文档库 最新最全的文档下载
当前位置:文档库 › 食品风味化学

食品风味化学

食品风味化学
食品风味化学

食品风味化学

第八章食品风味化学

第一节概述

风味化学通常被认为是食品化学中采用气相色谱法和快速扫描质谱法而发展起来的一门新分支。早期经典化学方法也曾较好地应用于某些风味研究,特别是在香精油和香料提取物方面的应用。

风味是指以人口腔为主的感觉器官对食品产生的综合感觉(嗅觉、味觉、视觉、触觉)。鼻腔粘膜的嗅觉细胞对痕量挥发性气体具有察觉能力,口腔中的味蕾主要分布于舌表面的味乳头中,一小部分分布于软颚、咽喉与咽部,使人能够察觉到甜、酸、咸和苦味。三叉神经系统不但能感觉辣、冷、美味等属性,而且也能感觉由化学物质引起的而至今尚未完全清楚的风味。非化学的或间接感觉(视觉、听觉和触觉)也会影响味觉和嗅觉的感觉。

本章主要讨论产生味觉或气味反应的物质,食品体系中具有重要特征效应化合物的化学性质以及风味化合物的活性与结构关系。存在于不同食品中的风味化合物这里不详细讨论,有关食品中主要成分的风味化学,如麦拉德反应所产生的风味、脂类自身氧化产生的风味、低热量甜味素与大分子结合的风味等都已在碳水化合物和脂类物质章节中提及。

第二节味觉和非特殊滋味感觉

一、味觉

人们对糖的代用品产生了越来越浓厚的兴趣,并希望能开发出新的甜味剂。由于苦味与甜味物质的分子结构有密切关系,因此对苦味机理的研究主要放在甜味方面。蛋白质水解物和成熟干酪中出现的苦味是令人讨厌的,这便促进了人们

对肽的苦味原因的研究。由于目前国外鼓励在膳食中减少钠的含量,因此,近来人们又重新对咸味机理的研究产生兴趣。

1(甜味物质的结构基础在提出甜味学说以前,一般认为甜味与羟基有关,因为糖分子中含有羟基。可是这种观点不久就被否定,因为多羟基化合物的甜味相差很大。再者,许多氨基酸、某些金属盐和不含羟基的化合物,例如氯仿(CHCl3)和糖精也有甜味。显然在甜味物质之间存在着某些共同的特性。多年来,逐渐发展成一种从物质的分子结构来阐明与甜味相关的学说,以便解释一些化合物呈现甜味的原因。

夏伦贝格尔(Shallenberger)曾首先提出关于风味单位的 AH/B 理论,对能引起甜味感觉的(图 9-1)所有化合物都适用。最初认为,这种风味单位是由共价结合的氢键键合质子和距离质子大约 3? 的电负性轨道结合产生的。因此,化合物分子中有相邻的电负性原子是产生甜味的必须条件。同时,其中一个原子还必须具有氢键键合的质子。氧、氮、氯原子在甜味分子中可以起到这个作用,羟基氧原子可以在分子中作为 AH 或 B,例如氯仿、邻-磺酰苯亚胺和葡萄糖。

图 9-1 所示的是甜味单位AH/B的组成部分加上立体化学条件。通常将有甜味的单个分子的活性基团和味觉感受器之间的相互作用看成是AH/B的组成部分在味觉感受器结构上发生的氢健键合。最近,对这种学说还增加了第三个特性,以补充对强甜味物质作用机制的解释。甜味分子的亲脂部分通常称为γ,一般是亚

甲基(-CH2-)、甲基(-CH3)或苯基(-C6H5) ,可被味觉感受器类似的亲脂部位所吸引。强甜味物质能产生完美的甜味,其立体结构的全部活性单位(AH、B和γ)都适合与感受器分子上的三角形结构结合,这就是目前甜味学说的理论基础。

γ位置是强甜味物质的一个非常重要的特征,但是对糖的甜味作用是有限

的。可能由于某些分子容易和味觉感受器接近而发生作用,从而影响对甜味的感受程度。用甜味单位的组成来解释不同甜味物质的甜味变化本质,不仅对确定甜味持续时间、强度或暂时甜味感觉方面是重要的,而且与辨别某些化合物的甜味和苦味之间的某些相互作用有关。甜味-苦味糖的结构和感受器相互作用,会产生味道感觉。尽管试验溶液的浓度低于苦味感觉的

阈值,但其化学结构产生的苦味仍然可以抑制甜味。糖的苦味是由异头中心结构、环氧、己糖的伯醇基和取代成分所产生的总效应。往往糖分子的结构和立体结构的改变会导致失去甜味,或抑制甜味甚至产生苦味。

2.苦味物质

苦味和甜味同样依赖于分子的立体化学结构,两种感觉都受到分子特性的制约,从而使某些分子产生苦味和甜味感觉。糖分子必须含有两个可以由非极性基团补充的极性基团,而苦味分子只要求有一个极性基团和一个非极性基团。有些

人认为,大多数苦味物质具有和甜味物质分子一样的 AH/B 部分和疏水基团,位于感觉器腔扁平底部的专一感觉器部位内的 AH/B 单位的取向,能够对苦味和甜味进行辨别。适合苦味化合物定位的分子,产生苦味反应,适合甜味定位的分子引起甜味反应,如果一种分子的几何形状能够在两个方位定位,那么将会引起苦味-甜味反应。这样一种模式对氨基酸显得特别正确,氨基酸 D 异构体呈甜味,而 L 异构体呈苦味。甜味感受器的疏水或γ位置是非方向性的亲脂性,它可能参与甜味或苦味反应。大分子有助于每个感受器腔内的感受位置的立体化学选择性。大多数有关苦味和分子结构的关系可以通过这些学说加以解释。

3(食品中重要的苦味化合物

苦味在食品风味中有时是需要的。由于遗传的差异,每个人对某种苦味物质的感觉能力是不一样的,而且与温度有关。一种化合物是苦味或是苦甜味,这要依个人而定。有些人对糖精感觉是纯甜味,但另一些人会认为它有微苦味或甜苦,甚至非常苦或非常甜。对许多其他化合物,也显示出个体感觉上的明显差异。苯基硫脲(PTC)是这一类苦味化合物中最明显的例子,不同的人对它的感觉就有很大差异。

肌酸是肌肉食品中的一种成分,人对肌酸也表现出类似上述的味觉灵敏度特性。正像其他苦味物质一样,肌酸分子也含有引起苦味感觉的 AH/B 部分。每克瘦肉中含肌酸达到约 5g 时,则足以使人对某些肉汤感到苦味。

奎宁是一种广泛作为苦味感觉标准的生物碱,盐酸奎宁的阈值大约是 10ppm。一般说来,苦味物质比其他呈味物质的味觉阈值低,比其他味觉活性物质难溶于水。食品卫生法允许奎宁作为饮料添加剂,例如在有酸甜味特性的软饮料中,苦味能跟其他味道调合,使这类饮料具有清凉兴奋作用。

除某些软饮料外,苦味是饮料中的重要风味特征,其中包括咖啡、可可和茶叶等。咖啡因在水中浓度为 150,200ppm 时,显中等苦味,它存在于咖啡、茶叶和可拉坚果中。可可碱(theobromine,3,7-二甲基黄嘌呤)与咖啡因很类似,在可可中含量最多,是产生苦味的原因。可乐软饮料中添加咖啡因,浓度相当于200ppm。大部分用作添加剂的咖啡因是用溶剂从生咖啡豆中提取得到的,这也是制取脱咖啡因咖啡的加工过程。

酒花大量用于酿造工业,使啤酒具有特征风味。某些稀有的异戊间二烯衍生化合物产生的苦味是酒花风味的重要来源。这些物质是律草酮或蛇麻酮的衍生物,啤酒中律草酮最丰富,在麦芽汁煮沸时,它通过异构化反应转变为异律草酮。

异律草酮是啤酒在光照射下所产生的臭鼬鼠臭味或日晒味化合物的前体物,当有酵母发酵产生的硫化氢存在时,异己烯链上与酮基邻位的碳原子发生光催化反应,生成一种带臭鼬鼠味的 3-甲基-2-丁烯-l-硫醇(异戊二烯硫醇) 化合物,在预异构化的酒花提取物中酮的选择性还原可以阻止这种反应的发生,并且采用清洁的玻璃瓶包装啤酒也不会产生臭鼬鼠味或日晒味。挥发性酒花香味化合物是否在麦芽汁煮沸过程中残存,这是多年来一直争论的问题。现已完全证明,影响啤酒风味的化合物确实在麦芽汁充分煮沸过程中残存,它们连同苦味酒花物质所形成的其他化合物一起使啤酒具有香味。柑桔加工产品出现过度苦味是柑桔加工业中一个较重要的问题。以葡萄柚来说,有稍许苦味是需宜的,但是新鲜的和待加工的水果,其苦味往往超过许多消费者所能接受的水平。脐橙和巴伦西亚橙的主要苦味成分是一种叫柠檬苦素的三萜系二内酯化合物(A和D环),它也是葡萄柚中的一种苦味成分。在无损伤的水果中,并不存在柠檬苦素,由酶水解柠檬苦素D 环内酯所产生的无味柠檬苦素衍生物是主要的形式(图 9-2)。果汁榨取后,酸性条件有利于封闭 D 环而形成柠檬苦素,从而推迟苦味的出现。

