文档库 最新最全的文档下载
当前位置:文档库 › 自动控制原理实验:典型环节及其阶跃响应,二阶系统阶跃响应,统频率特性测量

自动控制原理实验:典型环节及其阶跃响应,二阶系统阶跃响应,统频率特性测量

自动控制原理实验:典型环节及其阶跃响应,二阶系统阶跃响应,统频率特性测量
自动控制原理实验:典型环节及其阶跃响应,二阶系统阶跃响应,统频率特性测量

实验一、典型环节及其阶跃响应

实验目的

1、学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。

2、学习典型环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。

实验内容

构成下述典型环节的模拟电路,并测量其阶跃响应。

比例环节的模拟电路及其传递函数示图2-1。

G(S)=-R2/R1

惯性环节的模拟电路及其传递函数示图2-2。

G(S)=-K/TS+1 K=R2/R1 ,T=R2*C

积分环节的模拟电路及其传递函数示图2-3。

G(S)=1/TS T=RC

微分环节的模拟电路及其传递函数示图2-4。

G(S)=-RCS

比例加微分环节的模拟电路及其传递函数示图2-5。

G(S)=-K(TS+1) K=R2/R1 T=R2C 比例加积分环节的模拟电路及其传递函数示图2-6。

G(S)=K(1+1/TS) K=R2/R1,T=R2C

软件使用

1、打开实验课题菜单,选中实验课题。

2、在课题参数窗口中,填写相应AD,DA或其它参数。

3、选确认键执行实验操作,选取消键重新设置参数。

实验步骤

1、连接被测量典型环节的模拟电路及D/A、A/D连接,检查无误后接通电源。

2、启动应用程序,设置T和N。参考值:T=0.05秒,N=200。

3、观测计算机屏幕示出的响应曲线及数据记录波形及数据(由实验报告确定)。

实验报告

1、画出惯性环节、积分环节、比例加微分环节的模拟电路图,用坐标纸画出所有记录的惯性环节

、积分环节、比例加微分环节的响应曲线。

2、由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由电路计算的结果相比较。

实验二二阶系统阶跃响应

一、实验目的

1、研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频ωn 对系统动态性能的影响,定量分析ζ和ωn与最大超调量Mp和调节时间 ts 之间的关系。

2、进一步学习实验仪器的使用方法。

3、学会根据系统阶跃响应曲线确定传递函数。

二、实验原理及电路

典型二阶系统的闭环传递函数为

其中ζ和ωn对系统的动态品质有决定的影响。

二阶系统模拟电路如图示,经计算得

电路的结构图为

系统闭环传递函数为

式中 T=RC, K=R2/R1

比较 (1),(2)二式,可得

ζ=1/T=1/RCωn

=K/2=R2/R1 (3)

由 (3) 式可知,改变比值R2/R1,可以改变二阶系统的阻尼比。改变RC值可以改变无阻尼自然频率。

今取R1=200k,R2=0--500KΩ,(R2由电位器调节),可得实验所需的阻尼比,电阻R取100KΩ

三、实验步骤

1、了解实验仪器,熟悉实验仪器的使用方法。

2、取ωn=10 rad/s,即令R=100KΩ,C=1uf;分别取

ζ=0,0.25,0.5,0.7,1,2,即取R1=100KΩ R2 (R2由电位器调节)分别等于0,50 KΩ,100 KΩ,140 KΩ,200 KΩ,400 KΩ。输入阶跃信号,测量系统阶跃

响应,并记录最大超调量Mp和调节时间Ts的数值和响应的动态曲线,并于理论值比较。

3、取ζ=0.5,即取R1=R2=100 KΩ;ωn=100rad/s,即取R=100

KΩ,C=0.1uf 注意:二个电容值同时改变,测量系统阶跃响应,并记录最大超调量σp和调节时间tn。

4、取R=100 KΩ;C=1uf,R1=100 KΩ,R2=50 KΩ,测量系统阶跃响应,记录响应曲线,特别要记录tp和σp的数值。

四、软件使用

1、打开实验课题菜单,选中实验课题。

2、在课题参数窗口中,填写相应AD,DA或其它参数。

3、选确认键执行实验操作,选取消键重新设置参数。

五、实验预习要求

1、通过理论分析分别求出实验步骤中对应的ζ和ωn值下,阶跃响应的最大超调量Mp和调节时间ts以备与实验时比较。

2、通过实验指导书,了解实验目的,要求,实验步骤和实验设备。

六、实验报告

1、画出二阶系统的模拟电路图,并求参数ζ和ωn的表达式。

2、把不同ζ和ωn条件下测量的Mp和ts值列表,根据测量结果得出相应结论。

3、根据步骤3画出系统响应曲线,再由ts和Mp计算出传递函数,并与由模拟电路计算的传递函数相比较。

实验四系统频率特性测量

一、实验目的

1、加深了解系统及元件频率特性的物理概念。

2、掌握系统及元件频率特性的测量方法。

二、实验内容

1、模拟电路图及系统结构图分别于图5和图6。

2、系统传递函数取R3=500KΩ,则系统传递函数为

若输入信号U(1)=U1sinωt,则在稳态时,其输出信号为u2(t)=u2sin(ωt+Ψ)。改变输入信号角频率ω值,使可测得二组u2/u1和Ψ随ω变化的数值,这个变化规律就是系统的幅频特性和相频特性。

