.=PQ BD CQ a ??||

D.=PQ BE CE a ??||

4.如图,P (p ,2ap ),M (m ,2am ),N (n ,2an )均在抛物线2=ax y 上,Q 在MN , 且PQ ∥y 轴,过点M ,N 分别作PQ MB ⊥,PQ NA ⊥. 请完成以下探究过程:

(1)请选取字母a ,p ,m ,n 表示下列各边长:

①=MB ;

②=AN ;

③=AB

; ④=PB ;

(2)由MBQ Δ∽NAQ Δ可得,AB AN MB MB BQ ?+=

,化简得: =BQ ;

(3)=+=BQ PB PQ ;

5.归纳总结:

三、小试牛刀:

1.(2006·河南压轴题改编)如图,是二次函数28

1=x y 的图象,过点M (0,2)的直线交 抛物线于点A ,B ,过点A ,B 分别作y 轴的垂线,垂足分别为C ,D . 则当点A 在抛 物线上运动时(点A 不与原点O 重合),请探究BD AC ?的值.

(1)当点A 横坐标为1-时,则BD AC ?的值为;

(2)随着点A 位置的变化,BD AC ?是否定值?若是定值,请求出该定值;若不是定值, 请说明理由.

2.如图,点A 在二次函数x x y 4+=2-图象的第三象限部分运动,直线AB ∥x 轴,且交 抛物线于点B ,将直线AB 绕点A 逆时针旋转o 45交抛物线于点C ,AB BD ⊥交AC 于 点D , BD CH ⊥于点H .

(1)当点A 横坐标为1-时,则=CH ;

(2)随着点A 横坐标由大变小,CH 的长度( )

A. 由大变小

B. 由小变大

C. 不变

D. 先变大后变小

(3)若将题中条件“旋转o 45”改为“旋转o α”,但保证

AC 与抛物线有交点,则=CH (用“α”表示).

3.如图,抛物线))((3-1=x x y --与x 轴交于点A ,B ,与y 轴交于点C ,P 为BC 上方 的抛物线上一点,PQ ∥y 轴交BC 于点Q ,设点P 横坐标为m .

探究:当m 为何值时,PQ 长度取得最大值?

四、探究抛物线的“内接直角三角形”:

1.如图,将直角三角板的直角顶点置于原点,两直角边与抛物线2=ax y 交于A ,B 两点.

(1)如图1,当22=OA 时,也有22=OB ,则=a ;

(2)对于同一抛物线,将三角板绕点O 旋转(如图2),分别作x AE ⊥轴,x BF ⊥轴, AB 与y 轴交于点P ,且测得1=OF .

①=OE ;

②点P 的坐标为;

(3)探究:在上题中,改变三角板位置(设n OF

=)

,点P 的坐标是否发生变化? (4)猜想点P 的坐标与a 的关系.

2.如图,P (p ,2ap ),M (m ,2am ),N (n ,2an )均在抛物线2=ax y 上,且PMN Δ是 以P 为直角顶点的直角三角形.

(1)通过图1的探究,我们猜想:斜边MN 定点(填“经过”或“不经过”);

(2)如图2,通过构造“一线三等角”进行探究:

①由MPC Δ∽PND Δ可得,ND

PC PD MC =,选取字母a ,p ,m ,n 表示该比例式: =

,化简得=2a ; ②由于涵定理可得(选取字母a ,p ,m ,n 表示):

=PQ ;

=''Q P ;

(3)综合(1)、(2)的探究结果,发现PQ 与''Q P 中,的长度是定值,因此斜边

MN (填“经过”或“不经过”

)定点(填“Q ”或“'Q ”),且该定 点的坐标可用a ,p 表示为.

3.反思:上述探究的意义何在?

《角平分线的性质定理及其逆定理》教学设计-01

《角平分线的性质定理及其逆定理》教学设计 教学设计思想: 通过前面的学习已经探究出角平分线上的点所具有的性质,本节学习对这个性质进行证明.让学生完成对三角形全等的判定公理的推论的证明,进而应用这个公理完成对角平分线性质定理的证明,对于平分线的性质定理的逆定理仿照上节课处理线段垂直平分线逆命题的思路,引导学生解决与定理和逆定理的有关问题.对于尺规作角平分线,要让学生明白每步做法的依据.最后通过例题的学习来巩固这些知识点. 教学目标: 知识与技能: 总结角平分线的性质定理及其逆定理的证明并能灵活应用它们进行有关的计算和证明; 说出用尺规作角平分线的依据; 能够熟练地按照证明的格式和步骤对一些命题进行证明. 过程与方法: 经历用尺规作角平分线的过程; 经历寻找证明、作图思路的过程,进一步发展推理证明意识和能力; 情感态度价值观: 通过观察、类比、对比、归纳等方法尝试从不同角度分析问题,形成不同的策略; 愿意动手操作,并和同伴交流,形成不同意见. 教学重点和难点: 重点是角平分线的性质定理和逆定理的证明及其应用; 难点是角平分线的性质定理和逆定理的应用. 解决办法:通过例题的学习,分析出解题的思路,总结出做题的方法. 教学方法: 启发引导、小组讨论 课时安排: 1课时 教具学具准备: 投影仪或电脑、三角板 教学过程设计: (一)角平分线的性质定理 我们已经探究出角平分线上的点所具有的性质,怎样对这个性质进行证明呢?