采用节杆菌属(Arthrobacter SP.)和不动细菌属(Acinetobacter SP.)的固定化酶去除橙汁苦味的方法是一种解决苦味的临时办法,因为在酸性条件下环又可以重新关闭。然而,使用柠檬苦素酸脱氢酶打开 D 环可使化合物转变成无苦味的17-脱氢柠檬苦素酸 A 环内酯(图 9-2),这是一种有效的橙汁脱苦味方法,但这种方法至今还没有用于大量生产。柑桔类果实还含有多种黄酮苷,柚皮苷是葡萄柚和苦橙 (Citrus auranticum)中主要的黄酮苷。柚皮苷含量高的果汁非常苦,经济价值很小(除非用大量低苦味的果汁稀释)。柚皮苷的苦味与由鼠李糖和葡萄糖之间形成的 1 ? 2 键的分子构象有关。柚皮苷酶是从商品柑桔果胶制剂和曲霉 (Aspergillus)中分离出来的,这种酶水解 1?2 键(图 9-3)生成无苦味产物。固相酶体系还扩大到对柚皮苷含量过高的葡萄柚汁的脱苦味。商业上还从葡萄柚皮中回收柚皮苷,并应用于一些食品中以代替苦味的咖啡因。

蛋白质水解物和干酪有明显非需宜的苦味,这是肽类氨基酸侧链的总疏水性所引起的。所有肽类都含有相当数量的 AH 型极性基团,能满足极性感受器位置的要求,但各个肽链的大小和它们的疏水基团的性质极不相同,因此,这些疏水基团和苦味感觉器主要疏水位置相互作用的能力也大不相同。已证明肽类的苦味可以通过计算疏水值来预测。一种蛋白质参与疏水缔合的能力与各个非极性氨基酸侧链的疏水贡献总和有关,这些相互作用主要对蛋白质伸展的自由能产生影响。因此,根据?G=??g 的关系,用下述方程式

Q=??g/n

可计算出蛋白质子平均疏水值,式中?g 表示每种氨基酸侧链的疏水贡献,n 是氨基酸残基数。各个氨基酸的?g 值按溶解度数据测定得到,其结果列于表 9-1。Q 值大于 1400 的肽可能有苦味,低于 1300 的无苦味。肽的分子量也会影响产生苦味的能力,只有那些分子量低于 6000 的肽类才可能有苦味,而分子量大于这个数值的肽由于几何体积大,显然不能接近感受器位置。表 9-1 各种氢基酸的计算?g 值

图 9-4 表明αs1 酪蛋白在残基 144,145 和残基 150,151 之间断裂得到的肽,其计算 Q 值为 2290,这种肽非常苦。从αs1 酪蛋白得到强疏水性肽,是成熟干酪中产生苦味的原因。曾有人用这种方法预测了脂类衍生物和糖类的苦味。

羟基化脂肪酸,特别是一些羟基衍生物常常带苦味,可以用分子中的碳原子数与羟基数的比值或 R 值来表示这些物质的苦味。甜化合物的 R 值是 1.00,1.99,苦味化合物为 2.00,6.99,大于 7.00 时无苦味。盐类的苦味与盐类阴离子和阳离子的离子直径有关。离子直径小于 6.5? 的盐显示纯咸味(LiCl=4.98?,

NaCl=5.56?,KCl=6.28?),因此有些人对 KCl 感到稍有苦味。随着离子直径的增大(CsCl=6.96?,CsI=7.74?),盐的苦味逐渐增强,因此氯化镁(8.60?)是相当苦的盐。

4(咸味和酸味物质

氯化钠和氯化锂是典型咸味的代表。近来一些国家主张降低膳食中食盐的

量,引起人们对食品中的钠盐替换物产生兴趣,特别是用钾离子和铵离子来代替。食品中采用的氯化钠的替换物的风味不如添加 NaCl 调味的食品风味,目前正在进一步了解咸味的机理,希望找到一种接近 NaCl 咸味的低钠产品。从化学结构上看,阳离子产生咸味,阴离子抑制咸味。钠离子和锂离子产生咸味,钾离子和其他阳离子产生咸味和苦味。在阴离子中,氯

离子对咸味抑制最小,它本身是无味的。较复杂的阴离子不但抑制阳离子的味道,而且它们本身也产生味道。长链脂肪酸或长链烷基磺酸钠盐产生的肥皂味是由阴离子所引起的,这些味道可以完全掩蔽阳离子的味道。

描述咸味感觉机理最满意的模式是:水合阳-阴离子复合物和 AH/B 感觉器位置之间的相互作用。这种复合物各自的结构是不相同的,水的羟基和盐的阴离子或阳离子都与感受器位置发生缔合。同样,酸味化合物感觉也涉及AH/B感受器,但目前的资料还不足以确定水合氢离子(H3O+)、解离的无机或有机阴离子、或未离解的分子在酸味反应中的作用。同一般概念相反,一种酸溶液的强度似乎不是酸味感觉的主要决定因素,而其他尚不了解的分子特性似乎是最重要的决定因素,例如重量、大小和总的极性等。

二、风味增强剂

在烹调和加工食品的过程中,人们已经利用了风味增强剂,但对风味增强的机理并不清楚。风味增强剂对植物性食品、乳制品、肉禽、鱼和其他水产食品风味的作用是很显著和需宜的。人们最熟知的这类物质是 L-谷氨酸钠 (MSG)、5′-核苷酸和5′-肌苷一磷酸(5′-IMP)、D-谷氨酸盐和2′-或3′核糖核苷酸并不能

增强风味的活性。MSG、5′-IMP 和5′-鸟苷一磷酸是商业上已经出售的风味增强剂,而5′-黄嘌呤一磷酸和几种天然氨基酸,包括 L鹅膏蕈氨酸(L-ibotenic acid)和 L-口蘑氨酸(L-tricholomic acid)是商业上有应用前景的产品。酵母水解物在食品中产生的很多风味,均是由于5′-核糖核苷酸的存在而引起的。食品工业中大量使用的纯风味增强剂是来源于微生物,其中包括核糖核酸所产生的核苷酸。已研究出的几种很强的增强风味的5′-核糖核苷酸的人工合成衍生物,一般是嘌呤-2 位的取代物。风味强化活性主要与这些物质的感受器位点有联系,可能是共同占有专门感受甜味、酸味、咸味和苦味感觉的感受器位点。事实证明,在产生可口味道和增强风味时,MSG 和5′-核糖核苷酸之间发生协同作用。这表明在活性化合物之间存在某些共同的结构特征,其作用机理有待进一步研究。

除了5′-核糖核苷酸和 MSG 外还有其他增强风味的化合物存在,其中麦芽酚和乙基麦芽酚是必须提到的两个化合物,因为它们已在商业上作为甜味食品和果实的风味增强剂产品出售。高浓度麦芽酚具有使人感到愉快的焦糖风味并在稀溶液中产生甜味,当使用浓度约为 550ppm 时,可使果汁具有温和可口、饮用舒适的感觉。麦芽酚属于一类以平面烯醇酮式存在的化合物,平面烯酮式优于环状二酮式,因为烯酮式能发生强的分子间氢键键合。麦芽酚和乙基麦芽酚(-C2H5,代替环上-CH3,)二者都能适合甜味感受的 AH/B部位(图 9-1),而乙基麦芽酚是

比麦芽酚更有效的甜味增强剂,这些化合物的风味增强作用的机理目前尚不清楚。

三、涩味

涩味可使口腔有干燥感觉,同时能使口腔组织粗糙收缩。涩味通常是由于单宁或多酚与唾液中的蛋白质缔合而产生沉淀或聚集体而引起的。另外,难溶解的蛋白质(例如某些干奶粉中存在的蛋白质)与唾液的蛋白质和粘多糖结合也产生涩味。涩味常常与苦味混淆,这是因为许多酚或单宁都可以引起涩味和苦味感觉。单宁(图 9-5)具有适合于蛋白质疏水缔合的宽大截面,还含有许多可转变成醌结构的酚基,这些基团同样也能与蛋白质形成化学交联键,这样的交联键被认为是对涩味起作用的键。

涩味也是一种需宜的风味,例如茶叶的涩味。如果在茶中加入牛乳或稀奶油,多酚便和牛乳蛋白质结合,使涩味去掉。红葡萄酒是涩味和苦味型饮料,这种风味是由多酚引起的。考虑到葡萄酒中涩味不宜太重,通常要没法降低多酚单宁的含量。

四、辣味

调味料和蔬菜中存在的某些化合物能引起特征的辛辣刺激感觉,这称之为辣味。虽然这些感觉和一般的化学刺激或催泪作用引起的感觉难以分开,但是这些化合物确实具有味的感觉。某些辣味成分(例如红辣椒、黑胡椒和生姜中存在的)是非挥发性的,它们能作用于口腔组织。而某些香调味料和蔬菜所含的辣味成分中具有微弱的挥发性,产生辣味和香味,例如芥末、辣根、小萝卜、洋葱、水田芥菜和芳香调味料丁香等。所有这些调味料和蔬菜在食品中能提供特征风味,并使口味增强。在加工食品中添加少量这类物质,可以使人感到需宜的风味。