三、软件使用

1、打开实验课题菜单,选中实验课题。

2、在课题参数窗口中,填写相应AD,DA或其它参数。

3、选确认键执行实验操作,选取消键重新设置参数。

四、实验报告

1、画出被测系统的模拟电路图,计算其传递函数,根据传递函数绘制Bode图。

2、把上述测量数据列表,根据此数据画Bode图。

3、分析测量误差。

实验二实验报告

PAM和PCM编译码器系统 一、实验目的 1.观察了解PAM信号形成的过程;验证抽样定理;了解混叠效应形成的原因; 2.验证PCM编译码原理;熟悉PCM抽样时钟、编码数据和输入/输出时钟之间的关系;了 解PCM专用大规模集成电路的工作原理和应用。 二、实验内容和步骤 1.PAM编译码器系统 1.1自然抽样脉冲序列测量 (1)准备工作; (2)PAM脉冲抽样序列观察; (3)PAM脉冲抽样序列重建信号观测。 1.2平顶抽样脉冲序列测量 (1)准备工作; (2)PAM平顶抽样序列观察; (3)平顶抽样重建信号观测。 1.3信号混叠观测 (1)准备工作 (2)用示波器观测重建信号输出的波形。 2.PCM编译码器系统 2.1PCM串行接口时序观察 (1)输出时钟和帧同步时隙信号的观察; (2)抽样时钟信号与PCM编码数据测量; 2.2用示波器同时观察抽样时钟信号和编码输出数据信号端口(TP502),观测时以TP504 同步,分析掌握PCM编码输数据和抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系; 2.3PCM译码器输出模拟信号观测,定性观测解码信号与输入信号的关系:质量,电平, 延时。 2.4PCM频率响应测量:调整测试信号频率,定性观察解码恢复出的模拟信号电平,观测 输出信号电平相对变化随输入信号频率变化的相对关系; 2.5PCM动态范围测量:将测试信号频率固定在1000Hz,改变测试信号电平,定性观测解 码恢复出的模拟信号的质量。 三、实验数据处理与分析 1.PAM编译码器系统 (1)观察得到的抽样脉冲序列和正弦波输入信号如下所示:

上图中上方波形为输入的正弦波信号,下方为得到的抽样脉冲序列,可见抽样序列和正弦波信号基本同步。 (2)观测得到的重建信号和正弦波输入信号如下所示: 如上图所示,得到的重建信号也为正弦波,波形并没有失真。 (3)平顶抽样的脉冲序列如下所示: 上图中上方的波形为输入的正弦波信号,下方为PAM平顶抽样序列。 (4)平顶抽样的重建信号波形: 可见正弦波经过平顶抽样,最终重建的信号仍为正弦波。 (5)观察产生混叠时的重建信号的输出波形 在实验时将输入的正弦波频率调至7.5KHz,通过示波器观察得到的输入正弦波波形和输出的重建信号如下所示: 由于实验时采用的抽样频率为8KHz,所以当输入的信号频率为7.5KHz时已经不满足抽样定理的要求了,所以会产生混叠误差,导致了输出的重建波形如上图所示,不再是正弦波了。 从测量结果可以得出如下规律:随着输入正弦波信号的频率逐渐升高,输出重建波形的幅值逐渐降低。这是由于在实验电路中加入了抗混滤波器,该滤波器随着频率的升高会使处理的信号的衰减逐渐变大,所以如试验结果所示,随着输入信号频率的升高,输出信号的幅值在逐渐变小。 (7) 在不采用抗混滤波器时输入与输出波形之间的关系,得到的结果如下表所示:

自动控制原理答案

《自动控制原理》习题参考答案 第1章 1.7.2基础部分 1.答:开环控制如:台灯灯光调节系统。 其工作原理为:输入信号为加在台灯灯泡两端的电压,输出信号为灯泡的亮度,被控对象为灯泡。当输入信号增加时,输出信号(灯泡的亮度)增加,反之亦然。 闭环控制如:水塔水位自动控制系统。 其工作原理为:输入信号为电机两端电压,输出信号为水塔水位,被控对象为电机调节装置。当水塔水位下降时,通过检测装置检测到水位下降,将此信号反馈至电机,电机为使水塔水位维持在某一固定位置增大电机两端的电压,通过调节装置调节使水塔水位升高。反之亦然。 2.答:自动控制理论发展大致经历了几个阶段: 第一阶段:本世纪40~60年代,称为“经典控制理论”时期。 第二阶段:本世纪60~70年代,称为“现代控制理论”时期。 第三阶段:本世纪70年代末至今,控制理论向“大系统理论”和“智能控制”方向发展。 3.答:开环控制:控制器与被空对象之间只有正向作用而没有反馈控制作用,即系统的输 出量与对控制量没有影响。 闭环控制:指控制装置与被空对象之间既有正向作用,又有反向联系控制的过程。 开环控制与闭环控制的优缺点比较: 对开环控制系统来说,由于被控制量和控制量之间没有任何联系,所以对干扰造成的误差系统不具备修正的能力。 对闭环控制系统来说,由于采用了负反馈,固而被控制量对于外部和内部的干扰都不甚敏感,因此,有不能采用不太精密和成本低廉的元件构成控制质量较高的系统。 4.答:10 线性定常系统;(2)非线性定常系统; (3)非线性时变系统;(4)非线时变系统; 1.7.3 提高部分 1.答:1)方框图: 2)工作原理:假定水箱在水位为给定值c(该给定值与电位器给定电信ur对应),此时浮子处于平衡位置,电动机无控制作用,水箱处于给定水位高度,水的流入量与流出量保持不变。当c增大时,由于进水量一时没变浮子上升,导致c升高,给电信计作用后,使电信计给电动机两端电压减小,电动机带动减齿轮,使控制阀开度减小,使进水量减小,待浮

视觉分辨率及空间频率响应测试实验报告

视觉分辨率及空间频率响应(SFR)测试实验报告 班级:学号:姓名: 一、实验目的: 1、理解数码相机视觉分辨率的定义及其度量单位。 2、了解数码相机分辨率测试标准ISO12233以及GB/T 19953-2005《数码相机分辨率的测量》,熟悉测试标板构成,掌握其使用方法。 3、掌握数码相机视觉分辨率测试方法,能够通过目视判别数码相机的分辨率特性。 4、了解数码相机空间频率响应(SFR)的测试原理,理解空间频率响应(SFR)曲线的含义。 5、掌握数码相机空间频率响应(SFR)的测试方法,能够通过SFR曲线判别数码相机的分辨率特性。 二、实验要求: 1、使用数码相机拍摄ISO12233标准分辨率靶板,要求连续拍摄三幅图。 2、目视判别数码相机的视觉分辨率,需分别判别水平、垂直、和斜45度方向的视觉分辨率(注意:若拍摄的靶板有效区域高度仅占据相机幅面高度的一部分,需将目视判别结果乘以修正系数以得到真实的测量结果。修正系数=以像素为单位的相机幅面高度/以像素为单位的靶板有效区域高度)。 3、使用Imatest软件测量数码相机空间频率响应(SFR)曲线,需分别测量水平及垂直方向的SFR,并取MTF50、MTF20作为测量结果,与视觉分辨率测试结果进行比较。 4、独立完成实验报告,需明确相机型号、相机基本设置、并包含所拍摄图案以及判别结果和相应说明。 三、实验过程 在光学测量实验室使用手机(iPhone6s)连续拍摄三张ISO12233标准分辨率靶板。拍摄过程中使手机上下屏幕边缘尽量与靶板上下边缘对齐,以减小修正系数。其中使用的相机参数如下:

