文档库 最新最全的文档下载
当前位置:文档库 › 元明粉生产中盐碱硝分离技术研究

元明粉生产中盐碱硝分离技术研究

元明粉生产中盐碱硝分离技术研究
元明粉生产中盐碱硝分离技术研究

十水硫酸钠结晶工艺流程优化

十水硫酸钠结晶工艺流程优化 前言 万吨锂盐氢氧化锂自调试之初,十水硫酸钠结晶问题迅速凸显,成为产能提高的瓶颈。当时为解决结晶粒度及新结晶器设计问题,曾与天津大学工业结晶国家工程中心进行过合作,本想通过合作获取两个数据,一是在现有物料组成条件下的介稳区宽度,二是结晶动力学数据(成核速率及晶体生长速率)。天大给了介稳区宽度数据,而结晶动力学数据并没有继续合作。当时觉得仅仅是介稳区宽度数据实际上并没有很大的指导意义,如今再拿出当时的数据,经过仔细分析其实可能会有一些帮助。 天津大学实验用的溶液组成为: 、 、 和 。给出的数据如表 所示: 表 十水硫酸钠溶解度数据 温度,℃ 溶解度, 水 超溶解度, 水 注:溶解度数据为十水硫酸钠的溶解度。 将溶解度数据单位转换为 并整理,结果如表 所示。 表 十水硫酸钠溶解度数据 温度,℃ 溶解度, 超溶解度, 介稳区宽度, 介稳区宽度,℃ 由以上数据可以看出, ? 结晶介稳区宽度随着温度下降迅速降低。当温度为 ℃时,其最大过饱和度仅为 ,最大过冷度约为 ℃;而当温度为 ℃时,其最大过饱和度 ,最大过冷度为 ℃,是 ℃时的 倍。 利用以上数据,对现行工艺进行分析,并提出优化的新工艺,分别着眼于为现有装置改造和新装置的设计提供参考。 现行工艺流程问题分析及对策 现行工艺流程及物料衡算(物料数据来源于现有生产) 氢氧化锂母液、 硫酸锂溶液、液碱和无水硫酸钠母液在调配槽内混合后经预冷器后进入 冷冻结晶器,在 ℃条件下将十水硫酸钠析出。流程及物料衡算如图 所示。

图 现行冷冻析钠工艺 现行工艺流程问题分析及对策 目前冷冻析钠存在的问题: ( )外冷器换热管频繁结壁。 ( )颗粒小,分离困难。 这两个问题其实是同一个问题,主要原因就是溶液过饱和度太大,爆发成核,当然分离困难还有粘度的原因。造成溶液过饱和度太大的主要原因有四个: ( )十水硫酸钠结晶介稳区太窄,而结晶器循环量过小,在换热器换热后过冷度超出介稳区。 目前结晶器操作温度为 ℃,介稳区宽度为 水,换算为克升单位约为 为保证结晶粒度,实际操作介稳区宽度不宜超过 (因为会存在进料造成的过饱和度和过冷造成的双重过饱和度)。 结晶器产能 有效过饱和度×循环量 现行工艺每小时可产生 的十水硫酸钠,共需要至少 的循环量,目前采用单台结晶器进行生产,总循环量 ,循环量不够。 ( )结晶器过小造成在结晶器内过饱和度并没有消失又重新进入外冷器预冷,造成过饱和度累积而超出介稳区。 ( )介稳区太窄,而结晶器操作温度稳定要求高,温度稍微波动便进入不稳区,爆发成核。 ℃时的实际的过冷度应该控制在 ℃左右,而以前实际操作中结晶器的温度波动是很大的,现在的数据手头没有。操作温度之所以难以控制,在于冷冻机与结晶器控制的联动,很难稳定控制。是不是可以考虑将制冷作为一个工序来设计,而不是成套的撬块。即可以将外冷器当做制冷机的蒸发器,用外冷器壳程制冷剂蒸发压力来控制结晶器温度,这样不仅可以稳定温度,还可以省掉冷冻液系统,而且就冷冻机本身来讲,其制冷系数也可以提高。 ( )进料位置的影响。 原来设计方案进料位置在外冷器进口,这不太合适。当循环量很大时,这样做是没什么问题的。但当循环量趋紧时(循环量使得过饱和度小于或等于为最大过饱和度的约 ),会使其在外冷器内进入不稳区,加剧结壁。对于晶浆混合型结晶器来讲,个人认为最好的进料位置为外冷器出口到结晶器之间,此时既没有列管结壁的风险,而混合效果又最好(流速最大)。

硫酸钠性质及制备方法

本文摘自再生资源回收-变宝网(https://www.wendangku.net/doc/ea14499119.html,)硫酸钠性质及制备方法 硫酸钠是硫酸根与钠离子化合生成的盐,硫酸钠溶于水且其水溶液呈弱碱性,溶于甘油而不溶于乙醇。下面简单介绍一下硫酸钠性质及制备方法。 物理性质 外观与性状:单斜晶系,晶体短柱状,集合体呈致密块状或皮壳状等,无色透明,有时带浅黄或绿色,易溶于水。白色、无臭、有苦味的结晶或粉末,有吸湿性。外形为无色、透明、大的结晶或颗粒性小结晶。硫酸钠是含氧酸的强酸强碱盐。 结构:单斜、斜方或六方晶系。 溶液:硫酸钠溶液为无色溶液。 熔点:884℃(七水合物于24.4℃转无水,十水合物为32.38℃,于100℃失10H 2O) 沸点:1404℃相对密度: 2.68g/cm 3 热力学函数(298.15K,100kPa): 标准摩尔生成热ΔfHmθ(kJ·mol):-1387.1 标准摩尔生成吉布斯自由能ΔfGmθ(kJ·mol^-1):-1270.2 标准熵Smθ(J·mol^-1·K^-1):149.6 溶解性:不溶于乙醇,溶于水,溶于甘油。

溶解度: 温度 ℃ 1 ℃ 2 ℃ 3 ℃ 4 ℃ 5 ℃ 6 ℃ 7 ℃ 8 ℃ 9 ℃ 1 ℃ 溶解度 4 . 9 9 .1 1 9. 5 4 0. 8 4 8. 8 4 6. 2 4 5. 3 4 4. 3 4 3. 7 4 2. 7 4 2 . 5 结晶水:24℃以下:7H 2O 32.4℃以下:10H 2O 无水硫酸钠或1H 2O 化学性质 水解:SO 4 2-+H +=HSO 4 - Na 2SO 4+H 2O=NaHSO 4+NaOH 水解过程吸热,因此有凉感;水解生成OH -,因此溶液呈弱碱性并有苦涩味。复分解反应:BaCl 2+Na 2SO 4=BaSO 4↓+2NaCl;