红辣椒(Capsicum)含有一类称为辣椒素的化合物(capsaicionids),该物质属于不同链长(C8,Cl1)的不饱和一元羧酸的香草酰胺。辣椒素是这些辣味成分中的代表。人工合成的几种含有饱和直链酸成分的辣椒素化合物可代替天然辣味提取物或辣椒油。不同辣椒品种中的总辣椒素含量变化非常大,例如,红辣椒含

0.06,,红辣椒粉含 0.2,,印度的山拉姆(Sannam)辣椒含 0.3,,非洲的乌干达Uganda 中含 0.85,。而甜红辣椒中辣味化合物含量很低,主要用于着色和增加菜肴的风味。红辣椒还含有挥发性芳香化合物,成为食品风味中的一部分。黑胡椒和白胡椒是由 piper nigrum 浆果加工制得,所不同的是黑胡椒是由未成熟的青浆果制成,而白胡椒是由成熟的浆果制成。胡椒的主要辣味成分是胡椒碱,一种酰胺。分子中不饱和结构的反式构象是强辣味所必须的,在光照和贮藏时辣味会损失,这主要是由于这些双键异构化作用所造成的。胡椒还含有挥发性化合物,其中 1-甲酰胡椒碱和胡椒醛(3,4-亚甲二氧基苯甲醛)为含胡椒调味料或胡椒油的食品提供风味。胡椒碱可以人工合成,并已用于食品中。

姜是一种多年生的块茎植物(Zingiber of ficinale Roscoe),含有辣味成分和某些挥发性芳香成分。新鲜生姜的辣味是由一类叫做姜醇的苯烃基酮所产生的,(6)-姜醇是其中最有效的一种。在干燥和贮存时,姜醇脱水形成一个和酮基共轭的外部双键,反应的结果是生成一种生姜酚的化合物,它比姜醇辣味更强。

(6)-姜醇加热到高温时会导致所连接的羟基裂解成为酮基,生成甲基酮(β-3-甲氧基-4-羟苯基丁酮)、姜油酮,从而显示出温和的辣味。

(6)-姜醇

五、清凉风味

当某些化学物质接触鼻腔或口腔组织刺激专门的味感受器时,会产生清凉感觉,效果很类似薄荷、留兰香卷(叶)薄荷和冬青油等薄荷风味。虽然许多化合物都能引起这种感觉,但以天然形式(L 异构体)存在的-(-)薄荷醇是最常用的,对此芳香成分总的感觉还是樟脑味。樟脑除产生清凉感觉外,还具有一种由 d-樟脑产生的特有樟脑气味。与薄荷有关的化合物所产生的清凉作用和结晶多元醇甜味剂(例如木糖醇)所产生的凉味机理有稍许不同,后者一般认为是物质吸热溶解所产生。

第三节蔬菜,水果和调味料风味

一、葱属类中的含硫挥发物

葱属类植物以具有强扩散香气为特征。主要种类有葱头、大蒜、韭葱、细香葱和青葱。在这些植物组织受到破碎和酶作用时,它们才有强烈的特征香味,这说明风味前体可以转化为香味挥发物。在葱头中,引起这种风味和香味化合物的前体是 S-(1-丙烯基)-L-半胱氨酸亚砜,韭葱中也有这种前体存在。用蒜氨酸酶可迅速水解前体,产生一种假的次磺酸中间体以及氨和丙酮酸盐(图 9-6),次磺酸再重排即生成催泪物硫代丙醛-S-氧化物,呈现出洋葱风味。酶水解前体化合物时生成的丙酮酸是一种性质稳定的产物,形成葱头加工产品的风味。不稳定的次磺酸还可以重排和分解成大量的硫醇、二硫化物、三硫化物和噻吩等化合物。这些化合物对熟葱头风味也起到有利作用。

大蒜的风味形成一般与葱头风味形成机理相同。除前体 S-(2-丙烯基)-L半胱氨酸亚砜外,二烯丙基硫代亚磺酸盐(蒜素)(图 9-7)使鲜大蒜呈现特有风味,而不能形成葱头中具有催泪作用的 S 氧化物。大蒜中的硫代亚磺酸盐风味化合物的分解和重排几乎与葱头中化合物的分解和重排(图 9-6)相同,生成的甲基丙烯基和二烯丙基二硫化物,使蒜油和熟大蒜产生风味。

二、十字花科中的含硫挥发物

十字花科植物,例如甘蓝(Brassica oleracea)、龙眼包心菜(Brassica oleracea L.)、芜菁(Brassica rapa),黑芥子(Brassica juncea)、水田芥菜(Nastrurtium of ficinake)、小萝卜(Raphanus sativus)和辣根(Armoracia lapathifolia)中的活性辣味成分也是挥发性物质,具有特征风味。辣味常常是刺激感觉,刺激鼻腔和催泪。在这种食物组织破碎以及烹煮时作用更加明显。这种食物组织的风味主要是硫葡糖苷酶作用于硫葡糖苷前体所产生的异硫氰酸酯所引起的(图 9-8)。

十字花科植物中存在多种其他硫葡糖苷,都产生特征风味。小萝卜中的轻度辣味是由香味化合物 4-甲硫基-3-叔丁烯基异硫氰酸酯产生的。除异硫氰酸酯外,硫葡糖苷还产生硫氰酸酯(R-S,C,N)和腈(图 9-8),辣根、黑芥末、甘蓝和龙眼包

心菜含有烯丙基异硫氰酸酯和烯丙基腈,各种物质浓度的高低随生长期、可食用的部位和加工条件不同而有所不同。

在温度比室温高很多时,加工(烹煮和脱水)往往会破坏异硫氰酸酯,提高腈含量并促进其他含硫化合物的降解和重排。几种芳香异硫氰酸酯存在于十字花科植物中,例如, 2-苯乙基异硫氰酸酯是水田芥菜中一种主要香味化合物。这种化合物能使人产生一种兴奋的辣味感觉。

三、香菇类蘑菇中特有的硫化物

香菇(Letinus edodes)中已发现一种罕见的 C-S 裂解酶体系。提供风味的香菇多糖酸(lentine acid)前体是一个结合成γ谷氨酰胺肽的 S-取代 L 半胱氨酸亚砜。在风味形成过程,首先是酶水解γ谷氨酰胺肽键释放出半胱氨酸亚砜前体(蘑菇糖酸),然后蘑菇糖酸受到 S-烷基-L-半胱氨酸亚砜裂解酶作用,生成具有活性的风味化合物蘑菇香精(lenthionine) (图 9-9),这些反应只有在植物组织破坏后才发生,而风味是在干燥和复水或新鲜组织短时间浸渍时出现的。除蘑菇香精外,还生成聚噻嗯烷,但风味主要是由蘑菇香精产生的。

图 9-9 香菇型蘑菇中的蘑菇香精的形成

四、蔬菜中的甲氧基烷基吡嗪挥发物

许多新鲜蔬菜可以散发出青香—泥土香味,这种香味对识别它们是否新鲜有很大的作用。甲氧基烷基吡嗪类,这类化合物使蔬菜散发出芬芳的香味,例如 2-甲氧基-3-异丁基吡嗪,它可产生一种很强的甜柿子椒香味,其可感觉出的阈值水平是 0.002ppb。生土豆、青豌豆和豌豆荚的大部分香味是由 2-甲氧基-3-异丙基吡嗪产生的,2-甲氧基-3-仲丁基吡嗪是红甜菜根的香味物质。这些化合物是植物体内生物合成的,某些微生物菌株(如 Pseudomonas perolens,Pseudomonas tetrolens)也能合成这些特征性物质,图 9-10 表示酶作用形成甲氧基吡嗪的反应机理。

五、脂肪酸的酶作用产生的挥发物

1(植物中脂肪氧合酶产生的风味在植物组织中,由酶诱导的不饱和脂肪酸氧化和分解产生的特征香味,与某些水果的成熟和植物组织破坏有关。这与脂类化合物自动氧化形成风味化合物不同。由这种酶作用所产生的化合物可显示特殊风味

(图 9-11)。脂肪酸专一性氢过氧化作用所产生的 2-反-己烯醛和 2-反-6-顺壬二烯醛受脂肪氧合酶的催化,而脂肪酸分子裂解还生成含氧酸,含氧酸不会影响风味。由于发生连续反应,所以香味随时间而变化。

例如,脂肪氧合酶所产生的醛和酮转换成相应的醇时(图 9-12),通常比母体羰基化合物有更高的感觉阈值,而且香味更浓。通常C6化合物产生像刚割的青草植物一样的香味,C9化合物类似黄瓜和西瓜香味,C8化合物类似蘑菇或紫罗兰或志鹳草叶的气味。这种C6和C9 化合物是伯醇和醛,C8化合物为仲醇和酮。