角平分线的性质定理角平分线上的点到这个角的两边的距离相等. 证明角平分线的性质定理时,我们将用到三角形全等判定公理的推论: 推论两角及其中一角的对边对应相等的两个三角形全等(AAS). 做一做 证明三角形全等判定公理的推论. 注:让学生独立按照证明的格式完成对“AAS”定理的证明,作为证明本节定理的依据. 证明略. 利用上面你已经证明的推论,可以对角平分线的性质定理给出如下的证明. 已知:如下图,OC是∠AOB的平分线,P是OC上任意一点,PD⊥OA,PE⊥OB,垂足分别为D,E. 求证:PD=PE. 证明:∴OC是∠AOB的平分线(已知), ∴∠1=∠2(角平分线的定义). ∵PD⊥OA,PE⊥OB(已知), ∴∠PDO=∠PEO=90°(垂直的定义). 在△PDO和△PEO中, ∠PDO=∠PEO (已证), ∠1=∠2(已证), OP=OP(公共边), ∴△PDO≌△PEO (AAS). ∴PD=PE(全等三角形的对应边相等). (二)角平分线性质定理的逆定理 做一做 1.请写出角平分线性质定理的逆命题. 2.请根据逆命题的内容,画出图形,并结合图形,写出已知和求证.

等腰三角形的性质和判定

1.1等腰三角形的性质和判定(2) 九年级数学备课组课型:新授 【学习目标】 在掌握了等腰三角形的性质定理和判定定理的基础上,探索等边三角形和其它相关知识的证明方法。 【重点、难点】 1、等边三角形的性质及其证明。 2、应用性质解题。 【预习指导】 上节课中,我们对等腰三角形的性质定理和判定定理进行了证明,请你写出这些定理。等腰三角形性质定理:(1)_______________________; (2)_______________________。 等腰三角形判定定理:______________________。 【思考与交流】 1、证明:两角及其中一角的对边对应相等的两个三角形全等。(简写为“AAS”) 2、证明:(1)等边三角形的每个内角都等于60°。 (2)3个内角都相等的三角形是等边三角形。 3、证明:(1)线段垂直平分线上的点到线段两端点的距离相等。 (2)到一条线段两个端点距离相等的点在这条线段的垂直平分线上。 【典题选讲】 例1.如图,在△ABC中,点O在AC上,过点O作M N∥BC,CE、CF分别是△ABC 的内外角平分线,与MN分别交于E、F,求证:OE=OF. 例2、在△ABC中,AB=AC,点D在AC上,且BC=BD=AD,则∠A的度数是多少?

变式; .如下图,在△ABC 中, AB=AC ,点D 、E 分别在AC 、AB 上,且BC=BD=DE=EA ,求∠A 的度数。 【课堂练习】 1、如图,在△ABC 中,∠B =∠C =36°,∠ADE =∠AED =2∠B ,由这些条件你能得到哪些结论?请证明你的结论。 2、已知:如图,△ABC 是等边三角形,DE ∥BC ,分别交AB 、AC 于点D 、E 。 求证:△ADE 是等边三角形。 A B C D E A B C D E

高中数学立体几何证明定理及性质总结

一.直线和平面的三种位置关系: 1. 线面平行 2. 线面相交 l 符号表示: 符号表示: 3. 线在面内 符号表示: 二.平行关系: 1.线线平行: 方法一:用线面平行实现。方法二:用面面平行实现。 m l m l l // // ? ? ? ? ? ? = ? ? β α β α m l m l// // ? ? ? ? ? ? = ? = ? β γ α γ β α 方法三:用线面垂直实现。若α α⊥ ⊥m l,,则m l//。 2.线面平行: 方法一:用线线平行实现。 α α α// // l l m m l ? ? ? ? ? ? ? ? 方法二:用面面平行实现。 α β β α // // l l ? ? ? ? ? 3.面面平行: 方法一:用线线平行实现。方法二:用线面平行实现 β α α β // ' , ' , ' // ' // ? ? ? ? ? ? ? ? ? ? 且相交 且相交 m l m l m m l l 。β α β α α // , // // ? ? ? ? ? ? ?且相交 m l m l 三.垂直关系: l 高中数学

高中数学 1. 线面垂直: 方法一:用线线垂直实现。 方法二:用面面垂直实现。 α α⊥??? ????? ?=?⊥⊥l AB AC A AB AC AB l AC l , αββαβα⊥???? ???⊥=?⊥l l m l m , 2. 面面垂直: 方法一:用线面垂直实现。 方法二:计算所成二面角为直角。 βαβα⊥?? ?? ?⊥l l 3. 线线垂直: 方法一:用线面垂直实现。 m l m l ⊥?? ?? ?⊥αα 方法二:三垂线定理及其逆定理。 PO l OA l PA l αα⊥? ? ⊥?⊥????

《等腰三角形的性质定理及其证明》教学设计

义务教育课程标准实验教材(冀教版)数学九年级上册《等腰三角形的性质定理及其证明》教学设计 沧县风化店乡中学刘青 教学目标:1、会证明等腰三角形的性质定理。 2、进一步体会证明的必要性,会用综合法进行证明 教学过程设计: 一、课前回顾: 复习等腰三角形的性质定理的内容 设计思路:通过复习性质定理的内容,分析其中的题设和结论,为证明做好准备。 二、明确证明的步骤: 画出图形,写出已知,求证。 设计思路:让学生更好的明确证明命题的一般步骤。 三、一起探究: 1、等腰三角形是轴对称图形,画出上图中等腰三角形ABC的对称轴。 2、对称轴将△ABC分成的两个三角形是否全等?说明理由。 3、把你证明∠B=∠C的过程写出来。 设计思路:通过一起探究中问题的引导,画出对称轴,找到全等三角形,从而形成证明的思路。 三、大家谈谈: 1、小亮的证明方法正确吗?你还有不同的证明方法吗?请与同学交流。 2、由Rt△ABD≌Rt△ACD,能推出AD是△ABC底边上的中线和顶角的 平分线吗? 设计思路:通过观察小亮的做题思路,让学生评价小亮的证明过程,同时对做顶角的角平分线和底边上的高线进行证明给予肯定和鼓励,使学生对问题能以题多解。 四、做一做: 试证明: 等边三角形的各角都相等,并且每一个角都等于60° 设计思路:使学生进一步感受演绎体系,理解推论的意义。 五、基本技能: 已知:如图,在△ABC中,AB=AC, D,E是BC边上的两点,且BD=CE. 求证:AD=AE 设计思路:让学生充分感受证明的过程并规范证明的过程。 六、数学与生活: 如图,是一个简易的水平仪, 其中,AC=AB, D为BC中点, 在点D处悬挂一个自然下垂的铅垂, A B C D E