分离分析论文资料

膜分离技术与分子蒸馏技术 摘要:分离分析技术在生产和生活中有着广泛的用途,选择合适的分离分析方法关乎着实验与生产的成败,根据物质的性质不同所采用的的分离技术也有所差别,本文主要对膜分离技术和分子蒸馏技术的原理特点及在医药方面的应用做了简单的介绍。 关键词:膜分离技术分子蒸馏技术原理特点应用 前言 膜分离技术是一项新兴的高效分离技术,已经被国际公认为20世纪末到21世纪中期最有发展前途的一项重大高新生产技术,成为世界各国研究的热点,目前已被广泛应用医药、食品、化工、环保等各个领域;分子蒸馏技术是一种特殊的液液分离技术,它产生于20世纪20年代,是伴随着人们对真空状态下气体运动理论的深入研究以及真空蒸馏技术的不断发展而逐渐兴起的一种新的分离技术。目前,分子蒸馏技术已成为分离技术中的一个重要分支。 1 膜分离技术 1.1膜分离技术的原理及特点 膜分离是利用具有一定选择透过特性的过虑介质,以外界能量或化学位差为推动力,对多组分混合物进行物理的分离、纯化和富集的过程。膜分离法有许多的种类,虽然各种膜分离过程具有不同的原理和特征,即使用的膜不同,推动力、截流组分不同,适用的对象和要求也不同,但其共同点为过程简单、经济、节能、高效,无两次污染。大多数膜分离过程中物质不发生相变,分离系数较大,操作温度可为常温,可直接放大,可专一配膜等。相对与传统工艺,膜分离具有以下优点:艺简化,一次性投资少,方便维护、操作简便,运行费用低,节省资源;运行无相变,不破坏产品结构,分离效率高,提高产品的收率和质量;不需用溶剂或溶剂用量大大减少,因而废水处理也变得更加容易[1]。 1.2 膜分离技术的种类 目前,国内外在制药和医疗上常用的膜分离技术主要有微滤、超滤、纳滤、

膜分离技术的介绍及应用讲解

题目:膜分离技术读书报告日期2015年11月20日

目录 一、膜的种类特点及分离原理 (1) 二、最新膜分离技术进展 (3) 1. 静电纺丝纳米纤维在膜分离中的应用 (3) 1.1 静电纺丝技术的历史发展 (3) 1.2 静电纺丝纳米纤维制备新型结构复合膜 (3) 1.2.1 在超滤方面 (4) 1.2.2 在纳滤方面 (4) 1.2.3 在渗透方面 (5) 1.2.4 静电纺丝纳米纤维制备空气过滤膜 (5) 2. 多孔陶瓷膜应用技术 (6) 2.1 高渗透选择性陶瓷膜制备技术 (7) 2.1.1 溶胶—凝胶技术 (7) 2.1.2 修饰技术 (7)

一、膜的种类特点及分离原理 膜分离技术(membrane separation technology, MST)是天然或人工合成的高分子薄膜以压力差、浓度差、电位差和温度差等外界能量位差为推动力,对双组分或多组分的溶质和溶剂进行分离、分级、提纯和富集的方法。常用的膜分离方法主要有微滤(micro-filtration, MF)、超滤(ultra-filtration,UF)、纳滤(nano-filtration,NF)、反渗透(reverse-osmosis, RO)和电渗析(eletro-dialysis, ED)等。MST具有节能、高效、简单、造价较低、易于操作等特点、可代替传统的如精馏、蒸发、萃取、结晶等分离,可以说是对传统分离方法的一次革命,被公认为20世纪末至21世纪中期最有发展前景的高新技术之一,也是当代国际上公认的最具效益技术之一。 分离膜的根本原理在于膜具有选择透过性,按照分离过程中的推动力和所用膜的孔径不同,可分为20世纪30年代的MF、20世纪40年代的渗析(Dialysis, D)、20世纪50年代的ED、20世纪60年代的RO、20世纪70年代的UF、20世 纪80年代的气体分离 (gas-separation, GS)、20世纪90 年代的PV和乳化液膜(emulsion liquid membrane, ELM)等。 制备膜元件的材料通常是有 机高分子材料或陶瓷材料,膜材料中的孔隙结构为物质透过分离膜而发生选择性分离提供了前提,膜孔径决定了混合体系中相应粒径大小的物质能否透过分离膜。图1是MF、UF、NF、RO的工作示意图。MF的推动力是膜两端的压力差,主要用来去除物料中的大分子颗粒、细菌和悬浮物等;UF的推动力也是膜两端的压力差,主要用来处理不同相对分子质量或者不同形状的大分子物质,应用较多的领域有蛋白质或多肽溶液浓缩、抗生素发酵液脱色、酶制剂纯化、病毒或多聚糖的浓缩或分离等;NF自身一般会带有一定的电荷,它对二价离子特别是二价阴离子的截留率可达99%,在水净化方面应用较多,同时可以透析被RO膜截留的无机盐;RO是一种非对称膜,利用对溶液施加一定的压力来克服溶剂的渗透压,使溶剂通过反向从溶液

吸附分离技术的应用

吸附分离技术的应用 陈健古共伟郜豫川 四川天一科技 股份有限公司 610225 吸附分离的应用丰富多彩,广泛应用于石油化工、化工、医药、冶金和电子等工业部门,用于气体分离、干燥及空气净化、废水处理等环保领域。吸附分离技术可以实现常温空气分离氧氮,酸性气体脱除,从各种气体中分离回收氢气、、CO、甲烷、乙烯等。 CO 2 一、吸附分离在空气净化上的应用 吸附分离在空气净化领域有广泛的应用。如空气干燥、臭气和酸气脱除及回收、清除挥发性有机物等。 空气干燥 空气中通常含有一定水分,而这种水分在很多场合是有害的,必须被除去。吸附法是除去空气中水分最常用的方法之一。 硅胶和活性氧化铝是通用的干燥剂,分子筛在某些场合也被用作干燥剂。在一些应用场合吸附剂不需要再生,但在另一些场合则需要再生重复使用。非再生(一次性使用)的吸附剂被用作包装干燥剂、双层(dual pane)窗户中的干燥剂、制冷和空调系统中的干燥剂等。硅胶是包装中最常用的作为干燥剂的吸附剂。吸附剂在很多场合上的应用是需要再生的,因为吸附剂的成本太高而不允许一次性使用。再生可以采用变温吸附(TSA)和变压吸附(PSA)两种方式。