图 9-11 亚麻酸在脂肪氧合酶作用下形成醛的反应 (A):新鲜西红柿中的主要形式 (B):

黄瓜中的主要形式

2(长链脂肪酸β氧化作用产生的挥发物

成熟的梨、桃、杏和其他水果散发出一种令人愉快的香味,一般是由长链脂肪酸的β氧化生成的中等链长(C8,C12)挥发物引起的。图 9-13 说明了用这种方

法生成的乙基癸-2-反,4-顺-二烯酯反应,但没有表明过程中含氧酸 (C8,C12)的生成及含氧酸环化产生的γ和δ内酯。乳脂降解时,也会出现类似的反应。

C8,C12内酯化合物具有类似椰子、桃的香味。

六、支链氨基酸产生的挥发物

支链氨基酸与某些果实成熟有关,产生重要的风味前体,香蕉和苹果是这种过程的典型例子。这些果实的成熟风味大多是由氨基酸挥发物引起的,这种风味形成过程的最初反应称为酶催化斯特雷克尔(Strecker)降解反应,因为出现的氨基酸转移和脱羰基作用与非酶褐变时发生的反应相似。包括酵母和产生啤酒风味的乳酸链球菌株(Streptococcus lactis)在内的若干种微生物,也能按类似于图9-14 表示的形式改变大多数氨基酸。植物还可以从氨基酸(除亮氨酸外)中产生类似的衍生物 2-苯乙醇,它具有玫瑰或丁香花香味。

虽然这些反应生成的醛、醇和酸直接赋予成熟果实风味,但酯类也是起决定

性的特征效应化合物。很早就知道,醋酸异戊酯在香蕉风味中起重要作用,但还需其他化合物才能产生完美的香蕉风味。2-甲基丁酸乙酯比 3-甲基丁酸乙酯(图9-14)更像苹果的风味,前者是成熟的红香蕉苹果香味的主要成分。

化工进展讲座论文

福州大学石油化工学院 化工系 化工进展讲座论文 离子液体的研究进展 课程名称化工进展讲座 姓名 学号 专业化学工程与工艺 成绩 指导教师 2014年6月30日

离子液体 摘要: 离子液体是近10年来在绿色化学的框架下发展起来的全新功能材料,具有不挥发、不可燃、液态范围宽、热稳定性好、溶解性好、物化性质可调等优点。离子液体易于循环利用从而减少对环境的污染,作为绿色溶剂可用于分离过程、化学反应,特别是催化反应、以及电化学等方面,并已取得许多良好的实验结果。近年来其应用领域不断扩大并迅猛发展,目前已从化学制备扩展到材料科学、环境科学、工程技术、分析测试等诸多领域,并迅速在各领域形成研究热点。本文主要就离子液体分类、合成新材料和催化方面的新进展做简要总结。 关键字:离子液体分类功能化离子液体、合成新材料、功能团、催化 1.离子液体简介 1.1离子液体的概念: 离子液体是指完全由离子组成的液体,是在室温或室温附近温度下呈液体状态的盐,在组成上,离子液体与人们概念中的“盐”相近,而其熔点通常又低于室温,因而也被称作“室温熔融盐”。早在 l9l4 年就发现了第一个离子液体———硝基乙胺,但其后此领域的研究进展缓慢,直到 l992 年,WikeS 领导的研究小组合成了低熔点、抗水解、稳定性强的 l - 乙基 - 3 - 甲基咪唑四氟硼酸盐离子液体后,离子液体的研究才得以迅速发展,随后开发出了一系列的离子液体体系。目前人们所使用的离子液体大多数在室温下就呈液态,故也称为室温离子液体。它是从传统的高温熔融盐演变而来的,但与一般的离子化合物有着非常不同的性质和行为,最大的区别在于一般离子化合物只有在高温状态下才能变成液态,而离子液体在室温附近很大的温度范围内均为液态,最低凝固点可达-96℃。 与传统的有机溶剂相比,离子液体作为反应介质主要有下列特性:不挥发;热稳定性好;可溶解大多数无机盐和金属有机化合物;离子液体的极性和亲水性、亲脂性可以通过分子设计进行调控,可以与许多有机溶剂形成两相体系。离子化合物的离子间具有较强的作用力,故而有较高的熔、沸点和硬度,常温下通常呈固态。现在反其道而行,将带正电的阳离子和带负电的阴离子做得很大,且设计阳离子或阴离子的结构高度不对称,难以在微观空间做有效的紧密堆积,造成离子之间作用力减小,从而使化合物的熔点下降,这样就有可能得到常温下呈液态的离子化合物,这就是离子液体。 目前,对离子液体的合成与应用研究主要集中在如何提高离子液体的稳定性,降低离子液体的生产成本,解决离子液体中高沸点有机物的分离以及开发既能用作催化反应溶剂,又能用作催化剂的离子液体新体系等领域。 1.2离子液体的特性: 与传统的有机分子溶剂、水和超临界流体相比,离子液体具有以下特点:低蒸气压,不挥发散失,无臭味,可在高真空系统中使用,减少因挥发而产生的

化工本科毕业论文完整版

聚氨酯合成原料研究进展 摘要 主要综述了目前国外最基本聚氨酯合成的原料及其特点以及聚氨酯的品种类型和聚氨酯产品的主要应用。包括了聚氨酯粘胶剂、聚氨酯涂料、聚氨酯泡沫塑料、聚氨酯合成革、聚氨酯密封胶、聚氨酯纤维、聚氨酯橡胶及聚氨酯漆等。另外还对它们在生活中各方面的具体使用做了概述。涵盖了聚氨酯的合成原理、合成方法及合成工艺。并对合成聚氨酯原料的性质、用途、合成方法进行了研究讨论。对我国聚氨酯的发展状况及其发展领域分布作了分析。同时对世界聚氨酯及其原料工业的现状及进展有所描述。 关键词:聚氨酯,原料,合成,应用,进展

Pu synthetic raw material research progress ABSTRACT The paper mainly describes the basic synthesis at home and abroad and its characteristics of polyurethane materials and polyurethane breed type and the main application of polyurethane products. Including the polyurethane adhesive, polyurethane coating, polyurethane foam plastics, pu synthetic leather, pu sealants, polyurethane fiber, polyurethane rubber and polyurethane paints. In addition to them in the life all aspects of the concrete use is given. Covers the polyurethane synthesis theory, synthesis method and synthetic process. And polyurethane materials to the properties, applications and synthetic methods are studied discussion. The development of our country the status and development of polyurethane field distribution was analyzed. Meanwhile to the world of its raw material industry polyurethane described present situation and development. KEY WORDS: polyurethane, raw materials, application, polyurethane, progress

食品风味化学论文2

《食品风味化学》课程论文 姓名 院(系)轻工食品学院 专业班级食品质量与安全092 学号 指导教师 职称教授 日期 2012年 5月 10日

“食品风味化学”的理论和技术在食品工业的应用现状和发展趋势 摘要:了解食品风味化学的相关理论知识和研究内容,并且通过举例分析风味化学的技术如风味物质的分离、酶的应用及智能控释技术,了解其在食品工业中的应用现状及未来发展趋势。 关键词:食品风味风味化学技术 1 食品风味化学理论 风味是人们摄入某种食物后产生的一种感觉,主要通过嗅觉和味觉感知,也包括口腔中产生的痛觉、触觉和对温度的感觉,这些感觉主要由三叉神经感知。因此食品风味是口腔中产生的味觉、鼻腔中产生的嗅觉和三叉神经感觉的综合感官印象。风味对于人们对食物的挑选、接受和摄取起着决定性的作用。 随着生产的发展,人民生活水平的提高,人们对食品的要求,不仅是能吃饱,有营养,还要求色、香、味俱佳。其中香和味属于风味化学研究的对象,由此可见食品风味在现代生活中是具有重要意义的。 食品风味化学是一门研究食品风味物质的化学组成与特性、分析方法、形成机理及变化规律的科学。对于食品风味的研究具有理论和实践两方面的意义,从理论上讲可以搞清楚产生风味的化合物是什么,形成味道的机制,产生风味的物质的结构和风味之间的关系等一系列食品的生物化学问题,在这个基础上,在生产实践中就可以合成风味,来增强和改进食品风味;使那些风味不稳定的食品具有“规格化”的风味,或使那些在加工过程中失去了或部分失去原有良好风味的食品恢复优良风味,甚至可以经过人为的合成,把不同的风味配合起来,制成更符合人们要求的新风味食品。随着生产的发展人民生活水平的提高,这个研究越来越显得重要。从另一方面讲,研究清楚味道发生的原因可以更有效地防止坏味的发生,保证食品的质量,这是一项十分重要的工作,不仅可以减少食品变坏的损耗,而且对人类的健康也有重要意义。 食品风味化学是食品化学的一个重要领域,与化学、生物化学、植物学、动物学、分子生物学和食品加工学有密切的关心。它的研究内容主要包括: (1)明确天然风味的化学组成和它们的形成机理; (2)延迟或防止食品异味的形成; (3)重组加工食品的新鲜风味;