拍摄的照片如下: 照片一(修正系数为)

实验三 二阶系统频率响应

实验三 二阶系统频率响应 一、实验目的 (1)学习系统频率特性响应的实验测试方法。 (2)了解二阶闭环系统中的对数幅频特性和相频特性的计算。 (3)掌握根据频率响应实验结果绘制波特图的方法。 (4)掌握欠阻尼二阶闭环系统中的自然频率、阻尼比对谐振频率、谐振峰值和带宽的影响及对应的计算。 二、实验设备 (1)XMN-2型学习机; (2)CAE-USE 辅助实验系统 (3)万用表 (4)计算机 三、实验内容 本实验用于观察和分析二阶系统瞬态响应的稳定性。 二阶闭环系统模拟电路如图3-1所示,它由两个积分环节(OP1和OP2)及其反馈回路构成。 图3-1 二阶闭环系统模拟电路图 OP1和OP2为两个积分环节,传递函数为s T s G i 1 )(-=(时间常数RC T i =)。二阶闭环系统等效结构图如图3-2所示。 图3-2 二阶闭环系统等效结构图 该二阶系统的自然振荡角频率为RC T n 11==ω,阻尼为i f R R K 22= =ζ。 四、实验步骤 (1)调整Rf=40K ,使K=0.4(即ζ=0.2);取R=1M ,C=1μ,使T=1秒(ωn=1/1)。 (2)输入信号位)sin(t X ω=,改变角频率使ω分别为 0.2,0.6,0.8,0.9,1.0,1.2,1.6,2.0,3.0rad/s 。稳态时,记录下输出响应)sin(φω+=t Y y 五、数据采集及处理 输出信号幅值Y 输出信号初相φ L(ω) φ(ω) ω(rad/s) T 0.2 0.6 0.8 0.9 1.0 1.2

1.6 2.0 3.0 六、实验报告 1、绘制系统结构图,并求出系统传递函数,写出其频率特性表达式。 2、用坐标纸画出二阶闭环系统的对数幅频、相频曲线(波特图)。 3、其波特图上分别标示出谐振峰值(Mr)、谐振频率(ωr)和带宽频率(ωb)。 4、观察和分析曲线中的谐振频率(ωr)、谐振峰值(Mr)和带宽(ωb),并与理论计算值作对比。

频率响应测量的方法

频率响应测量的方法 频率响应测量的方法很多,一般同使用的测试信号有关。 可分为:i. 点测法:完全按定义设计的测量方法,逐个频率输入振幅恒定的正弦信号,逐个点测量相应频率扬声器输出声压级,在频率响应坐标纸上绘出相应的点,把这些不连续的点的平滑连线即为频率响应曲线。测量耗时、测量有限的非连续频率点,过渡点是推测的。 ii. 扫频自动记录法:使用机械传动的方法改变振荡电路中的电容,使信号的频率连续改变,输出电压恒定,这叫扫频信号,记录仪上记录纸的频率刻度与信号源同步,记录扬声器的输出声压级随频率的变化,即为频率响应曲线,这方法叫扫频自动记录法。后来,机械扫频信号改成电压控制频率的压控振荡器,改进了机械传动的麻烦。这是60~80年代丹麦B&K 公司为代表的测量技术。扫频自动测量原理大约已有40年的历史,其测量原理没有变化,改变的只是使用的技术,譬如扫频信号的产生方法,测量传声器测得的数据的采集、处理、运算和输出数据和曲线都可以由计算机完成。其中需要特别一提的是:对扫频信号的理解和生成技术,连续扫频信号过去理解为点频信号随时间变化,但点频信号是一个连续周期信号,从示波器看到的是一个按周期重复的正弦波形,而扫频信号没有一个频率是经历时间周期的,随扫频时间变化的是它的瞬时频率。瞬时频率数学上是相位对时间的微分。可以这样理解:譬如f=100Hz正弦信号的周期是T=0.01秒,其走过的相位φ= 2π弧度(360°),而f=200Hz时,T=0.005秒,其走过的相位仍然是φ= 2π弧度,这样,一个微小时间内的相位变化(等效于相位对时间的微分)同周期成反比,相当于稳态频率。同稳态信号不同的是它引入扫频速率(S:Hz/s)的概念,瞬时频率fi =S t +f0;t为扫频时间;f0为扫频初始频率。t和f0确定扫频频率范围。稳态单频信号的公式是u(t)=Acos(2πft);f为稳态单频信号的频率。而扫频信号的公式是u(t)=ACos(πSt2),B&K公司的2012音频分析仪的TSR(时选响应)技术中使用的测试信号,就是采用该数学模型生成的信号。 iii. 阶步步进的猝发声测量。猝发声是若干个周期的正弦信号脉冲,或称正弦波列。它由连续周期信号加一时间控制电路组成,当测量声压级的时间窗正好在猝发声的稳定部分时,它更接近点频测量。由一个个不同频率的猝发声组成一个阶步步进的猝发声,用对应的跟踪滤波器跟踪每一个猝发声,类似点频测量得到扬声器的频率响应。美国ATI公司的扬声器测量系统LMS使用的正是这种信号源,它最多可以在一个十进制频率范围内设置200个猝发声频率点,即频率阶步的间隔是1/60倍频程。 iv. 多频音(Muiti-tone Burst也叫多频猝发声)它是数字生成的M个纯音信号的叠加的一个短时间间隔的信号,该时间间隔对M个频率来说正好都是整周期的,并且这由低到高M个频率之间没有谐波关系,即2个频率相除(大数除小数)的商不会是整数。例如:14.5,31.9,37.7,49.3,55.1……Hz;可以排列成一个数列,选择适当的频率间隔,组成M个频率的多频音。其M个频率的同步FFT即为基频即幅频响应,由其谐波可以实现其谐波失真测量。该技术使用在AP公司的“系统1”和“系统2”的仪器上。 v. 脉冲数字测量技术上面所有的方法都离不开正弦信号,只是频率的连续变化、频率的阶步变化和有限频率成分的合成信号,脉冲信号和MLS信号需要进行时域(时间波形)和频域(频率响应和频率分析)之间的变换,从中可以得到更多信息,它作用于被测系统后的输出响应,经过变换和运算可以得到被测系统的许多信息,这需要对测试信号有充分了解,涉及信号与系统的基本理论,又要借助数字信号处理技术进行变换运算。单脉冲信号的性质,