为了防止热交换器在低温下冻结堵塞,作为深冷法空分装置原料的空气必须有是无水和无CO 2 的,空气必须进行干燥和净化,这里吸附剂作用的是13X分子筛。作为吸附法常温分离氧氮原料的空气也需干燥,干燥剂可用活性氧化铝等。 PSA最初的一个工业使用是气体干燥,采用两床Skarstrom循环工艺。该循环使用吸附、逆向放压、逆向冲洗和顺向升压过程,生产水分含量小于1ppm的干燥空气流。约一半的仪表空气干燥器使用类似的PSA循环。 ) 脱除无机污染物 工业生产中产生大量的CO 2、SO 2 和NO x 等酸性有害气体,它们会引起温室效 应、酸雨等现象,破坏地球和人们的生活环境。随着工业化发展,这些气体的危害程度越来越大,因此人们在致力于开发各种方法来治理这些有害气体。其中吸附分离的方法是有效的治理方法之一。 一些无机污染物可通过TSA过程除去。Sulfacid和Hitachi固定床工艺、Sumitomo和BF移动床工艺及Westvaco流化床工艺都使用活性碳吸附剂脱除SO 2 。 丝光分子筛、13X型分子筛、硅胶、泥煤和活性碳等是良好的NO x 吸附剂。在有 氧存在时,分子筛不仅能吸附NO x ,还能将NO氧化成NO 2 。通入热空气(或空气 与蒸汽的混合物)解吸,可回收HNO 3或NO 2 。硝酸尾气中的NO x 经过吸附处理可 控制在50ppm以下。吸附法还可用于其它低浓度NO x 废所的治理。从烟道气脱除 NO x 也可采用吸附方法。国内采用吸附法治理NO x 废气技术已由四川天一科技股份 有限完成工业性试验并在硝酸生产厂得到应用。 近年四川天一科技股份有限公司在该法的研究开发上取得较大进展,研制了对NO x 有强吸附能力的专用吸附剂并对工艺过程作出改进。与其它方法相比,变压吸附硝酸尾气治理技术有以下特点: ①尾气中的NO x 被分离和浓缩后返回吸收塔,可提高硝酸生产总收率2%-5%;

工业硫酸钠的生产方法

(一) 芒硝类矿产资源的加工 工业无水硫酸钠的制取,大多数都是采用两步法工艺流程。第一步析出芒硝或含有硫酸钠的复盐,第二步将精选后的芒硝加工成成品。 由含Na2SO4 的天然盐(卤)水或人工盐(卤)水制取芒硝的方法有滩田法和工厂法(冷冻法)。 1.滩田法 此法是加工天然盐(卤)水和人工盐(卤)水最经济的方法,它主要是利用太阳能蒸发水分和进行自冷冻。此法适用于气候干燥、有沉积芒硝类矿层、干盐湖或存在地下盐水、晶间卤水地区。 根据生产任务的大小,可以使用一个晒盐池或一套滩田系统。盐水池的数目按照加工工艺而定,盐池的大小则取决于生产季节、加工溶液的总量、气候条件和溶解盐的性质和浓度。盐水的加工可以在静态或动态下进行。静态下加工是利用有冬季结晶出芒硝,例如山西运城盐湖。 2.工厂法 工厂法是冷冻含Na2SO4 的盐水制取芒硝结晶的方法,是用真空结晶或用制冷剂进行热交换的冷却结晶。 结晶方式可根据技术经济效果和母液的用途来选择。采用真空冷却结晶可使被冷却体系的温度达到0~5℃,当母液不作为废液排出时采用此法。采用制冷剂进行热交换的冷却结晶法,是从天然盐水和人工制备的海水型盐水,或从平均气温偏高地区的地下浸取芒硝矿时得到的浸取液制取芒硝时使用。 (二) 工业无水硫酸钠的制取 中国芒硝资源丰富,种类较多,生产工业无水硫酸钠的工艺也不同,目前国内主要的生产方法有: 1.以天然芒硝矿为原料的全溶蒸发脱水法 以天然硝矿为原料生产工业无水硫酸钠,采用的生产方法为全溶蒸发脱水法。在乡镇企业中,将天然硝矿全部溶解生产30°~31°Be的饱和溶液,经澄清后,除去固体杂质,再经蒸发,离心脱水,干燥后即可制得成品。该生产工艺的蒸发脱水主要有平锅法和火塔法。平锅法现在江苏省洪泽县西顺河矿区和四川眉山、丹棱、雅安、新津一带约300余家乡镇企业采用。该方法的优点是:设备简单,工艺简单,投资小,收效快;缺点是:能耗高,产量小,产品质量差,环境污染严重。 火塔法是使芒硝溶液和烟道气在钢板制的塔中进行直接逆流换热的一种方法。蒸发的蒸汽和烟气从塔顶由引风机抽走,含无水硫酸钠结晶的悬浮液从塔底引出,经离心机甩干即制得含Na2SO4 85%的产品。该法的优点是操作简便,耗煤低。缺点是设备腐蚀严重,环境污染严重,劳动强度大,产品质量差等。 2.以盐湖卤水为原料制取工业无水硫酸钠 以盐湖卤水为原料,经滩晒、自然冷冻制得粗芒硝。因自然冷冻芒硝中带入部分泥沙等固体杂质,故盐池芒硝(水硝)也采用全溶蒸发脱水制取无水硫酸钠。其生产过程与以矿硝为原料的生产方法一致。