食品风味物质的提取分析方法

食品风味物质提取分析方法 摘要:本文综述了食品风味物质的特点,提取和浓缩的方法以及风味物质的分析方法。 关键词:风味物质提取分析技术 研究食品的风味, 首先就要了解风味物质的成分和组成, 即要对风味物质进行成分分析。食品的风味是一种食品区别于另一种食品的质量特征, 它是由食品中某些化合物体现出来的。食品的风味物质决定着食品的品质。关键化合物的分析测定不仅可以使人们获得最基本的有关食品天然成分的化学信息,而且还可以为人们仿香、创香、合成新型的食品风味香物质提供科学依据。任何新的香物质的创制合成,都与分离分析技术相关联。所以,食品风味物质的研究测定,对新型香精香料开发创制,提高香精研究技术水平推动食品添加剂工业发展具有重要意义。 1食品风味物质的特点 1.1香物质组成复杂 任何一种食品的风味都是由多种香组分组成的,食品的风味正是众多香物质不同比例混合的集合效应体现。豆腐的挥发性风味成分,共有44种化合物被检出,其中包括12种醇类、12种醛类、10种酯类、2种酮类及8种其他化合物[1]。长俊、狮子头和玉兰三种木瓜中分别含有香气成分62,60和53种,其中三者共有的香气成分为21种;3种木瓜果实中相对含量最高的成分相同,均为4-甲基-5-(1,3-二戊烯基)-四氢呋喃-2-酮。木瓜果实香气成分主要包括醇类、酮类、醛类、酯类和烃类,其中醇类、酮类、醛类、酯类物质是构成其芳香风味的重要物质[2]。史琦云等对国内常见的8种食用菌的营养成分作了测定,结果发现天冬氨酸、谷氨酸、甘氨酸、丙氨酸等鲜味氨基酸的含量在食用菌中极为丰富。尤其是在香菇、金针菇及双孢蘑菇中,含量占氨基酸总量的40%以上,因而它们口味特别鲜美、爽口[3]。 1.2 含量少,但对食品品质贡献大 在一般食品中,香气风味物质大约占食品的10-8~10-14,味感风味物质含量因食品种类不同而差别较大。风味物质含量虽微,但如果每吨水中含有5×10-6mg/kg 乙酸异戊酯,也能嗅到香蕉气味,2-乙酰基-3-(噻吩)浓度为0.0025g/100ml有蜂蜜样的感觉[4]。 1.3稳定性差以及与食品其他组分间存在动态平衡 有研究表明,麦芽中含有可氧化的物质如酚类和不饱和脂类以及氧化还原酶类,选用较低蛋白质含量,富含多酚的大麦更适宜酿造良好风味稳定性的优质啤酒[5]。 2 风味物质的提取和浓缩 2.1 水蒸气蒸馏法 能随水蒸气蒸馏而不被破坏的食品成分,可用水蒸气蒸馏法进行提取。此类成分的沸点多在100℃以上,与水不相混溶或仅微溶,且在约100℃时有一定的蒸气压。当与水在一起加热时,其蒸气压和水的蒸气压总和为一个大气压时,液

化工论文

河北化工医药职业技术学院 顶岗实习的岗位技术工作报告 制粒的基本操作规程 姓名:李东阳 学号:1204080237 专业:应用化工技术(煤化方向) 班级:30802班 指导老师:邸青

第一章实习单位简介 葵花药业集团(衡水)得菲尔有限公司是一家集科研开发、药品制造、医药商贸于一体的综合型医药企业。公司现有职工1000余人,其前身为河北(冀衡集团)华威制药有限公司,2009年公司被认定为衡水市重点发展企业;在2009年河北省重点行业排头兵企业名单的医药制造业中,得菲尔位列第七,成功跻身省药企八强。2010年4月22日起,葵花药业集团正式在公司控股,原华威得菲尔药业有限公司正 式更名为葵花药业集团(衡水)得菲尔有限公司。 葵花药业集团(衡水)得菲尔有限公司始终秉承“心系健康、宽广未来”的企业理念,坚持诚信为本和“高起点、高标准、高要求、高绩效”的发展原则。在八年的发展历程中,葵花药业集团(衡水)得菲尔有限公司生产及销售范围囊括了颗粒剂、片剂、硬胶囊剂、糖浆剂等共计十一个剂型,二百一十多个品种,并以颗粒剂生产为企业竞争优势,是全国最大的颗粒剂生产基地。公司拥有胃舒宁颗粒和小儿清肺化痰口服液两个国家二级中药保护品种。 作为实现产业升级的重要项目之一的衡水市开发区医药产业园,始建于2007年11月份,占地面积220余亩,工程投资总额近3.6亿元,是目前衡水市经济开发区内正在建设中的最大的生产基地,也是衡水市经济开发区内唯一一家制药企业。新的产业园区工程共分五期:I期工程主要为化药制剂项目,II期工程主要为宿舍办公楼及头孢车间;III期工程主要为中药现代化项目,IV期工程为现代医药物流项目,V期工程主要为注射剂项目。已完工的I期工程正式开始生产后,年生产能力可达普通颗粒剂15亿袋,普通片剂30亿片,普通胶囊10.4亿粒,青霉素类颗粒剂4.0亿袋、胶囊剂8亿粒;II期工程建成达产后,预计年生产能力达头孢菌素类颗粒剂5.8亿袋、胶囊剂6.8亿粒;III期工程建成达产后,预计年生产能力达中药颗粒剂年产10亿袋,中药片剂10亿片,中药胶囊7亿粒;IV期工程建成达产后,预计年销售额达10亿元;V期工程建成后,预计年生产能力达大输液0 .6亿瓶袋,小水针1.5亿瓶。建成达产后的整个医药产业园区必将助力公司发展更上一层楼。

化工前沿讲座

白炭黑的制备及改性 摘要:白炭黑即水合二氧化硅,可以作为填料剂应用于PVC的生产中,增加PVC 的补强性能,同时能改善加工性能,提高耐磨性。但因为白炭黑表面大量羟基作用,使其表现出有较强的亲水性,不利于在有机物中的分散结合。本论文利用常见表面改性剂通过湿法改性对白炭黑表面改性,使白炭黑可以更好的分散于PVC 中,通过测定改性前后吸油值变化确定改性效果。本文用棕榈酸;硅烷偶联剂;羧甲基纤维素;聚乙二醇2000(氨水催化剂);聚乙二醇2000(对甲基苯磺酸催化剂);十二醇(对甲基苯磺酸催化剂,无水乙醇辅助溶剂);十二醇(对甲基苯磺酸催化剂,二甲苯辅助溶剂);冰醋酸(浓硫酸做催化剂);丙三醇(对苯甲磺酸做催化剂)等方法所做的实验探究。然而只有硅烷偶联剂,十二醇(对甲基苯磺酸催化剂,二甲苯辅助溶剂)等改性剂,发现其改性后的白炭黑吸油值有明显提高,说明提高了白炭黑的亲油性。实现更好的在PVC中充当补强剂。 关键词:白炭黑,表面改性,改性,制备,表面活性剂。 正文:白碳黑的化学名称为水合无定形二氧化硅或胶体二氧化硅(Si02-nH2O),是一种白色、无毒,无定形微细粉状物。其Si02含量较大(>90%),原始粒径一般为10~40nm,因表面含有较多羟基,易吸水而成为聚集的细粒。白炭黑的相对密度为2.3l9~2.653t/m3,熔点为1 750℃。不溶于水和酸,溶于强碱和氢氟酸。具有多孔性、内表面积大、高分散性、质轻、化学稳定性好、耐高温、不燃烧、电绝缘性好等优异性能。主要用作橡胶、塑料、合成树脂以及油漆等产品的填充剂,也可用作润滑剂和绝缘材料。目前全世界70%的白炭黑用于橡胶工业,是优良的橡胶补强剂,能改善胶接性和抗撕裂性,其性能优于普通炭黑。在造纸工业中,它能提高纸张白度、强度和不透明性。在农药工业中可作为防结块剂、分散剂。 我国的气相法白炭黑市场需求量持续保持高速增长, 气相法白炭黑的净进口量增长率连续5年超过20%, 我国目前气相法白炭黑的年需求量已超过16000t, 国外气相法白炭黑公司纷纷增加投资, 强化其中国业务。我国气相法白炭黑生产企业将迎头赶上, 提高产品档次, 努力开发高质量的气相法白炭黑以满足各行业的需要。受国际金融危机的影响, 我国白炭黑行业增长速度将有所放缓, 气相法白炭黑的增长速度仍将超过沉淀法白炭黑的增长速度。当前, 我国可再生能源越来越受到重视和政策扶持, 利用多晶硅工业副产物四氯化硅作为原料生产气相法白炭黑这个新的课题, 必将得到较快的发展。 然而,多数无机纳米填充材料与聚合物基体的相容性较差,因此需通过表面改性改善它们的相容性。表面进行改性处理,通过改性处理,可减少或消除羟基带来的不利影响。白炭黑表面改性分为无机物改性和有机物改性。有机物改性是白炭黑改性的主要方法,该方法的技术关键在于有机基团取代白炭黑的表面羟基。表面改性工艺有干法改性和湿法改性两种工艺,白炭黑应用企业一般采用湿法改性,而白炭黑生产企业则采取在线干法改性。通常大部分能够与白炭黑的表面羟基发生化学反应的易挥发物质均可作为改性剂。目前常用的白炭黑表面改性剂主要有有机卤化硅烷、硅烷偶联剂、硅氮烷、硅氧烷类有机硅化合物、醇类及有机聚合物等,如硫基硅烷偶联剂Si69、KH550。白炭黑在硅烷偶联剂改性后胶料中键合橡胶的数量减少,但提高了白炭黑和橡胶基体的相容性,降低了填料网