实验二:频率响应测试

成绩 北京航空航天大学 自动控制原理实验报告 院(系)名称自动化科学与电气工程学院 专业名称自动化 学生学号13191006________ 学生________ 万赫__________ 指导老师_____ 王艳东 自动控制与测试教学实验中心

实验二频率响应测试 实验时间2015.11.13 实验编号30 同组同学无 一、实验目的 1、掌握频率特性的测试原理及方法 2、学习根据所测定出的系统的频率特性,确定系统传递函数的方法 目的。 二、实验容 1. 测定给定环节的频率特性。 2. 系统模拟电路图如下图: 系统结构图如下图:

系统的传递函数: 取R=100KΩ,则G(s)=错误!未找到引用源。 取R=200KΩ,则G(s)=错误!未找到引用源。 取R=500KΩ,则G(s)=错误!未找到引用源。 若正弦输入信号为Ui(t)=A1Sin(ωt),则当输出达到稳态时,其输出信号为 Uo(t)=A2Sin(ωt+ψ)。改变输入信号频率f=错误!未找到引用源。值,便可测得二组A1/A2和ψ随f(或ω)变化的数值,这个变化规律就是系统的幅频特性和相频特性。 三、实验原理 1. 幅频特性即测量输入与输出信号幅值A1及A2,然后计算其比值A2/A1。 2. 实验采用“沙育图形”法进行相频特性的测试。 设有两个正弦信号: X(ωt)=XmSin(ωt) ,Y(ωt)=YmSin(ωt+ψ) 若以X(t)为横轴,Y(t)为纵轴,而以ω作为参变量,则随着ωt的变化,X(t)和Y(t)所确定的点的轨迹,将在X-Y平面上描绘出一条封闭的曲线。这个图形就是物理学上成称

数字信号处理实验报告 -频率响应与系统稳定性

专业:电子信息工程班级:N11级-1F 姓名: 学号:

实验项目:系统响应及系统稳定性 实验台号:同组者: 1、实验目的 (1)掌握求系统响应的方法 (2)掌握时域离散系统的时域特性 (3)分析、观察及判断系统的稳定性 2、实验原理与方法 描述系统特性有多种方式,时域描述有差分方程和单位脉冲响应,频域描述有系统函数和频率响应。已知输入信号可以由差分方程、单位脉冲响应、系统函数或频率响应来求系统的输出信号。 (1)求系统响应:本实验仅在时域求系统响应。在计算机上,已知差分方程可调用filter函数求系统响应;已知单位脉冲响应可调用conv函数计算系统响应。 (2)系统的时域特性:系统时域特性是指系统的线性、时不变性、因果性和稳定性。本实验重点分析系统的稳定性,包括观察系统的暂态响应和稳态响应。 (3)系统的稳定性判断:系统的稳定性是指对任意有外接信号输入,系统都能得到有界的系统响应。或者系统的单位脉冲响应满足绝对可和条件。实际中,检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件。可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳 定的。

(4)系统的稳态响应 系统的稳态输出是指当∞→n 时,系统的输出。如果系统稳定,信号加入系统后,系统输出的开始一段称为暂态效应,随n 的加大,幅度趋于稳定,达到稳态输出。注意在以下实验中均假设系统的初始状态为零。 3.实验内容及步骤 (1)已知差分方程求系统响应 设输入信号 )()(81n R n x =,) ()(2n u n x =。已知低通滤波器的差分方程为 )1(9.0)1(05.0)(05.0)(-+-+=n y n x n x n y 。 试求系统的单位冲响应,及系统对)()(81n R n x =和)()(2n u n x =的输出信号,画出输出波形。 051015 20253035404550 n h n 系统的单位脉冲响应 5 10 15 20 253035 40 45 50 n y 1n 系统对R8(n)的响应 05101520 253035404550 n y 2n 系统对u(n)的响应 实验图(1) (2)已知单位脉冲响应求系统响应 设输入信号 )()(8n R n x =,已知系统的单位脉冲响应分别为)()(101n R n h =, )3()2(5.2)1(5.2)()(2-+-+-+=n n n n n h δδδδ,试用线性卷积法分别求出 各系统的输出响应,并画出波形。

实验二放大器输入、输出电阻和频响特性的测量

实验二 放大器输入、输出电阻和频响特性的测量 一、实验目的 掌握放大器输入电阻、输出电阻和频率特性的测量原理和方法。 二、实验原理 1.放大器输入电阻R i 的测试 最简单的测试方法是“串联电阻法”。其原理如图2-1所示,在被测放大器与信号源之间串入一个已知标准电阻R i ,只要分别测出放大器的输入电压U i 和输入电流I i ,就可以求出: R i =V i /I i = n R i R U U /=R i U U ?Rn 但是,要直接用交流毫伏表或示波器测试Rn 两端的电压U R 是有困难的,因U R 两端不接地。使得测试仪器和放大器没有公共地线,干扰太大,不能准确测试。为此,通常是直接测出U S 和U i 来计算R i ,由图不难求出: R i = i S i U U U -? Rn 注:测R i 时输出端应该接上R L ,并监视输出波形,保证在波形不失真的条件下进行上述测量。 S U 图2-1放大电路输入端模型 2.放大器输出电阻R o 的测试 放大器输出端可以等效成一个理想电压源U o 和R o 相串联,如图2-3所示。 在放大器输入端加入U S 电压,分别测出未接和接入R L 时放大器的输出电压U o 和U L 值,则 L L R U U R )1( 0-= 注意:要求在接入负载R L (或R W )的前后,放大器的输出波形都无失真。