扩张床吸附技术研究进展

扩张床吸附技术研究进展 摘要:扩张床吸附层析技术兼有流化床和填充床层析的优点 ,不需预先除去料液中的颗粒而可以直接从料液中吸附目标产物。它是一种具有集成化优势的分离纯化技术 ,在生物工程产品的下游处理过程中有十分广阔的应用前景。开发出性能良好的吸附剂基质 ,是该项技术得以广泛应用的关键。本文通过文献的查阅及总结,从吸附剂基质及技术的应用两个方面综述了扩张床吸附技术的研究进展。关键词:扩张床吸附技术、进展、吸附剂基质、应用 一般而言 ,生物工程产品下游处理过程可分为目标产物捕获、中期纯化和精制三个阶段 ,其中产物[1]捕获阶段最为关键 ,一般由细胞富集、产物释放、澄清、浓缩、初步纯化等操作步骤组成。目前 ,除去原料液中的固体颗粒最常用的方法是离心和微滤。但当处理含有微细固体颗粒的高粘度料液时 ,离心的效率会大大降低;而细胞和细胞碎片在膜表面的积累又会使微滤过程的膜通量急剧下降,如果对料液进行稀释 ,随后的浓缩过程将增加额外的能耗。 从发展趋势来看, 生化分离技术研究的目的是要缩短整个下游过程的流程和提高单项操作的效率,以前的那种零敲碎打的做法,研究要有一个质的转变, 国内外许多专家和研究者认同了这种转变,并认为可以从两个方面着手,其一, 继续研究和完善一些适用于生化工程的新型分离技术;其二,进行各种分离技术的高效集成化。目前出现的一些新型单元分离技术,如亲和法、双水相分配技术、逆胶束法、液膜法、各类高效层析法等,就是方向一的研究结果,作为方向二的高效集成化,最引人注目的是扩张床吸附技术,近10年来研究的热点之一。与流化床相比,它返混程度很小,因而分离效果较好;与固定床相比,它能处理含菌体的悬浮液,可省却困难的过滤操作。 扩张床吸附(Expanded Bed Adsorption , EBA)技术是上世纪九十年代发展起来的一种新型蛋白质分离纯化技术 ,能直接从发酵液或细胞匀浆中捕获目标产物。扩张床是吸附剂处于稳定状态的流化床[2]-[4]。与串通的填充床层析不同的是在扩张床吸附操作中吸附剂(或层析剂)层在原料液的流动下可产生适当程度的膨胀,其膨胀度取决于吸附剂的密度、流体速度。当吸附剂的沉降速度流

膜分离技术及其研究

摘要 膜分离技术是指在某种驱动力的作用下利用膜对混合物中各组分的选择透过性的差异实现物质分离的技术。膜分离技术的驱动力可以是膜两侧的压力差、电位差或浓度差。膜分离现象中的物质迁移现象是一种不可逆的传质过程。膜分离现象早在250多年以前就被发现但是膜分离技术的工业应用是在20世纪60 年代以后。 中国的膜分离技术的发展是从1958年对离子交换膜的研究开始的数十年来取得了长足的进步。目前中国研究所涉及的领域遍及膜科学与技术从材料的应用到产品的开发等方面。经过20年的努力中国在膜分离技术的研究开发方面已涌现出一批具有实用价值接近或达到国际先进水平的成果。但从总体上讲中国的膜分离技术和世界先进水平相比还有不小的差距还有待于进一步研究开发。

1 膜分离技术概述 1.1 膜分离技术 目前己经深入研究和开发的膜分离技术有微滤、超滤、纳滤、反渗透、电渗析、渗透汽化和气体分离、膜蒸馏、支撑液膜、膜萃取、膜生物反应器、控制释放膜、仿生膜以及生物膜等过程。表 1 列出了工业应用膜过程的分类及其基本特性。 微滤是最早使用的膜分离技术是在压力差作用下进行的筛孔分离、使不溶物浓缩的过程主要用于滤除0.05~10um的悬浊物质颗粒。主要应用于截留颗粒物、液体澄清以及除菌。 超滤是在压力差作用下进行的筛孔分离过程。 纳滤是从水溶液中分离除去中小分子物质的过程( 分子量为300~500)其原理是在超滤和反渗透间提供了一种选择性媒介在浓缩有机溶质的同时也可脱盐。 反渗透是以压力差为推动力的膜分离过程渗透与反渗透都是通过半透膜来完成。 电渗析是在直流电作用下以电位差为推动力实现溶液的精制、纯化或淡化。 液膜是依据溶解、扩散等原理通过液相薄膜将两个组成不同而又互溶的溶液

色谱分离技术的应用与研究进展

色谱分离技术的应用与研究进展 摘要:色谱技术作为分离分析的重要方法之一,是分析化学中最富活力的领域之一,能够分离物化性能差别很小的化合物,对蛋白质进行高效率和高灵敏度分离分析研究,在我国工业生产中具有广泛应用,也是生命科学研究的热点领域之一。本文综述了色谱技术的原理,色谱技术的分离以及色谱技术在医药、精细化工以及现代色谱技术在蛋白分离和分析中最新应用及进展,并介绍了几种常见色谱技术以及近期发展起来的一些新型色谱技术的研究进展及应用。 Abstract:One important method of chromatographic analysis technique as separation was one of the most vibrant areas in analytical chemistry ,which can isolate compounds with very small performance difference,high efficiency and high sensitivity for protein separation and analysis research,has a wide range of applications in China's industrial production,and it was one of the hotspot in the field of life science research.the application progress in pharmaceuticals,fine chemicals and The recent applications and development of modem chromatographic technique in protein separation and analysis were introduced concisely,prospects the development of chromatographic techniques.The research progress of several common and the recently emerged chromatography technology were elaborated. 关键词:色谱技术;应用;进展;蛋白质分离 Key words:chromatographic technique;application;progress;protein separation 一、引言 色谱这一概念首先由俄国著名植物学家Tswett提出,在研究植物色素组成时发现了色谱分离的潜力,首次提出了色谱法这一概念。色谱技术是几十年来分析化学中最富活力的领域之一。作为一种物理化学分离分析的方法,色谱技术是从混合物中分离组分的重要方法之一,能够分离物化性能差别很小的化合物。当混合物各组成部分的化学或物理性质十分接近,而其他分离技术很难或根本无法应用时,色谱技术愈加显示出其实际有效的优越性。它主要利用复杂样品本身性质的不同,在不同相态的进行选择性分配,以流动相和固定相的相互位移对复杂样品中的单一样品进行分类洗脱,复杂样品中不同的物质会以不同的洗脱速度在不同的时间上脱离固定相,最终达到分离复杂样品的效果。色谱不仅是一种分析的手段,也是一种分离的方法。色谱分离技术是一类分离方法的总称,包括吸附色谱、离子交换色谱、凝胶色谱等,广泛应用于生化物质分离的高度纯化阶段,具有高分辨率的特点。色谱分离技术是生化分离技术这门课程中的一个分离单元,属于生物工程下游技术的范畴。色谱技术最初仅仅是作为一种分离手段,直到20世纪5O年代,随着生物技术的迅猛发展,人们才开始把这种分离手段与检测系统连接起来,成为在环境、生化药物、精细化工产品分析等生命科学和制备化学领域中广泛应用的物质分离分析的一种重要手段。在色谱技术的发展过程中,提出众多理论,推动了色谱技术的不断发展。主要有踏板理论,平衡色谱理论,速率理论,双模理论和轴向扩散理论。 二、色谱技术分类