食品风味化学

食品风味的涵义 食品风味是食品的客观性质作用于人的嗅觉、味觉、色觉等感觉器官所产生的综合知觉和印象。前者决定于食品的来源,品种,贮存条件和加工技术等因素。后者为人的生理,心理,健康状况,习惯,种族等因素和条件所影响。 食品风味化学的研究内容 1.风味物质的化学组成和含量,以及质量标准和控制 2.味觉、嗅觉、色觉与呈味、含香和发色物质的组成及分子结构之间的关系 3.提取、分离和鉴定天然或人工合成风味物质的方法与技术 4.风味物质的生成及机理,人工仿真合成的方法 5.风味物质间的协同作用,稳定性以及食品的安全性 食品风味化学的特点 1.风味物质的化学成分繁多,性质类似。 2.大多含量甚微,一般在10-8%~10-12%。 3.大多是结构简单的小分子量有机物,常温下挥发性强,呈味物质一般是水溶性的有机或无机物,有亲水基团,或极性基团。. 4.风味特征与组成的分子空间结构及组分有关。 5.多数风味物质易变质,易挥发,不稳定。 6.易发生化学反应,生化反应,代谢反应,与生化、生理、物理学的研究紧密相关。 感觉共性 食品风味的感觉属于化学和物理感觉,由风味化学品对味觉、嗅觉和色觉受体所产生的刺激后形成综合感觉,但这种综合感觉还不能忽视心理和机械感觉受体作用的影响。 感觉阈值 感觉阈值是用来表示各种感觉的共性量值。只有适当的能量强度和数量的刺激,才能引起感觉受体的有效反应或响应。 1.绝对感觉阈值 ①绝对阈值的下限:刚刚能引起感觉的最弱或最小的刺激能量的强度或量 ②绝对阈值的上限:刚刚能够导致正常感觉消失的最强或最大刺激能量的强度或量 2.差别感觉阈值 人的感觉器官能够感觉刺激强度有微小变化的范围。 感觉的相互作用现象 1.适应现象:是指感觉受体在同一刺激物或能量的持续或重复作用下,感觉的敏感性发生变化的现象。(持续重复多刺激会使感觉受体敏感性下降,持续重复弱刺激会使感觉受体敏感性提高). 2.对比现象(对比效应):当两种刺激物同时或连续作用于同一感觉器官时,由于一种刺激物的存在,使另一种刺激物刺激作用增强的现象。 3.协同效应和拮抗效应:两种以上的刺激综合效应,使感觉超过各自的刺激的感觉叠加的水平,称协同或相剩效应;两种以上的刺激综合效应,与上述效应相反,称拮抗效应。 4.掩蔽现象:有两种以上的刺激同时作用于一个受体,强刺激抑制弱刺激,感觉器官对弱的刺激的敏感性下降或消失的效应。 四种基本味觉 日本:咸、酸、甜、苦、辣;欧美:咸、酸、甜、苦、辣、金属;印度:咸、酸、甜、苦、辣、淡、涩、不正常;中国:咸、酸、甜、苦、辣、鲜、涩在生理学上只有酸、甜、苦、咸四种基本味,而辣味、涩味是由于触觉神经末梢受到刺激而产生的。四种基本味是化学刺激而产生的味觉,但辣、鲜、涩在食品调味中是把他们作为独立的一味。

食品风味化学1-6章

食品风味化学Food Flavors Chemistry 第一章绪论 食品风味的重要性:是构成食品美感的最重要因素。 食品风味化学的概念:利用化学的原理和技术手段研究食品风味的科学。 食品风味化学的主要研究领域:1.探索食品风味物质的分离和鉴定方法;2.研究食品风味成分的形成机理;3.改良和模拟天然食品的风味。 1. 1 食品风味 ◆“风”指的是飘逸的,挥发性物质,一般引起嗅觉反应; ◆“味”指的是水溶性或油溶性物质,在口腔引起味觉的反应。 食品所产生的风味是建立在复杂的物质基础之上的,涉及很多因素。 食品的感官反应分类 根据风味产生的刺激方式不同和最终的感觉效果可将其分为化学感觉、物理感觉和心理感觉。食品风味概念 广义: 指摄入口腔的食品刺激人的各种感觉受体,使人产生短时的综合的生理感觉。即食物客观性使人产生的感觉印象的总和,是一种感觉。 狭义: 食品的香气、滋味和入口获得的香味。 风味物质大多为非营养性物质,虽不参与人体代谢,但能促进食欲,是构成食品质量的重要因素之一。 心里感觉与食品风味 食品的色泽与食欲(心里感觉)

不同的颜色给人不同的感觉;同一种颜色,也会给人不同的感觉。人类对食品的着色、保色、发色、退色等研究也成为食品科学的重要领域。 形状:食品的大小、长短、厚薄及造型对食品的风味影响来自于口感差异和心理联想。 其他:如食品的种类、食品加工前的形态联想都会影响到味觉。 物理感觉与食品风味 通常食品给人的物理感觉:硬、脆、干、黏、弹性、黏滑等,这些基本感觉实质上就是食品的质构(texture)所体现的特征。 食品的质构取决于以下两个因素:①食品的化学组成;②食品的加工工艺。 食品的质构优劣的评价以口感(触觉)为主,对食品风味具有十分重要的烘托作用。 化学感觉与食品风味 食品给人的化学感觉:指一些中、低分子量的化合物直接刺激人口腔和鼻腔所产生的生理反应。这些物质在口腔的化学感应称为口感,在鼻腔内的化学感应称为嗅感。 根据这类物质作用的组织器官不同分为:味觉-----作用于味蕾;嗅觉-----作用于嗅球;化学刺激感应-----作用于三叉神经。 1. 2 风味物质的作用方式与特点 风味物质的作用方式:味觉、嗅觉和三叉神经感应。 1. 2. 1 味觉 味觉:是指食物刺激口腔内的味觉器官产生的一种感觉。 味觉种类:酸、甜、苦、咸、鲜、金属味、太阳味、涩、辣、不正常味道等10多种。 从味觉的生理角度分类,直接刺激味蕾引起的公认五种基本味觉:酸、甜、苦、咸和鲜味。 辣味:食物成分刺激口腔黏膜、鼻腔黏膜、皮肤和三叉神经而引起的一种痛觉。 涩味:食物成分刺激口腔,使蛋白质凝固时而产生的一种收敛感觉。 五种基本味的概念 甜味:一种受欢迎的味觉。产生甜味的物质有糖类、一些醇类、一些氨基酸等。蔗糖的甜味最纯正。苦味:是难于接受的味觉,产生苦味的典型物质是生物碱,如奎宁。 鲜味:是有部分氨基酸、核苷酸产生的味觉,具有酸、甜、苦、咸的平衡作用和风味增强作用。鲜味的典型物质是谷氨酸钠(MSG)。 味觉产生的过程:化学物质作用于味蕾的味细胞,产生神经冲动,经各级神经传导,最后到达大脑皮层味觉中枢,形成味觉。 味觉受体舌

精细化工工艺学课程论文

《精细化工工艺学》课程论文 题目:聚苯胺合成及掺杂机理的研究进展院系:化工与能源学院 班级:化学工程与工艺三班 姓名:刘生 学号:20080300513 任课教师:苏媛

聚苯胺合成及掺杂机理的研究进展 (刘生化学工程与工艺三班 20080300513) 【摘要】:近年来聚苯胺因其优良的性能而备受关注,其合成方法和复合材料的性能一直是聚苯胺研究的重要内容。本文主要介绍聚苯胺的合成方法以及对聚苯胺的掺杂机理研究现状进行综述 【关键词】:聚苯胺,合成,掺杂机理 Development of synthesis and doped mechanism of polyaniline (liu sheng ; Chemical engineering and technology class 3; 20080300513) 【Abstract】:In recent years, polyaniline has attracted much attention because of its excellent properties. The study on its synthesis and doped mechanism is always one of the major research contents of polyanline.In this paper, the chemical and electrochemical synthesis methods and doped mechanism of polyanline are reviewed 【Keywords】:polyanline, synthesisi, doped mechanism 引言 半导体金属氧化物传感器是目前主要的商业化的气体传感器,但在应用中存在选择性差、操作温度高、稳定性也不令人满意等问题。而以聚苯胺(PANI)为代表的导电高分子气敏材料由于价廉易得、合成和制膜工艺简单且可在常温下工作等优点,已成为研究的热点。但是纯的聚苯胺气敏材料存在选择性性差、灵敏度低以及稳定性欠佳等缺点,并且聚苯胺为共轭的刚性链结构,在有机溶剂中溶解度低、成膜性能差,不易加工成型从而阻碍了它作为气敏材料在实际中的应用。所以,为了克服纯聚苯胺的缺点,通过选择合适的通用高分子材料与聚苯胺复合,提高其灵敏度和选择性;改善材料的加工成膜性能;同时使之具有很好的稳定性,从而能够更广泛地应用于气体传感器中。 1、聚苯胺的结构 聚苯胺早在1834年即被Runge[1]发现,并在本世纪被Willstatter[2]]称为“苯胺黑”。对于聚苯胺的结构,科学家们提出过许多模型,现已公认的是1987年MacDiarmid[9]提出的:即结构式中含有“苯-苯”连续的还原单元和含有“苯