抛物线的焦点弦经典性质及其证明过程

有关抛物线焦点弦问题的探讨 过抛物线px y 22 =(p>0)的焦点F 作一条直线L 和此抛物线相交于A ),(11y x 、B ),(22y x 两点 结论1: p x x AB ++=21 结论2:若直线L 的倾斜角为θ,则弦长θ 2 sin 2p AB = 证: (1)若2 π θ= 时,直线L 的斜率不存在,此时AB 为抛物线的通径,结论得证∴=∴p AB 2 (2)若2 π θ ≠ 时,设直线L 的方程为:θtan )2(p x y - =即2 cot p y x +?=θ 代入抛物线方程得0cot 222=-?-p py y θ由韦达定理θcot 2,21221p y y p y y =+-= 由弦长公式得 θ θθ2 2212sin 2)cot 1(2cot 1p p y y AB = +=-+= 结论3: 过焦点的弦中通径长最小 p p 2sin 21sin 22≥∴ ≤θ θΘ ∴AB 的最小值为p 2,即过焦点的弦长中通径长最短. 结论4: )(8 3 2为定值p AB S oAB =? 结论5: (1) 2 21p y y -= (2) x 1x 2=4 2 p 证44)(,2,22 2 221212 22211P P y y x x p y x p y x = =∴==Θ 结论6:以AB 为直径的圆与抛物线的准线相切 证:设M 为AB 的中点,过A 点作准线的垂线AA 1, 过B 点作准线的垂线BB 1, 过M 点作准线的垂线MM 1,由梯形的中位线性质和抛物线的定义知 2 2 2 1 11AB BF AF BB AA MM = += += 故结论得证 结论7:连接A 1F 、B 1 F 则 A 1F ⊥B 1F 同理?=∠∴∠=∠901111FB A FB B FO B ∴A 1F ⊥B 1 F 结论8:(1)AM 1⊥BM 1 (2)M 1F ⊥AB (3) BF AF F M ?=2 1 (4)设AM 1 与A 1F 相交于H ,M 1B 与 FB 1相交于Q 则M 1,Q ,F ,H 四点共圆 (5) 2 121214M M B M AM =+ 证:由结论(6)知M 1 在以AB 为直径的圆上∴ AM 1⊥BM 1 Θ11FB A ?为直角三角形, M 1 是斜边A 1 B 1 的中点 ∴M 1F ⊥AB BF AF F M ?=∴2 1 Θ AM 1⊥BM 1 F B F A 90111⊥?=∠∴Θ又B AM

高一数学定理总结(全)

1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 (济南加誉学堂) 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等 24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(sss) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即 a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 48定理四边形的内角和等于360° 49四边形的外角和等于360° 50多边形内角和定理 n边形的内角的和等于(n-2)×180° 51推论任意多边的外角和等于360°

三角形内角平分线的性质定理的证明

三角形内角平分线的性质定理的证明 一、定理 三角形内角平分线分对边为两部分与两邻边成比例. 二、证明 已知:如图,2∠1∠=. 求证: BC AC BD AD =. 方法一:利用平行线作等比代换. 证明:作DE//BC ,DE 交AC 于点E ,则EC AE BD AD =.3∠2∠=,BC AC DE AE = 又2∠1∠=,∴3∠1∠=,于是DE=EC. ∴BC AC DE AE BD AD == 方法二:应用平行线分线段成比例定理,等比代换中辅以等量代换. 如图,作BE//DC ,BE 交AC 的延长线于点E ,则CE AC BD AD =,E ∠1∠=,3∠2∠=.

又2∠1∠=,得E ∠3∠=,于是 BC=CE , 则BC AC BD AD =. 方法三:进行逆推分析,若在AC 的延长线上作一个CE=BC ,则只要BE//DC. 延长AC 到点E ,使CE=BC ,连接BE ,则)(E ∠3∠21 3∠+=.又∠ACB 2 12∠=, ∠E ∠3∠+=ACB ,∴3∠2∠=,于是 BE//DC. 则CE AC BD AD ==BC AC . 证法4:如图20.改变△ADC 的一个内角的大小,把它改造为△AEC ,使之与△BDC 相似并作等量代换. 第一种情况:当BC AC ≠ 时,不妨设BC AC >,B CAB ∠∠<,以AC 为一边,在CAB ∠的同侧,作B CAE ∠∠=,AE 与CD 的延长线交于点E.又2∠1∠=,∴△ACE ∽△BCD. 则BC BD AC AE =,而E CA E B ∠∠-1∠-180∠-2∠-1804∠3∠=°=°==. ∴AE=AD ,于是 BC BD AC AD =,即BC AC BD AD =.