一种新型节能的元明粉生产工艺与装置

一种新型节能的元明粉生产工艺与装置 王林,邵明福,杨启志, (潍坊金鑫化工化纤设备技术开发中心,山东潍坊261112) 一、概述 在粘胶纤维生产过程中,把粘胶通过一定机械输送到纺丝机,纤维素黄酸酯遇酸后生产纤维,这一过程通常称为纺丝。纺丝过程中,酸碱中和形成大量硫酸钠会影响纺丝质量,必须将硫酸钠从酸浴中分离出来的过程叫结晶,真空连续结晶和表面冷却结晶出来的硫酸钠含有10个水分子叫做芒硝,也叫有水硫酸钠。分离多余的硫酸钠工艺设备——叫做艾伯纳(恩卡)真空连续结晶装置。去掉芒硝10个水分子硫酸钠工艺设备装置叫焙烧。也叫无水硫酸钠装置。生产出来的产品为元明粉(无水硫酸钠)。 从粘胶纤维生产中回收元明粉方法有两种,即在酸浴中直接结晶和从结晶芒硝中制取元明粉。从酸浴中直接制取元明粉,是将酸浴在真空下蒸发,使酸浴中的硫酸钠呈过饱和状态,硫酸钠的饱和溶液析出硫酸钠结晶—元明粉。 由芒硝转变元明粉通常需要:蒸发、结晶、芒硝分离、焙烧、元明粉再分离、烘干、打包、出厂的生产过程,需要芒硝结晶与元明粉制备两套装置,占面积大、设备台套多且造价高,工艺流程长且操作繁杂,耗能高(水、电、汽)而且大量低温冷却水。使南方水温高北方缺水地区正常工艺生产受到影响。 潍坊金鑫化工化纤设备技术开发中心,在分析元明粉结晶过程中认识到耗能高(水、电、汽)的原因,创新发明了GXYJ元明粉装置,该装置将蒸发、结晶、焙烧三套装置结合成一体的元明粉生产设备,该设备结构简单、维护方便、占地面积少,耗能低、不受环境、气候和水温的影响。 该装置消化吸收德国艾伯钠(EBNDE)公司与美国恩卡(ENKA)公司酸浴结晶技术基础上创造发明了新机型,技术先进可靠,工艺流程合理,节能有利环保,完全适用于化工、化纤新建和改造工程上。此装置已发展为系列产品,配套于各种粘胶纤维生产线上。 GXYJ型元明粉装置在华北、东北数个化纤、化工厂成功运行2年多,已发展成为系列产品,结晶能力由0.5—1.8t/h,已向国家申请专利,用此专利技术可改造目前运行的芒硝真空连续结晶装置,每年可节约能源数百万人民币。 二、产品用途 在粘胶纤维生产过程中,原液制备将粘胶液经泵输送到纺丝机喷丝头,吐到纺丝机浴槽中进行凝固牵伸成线,粘胶丝束在纺丝浴中与硫酸钠进行化学反应生成大量的硫酸钠,破坏恒定的纺丝浴比,而影响纤维质量,因而需要引用GXYJ型高效节能连续结晶装置分离出多余的硫酸钠,以保持纺丝浴组成稳定,从而保证纺丝质量。 三、节能元明粉装置的工作原理(附工艺流量图)

蛋白质吸附分离研究进展

蛋白质吸附分离研究进展 【摘要】本文主要说明蛋白质的分子结构,总结近年来蛋白质的吸附理论及分离技术研究成果。 【关键词】蛋白质;吸附;分离;表面活性剂 目前,蛋白质的吸附已成为一个非常重要而活跃的研究领域。随着科技进步,使得新型分离技术的开发,需求迫切。另一方面,由于生物反应过程机理十分复杂,反应较难控制,反应液中杂质含量多,目标产物含量低,也给纯化分离带来了很大困难。本文主要对蛋白质的吸附及分离进行综述。 1.蛋白质分子结构 蛋白质一般由20种不同的氨基酸组成,氨基酸之间由肽键连接。肽键与一般的酰胺键一样,由于酰胺氦上的孤对电子与相邻羰基之间的共振相互作用(resonance interaction)表现出高稳定性。肽键的实际结构是一个共振杂化体。由于氧原子离域形成了包括肽键的羰基0、羰基C和酰胺N在内的O--C—NⅡ轨道系统,从而使得肽键的C-N具有部分双键的性质而不能自由旋转。肽键的C、0、N、H和与之相邻的两个a碳原子处于同一个平面,此刚性结构的平面就叫肽平面。肽链主链上的仅碳原子连接的两个键c—N键和C-C键能够自由旋转。如果不考虑键长和键角的微小变化,多肽链的所有可能构象都能用P和中这两个二面角来描述。 2.蛋白质吸附的理论分析 2.1 蛋白质吸附的理论 由肽链结构可知,蛋白质属于两性电解质,根据所处溶液pH不同表面净电荷可正可负。研究认为,蛋白质吸附过程中的相互作用包括氢键、静电和疏水等非共价的相互作用[2]。3种相互作用的本质都与静电作用相关。其中氢键的形成是由于电负性原子与氢形成的基团中.氢原子周围分布的电子少,正电荷氢核与另一电负性强的原子之间产生静电吸引,从而形成氢键。疏水相互作用又称为非极性相互作用,发生于非极性基团之间,蛋白质同时含极性和非极性的基团,当蛋白质处于水溶液中时,极性基团之间以及极性基团与水分子之间易发生静电吸引而排开非极性水基团,因此疏水相互作用并非是疏水基团之间有吸引力的缘故,而是非极性基团由于避开水的需要而被迫接近(8)。这些相互作用本身与小分子的吸附没有差别。蛋白质吸附的独特性在于吸附的是大分子,以及吸附过程蛋白质可以发生各种物理(如构象变化)和化学的变化。 2.2材料表面性质对蛋白质吸附的影响 当蛋白质吸附在材料的表面,其构象和序列将发生变化,因此蛋白质的构象和序列会影响蛋白质的吸附行为。有研究认为,蛋白质与材料表面的相互作用(包括静电力、范德华力、氢键、疏水作用),使吸附的蛋白质的构象发生变化而达到稳定吸附的状态(4)。另外是平铺式还是直立式吸附,在材料的表面也会影响蛋白质的吸附量屿(4)。 蛋白质的吸附会引起其物理和化学性质的变化。初始的吸附现象是瞬间的,这种瞬间的初始吸附会伴随吸附层的结构重整及再组织化晗]。这种结构重整除了会降低系统的吉布斯自由能外,对于吸附层上的蛋白质还会有变性或分子展开的效应,这会使原本被包覆在内部的疏水性氨基显露出来。以不带电的聚甲醛和牛血清蛋白进行研究,观察到蛋白质浓度升高时吸附量也相应升高,当BSA浓度达到0.6 g/L时得到最大吸附值(3mg/m2),之后吸附量不再与蛋白质浓度有关(5)。蛋白质在等电点时具有最大吸附量,并且在等电点附近呈对称分布(1)。造成此现象有2个原因:①蛋白质于等电点时具有最小溶解度,此时所需的吸附能最低;②静电排斥力在等电点时最小。 3.蛋白质与表面活性剂的相互作用