材料学科前沿讲座论文

中国矿业大学 材料学科前沿讲座论文 班级:材料10-7 姓名:XXX 学号:XXX

学科前沿讲座——纳米材料在来矿大之前对材料没有多少认识,只知道他与物理化学联系较为紧密,是新世纪的主导学科!所以就选择了材料!在听教授们上完那个学科前沿讲座之后,我对自己的专业才有了一个初步的了解,尤其对纳米材料感触极深! 21世纪是高新技术的世纪,信息、生物和新材料代表了高新技术发展的方向。在信息产业如火如荼的今天,新材料领域有一项技术引起了世界各国政府和科技界的高度关注,这就是纳米科技。 处于新材料科技前沿的纳米科技,它的应用领域非常广泛。应用于制造业,现在已经造出只有米粒大小且能开动的汽车、只有蜜蜂大小的直升机。应用于生物医学,可以制出只有几毫米的人造手,帮助医生实施虚拟的现实手术。 有人预言,处于2l世纪高新技术前沿和核心地位的纳米科技所引起的世界性技术革命和产业革命对社会经济、政治、国防等所产生的冲击,将比以往的技术革命时代带来的影响更为巨大。纳米科技将会掀起新一轮的技术浪潮,领导下一场工业革命。人类将进入一个新的时代-----纳米科技时代。 1.纳米科技的基本概念和内涵 1959年,著名的理论物理学家、诺贝尔奖金获得者费曼曾预言:“毫无疑问,当我们得以对细微尺度的事物加以操纵的话。将大大扩充我们可能获得物性的范围。”在这里,通常界定为1—100nm的范围内纳米体系是细微尺度的事物的主角。 纳米科学技术是20世纪80年代末期刚刚诞生并正在崛起的新科技,他的基本涵义是在纳米尺寸(10-9—10-7m)范围内认识和改造自然,通过直接操作和安排原子、分子创制新的物质。 早在1959年,美国著名的物理学家,诺贝尔奖获得者费曼就设想:“如果有朝一日人们能把百科全书存储在一个针尖大小的空间内并能移动原子,那么这将给科学带来什么!”这正是对纳米科技的预言,也就是人们常说的小尺寸大世界.纳米科技是研究由尺寸在1—100nm之间的物质组成的体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术.纳米科技主要包括: (1)纳米体系物理学;(2)纳米化学; (3)纳米材料学;(4)纳米生物学; (5)纳米电子学;(6)纳米加工学; (7)纳米力学。 这7个部分是相对独立的。隧道显微镜在纳米科技中占有重要的地位,它贯穿到7个分支领域中,以扫描隧道显微镜为分析和加工手段所做工作占有一半以上。 纳米科学所研究的领域是人类过去从未涉及的非宏观、非微观的中间领域,从而开辟人类认识世界的新层次,也使人们改造自然的能力直接延伸到分子、原子水平,这标志着人类的科学技术进入了一个新时代,即纳米科技时代。以纳米新科技为中心的新科技革命必待成为21世纪的主导。 纳米新科技诞生才几十年,就在几个重要的方面有了如下的重要进展: (1)美国商用机器公司两名科学家利用扫描隧道电子显微镜直接操作原子,成功地在Ni(镍)基板上,按自己的意志安排原子组合成“IBM”字样,日本科学家已成功地将硅原子堆成一个“金字塔”,首次实现了原子三维空间立体搬迁.1991年IBM的科学家还制造了超快的氙原子开关.专家们预计,这一突破性的纳米新科技研究工作将可能使美国国会图书馆的全部藏书存储在一个直径仅为0.3cm的硅片上.据英国《科学与共同政策》杂志报道,科学家们最近制造出一种尺寸只有4nm的复杂分子,具有“开”和“关”的特性,可由激

《食品风味化学》课程标准.

《食品风味化学》课程标准 一、课程概述 本课程是从食品化学和食品风味生理基础出发,研究对象为味感和嗅感的理论以及食品风味的成分、化学本质,食品风味及香料的调配原则和方法。其内容包括味感和呈味物质、嗅感和嗅感物质、食品的风味成分、食品风味的调整等。该课程是食品科学与工程及相关专业的专业基础课程,也是研究食品工艺、贮藏技术所必备的基础理论知识。学生通过学习,能够进一步巩固食品专业知识,同其它专业课程相结合,加深对本专业知识的整体理解和掌握,为食品生产,食品卫生监督和管理提供理论指导培养出懂技术、懂卫生的新型实用食品专业技术人才。 二、课程目标 1、知道食品风味化学课程的性质、地位、价值、研究范围、基本框架、研究方法、学科进展和未来发展方向。 2、通过本课程学习,让学生了解食品风味化学主要概念、基本原理和方法。 3、掌握一些风味化学成分的组成、结构和食品风味的调整原理。 4、学会运用所学原理到较简单的实践中去,培养学生发现、分析和解决问题的初步能力。 三、课程内容和教学要求 这门学科的知识与技能要求分为知道、理解、掌握、学会四个层次。这四个层次的一般涵义表述如下: 知道———是指对这门学科和教学现象的认知。 理解———是指对这门学科涉及到的概念、原理、策略与技术的说明和解释,能提示所涉及到的教学现象演变过程的特征、形成原因以及教学要素之间的相互关系。 掌握———是指运用已理解的教学概念和原理说明、解释、类推同类教学事件和现象。 学会———是指能模仿或在教师指导下独立地完成某些教学知识和技能的操作任务,或能识别操作中的一般差错。 教学内容和要求表中的“√”号表示教学知识和技能的教学要求层次。 本标准中打“*”号的内容可作为自学,教师可根据实际情况确定要求或不布置要求。

化工论文范本.

云南广播电视大学 云南国防工业职业技术学院毕业论文(设计)题目纤维板中甲醛含量的检测 学院: 化学工程学院 专业: 工业分析与检验 班级: 09工业分析与检验 学生姓名: 宋霞学号: 20091116158 指导老师: 付飞娥职称: 助教 201 1 年11 月

摘要 甲醛是一种无色,具有刺激性且易溶于水的气体。在我国有毒化学品优先控制名单上甲醛高居第二位。甲醛具有较强的粘合性,同时可加强板材的硬度和防虫,防腐能力,因此目前市场上的各种刨花板,中密度纤维板,胶合板中均使用以甲醛为主要成分的脲醛树脂作为粘合剂,因而不可避免的会含有甲醛。因此凡是有粘合剂的地方总会有甲醛气体的释放。人造板中纤维板作为装饰装修材料的一种,对室内环境造成严重危害。 为此,对纤维板中甲醛的研究,采用了穿孔萃取法检测甲醛的释放量。穿孔萃取法的基本出发点是通过锯切成小块状的试件与甲苯在烧瓶中共同加热至沸腾,甲醛和甲苯都是极性分子。甲醛被甲苯萃取后随着甲苯蒸汽上升至烧瓶上部的穿孔器内,穿孔器内装有蒸馏水,甲苯被冷却成液体后通过穿孔板成细小液滴状与蒸馏水充分混匀。由于水分子的极性比甲苯分子的大,因此甲醛被转移到蒸馏水中,甲苯则重新回到下方的烧瓶内。连续萃取2h后,测定蒸馏水中甲醛总量。最后计算出每100g纤维板试件中萃取出的甲醛毫克数。当测定值大于或等于5mg/100mg时,通常允许用碘量法;当测定值小于5mg/100mg时,通常使用光度法,以保证测定结果的精度。 关键词:甲醛穿孔萃取法碘量法光度法

目录 摘要..................................................................................................... I 目录. (i) 第1章序言 ....................................................................................... - 1 -1.1甲醛................................................................................................................. - 2 - 1.1.1 甲醛的特性........................................................................................... - 2 - 1.1.2甲醛的应用.............................................................................................. - 3 - 1.1.3甲醛对人体的健康危害.......................................................................... - 4 - 1.2纤维板............................................................................................................. - 4 - 1.2.1纤维板的定义.......................................................................................... - 4 - 1.2.2纤维板甲醛的释放.................................................................................. - 4 -第2章纤维板甲醛释放的检测 ....................................................... - 6 -2.1纤维板甲醛释放的检测方法......................................................................... - 6 - 2.1.1穿孔萃取法测量甲醛释放量.................................................................. - 7 - 2.1.2干燥器法测量甲醛释放量...................................................................... - 7 - 2.1.3气候箱法测量甲醛释放量...................................................................... - 8 - 2.1.4检测方法的比较...................................................................................... - 8 - 2.2穿孔萃取法测定纤维板甲醛释放量............................................................. - 9 - 2.2.1穿孔萃取法测定原理.............................................................................. - 9 - 2.2.2仪器与设备.............................................................................................. - 9 -