等腰三角形的判定定理(解析版)

考点04 等腰三角形的判定定理 1.(2020·浙江·中考模拟)以下列各组数据为边长,可以构成等腰三角形的是() A.1,1,2 B.1,1,3 C.2,2,1 D.2,2,5 【答案】C 【解析】根据三角形的三边关系对以下选项进行一一分析、判断. 2.(2020·甘肃·期中试卷)△ABC中,AB=AC,∠A=∠C,则△ABC是() A.等腰三角形 B.等边三角形 C.不等边三角形 D.不能确定 【答案】B 【解析】根据AB=AC可得∠B=∠C,结合∠A=∠C即可判断出△ABC的形状. 3.(2020·广西期末试卷)下列三角形中,是正三角形的为() ①有一个角是60°的等腰三角形;①有两个角是60°的三角形; ①底边与腰相等的等腰三角形;①三边相等的三角形. A.①① B.①① C.①① D.①①①① 【答案】D 【解析】等边三角形的判定定理有①三个都相等的三角形是等边三角形,①有一个角是60°的等腰三角形是等边三角形,①三边都相等的三角形是等边三角形,根据以上定理判断即可. 4.(2020·浙江·月考试卷)等腰三角形补充下列条件后,仍不一定成为等边三角形的是() A.有一个内角是60° B.有一个外角是120° C.有两个角相等 D.腰与底边相等 【答案】C 【解析】(1)由定义判定:三条边都相等的三角形是等边三角形. (2)判定定理1:三个角都相等的三角形是等边三角形. (3)判定定理2:有一个角是60°的等腰三角形是等边三角形.

5.(2020·山西·月考试卷)下列命题不正确的是() A.等腰三角形的底角不能是钝角 B.等腰三角形不能是直角三角形 C.若一个三角形有三条对称轴,那么它一定是等边三角形 D.两个全等的且有一个锐角为30°的直角三角形可以拼成一个等边三角形 【答案】B 【解析】利用等腰三角形的性质和等边三角形的判定的知识,对各选项逐项分析,即可得出结果. 6.(2020·陕西·中考模拟)如图,在△ABC中,AB=AC,∠A=36°,BD,CE是角平分线,则图中的等腰三角形共有() A.8个 B.7个 C.6个 D.5个 【答案】A 【解析】根据三角形内角和定理求出∠ABC=∠ACB=72°,根据角平分线求出∠ABD=∠DBC=∠ACE=∠ECB =36°,根据三角形内角和定理求出∠BDC、∠BEC、∠EOB、∠DOC,根据等腰三角形的判定推出即可. 7.(2020·四川·期末试卷)如图,AD⊥BC,D是BC的中点,那么下列结论错误的是() A.△ABD?△ACD B.∠B=∠C C.△ABC是等腰三角形 D.△ABC是等边三角形 【答案】D 【解析】根据垂直的定义可得∠ADB=∠ADC=90°,根据线段中点的定义可得BD=CD,然后利用“边角边”证明△ABD和△ACD全等,根据全等三角形对应角相等可得∠B=∠C,全等三角形对应边相等可得AB=AC,

抛物线的焦点弦-经典性质及其证明过程

有关抛物线焦点弦问题的探讨 过抛物线px y 22 =(p>0)的焦点F 作一条直线L 和此抛物线相交于A ),(11y x 、B ),(22y x 两点 结论1:p x x AB ++=21 p x x p x p x BF AF AB ++=+++ =+=2121)2 ()2( 结论2:若直线L 的倾斜角为θ,则弦长θ2 sin 2p AB = 证: (1)若2 π θ= 时,直线L 的斜率不存在,此时AB 为抛物线的通径,结论得证∴=∴p AB 2 (2)若2 π θ≠ 时,设直线L 的方程为:θtan )2(p x y - =即2 cot p y x +?=θ 代入抛物线方程得0cot 222=-?-p py y θ由韦达定理θcot 2,21221p y y p y y =+-= : 由弦长公式得θ θθ22212 sin 2)cot 1(2cot 1p p y y AB = +=-+= 结论3: 过焦点的弦中通径长最小 p p 2sin 21sin 22≥∴ ≤θ θ ∴AB 的最小值为p 2,即过焦点的弦长中通径长最短. 结论4: )(8 3 2为定值p AB S oAB =?

()8 sin 2sin sin 2221sin 21sin 21sin 2 1 sin 21322 20P AB S p p p AB OF BF AF OF AF OF BF OF S S S OAB AF OBF OAB = ∴=???=??=+?=??+??= +=????θθθθθ?θ 结论5: (1) 2 21p y y -= (2) x 1x 2=4 2 p 证44)(,2,22 2 221212 22211P P y y x x p y x p y x = =∴== 结论6:以AB 为直径的圆与抛物线的准线相切 : 证:设M 为AB 的中点,过A 点作准线的垂线AA 1, 过B 点作准线的垂线BB 1, 过M 点作准线的垂线MM 1,由梯形的中位线性质和抛物线的定义知 2 2 2 1 11AB BF AF BB AA MM = += += 故结论得证 结论7:连接A 1F 、B 1 F 则 A 1F ⊥B 1F FA A FO A FO A F AA OF AA AFA F AA AF AA 11111111//,∠=∠∴∠=∠∴∠=∠∴= 同理?=∠∴∠=∠901111FB A FB B FO B ∴A 1F ⊥B 1 F 结论8:(1)AM 1⊥BM 1 (2)M 1F ⊥AB (3)BF AF F M ?=2 1 (4)设AM 1 与A 1F 相交于H ,M 1B 与 FB 1相交于Q 则M 1,Q ,F ,H 四点共圆 - (5)2 1212 1 4M M B M AM =+ 证:由结论(6)知M 1 在以AB 为直径的圆上∴ AM 1⊥BM 1 11FB A ?为直角三角形, M 1 是斜边A 1 B 1 的中点 1 11111111AFA F AA F A M FA M F M M A ∠=∠∠=∠∴=∴ ?=∠=∠+∠9011111M AA M FA F AA ?=∠+∠∴90111FM A AFA ∴M 1F ⊥AB BF AF F M ?=∴2 1 AM 1⊥BM 1 F B F A 90111⊥?=∠∴ 又B AM ?=∠∴90FB A 11 所以M 1,Q ,F,H 四点共圆,2 212 1 AB B M AM =+ ()()()2 12 12 11 2 42MM MM BB AA BF AF ==+=+= ,