膜分离技术及其原理的介绍

膜分离技术及其原理的介绍

人们对膜进行科学研究是近几十年来的事。反渗透膜是膜分离技术发展中是一个重要的突破,使膜分离技术进入了大规模工业化应用的时代。其发展的历史大致为:20世纪30年代微孔过滤;40年代透析;50年代电渗析;60年代反渗透;70年代超滤和液膜;80年代气体分离;90年代渗透汽化。此外,以膜为基础的其它新型分离过程,以及膜分离与其它分离过程结合的集成过程也日益得到重视和发展。 一、膜分离原理 膜分离过程是以选择性透过膜为分离介质,当膜两侧存在某种推动力(如压力差、浓度差、电位差、温度差等)时,原料侧组分选择性地透过膜,以达到分离、提纯的目的。不同的膜过程使用不同的膜,推动力也不同。目前已经工业化应用的膜分离过程有微滤(MF)、超滤(UF)、反渗透(RO)、渗析(D)、电渗析(ED)、气体分离(GS)、渗透汽化(PV)、乳化液膜(ELM)等。 二、膜分离技术 反渗透、超滤、微滤、电渗析这四大过程在技术上已经相当成熟,已有大规模的工业应用,形成了相当规模的产业,有许多商品化的产品可供不同用途使用。这里主要以反渗透膜和超滤膜为代表介绍一下。 反渗透膜(RO)

反渗透膜使用的材料,最初是醋酸纤维素(CA),1966年开发出聚酰胺膜,后来又开发出各种各样的合成复合膜。CA膜耐氯性强,但抗菌性较差。合成复合膜具有较高的透水性和有机物截留性能,但对次氯酸等酸性物质抗性较弱。这两种材料耐热性较差,高温度大约是60℃左右,这使其在食品加工领域的应用中受到限制。 超滤膜(UF) 超滤膜也是使用CA做材料,后来各种合成高分子材料得以广泛应用。其材料多种多样,共同特点是具有耐热、耐酸碱、耐生物腐蚀等优点。 以上就是为大家介绍的全部内容,希望对大家有帮助。

工业无水硫酸钠的制取(一)

书山有路勤为径,学海无涯苦作舟 工业无水硫酸钠的制取(一) 中国芒硝资源丰富,种类较多,生产工业无水硫酸钠的工艺也不同,目 前国内主要的生产方法有: 1.以天然芒硝矿为原料的全溶蒸发脱水法以天然硝矿为原料生产工业无水硫酸钠,采用的生产方法为全溶蒸发脱水法。在乡镇企业中,将天然硝矿全部溶解生产30°~31°Be 的饱和溶液,经澄清后,除去固体杂质,再经蒸发,离心脱水,干燥后即可制得成品。该生产工艺的蒸发脱水主要有平锅法和火塔法。平锅法现在江苏省洪泽县西顺河矿区和四川眉山、丹棱、雅安、新津一带约300 余家乡镇企业采用。该方法的优点是:设备简单,工艺简单,投资小,收效快;缺点是:能耗高,产量小,产品质量差,环境污染严重。火塔法是使芒硝溶液和烟道气在钢板制的塔中进行直接逆流换热的一种方法。蒸发的蒸汽和烟气从塔顶由引风机抽走,含无水硫酸钠结晶的悬浮液从塔底引出,经离心机甩干即制得含Na2SO4 85%的产品。该法的优点是操作简便,耗煤低。缺点是设备腐蚀严重,环境污染严重,劳动强度大,产品质量差等。以天然芒硝矿为原料,制取工业无水硫酸钠的生产流程见下图1。[next] 2.以盐湖卤水为原料制取工业无水硫酸钠以盐湖卤水为原料,经滩晒、自然冷冻制得粗芒硝。因自然冷冻芒硝中带入部分泥沙等固体杂质,故盐池芒硝(水硝)也采用全溶蒸发脱水制取无水硫酸钠。其生产过程与以矿硝为原料的生 产方法一致。1982 年,山西运城盐化局首创四效真空蒸发末效二次蒸汽余热化硝生产方法,这种新工艺至今还在该局发挥着重要作用,由于生产技术管理的不断完善,生产工艺日臻成熟。四效蒸发工艺明显的优势是节能,从而节约了投资。这种工艺广泛地应用于以十水芒硝为原料的无水硫酸钠的生产厂家。 3.以钙芒硝为原料制取工业无水硫酸钠将钙芒硝矿石破碎、加水球磨、浸取得

新型膜分离技术的研究与发展(1)