501mA β==CQ ,I , 212*c B b p E R V R R R = ++12*5.1 1.7,10 5.1 p V R ==++ 20.9p R K =Ω 2626200(1) 200(1) 1.526,1be EQ mv mv r K I mA ββ=++=++=Ω 12()//// 1.13,i b p b be R R R R r K =+=Ω 3o c R R K ==Ω

自动控制原理

自动控制原理 知识要点与习题解析 第2章 控制系统的数学模型 数学模型有多种表现形式:传递函数、方框图、信号流图等。 ; ; )()()()(t e t c t n t r )()()()()()(s s s s s H s G en n e ΦΦΦΦ; P32 (自动控制原理p23) 2-17 P33 解: (e) 42 32121123 211)(G H G G H G G H G G G G s ++-+= Φ; P37 (p73) 2-21 试绘制与题2-21图中系统方框图对应的信号流图,并用梅森增益公式求传递函数C (s )/R (s ) 和误差传递函数E (s )/R (s ) 注:P21(2) 依据系统方框图绘制信号流图 首先确定信号流图中应画出的信号节点,再根据方框图表明的信号流向,用支路及相应的传输连接信号节点。步骤如下, (a)系统的输入为源点,输出为阱点; (b)在方框图的主前向通路上选取信号节点,即相加点后的信号和有分支点的信号,两信号是同一个 题2-21图 系统方框图 题2-1 7图 控制系统方框图 题2-17解图 控制系统简化方框图

信号时只作为一个节点; (c)其它通路上,仅反馈结构求和点后的信号选作节点; (d)最后,依据信号关系,用支路连接这些节点。 解:图(a)信号流图如题2-21解图(a)所示。 计算C (s )/R (s )和E (s )/R (s )过程中,关于回路和特征式的计算是完全相同,可统一计算。 回路 111H G L -=,232H G L -=,213213H H G G G L -=; 特征式 21312132123111H H G G H H G G G H G H G ++++=?。 计算C (s )/R (s ): 前向通路 3211G G G P =,342G G P =; 特征子式 11=?,1121H G +=?; 2 131223111134321)1(1) 1()()(H H G G G H G H G H G G G G G G s R s C ++++++=; 计算E (s )/R (s ): 前向通路 11=P ;21342H H G G P -=; 特征子式 2311H G +=?,12=?; 2 131223112 13423)1(11)()(H H G G G H G H G H H G G H G s R s E ++++-+=; P38 (p73) 2-22 试用梅森增益公式求题2-22图中各系统信号流图的传递函数)(/)(s R s C 。 解:(b) 6543211G G G G G G P =,654372G G G G G P =,6813G G G P =,68174G G H G P -=; 121H G L -=,242H G L -=,363H G L -=,45434H G G G L -=, 4185H H G L =,56543216H G G G G G G L -=,5654377H G G G G G L -=, 56818H G G G L -=,568179H G G H G L =; 3219282523231219 11L L L L L L L L L L L L L L L L i i -++++++-=?∑=; 11=?,12=?,24431H G +=?=?; ? ++++=)1)(()()(244321H G P P P P s R s C ; 题2-21解图 系统信号流图 题2-22图 系统信号流图

一阶网络频响特性测量

一阶网络频响特性测量 信号与系统实验报告 实验名称: 一阶网络频响特性测量 姓名: 姚敏 学号: 110404212 班级: 通信(2)班 时间: 2013.6.7 南京理工大学紫金学院电光系 一、实验目的 1、掌握一阶网络的构成方法; 2、掌握一阶网络的系统响应特性; 3、了解一阶网络频响特性图的测量方法; 二、实验基本原理 系统响应特性是指系统在正弦信号激励下,稳态响应随信号频率变化而变化的特性,称为系统的频率响应特性(frequency response)简称频响特性。 一阶系统是构成复杂系统的基本单元。学习一阶系统的特点有助于对一般系统特性的了解。一阶系统的系统函数为H(s),表达式可以写成: 1H(s),k, k为一常数 (3-1) s,, 激励信号x(t)为: xtEt()sin(),, (3-2) m0 按照系统频响特性的定义可求得该一阶系统的稳态响应为: ytEHt()sin(),,,,(3-3) ssm000 j,0H(s)|,H(j,),H(j,)eH,H(j,)其中,。,,,,sj,,00000

可见,当改变系统输入信号的频率时,稳态响应的幅度和相位也随之而改变。 1,k,,,,0因果系统是稳定的要求:,不失一般性可设。该系统的频响,特性为: 1H(j,), (3-4) j,,,1 1从其频响函数中可以看出系统响应呈低通方式,其3dB带宽点。系统的频,响特性图如下图: , 图1 一阶网络频响特性图 一阶低通系统的单位冲击响应与单位阶跃响应如下图: 图2 一阶网络单位冲击响应与单位阶跃响应图 三、实验内容及结果 1、填写表1: 输入信号频输出信号幅度(mV) 相对幅度(dB) 相位差() ,,,21率f0 10Hz 1.96V -0.175 -181.4 1kHz 1.68V -1.514 -212.6 2kHz 1.27V -3.945 -229.7 3kHz 952mV -6.448 118.0 4kHz 760mV -8.404 114.0 5kHz 628mV - 10.061 108.9 6kHz 524mV -11.634 105.7 7kHz 456mV -12.841 -255.7 8kHz 400mV -13.979 102.2 9kHz 360mV -14.895 101.9 10kHz 324mV -15.810 100.7

教你看懂音箱测频响曲线

教你看懂音箱测频响曲线

————————————————————————————————作者:————————————————————————————————日期:

前言: 声音信号是由不同频率的声波叠加而成的,因此人们在分析声音时就很难避开频率问题。发烧友们常说“有好曲线未必有好声”,但是更多的情况是“没有好曲线的产品声音肯定好不到哪里去”。那么曲线与最终的回放听感有什么联系呢?我们立刻进入正题,为大家揭示其中的奥秘。 声卡的频响曲线: 在声卡评测中,我们常用到回路测试法对声卡的输入输出回路进行音质测试,得出的曲线就是DAC到ADC的回路频响。 Frequency response(频率响应) [url=https://www.wendangku.net/doc/e515372873.html,/images/html/viewpic_pconline.htm?http://img3.pconlin https://www.wendangku.net/doc/e515372873.html,/pcon ... iy&subnamecode=home] [/url] General performance: Excellent Frequency range Response From 20 Hz to 20 kHz, dB -0.00, +0.01 From 40 Hz to 15 kHz, dB -0.00, +0.00 上图和上表就是频率响应曲线图和曲线品质,要知道什么是好曲线就应该知道理想的频响曲线是什么样的。理想的频率响应曲线应该是与输入信号完全一样的曲线,一般我们会用等响信号(各频段的声压相同)作为输入信号,因此理想的频响曲线就应该是尽可能平直平滑的曲线。

信号检测实验报告

Harbin Institute of Technology 匹配滤波器实验报告 课程名称:信号检测理论 院系:电子与信息工程学院 姓名:高亚豪 学号:14SD05003 授课教师:郑薇 哈尔滨工业大学

1. 实验目的 通过Matlab 编程实现对白噪声条件下的匹配滤波器的仿真,从而加深对匹配滤波器及其实现过程的理解。通过观察输入输出信号波形及频谱图,对匹配处理有一个更加直观的理解,同时验证匹配滤波器具有时间上的适应性。 2. 实验原理 对于一个观测信号()r t ,已知它或是干扰与噪声之和,或是单纯的干扰, 即 0()()()()a u t n t r t n t +?=?? 这里()r t ,()u t ,()n t 都是复包络,其中0a 是信号的复幅度,()u t 是确知的归一化信号的复包络,它们满足如下条件。 2|()|d 1u t t +∞ -∞=? 201||2 a E = 其中E 为信号的能量。()n t 是干扰的均值为0,方差为0N 的白噪声干扰。 使该信号通过一个线性滤波系统,有效地滤除干扰,使输出信号的信噪比在某一时刻0t 达到最大,以便判断信号的有无。该线性系统即为匹配滤波器。 以()h t 代表系统的脉冲响应,则在信号存在的条件下,滤波器的输出为 0000()()()d ()()d ()()d y t r t h a u t h n t h τττττττττ+∞+∞+∞ =-=-+-???

右边的第一项和第二项分别为滤波器输出的信号成分和噪声成分,即 00()()()d x t a u t h τττ+∞ =-? 0 ()()()d t n t h ?τττ+∞ =-? 则输出噪声成分的平均功率(统计平均)为 2 20E[|()|]=E[|()()d |]t n t h ?τττ+∞ -? **00*000200 =E[()(')]()(')d d '=2()(')(')d d ' 2|()|d n t n t h h N h h N h ττττττδττττττττ+∞+∞+∞+∞+∞ ---=?? ?? ? 而信号成分在0t 时刻的峰值功率为 22 20000|()||||()()d |x t a u t h τττ+∞ =-? 输出信号在0t 时刻的总功率为 22000E[|()|]E[|()()|]y t x t t ?=+ 22**0000002200E[|()||()|()()()()] |()|E[|()|] x t t x t t t x t x t t ????=+++=+ 上式中输出噪声成分的期望值为0,即0E[()]0t ?=,因此输出信号的功率 成分中只包含信号功率和噪声功率。 则该滤波器的输出信噪比为 222000022000|||()()d ||()|E[|()|]2|()|d a u t h x t t N h τττρ?ττ+∞ +∞-==?? 根据Schwartz 不等式有

《测试信号分析与处理》实验报告

测控1005班齐伟0121004931725 (18号)实验一差分方程、卷积、z变换 一、实验目的 通过该实验熟悉 matlab软件的基本操作指令,掌握matlab软件的使用方法,掌握数字信号处理中的基本原理、方法以及matlab函数的调用。 二、实验设备 1、微型计算机1台; 2、matlab软件1套 三、实验原理 Matlab 软件是由mathworks公司于1984年推出的一套科学计算软件,分为总包和若干个工具箱,其中包含用于信号分析与处理的sptool工具箱和用于滤波器设计的fdatool工具箱。它具有强大的矩阵计算和数据可视化能力,是广泛应用于信号分析与处理中的功能强大且使用简单方便的成熟软件。Matlab软件中已有大量的关于数字信号处理的运算函数可供调用,本实验主要是针对数字信号处理中的差分方程、卷积、z变换等基本运算的matlab函数的熟悉和应用。 差分方程(difference equation)可用来描述线性时不变、因果数字滤波器。用x表示滤波器的输入,用y表示滤波器的输出。 a0y[n]+a1y[n-1]+…+a N y[n-N]=b0x[n]+b1x[n-1]+…+b M x[n-M] (1) ak,bk 为权系数,称为滤波器系数。 N为所需过去输出的个数,M 为所需输入的个数卷积是滤波器另一种实现方法。 y[n]= ∑x[k] h[n-k] = x[n]*h[n] (2) 等式定义了数字卷积,*是卷积运算符。输出y[n] 取决于输入x[n] 和系统的脉冲响应h[n]。 传输函数H(z)是滤波器的第三种实现方法。 H(z)=输出/输入= Y(z)/X(z) (3)即分别对滤波器的输入和输出信号求z变换,二者的比值就是数字滤波器的传输函数。 序列x[n]的z变换定义为 X (z)=∑x[n]z-n (4) 把序列x[n] 的z 变换记为Z{x[n]} = X(z)。