化工论文摘要范文

化工论文摘要范文 化工论文范文一:能源化学工程专业无机化学教学改革 能源化学工程专业[1]是利用化学、化工的理论与技术来解决能量的转换、储存及传 输等问题,通过生产清洁、高效的新能源服务于人类生活的一门学科。无机化学是本专业 所开设的第一门专业基础课,其教学质量直接影响到培养的应用创新型人才的质量。而目 前无机化学的教学中面临着很多问题,如大一新生刚从高中迈入大学,面临如此信息量大 的课程感到迷茫;教师面对课时量日趋减少的趋势,而传递的信息量大的困扰,不知如何 把握日常教学;另外,加上教师科研压力等方面的因素,使得其未能全身心地投入教学中。因此,无机化学教学的改革与探讨在本专业教学过程、人才培养模式中的地位尤为重要。 例如: 1武汉工程大学化工与制药学院从优化课程内容入手,对无机化学的教学方法进行了 改革[2]; 2钦州学院化学化工学院从无机化学的重要地位出发,结合无机化学的教学目的,对 无机化学多媒体课件进行了构建和探讨[3]。菏泽学院是一个应用型的地方性教学型本科 院校,于2021年成功申请了与国家战略性新兴产业密切相关的能源化工专业。我系主要 从教学目标、教学内容、现代化的教学手段等方面对无机化学的教学进行了改革与探索。 1明确合理的教学目标 根据能源化学工程专业的培养目标及培养模式,结合无机化学课程特点,菏泽学院化 学化工系于2021年制定了能源化工无机化学教学目标。通过该课程的理论基础及实验实 践的学习,能够使学生掌握无机化学基本知识和技能,为培养成高素质劳动者和化工专业 技能人才做好准备;同时,也为今后学习专业知识和职业技能打下坚实的基础。此目标主 要分为以下几个方面的目标。 1.1知识目标 主要分为了解、理解、掌握三个层次方面目标。通过该课程的教学,应使学生了解: 气体的扩散定律,气体分子的速率分布和能量分布;反应速率的概念及反应速率理论;强电 解质解离、离子氛、活度系数的概念;微观粒子运动的特殊性;路易斯结构式,等电子体原理,分子轨道理论;化学电源与电解;卤素单质的物理性质,金属卤化物、拟卤素和拟卤化物、互卤化物和多卤化物;硫和硫化物、单质硫、硫化氢和氢硫酸的物理性质;硅的单质、 硅烷、硅的卤化物、硅的含氧化合物。通过该课程的教学,应使学生理解和掌握:气体的 状态方程及混合气体的分压定律;热力学第一定律,化学反应的热效应、热化学方程式、 盖斯定律、生成热的概念及应用,化学反应进行方向的判断方法;浓度对反应速率的影响; 缓冲溶液的原理及应用;沉淀溶解平衡及移动;核外电子运动的描述,核外电子排布和元素 周期律及基本性质的周期性;价键理论,价层电子互斥理论及杂化轨道理论;基本概念:原 电池、电极电势和电动势及能斯特方程;卤素单质的化学性质,卤化氢和氢卤酸的化学性

第四章食品风味化学答案

模块四食品风味化学 一、填空题 1、风味是指食品刺激人的所有感官而产生的各种感觉的综合效应,风味物质指能体现食品风味的化合物。 2、基本味感包括酸、甜、苦、咸四种。 3、甜味物质包括天然甜味物质和人工合成甜味物质。 4、既适合食用也适合静脉注射的糖是葡萄糖;容易消化并且不需要胰岛素参与代谢的糖是果糖;不易吸收也不会产生能量的糖是木糖。 5、淀粉糖浆是淀粉的不完全水解产物;果葡糖浆也称为异构糖浆,是葡萄糖在异构酶作用下部分异构化的产物。 6、已实际投入市场的四种糖醇是木糖醇、山梨醇、甘露醇、 麦芽糖醇。 7、嗅感物质的形成途径包括酶促生物合成和非酶化学反应。 8、天然色素依据结构分为吡咯色素、多烯色素和酚类色素。 9、吡咯色素由 4 个吡咯环构成,常见的吡咯色素有血红素 和叶绿素。 10、亚铁血红素在有氧的情况下生成氧合血红素,铁离子为 2 价,颜色是红色;亚铁血红素在有氧并加热的情况下生成高铁血红素,铁离子为 3 价,颜色是褐色。 11、叶绿素在酸性条件下生成褐色的脱镁叶绿素,在碱性条件下生成绿色的叶绿酸和叶绿醇。 12、多烯色素为脂溶性色素,分为胡萝卜素和叶黄素两大类;酚类色素为水溶性色素,分为花青素、花黄素和鞣质三大类。 二、判断题 1、糖都具有甜味。× 2、只有可溶性物质才能刺激味觉器官产生味感。√

3、嗅感物质必须是挥发性物质。√ 4、嗅感物质的酶促生物合成途径主要存在于食品加工过程中。× 5、焙烤食品香气的产生是由于高温烘烤过程中发生了酶促的化学反应。× 6、天然色素是指在新鲜原料中眼睛能看到的有色物质。× 7、血红素的卟啉环中螯合的是镁离子。× 8、叶绿素的卟啉环中螯合的是镁离子。√ 9、花青素的稳定性极高。× 10、鞣质属于酚类色素的一种,具有苦涩的味道。√ 三、简答题 1、影响味感的因素有哪些? 影响味感的因素有物质结构、浓度、溶解度、温度和味感物质间相互作用。物质结构决定了味感的种类,浓度决定了味感的适宜性,溶解度决定了味感产生的速度和持续的时间,温度决定了味觉的灵敏度,味感物质间具有增强、抑制或改变的相互作用。 2、亚硝酸盐常用作肉制品的发色剂,请解释其原理。 肉制品呈现红色的原因是含有亚铁血红素。亚铁血红素不稳定,在有氧加热的情况下生成高铁血红素,呈现褐色。亚硝酸盐能与亚铁血红素结合生成稳定的亚硝基亚铁血红素,呈现出桃红色,从而起到护色的作用,因此亚硝酸盐可用作肉制品的发色剂。

化工前沿讲座论文

关于氢化铝钠和纳米复合镁基储氢材料的研究氢化铝钠是最有研究应用前景的络合金属氢化物,从二十世纪五十年起被合成出作为一般还原剂。尤其是近来其储氧性能被发现。更是成为各国众多学者研究的热点。镁基储氢材料是很有发展潜力的一种。因为金属Mg 储氢量大(MgH 2 的含氢量( 重量, 以下同) 达到7. 6 %) 、重量轻( 密度仅为1. 7 g/ cm3) 资源丰富、价格便宜。 镁基储氢材料也是储氢材料中研究最早的, Reilly 和Wiseall 在1967 年 和1968 年相继发现, Mg 2Cu 和Mg 2 Ni 具有比纯镁好得多的吸放氢动力学性能。但 镁基材料存在的缺陷是其吸放氢动力学性能差, 需在300 ℃高温下方能有效吸 放氢。存在这些问题的原因主要是多数储氢合金的表面存在有金属氧化物、氢氧化物,阻碍了氢气在材料表面的分解和氢气向体相的扩散。因此, 科学工作者在积极地探求改善镁基材料储氢性质的方法。近年来采用合金元素或多元合金与镁或氢化镁进行复合, 使镁基材料的吸放氢动力学性能有了很大的改进。 一、NaAlH 4 简介 1.1络合金属氢化物 在一些离子型氢化物中,例如LiH等,由于H+的电荷少而半径大,离子型 氧化物故能在非极性溶剂中同B3+,Al3+,Ga3+,形成络合金属氢化物,例如NaBH 4 , LiAlH 4 。络合金属氢化物都是极强的还原剂,在干燥宅气中较稳定,遇质子溶剂 则发生猛烈的反应。常见的络合金属氢化物还有氢化铝钠(NaAlH 4 )、氢化铝钾 (KAlH 4 )等。对这些络合氢化物的研究现在主要集中在储氢性能上。 1.2氢化铝钠的基本性质 氢化铝钠(NaAlH 4)属于络合金属氢化物,NaAlH 4 是正四面体的空间结构,其 中Na+为平衡阳离子,AlH 4 -为络合离子体,Al位于络合离子体正四面体的中心, 而4个H原子则位于正四面体的间隔顶点上。NaAIH 4 是一种白色晶状固体,其熔点为185℃,不溶于乙醚,但易溶于四氢呋喃(THF)和乙二醇二甲醚等醚类溶剂。在常温下、干燥空气中可以稳定存在,遇水与潮气后会发生剧烈的反应,应密封保存或在惰性氛围下保存。 2、氢化铝钠的合成方法 2.1氢化铝锂的合成方法

相关文档