膜分离技术的研究与发展 化学专业学生:刘洋 摘要:从现代化工和新技术发展的需求出发 ,论述了化工分离技术的重要性, 各新型分离技术的原理应用及发展现状, 并对当代化工新型分离技术的发展特点进行了探讨。 关键词: 新型分离技术 ; 膜分离 ; 集成过程; 应用 化工分离工程是高等学校化学工程及工艺专业的专业基础课和必修课,主要研究各种分离过程的原理与分离物系质量、热量、动量传递过程即设备内同时进行的物理变化和化学变化的基本规律,该门课程的开设不仅要求学生具备化工原理、物理化学、化工热力学等学科基础知识,同时,还要求学生掌握一定的数值计算方法,具有一定计算机能力[1-3]。文章就近年来在化工分离工程课程教学实践,结合对化工分离工程课程的相关认识,探索了课程教学改革。 世界万物都是由有序自发地走向无序,所有的纯物质都逐渐变成混合物。分离技术是研究生产过程中混合物的分离、产物的提纯或纯化的一门新型学科,正是这种需求,推动了人们对新型分离技术不懈的探索。新型分离技术目前受到材料开发、生产成本及其他学科发展的限制,工业化应用程度还不高,但它们已经在某些高新领域显示出良好的分离性能和强劲的发展势头。 1 膜分离技术的概念与原理 借助于具有分离性能的膜而实现分离的过程称为膜分离过程。由于膜分离过程一般没有相变,既节约能耗,又适用于热敏性物料的处理,因而在生物、食品、医药、化工、水处理过程中备受欢迎。膜分离是利用一张特殊制造的、具有选择透过性能的薄膜,在外力推动下对液相或者气相混合物内的不同成分进行分离、提纯、浓缩的先进加工技术。根据膜分离过程的不同特征可分为微滤( MF)、超滤(UF)、纳滤(NF)、反渗透(RO)、渗透蒸发(PV)、渗析(D)、电渗析(ED)、电去离子技术(EDI)和气体分离(Gs)等过程。 膜分离技术是一种使用半透膜的分离方法,在常温下以膜两侧压力差或电位差为动力,对溶质和溶剂进行分离、浓缩、纯化。膜分离技术主要是采用天然或人工合成高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分流质和溶剂进行分离、分级、提纯和富集操作。现已应用的有反渗透、纳滤、超过滤、微孔过滤、透析电渗析、气体分离、渗透蒸发、控制释放、液膜、膜蒸馏膜反应器等技术,其中在食品、药学工业中常用的有微滤、超滤和反渗透3种。膜分离技术以其节能效果显著、设备简单、操作方便、容易控制而受到广大用户的普遍欢迎。选择适当的膜分离过程,可替代鼓式真空过滤、板框压滤、离子交换、离心分离、溶媒抽提、静电除尘、袋式过滤、吸附/再生、絮凝/共聚、倾析/沉淀、蒸发、结晶等多种传统的分离与过滤方法。 2 国外分离技术的发展及研究进展[4] 早在上世纪 30 年代,硝酸纤维素微滤膜已商品化,近年来开发出聚四氟乙烯为材料的微滤膜新品种,它使用范围非常广,销售额居于各类膜的首位. 从上世纪 70 年代,超滤应用于工业领域,现在应用领域非常广泛.上世纪 80 年代,新型含氟离子膜在氯碱工业应用成功.第三代低压反渗透复合膜,性能大幅提高,已在药液浓缩、化工废液、超纯水制造等领域得到广泛应用.1979 年 Monsanto 公司成功研制出

分离技术-

1、列举一个给你日常生活带来很大益处,而且是得益于分离科学的事例。分析解决这个分离问题时可采用哪几种分离方法,这些分离方法分别依据分离物质的那些性质。 2、中国科学家屠呦呦因成功研制出新型抗疟疾药物青蒿素,获得2015年诺贝尔医学奖。青蒿素是从中医文献中得到的启发,用现代化学方法提取的,请通过查阅资料说明提取分离中药有效成分都有哪些具体的实施方法。 3、了解国内纯净水生产的主要分离技术是什么,该技术掉了原水中的哪些物质(写出详细工艺流程)。 4、活性炭和碳纳米管是否有可能用来做固相萃取的填料?如果可以,你认为它们对溶质的保留机理会是一样的吗? 5、固体样品的溶剂萃取方法有哪几种,从原理、设备及复杂程度、适用物质对象和样品、萃取效果等方面总结各方法的特点。 1答:海水的淡化可采用膜分离技术 膜分离技术( Membrane Separation,MS) 是利用具有选择透过性的天然或人工合成的薄膜作为分离介质,以外界能量或化学位差为推动力,对双组分或多组分药材进行分离、分级、提纯或富集的技术。膜分离技术包括微滤、纳滤、超滤和反渗透等。 2答: 1.经典的提取分离方法传统中草药提取方法有:溶剂提取法、水蒸汽蒸馏法两种。溶剂提取法有浸渍法、渗源法、煎煮法、回流提取法、连续提取等。分离纯化方法有,系统溶剂分离法、两相溶剂举取法、沉淀法、盐析法、透析法、结晶法、分馏法等。 2.现代提取分离技术超临界流体萃取法、膜分离技术、超微粉碎技术、中药絮凝分离技术、半仿生提取法、超声提取法、旋流提取法、加压逆流提取法、酶法、大孔树脂吸附法、超滤法、分子蒸馏法。 超临界流体萃取法(SFE):该技术是80年代引入中国的一项新型分离技术。其原理是以一种超临界流体在高于临界温度和压力下,从目标物中萃取有效成分,当恢复到常压常温时,溶解在流体中成分立即以溶于吸收液的

焦亚硫酸钠生产工艺A 有图

焦亚硫酸钠生产工艺 上海嘉定马陆化工厂有限公司于2012年搬迁至嘉定区外冈镇沪宜公路5688弄500号,新厂拥有8条生产焦亚硫酸钠流水线,在新工艺,新设备,新管理理念下年生产能力六万吨以上优质焦亚硫酸钠,欢迎新老客户来人来电咨询指导,一起学习,一起进步。 一概述 焦亚硫酸钠~英文名Sodium pyrosulfite,别名重硫氧,又名偏重亚硫酸钠,或称一缩二亚硫酸钠分子式为NaS205,分子量190.1 为白色或微黄色结晶粉末,相对密度1.4。溶于水和甘油,微溶于乙醇,不溶于苯类。它在水中的溶解度随温度升高而增大,20℃时为54g/100mL水,100℃时为81.7g/100mL 水,水溶液呈酸性,溶于水后生成稳定的亚硫酸氨钠,受潮易分解,露置空 即 1 湿法生产的原理 1.1 本法生产焦亚硫酸钠的反应过程分4步 1;在碳酸钠溶液中通入SO2至PH为4.1生成亚硫酸氢钠溶液,反应式如下 Na2CO3 +2SO2+H2O---2NaHSO3+CO2 2;亚硫酸氢钠溶液中再加碳酸钠调至pH为7~8,即转化为亚硫酸钠,反应式为Na2CO3+2NaHSO3—2Na2O3+CO2+H2O 3;亚硫酸钠再与SO2反应至PH4.1又生成亚硫酸氲钠溶液。其反应式为 Na2SO3+SO2+H2O— 2NaHSO3 4;当溶液中亚硫酸钠含量达到过饱和浓度时,就析出焦亚硫酸钠结晶,反应式如下