角平分线的性质定理和判定定理(含答案)

几何专题2:角平分线的性质定理和判定定理 一、 知识点(抄一遍): 1. 角平分线:把一个角平均分为两个相同的角的射线叫该角的平分线. 2. 角平分线的性质定理: 角平分线上的点,到这个角的两边的距离相等. 3. 角平分线的判定定理: 角的内部到角的两边距离相等的点在角的平分线上. 二、 专题检测题 1. 证明角平分线的性质定理. (注意:证明文字性命题的三个步骤:①根据题意,画出图形;②写出已知和求证;③写出证明过程.) 2. 证明角平分线的判定定理. 3. 定理的几何语言表示 (1)角平分线的性质定理: ∵ , ∴ . (2)角平分线的判定定理: ∵ , ∴ . 4. 已知:如图所示,BN 、CP 分别是∠ABC 、∠ACB 的角平分线,BN 、CP 相交于O 点,连接AO ,并延长交BC 于M 求证:AM 是∠BAC 的角平分线. 5. 如图,已知BE ⊥AC ,CF ⊥AB ,点E ,F 为垂足,D 是BE 与CF 的交点,AD 平分∠BAC. 求证:BD=CD. B

6. 如图,在Rt △ABC 中,∠C=90°,AC=BC. AD 是∠CAB 的平分线. 求证:AB=AC+CD. 7. 如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,求证:AM 平分∠DAB. 8. 如图,已知P 是∠AOB 平分线上的一点.PC ⊥OA ,PD ⊥OB ,垂足分别是点C ,D ,CD 与OP 交于点M. 求证:(1)∠PCD=∠PDC ; (2)OP 是CD 的垂直平分线; (3)OC=OD. O

几何专题2:角平分线的性质定理和判定定理答案 1. 证明角平分线的性质定理. 已知:如图,OC 平分∠AOB ,点P 在OC 上, PD ⊥OA 于点D ,PE ⊥OB 于点E 求证: PD=PE 证明:∵OC 平分∠ AOB ∴ ∠1= ∠2 ∵PD ⊥ OA,PE ⊥ OB ∴∠PDO= ∠PEO 在△PDO 和△PEO 中 ∠PDO= ∠PEO ∠1= ∠2 OP=OP ∴△PDO ≌ △PEO(AAS) ∴PD=PE 2. 证明角平分线的判定定理. 已知:如图,PD ⊥OA ,PE ⊥OB ,点D 、E 为垂足,PD =PE . 求证:点P 在∠AOB 的平分线上 证明: 经过点P 作射线OC ∵ PD ⊥OA ,PE ⊥OB ∴ ∠PDO =∠PEO =90° 在Rt △PDO 和Rt △PEO 中 PO =PO PD=PE ∴ Rt △PDO ≌Rt △PEO (HL ) ∴ ∠ POD =∠POE ∴点P 在∠AOB 的平分线上. 3. 定理的几何语言表示 (1)角平分线的性质定理: ∵ OP 平分∠AOB ,DP ⊥OA ,PE ⊥OB , ∴ DP=EP. (2)角平分线的判定定理: ∵ PD⊥OA,PE⊥OB,PD =PE . ∴ OP 平分∠AOB . O O

等腰三角形的性质定理及推论

第1课时等腰三角形的性质定理及推论 教学目的 1.使学生了解等腰三角形的有关概念,掌握等腰三角形的性质。 2.通过探索等腰三角形的性质,使学生进一步经历观察、实验、推理、交流等活动。 重点:等腰三角形等边对等角性质。 难点:通过操作,如何观察、分析、归纳得出等腰三角形性质。 教学过程 一、复习引入 1.让学生在练习本上画一个等腰三角形,标出字母,问什么样的三角形是等腰三角形? △ABC中,如果有两边AB=AC,那么它是等腰三角形。 2.日常生活中,哪些物体具有等腰三角形的形象? 二、新课 1.指出△ABC的腰、顶角、底角。 相等的两边AB、AC都叫做腰,另外一边BC叫做底边,两腰的夹角∠BAC,叫做顶角,腰和底边的夹角∠ABC、∠ACB叫做底角。 2.实验。 现在请同学们做一张等腰三角形的半透明纸片,每个人的等腰三 角形的大小和形状可以不一样,把纸片对折,让两腰AB、AC重叠在一起,折痕为AD,如图(2)所示,你能发现什么现象吗?请你尽可能多的写出结论。 可让学生有充分的时间观察、思考、交流,可能得到的结论: (1)等腰三角形是轴对称图形 (2)∠B=∠C (3)BD=CD,AD为底边上的中线。 (4)∠ADB=∠ADC=90°,AD为底边上的高线。 (5)∠BAD=∠CAD,AD为顶角平分线。 结论(2)用文字如何表述?