2016年《振动测试实验》综合练习题

2016年《振动测试实验》综合练习题 1、关于振动传感器,请回答以下问题: 1)振动传感器主要有哪些类型?哪种传感器目前使用最广泛? 答:根据被测振动运动是位移、速度还是加速度,可以将振动传感器分为位移传感器、速度传感器和加速度传感器三类;从力学原理上,振动传感器又可以分为绝对式传感器和相对式传感器两类;从电学原理上,根据所采用的将力学量转变为电学量的传感器敏感元件的性质,振动传感器又可分为电感型、电动型、涡流型、压电型和电阻型等诸多类型。其中使用最广泛的传感器是绝对式压电加速度传感器。 2)加速度传感器安装方式有哪些?对于飞机空中振动环境测试,你认为哪几种安装方式较合适? 答:加速度传感器安装方式有刚螺栓连接、胶合螺栓、石腊粘接、双面胶带和永久磁铁。对于飞机空中振动环境测试,胶合螺栓的安装方式较合适。 3)加速度传感器和力传感器的主要技术指标? 答:加速度传感器和力传感器的主要技术指标有灵敏度、频率响应特性、动态范围、横向灵敏度和幅值线性度。 4)一般振动数据采集设备最大输入电压为10伏。测量一结构加速度响应,加速度最大值预估约为20g,现有加速度传感器甲(灵敏度:50mv/g)、乙(灵敏度:500mv/g)各一只,选用哪一个传感器?请说明理由。 答:选用加速度传感器乙。因为数据采集设备的最大输入电压为10伏,加速度传感器甲的最大测量加速度为200g,离预估的加速度太大,而加速度传感器乙的最大测量加速度为20g,与预估的加速度符合。 2、关于激振器,请回答以下问题: 1)常用的激振器安装方式有哪两种?两种安装方式的分别有何技术要求? 答:常用的激振器安装方式有刚性支承和柔性悬挂两种。刚性支承安装要求垂直向、横向、纵向支承刚度足够大,即支承系统的最低阶固有频率要大于试验件最高阶固有频率。柔性悬挂安装要求垂直向、横向、纵向支承刚度足够小,即支承系统的最低阶固有频率要小于试验件最高阶固有频率。 2)用一台激振器做模态试验时,激振位置如何选择?

振动测试技术模态实验报告

研究生课程论文(2016-2017学年第二学期) 振动测试技术 研究生:

模态试验大作业 0 模态试验概述 模态试验(modal test)又称试验模态分析。为确定线性振动系统的模态参数所进行的振动试验。模态参数是在频率域中对振动系统固有特性的一种描述,一般指的是系统的固有频率、阻尼比、振型和模态质量等。 模态试验中通过对给定激励的系统进行测量,得到响应信号,再应用模态参数辨识方法得到系统的模态参数。由于振动在机械中的应用非常普遍。振动信号中包含着机械及结构的内在特性和运行状况的信息。振动的性质体现着机械运行的品质,如车辆、航空航天设备等运载工具的安全性与舒适性;也反映出诸如桥梁、水坝以及其它大型结构的承载情况、寿命等。同时,振动信号的发生和提取也相对容易因此,振动测试与分析已成为最常用、最基本的试验手段之一。 模态分析及参数识别是研究复杂机械和工程结构振动的重要方法,通常需要通过模态实验获得结构的模态参数即固有频率、阻尼比和振型。模态实验的方法可以分为两大类:一类是经典的纯模态实验方法,该方法是通过多个激振器对结构进行激励,当激振频率等于结构的某阶固有频率,激振力抵消机构内部阻尼力时,结构处于共振状态,这是一种物理分离模态的方法。这种技术要求配备复杂昂贵的仪器设备,测试周期也比较长;另一类是数学上分离模态的方法,最常见的方法是对结构施加激励,测量系统频率响应函数矩阵,然后再进行模态参数的识别。 为获得系统动态特性,常需要测量系统频响函数。目前频响函数测试技术可以分为单点激励单点测量( SISO)、单点激励多点测量( SIMO) 、多点激励多点测量( MIMO)等。单点激励一般适用于较小结构的频响函数测量,多点激励适用于大型复杂机构,如机体、船体或大型车辆机构等。按激励力性质的不同,频响函数测试分为稳态正弦激励、随机激励及瞬态激励三类,其中随机激励又有纯随机、伪随机、周期随机之分。瞬态激励则有快速正弦扫描激励、脉冲激励和阶跃激励等几种方式。按激励力性质的不同,频响函数测试分为稳态正弦激励、随机激励及瞬态激励三类,其中随机激励又有纯随机、伪随机、周期随机之分,瞬态激励则有快速正弦扫描激励、脉冲激励和阶跃激励等几种方式。 振动信号的分析和处理技术一般可分为时域分析、频域分析、时频域分析和时间序列建模分析等。这些分析处理技术从不同的角度对信号进行观察和分析,为提取与设备运行状态有关的特征信息提供了不同的手段。信号的时域分析包括时域统计分析、时域波形分析和时域相关分析。对评价设备运行状态和

实验二 连续时间系统的频率响应

实验二连续时间系统的频率响应 39022622龚小川 一.实验目的: 1. 进一步加深对连续时间系统频率响应理解; 2.掌握借助计算机计算任意连续时间系统频率响应的方法。 二.实验原理 1.本实验的基本内容就是将系统函数的幅频特性曲线以及相频特性曲线给画出来。 而系统函数∏∏==--= n i i m j j p s z s K s H 1 1 ) ) (()(,令jw s =,则∏∏==--= n i i m j j p jw z jw K jw H 1 1 ) ) (()( ∑∑∏∏∏∏======-==?=∑∑=?=-=-==n i i m j j n i i m j j w j n i j i m j j j j i i j j j w M N K jw H e jw H e M e N K jw H e M p jw e N z jw n i i m j j i j 1 1 1 1) (1 ] [ 1] [ )(,)()()(,1 1 θψ??θψθψ 即(1)计算所有零点模之积及极点模之积,两者之商即为)(s H 的幅度; (2)计算所有零点相角之和及极点相角之和,两者之差即为)(s H 的相角。 2.通过零极点图通过几何的方法来计算,而且通过零极点图可以迅速地判断系统的滤波特性。 通过零极点图进行计算的方法是: (1)在S 平面上标出系统的零极点位置; (2)选择S 平面的坐标原点为起始点,沿虚轴向上移动,计算此时各极点和零点 与该点的膜和夹角;