2NaHSO3—Na2S2O5+H2O 此4步反应总反应式为 Na2CO3+2SO2--Na2S2O5+CO2 但如果反应条件不适当,亦可产生下副反应式 2Na2CO3+3SO2— Na2s1O5+Na2SO3+2CO2 1.2 以纯碱硫磺为原料的湿法传统工艺 将硫磺用压缩空气送入燃烧炉于600~800℃进行燃烧,空气加入量是理论量的2倍左右,气体SO2浓度为10%~13%,经冷却除尘和过滤后,除去升华硫和其他杂质,并使气体温度降低至5O℃左右,通入串联式反应桶中,在存浆桶中缓慢加入母液水和纯碱,溶解纯碱生成的亚硫酸钠悬浮液,依次通过第三,第二,第一级反应器与SO2进行吸收反应,生成焦亚硫酸钠结晶 Na2SO3+SO2+ H2O--2NaHSO3 2NaHSO3—Na2S2O5+H2O 200度下1.3 脱水200℃ )烘干后的 SO2,经检验上海嘉定马陆化工厂有限公司生产焦亚硫酸钠工艺图

无水硫酸钠生产

无水硫酸钠由于是化学原料,所以在储存环节要注意细节,要保管在阴凉、通风的库房,远离火种、热源,且与酸类等分开存放,切忌混储。下面由无水硫酸钠生产厂家定远县诚信化工具体为大家介绍一下它的相关知识,希望能带来帮助。 目前在无水硫酸钠生产行业,主要有三种制备方法: 1、滩田法 利用自然界不同季节温度变化使原料液中的水分蒸发,将粗芒硝结晶出来。夏季将含有氯化钠、硫酸钠、硫酸镁、氯化镁等成分的咸水灌入滩田,经日晒蒸发,冬季析出粗芒硝。此法是从天然资源中提出芒硝的主要方法,工艺简单,能耗低,但作业条件差,产品中易混入泥砂等杂质。 2、机械冷冻法

利用机械设备将原料液加热蒸发后冷冻至-5~-10℃时析出芒硝。与滩田法比较,此法不受季节和自然条件的影响。产品质量好,但能耗高。 3、盐湖综合利用法 主要用于含有多种组分的硫酸盐-碳酸盐型咸水。在提取各种有用组分的同时,将粗芒硝分离出来。例如加工含碳酸钠、硫酸钠、氯化钠、硼化物及钾、溴、锂的盐湖水,可先碳化盐湖卤水,使碳酸钠转化成碳酸氢钠结晶出来;冷却母液至5~15℃,使硼砂结晶出来;分离硼砂后的二次母液冷冻至0~5℃,析出芒硝。 定远县诚信化工有限公司是专业生产销售工业盐、元明粉、软水盐、海水晶、融雪剂、防冻剂、饲料添加剂等化工产品的综合性实体企业。可靠的产品质量、完善的售后服务,赢得了广大用户的信赖和好评。企业产品主要销往河南、河北、山东、陕西、山西、安徽、江

苏、浙江、上海等各地城市。企业一直秉承着质量求生存,服务求发展的宗旨。 定远县诚信化工将继续坚持“质量为先、用户为先、信誉为先”的宗旨,以优惠的价格、优良的产品和完善的服务来满足广大用户的需求,可根据每一位客户的实际需求提供专业的、个性化的应用解决方案,帮助我们的客户以较低的成本享受专业服务。如果您想进一步的了解,可以直接点击官网定远县诚信化工进行在线了解。

π络合吸附分离技术的研究进展及应用

π络合吸附分离技术的研究进展及应用 周艳平 (江南大学食品科学与工程学号:6150112117) 摘要:随着经济迅猛的发展,吸附分离技术在当今社会已受到科学家们广泛的关注。吸附分离技术在工业化生产以及环境保护中起着关键性的作用,该技术已经蔓延至食品、医药等综合领域,并在这些领域中扮演着相当重要的角色。本文着重介绍了π络合吸附分离技术、吸附剂的研究进展以及其应用特点,并对其作相应的评价。 关键词:π络合吸附分离;吸附剂;研究进展;应用 1、前言 吸附技术很早就为人们发现和利用。古代用新烧好的木炭,利用其吸湿吸臭的功效来去除某些异味,也包括在日常生活中,将烧尽的木炭放在冰箱里从而达到去除异味的目的,这些都说明吸附技术在人类生活中已有悠久历史[1]。然而,在近代工业中,人们对吸附的知识还停留在直接开发使用,如空气和工业废气的净化,防毒面具里活性炭吸附有毒气体,硬水软化用到离子交换树脂等[2],吸附分离技术仅仅以辅助的作用出现在化工单元操作中。吸附分离的研究进展之所以受到一定的限制是由于固体吸附剂的吸附容量小,吸附剂耗用量大,使分离设备体积庞大,同时因固体的热容量大,传热系数小,升温、降温速度慢,循环周期长,效率低,因此发展较缓慢。直至五十年代初,随着工业的发展特别是石油化工开发,新型吸附剂的开发为吸附分离技术的进一步应用打下了基础,相继许多吸附分离技术应用于各个行业,推动了工业化的发展,其中π络合吸附分离技术占有十分重要的作用,显示出巨大的潜力。 2、吸附分离技术简介 早期的吸附分离技术主要用于吸附净化方面,随着20世纪50年代合成沸石分子筛的出现,使吸附分离技术得到快速发展,也因此使得吸附分离技术在化工、石化、生化和环保等领域得到广泛应用[3]。吸附技术在现代生活中的应用与Lowitz的实验结果有着必然的联系,Lowitz利用木炭去脱除有机物中的杂质[4]。对吸附技术的系统学习要追溯至1814年de Saussure的研究,他得出的结论是多

相关文档
相关文档 最新文档