等腰三角形的两个底角相等(简写成“等边对等角”)。 结论(3)、(4)、(5)用一句话可以归结为什么? 等腰三角形的顶角平分线,底边上的高和底边上的中线互相重合 (简称“三线合一”)。 例l已知:在△ABC中,AB=AC,∠B=80°,求∠C和∠A的度数。 本题较易,可由学生口述,教师板书解题过程。 引申:已知:在△ABC中,AB=AC,∠A=80°,求∠B和∠C的度数。 小结:在等腰三角形中,已知一个角,就可以求另外两个角。 三、练习巩固 本课时练习 补充: 填空:在△ABC中,AB=AC,D在BC上, 1.如果AD⊥BC,那么∠BAD=∠______,BD=_______ 2.如果∠BAD=∠CAD,那么AD⊥_____,BD=______ 3.如果BD=CD,那么∠BAD=∠_______,AD⊥______ 四、小结 本节课,我们学习了等腰三角形的性质:等腰三角形的两底角相等 (简写“等边对等角”);等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合(简称“三线合一”),它们对今后的学习十分重要,因此要牢记并能熟练应用。用数学语言表述如下: 1.△ABC中,如果AB=AC,那么∠B=∠C。 2.△ABC中,如果A月=AC,D在BC上,那么由条件(1)∠BAD=∠CAD,(2)AD⊥AC,(3)BD=CD中的任意一个都可以推出另外两个。 五、作业 课后习题 教学后记:

七年级数学下册 角平分线的性质教案

第3课时 角平分线的性质 1.经历角的平分线性质的发现过程,初步掌握角的平分线的性质定理;(重点) 2.能运用角的平分线性质定理解决简单的几何问题.(难点) 一、情境导入 问题:在S 区有一个集贸市场P ,它建在公路与铁路所成角的平分线上,要从P 点建两条路,一条到公路,一条到铁路. 问题1:怎样修建道路最短? 问题2:往哪条路走更近呢? 二、合作探究 探究点一:角平分线的性质 【类型一】 利用角平分线的性质证明线段相等 如图,在△ABC 中,∠C =90°,AD 是∠BAC 的平分线,DE ⊥AB 于E ,F 在AC 上,∠FDC =∠BDE .试说明:(1)CF =EB ;(2)AB =AF +2EB . 解析:(1)根据角平分线的性质,可得点D 到AB 的距离等于点D 到AC 的距离,即DE =DC .再根据△CDF ≌△EDB ,得CF =EB ;(2)利用角平分线的性质可得△ADC 和△ADE 全等,从而得到AC =AE ,然后通过线段之间的相互转化进行求解. 解:(1)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴DE =DC .∵在△CDF 和△EDB 中,∵?????∠C =∠DEB =90°,DC =DE ,∠FDC =∠BDE , ∴△CDF ≌△EDB (ASA).∴CF =EB ; (2)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴∠CAD =∠EAD ,∠ACD =∠AED =90°.在△ADC 和△ADE 中,∵?????∠CAD =∠EAD ,∠ACD =∠AED ,AD =AD , ∴△ADC ≌ △ADE (AAS),∴AC =AE ,∴AB =AE +BE =AC +EB =AF +CF +EB =AF +2EB .

角平分线性质定理及逆定理的证明

角平分线的性质与判定 教学目标: 1、 能够对角平分线的性质定理及逆定理进行严密的证明。 2、 能够灵活运用两个定理进行相关问题的计算或者证明。 教学重点:定理的证明及应用。 教学难点:定理的证明。 教学过程: 一.复习引入: 在第二章,我们利用角的轴对称性质,通过实验的方法,探索出了角平分线的性质。 你还记得角平分线的性质吗?你能用推理的方法证明它们的真实性吗? 角平分线的性质:___________________________________________________ 角平分线的性质的逆命题是: 二、新课学习: 知识点一、证明:角平分线上的点到这个角的两边的距离相等. 已知:OE 是∠AOB 的平分线,F 是OE 上一点,若CF ⊥OA 于点C ,DF ⊥OB 于点D 求证:CF =DF. 证明: 应用格式: 例 1.已知:如图,点B 、C 在∠A 的两边上,且AB=AC ,P 为∠A 内一点,PB=PC , PE ⊥AB ,PF ⊥AC ,垂足分别是E 、F 。求证:PE=PF 知识点二、证明:到线段两个端点距离相等的点在这条线段的垂直平分线上。 已知:如图5,点P 在∠AOB 的内部,且PC ⊥OA 于C ,PD ⊥OB 于D ,PC =PD 求证:点P 在∠AOB 的平分线上. 证明: 应用格式: 例2. 已知: PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 平分线,它们交于P ,PD ⊥BM 于D ,PF ⊥BN 于F ,求证:BP 为∠MBN 的平分线。 知识点三. 关于三角形三条角平分线交点的定理: 三角形三条角平分线相交于一点,并且这一点到三边的距离相等. 已知:如图6,AP 、BQ 、CR 分别是△ABC 的内角∠BAC 、∠ABC 、∠ACB 的平分线 求证:① AP 、BQ 、CR 相交于一点I ;② 若ID 、IE 、IF 分别垂直于BC 、CA 、AB 于点D 、E 、F ,则DI =EI =FI. 证明: 三、课堂总结:总结本节课的收获 四.课堂检测 1、有一点P 到三角形三条边的距离相等,则点P 一定是 的交点 2.如图2,在△ABD 中,AD=4,AB=3,AC 平分∠BAD ,则= 图4