(3)将所有零点的模相乘,再除以各极点的模,得到对应频率处的幅频特性的值;(4)将所有零点的幅角相加,减去各极点的幅角,得到对应频率处的相角。 三.实验流程图

实验报告三_频率特性测量

实验报告 课程名称: 自动控制理论实验 指导老师: 吴越 成绩: 实验名称: 频率特性测量 实验类型: 同组学生姓名: 鲍婷婷 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1. 掌握用超低频信号发生器和示波器测定系统或环节频率特性的方法; 2. 了解用TD4010型频率响应分析测试仪测定系统或环节的频率特性方法。 二、主要仪器设备 1.超低频信号发生器 2.电子模拟实验装置 3.超低频慢扫描示波器 三、实验步骤 1.测量微分积分环节的频率特性; (1)相频特性 相频特性的测试线路如图4-3-1所示,其中R 1=10k Ω、C 1=1uF 、R 2=2k Ω、C 2=50uF 。测量时,示波器的扫描旋钮指向X-Y 档。把超低频信号发生器的正弦信号同时送入被测系统和X 轴,被测系统的输出信号送入示波器Y 轴,此时在示波器上可得到一李沙育图形。 然后将椭圆移至示波器屏幕中间,椭圆与X 轴两交点的间的距离即为2X 0,将 Y 输入接地,此时得到的延X 轴光线长度 即为2X m ,因此求得θ=sin -1 (2X 0/2X m ),变化输入信号频率ω(rad/s),即可得到一 组θ(ω)。测量时必须注意椭圆光点的转动方向,以判别相频特性是超前还是迟后。当系统或环节的相频特性是迟后时,光点为逆时针转动;反之超前时,光点为顺时针转动。测试时,ω取值应匀称,否则会影响曲线的准确度。 (2) 幅频特性:示波器选择停止扫描档,超低频信号发生的正弦信号同时送入X 轴和被测系统;被测环节的输出信号仍送入Y 轴;分别将X 通道和Y 通道接地,示波器上出现的两条光线对应的两条光线长度为2X m 、2Y m ,改变频率ω,则可得一组L(ω)。

深圳大学一阶、二阶系统的幅频特性测试实验

深圳大学实验报告 课程名称:信号与系统 实验项目名称:一阶、二阶系统的幅频特性测试实验学院:信息工程 专业:通信工程 指导教师: 报告人:学号:班级: 实验时间: 实验报告提交时间: 2015.6.23 教务部制

一、实验目的与要求: 1、学会利用基本的运算电路单元,搭建一些简单的实验系统。 2、学会测试系统的频率响应的方法。 3、了解一阶、二阶系统的阶跃响应特性。 二、实验仪器 1、信号与系统实验箱一台(主板)。 2、线性系统综合设计性模块一块。 3、20M双踪示波器一台。 三、实验原理 1、基本运算单元 (1)比例放大 1)反相数乘器 由: 2 2 1 1 R U R U - =则有: 1 1 2 2R U R U- = 2)同相数乘器 由: 5 4 4 4 3 R R U R U + =则有: 4 5 4 3 4 ) ( R R R U U + = (2)积分微分器 1)积分器:由:12 1 2 1 1 // U U R R sC =-则有:2 21 121 (1) R U U R sR C =- +

2)微分器:由:34 1 1 1 U U R sC =-则有: 4311 U U R C s =- (3)加法器 1)反向加法器 有:) ( 2 1 1 3 2R U R U R U+ - = 2)正向加法器 由: ? ? ? ?? ? ? + = - = + - + 8 7 5 7 6 4 4 3 3 R R U R U R U R U R U 则有) ( ) (* 4 4 3 3 7 8 7 6 5R U R U R R R R U+ + = 2、N阶系统系统 1 011 1 1 011 1 ()()()() ()()()() n n n n n n m m m m m m d d d C y t C y t C y t C y t dt dt dt d d d E x t E x t E x t E x t dt dt dt - - - - - - ++++= ++++ 根据零状态响应(起始状态为零),则对其进行拉氏变换有: 1 011 1 011 ()()()() ()()()() n n n n m m m m C s Y s C s Y s C sY s C Y s E s X s E s X s E sX s E X s - - - - ++++= ++++ 则其传函数可表达为: -1 01-1 -1 01-1 s s s (s) (s) (s)s s s m m m m n n n n E E E E Y H X C C C C ++++ == ++++ 3、作为一阶系统,一般可表达为: 01 01 () E s E H s C s C + = + 一阶系统是构成复杂系统的基本单元,学习一阶的特点有助于对一般系统特性的了

频率响应测试

频率响应测试 一、 实验目的 1. 掌握频率特性的测试原理和方法。 2. 学习根据所测定出的系统的频率特性,确定系统传递函数的方法。 二、 实验内容 1. 测定给定环节的频率特性。 2. 实验模拟电路连接如下 取23R R =41R M ==Ω,121C C ==μ F, 1 R K R =,则系统方块图如下 易得系统传递函数为: 取K=2则,G (S )= 2200 10200s s ++; 取K=5则,G (S )= 2500 10500 s s ++; 若正弦输入信号为Ui (t )= ,则当输入达到稳态时,其输出信

号为Uo(t)= 。改变输入信号频率f = 值,便可测得二组 12/A A 和φ随 f (或ω)变化的数值,这个规律就是系统的幅频特性和相频特 性。 三、 实验原理 1. 幅频特性即测量输入与输出信号幅值 与 ,然后计算其比值 21 /A A 21/A A 。 2.实验采用“李沙育“图形法进行相频特性性的测试。假设输入信号为 ,输出信号为Y(t)=。当ωt=0 时,有 X(0)=0 ;Y(0)=Y m Sin(ψ) 。则相位差角φ的求法如下:若椭圆 长轴在一、三象限,则φ=arcsin(/O M Y Y );若椭圆长轴在二、四象限则φ=π-arcsin(/O M Y Y )。应注意φ始终为负。 3.将所测数据代入根据公式 =2222 ( )(1())(2)n n Ar Ac ωωζωω=-+ 1 2 2()1()n n tg ω ζωφωωω-=-- 即可求得n ω及ζ,则传递函数为 G(s) 四、 实验结果

1.K=2 序号12345678910 f/Hz12345 ω φ 将表中第五组数据代入公式,用MATLAB求得 ω =, n 则传递函数为G(s) = 实验曲线 幅频特性曲线

相关文档
相关文档 最新文档