《等腰三角形的性质定理和判定定理及其证明》教案

( 课 题 《等腰三角形的性质定理和判定定理及 课型 新授课 教学目标 教学重点 教学难点 教学方法 教学后记 其证明》教案 1、了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。 2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角 形的关性质定理和判定定理。 了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。 能够用综合法证明等腰三角形的关性质定理和判定定理。 观察法 教 学 内 容 及 过 程 学生活动 一、复习: 1、什么是等腰三角形? 2、你会画一个等腰三角形吗?并把你画的等腰三角形栽剪下来。 3、试用折纸的办法回忆等腰三角形有哪些性质? 二、新课讲解: 之前,我们已经证明了有关平行线的一些结论,运用下面的公理和已 经证明的定理,我们还可以证明有关三角形的一些结论。 同学们和我一起来回忆上学期学过的公理: ? 1.两直线被第三条直线所截 ,如果同位角相等 ,那么这两条直线平 行; ? 2.两条平行线被第三条直线所截,同位角相等; ? 3.两边夹角对应相等的两个三角形全等; (SAS ) ? 4.两角及其夹边对应相等的两个三角形全等; (ASA ) ? 5.三边对应相等的两个三角形全等; (SSS ) ? 6.全等三角形的对应边相等,对应角相等. 由公理 5、3、4、6 可容易证明下面的推论: 推论 两角及其中一角的对边对应相等的两个三角形全等。 AAS ) 证明过程: 已知:∠A=∠D,∠B=∠E,BC=EF 求证:△ABC ≌△DEF 证明:∵∠A=∠D,∠B=∠E (已知) ∵∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和等于 180°) ∠C=180°-(∠A+∠B) ∠F=180°-(∠D+∠E) ∠C=∠F (等量代换) BC=EF (已知) △ABC ≌△DEF (ASA ) 这个推论虽然简单,但也应让学生进行证明,以熟悉的基本要求和步 骤,为下面的推理证明做准备。 这个推论 虽然简单, 但也应让 学生进行 证明,以熟 悉的基本 要求和步 骤,为下面 的推理证 明做准备。 学生充分 讨论问题 1,借助等 腰三角形

抛物线焦点弦性质总结30条.doc

抛物线焦点弦性质总结 30 条 基础回顾 1. 以 AB 为直径的圆与准线 L 相切; p 2 2. x 1gx 2 ; 4 3. y 1gy 2 p 2 ; 4. AC ' B 90o ; 5. A' FB ' 90o ; 6. AB x 1 x 2 p 2( x 3 p 2 p ; ) sin 2 2 1 1 2 7. BF ; AF P 8. A 、 O 、 B ' 三点共线; 9. B 、 O 、 A ' 三点共线; 10. S V AOB P 2 ; 2sin 11. S V 2 AOB P 3 (定值); AB ( ) 2 12. AF P ; BF P ; cos cos 1 1 13. BC ' 垂直平分 B ' F ; 14. AC ' 垂直平分 A 'F ; 15. C 'F AB ; 16. AB 2P ; 17. CC' 1 AB 1 ( AA' BB') ; 2 2 18. K AB = P ; y 3 19. tan = y 2 p ; x 2 - 2 2 20. A'B' 4 AF BF ;

21. C'F 1 A'B' . 2 切线方程 y 0 y m x 0 x 性质深究 一 ) 焦点弦与切线 1、 过抛物线焦点弦的两端点作抛物线的切线,两切线交点位置有何特殊之处? 结论 1:交点在准线上 先猜后证:当弦 AB x 轴时,则点 P 的坐标为 证明: 从略 结论 2 切线交点与弦中点连线平行于对称轴 p ,0 在准线上. 2 结论 3 弦 AB 不过焦点即切线交点 P 不在准线上时,切线交点与弦中点的连线也平行于对称轴. 2、上述命题的逆命题是否成立? 结论 4 过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点 先猜后证:过准线与 x 轴的交点作抛物线的切线,则过两切点 AB 的弦必过焦点. 结论 5 过准线上任一点作抛物线的切线,过两切点的弦最短时,即为通径. 3、 AB 是抛物线 y 2 2 px (p > 0)焦点弦, Q 是 AB 的中点, l 是抛物线的准线, AA 1 l , BB 1 l ,过 A , B 的 切线相交于 P , PQ 与抛物线交于点 M .则有 结论 6PA ⊥ PB . 结论 7PF ⊥ AB . 结论 8 平分 . M PQ 结论 9 PA 平分∠ 1 , 平分∠1. AAB PB B BA 结论 10 FA FB 2 PF 结论 11 S PAB min p 2 二 ) 非焦点弦与切线 思考:当弦 AB 不过焦点,切线交于 P 点时, 也有与上述结论类似结果:

角平分线的性质定理和判定(经典)

角平分线的性质定理和判定 第一部分:知识点回顾 1、角平分线:把一个角平均分为两个相同的角的射线叫该角的平分线; 2、角平分线的性质定理:角平分线上的点到角的两边的距离相等:①平分线上的点;②点到边的距离; 3、角平分线的判定定理:到角的两边的距离相等的点在角平分线上 第二部分:例题剖析 例1.已知:在等腰Rt△ABC中,AC=BC,∠C=90°,AD平分∠BAC,DE⊥AB于点E, AB=15cm, (1)求证:BD+DE=AC. (2)求△DBE的周长. 例2.如图,∠B=∠C=90°,M是BC中点,DM平分∠ADC,求证:AM平分∠DAB. 例3. 如图,已知△ABC的周长是22,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC 的面积是多少? 第三部分:典型例题

例1、已知:如图所示,CD⊥AB于点D,BE⊥AC于点E,BE、CD交 于点O,且AO平分∠BAC,求证:OB=OC. 【变式练习】如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC,求证:∠PCB+∠BAP=180o 例2、已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC. (1)若连接AM,则AM是否平分∠BAD?请你证明你的结论; (2)线段DM与AM有怎样的位置关系?请说明理由. (3)CD、AB、AD间?直接写出结果 【变式练习】如图,△ABC中,P是角平分线AD,BE的交点.求证:点P在∠C的平分线上. 例3.如图,在△ABC中,BD为∠ABC的平分线,DE⊥AB于点E,且DE=2cm,AB=9cm,BC=6cm, 2 1 N P F C B A

等腰三角形定理

等腰三角形定理 一、说教材分析 1、本课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。通过等腰三角形的性质反映在一个三角形中等边对等角,等角对等边的边角关系,并且对轴对称图形性质的直观反映(三线合一)。并且在以后直角三角形和相似三角形中等腰三角形的性质也占有一席之地。 2、教学目标:要求学生掌握等腰三角形的性质定理1、2和等边三角形的每个角都相等,且每个角都为60度,使学生会用等腰三角形的性质定理进行证明或计算,逐步渗透几何证题的基本方法:分析法和综合法,培养学生的联想能力 3、教学重点、难点:等腰三角形的性质定理是本课的重点 等腰三角形“三线合一”性质的运用是本课的难点 4、为了使学生了解这堂课,本课要求学生自制一个等腰三角形模型,教学过程采用多媒体教学。 二、说教学方法: “教必有法而教无定法”,只有方法得当,才会有效。根据本课内容特点和初二学生思维活动的特点,我采用了教具直观教学法,联想发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法。 三、说学生学法。 “授人以鱼,不如授人以渔”,最有价值的知识是关于方法的知识,首先教师应创造一种环境,引导学生从已知的、熟悉的知识入手,让学生自己在某一种环境下不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域,从不同角度去分析、解决新问题,发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。 四、说教学程序 1、等腰三角形的有关概念,轴对称图形的有关概念。 提问:等腰三角形是不是轴对称图形?什么是它的对称轴? 2、教师演示(模型)等腰三角形是轴对称图形的实验,并让学生做同样的实验,引导学生观察重合部分,发现等腰三角形的一些性质。 3、新课:让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的性质定理1、2。 性质定理1: 等腰三角形的两个底角相等 在△ABC中,∵AB=AC()∴∠B= ∠C() 性质定理2: 等腰三角形的顶角平分线、底边上的中线和高线互相重合 ①∵AB=AC ∠1= ∠2 ()∴BD=DC AD⊥BC () ②∵AB=AC BD=DC ()∴∠1= ∠ 2 AD⊥BC () ③∵AB=AC AD⊥BC于D () ∴BD=DC ∠1= ∠ 2 () 强调性质定理2中的三线段前的定语的重要性,可让学生实际画图验证。 4、对新知识的感知性应用 指导学生表述证明过程。 思考题:等腰三角形两腰上的中线(高线)是否相等?为什么? 课堂练习:

抛物线焦点弦的性质

抛物线焦点弦的性质 1、焦点弦定义:过焦点的直线割抛物线所成的相交弦。 2、焦点弦公式:设两交点),(),(2211y x B y x A ,可以通过两次焦半径公式得到: 当抛物线焦点在x 轴上时,焦点弦只和两焦点的横坐标有关:(0)p >若 抛物线22y px =,(21x x p AB ++=抛物线22y px =-,(21x x p AB +-= 当抛物线焦点在y 轴上时,焦点弦只和两焦点的纵坐标有关:(0)p >若 抛物线22x py =,(21y y p AB ++=抛物线22x py =-,(21y y p AB +-=3、通径:过焦点且垂直于对称轴的相交弦 直接应用抛物线定义,得到通径:p d 2= 4、焦点弦常用结论: 结论1:韦达定理?????=-=px y p x k y 2)2(20222=--?p y k p y 和04 )2(2 2222=++-p k x p p k x k 221p y y -=?和4 21x x = 结论2:p x x AB ++=21 证:p x x p x p x BF AF AB ++=+++ =+=2121)2()2( 结论3:若直线L 的倾斜角为θ,则弦长θ2sin 2p AB = 证: (1)若2π θ= 时,直线L 的斜率不存在,此时AB 为抛物线的通径,结论得证∴=∴p AB 2 (2)若2π θ≠时, 则?????=-=px y p x k y 2)2(20222=--?p y k p y ?????-==+?221212p y y k p y y θsin 24422221p p k p y y =+=-?θθ221sin 2sin 1p y y AB =-=? 结论4: 过焦点的弦中通径长最小 p p 2sin 21sin 22≥∴ ≤θ θ ∴AB 的最小值为p 2,即过焦点的弦长中通径长最短. 结论4: )(832为定值p AB S oAB =? 011sin sin 22 OAB OBF AF S S S OF BF OF AF θ????=+=??+?? ()21112sin sin sin 2222sin p p OF AF BF OF AB θθθθ=?+=??=???22sin p θ=238OAB S P AB ?∴= 结论5:以AB 为直径的圆与抛物线的准线相切 证:设M 为AB 的中点,过A 点作准线的垂线AA 1, 过B 点作准线的垂线BB 1, 过M 点作准线的垂线MM 1,由梯形的中位线性质和抛物线的定义知 2221 11AB BF AF BB AA MM =+=+= 故结论得证 结论6:连接A 1F 、B 1 F 则 A 1F ⊥B 1F FA A FO A FO A F AA OF AA AFA F AA AF AA 11111111//,∠=∠ ∴∠=∠∴∠=∠∴=

相关文档
相关文档 最新文档