文档库 最新最全的文档下载
当前位置:文档库 › ZX7型焊机工作原理与维修经验

ZX7型焊机工作原理与维修经验

ZX7型焊机工作原理与维修经验
ZX7型焊机工作原理与维修经验

ZX7系列逆变式直流弧焊机原理、功能及使用方法

5.1 逆变器及逆变式弧焊电源

将直流电转换成交流电的装置称为逆变器。

逆变式弧焊电源,又称弧焊逆变器,是一种新型的焊接电源。这种电源一般是将三相工频(50Hz)交流网路电压,先经输入整流器整流和滤波变成直流,再通过大功率开关电子元件(晶闸管SCR、晶体管GTR、场效应管MOSFET或IGBT)的交替开关作用,将整流后的直流逆变成几kHz~几十kHz的中频交流电压,并经变压器降至适合于焊接的几十伏电压,然后再次整流并经电抗滤波输出相当平稳的直流焊接电流。其变换顺序可简单地表示为:工频交流(经整流滤波)一直流(经逆变)一中频交流(降压、整流、滤波)一直流。如果用符号表示,即为:AC—DC—AC—DC。

为什么要采用上述这种方式呢?这是因为如果直接用逆变降压后的交流电进行焊接,由于其频率高,则感抗大,导致焊接回路中有功功率大大降低。因此,还需再次进行整流。

图5-1为几种具有代表性电子类直流弧焊设备方框图。

表5-1为几种典型直流弧焊设备的性能比较。

5.2 逆变电源的特点

弧焊逆变器的基本特点是工作频率高,由此而带来很多优点。这是因为变压器,无论是一次绕组还是二次绕组,其电势E与电流的频率f、磁通密度B、铁心截面积S及绕组的匝数N 有如下关系:

E=4.44fBSN

而绕组的端电压U近似等于E,即

U≈E=4.44fBSN

当U、B确定后,若提高f,则S减小,N减少,因此,变压器的质量和体积就可以大大减少。这样,就能使整机的质量和体积显著减小。不仅如此,还因为频率的提高及其他因素而带来了许多优点,与传统弧焊电源比较,其主要特点如下。

体积小、质量轻,节省材料,移动、携带方便。

高效节能,效率可达80%-90%,比传统焊机节电1/3以上。

动特性好,引弧容易,电弧稳定,焊缝成形美观,飞溅小。

焊接参数自动调节控制方便,很适合作为自动焊接电源。

可一机多用。

5.3 ZX7系列晶闸管逆变弧焊整流器工作原理

5.3.1 主电路原理

由电路原理图5—2、图5—3、图5—4、图5—5可见,三相交流电经自动保护开关QK1后至整流桥VC1整流为脉动直流(R001吸收浪涌电压,限制充电电流),再经C004~C007仰滤波成为平滑的直流电压,经逆变振荡器(由C008~C011,TV007,TV008,Tc2,L3、L4组成)逆变为中频高压,由主变压器Tc2降压整流后通过滤波(VD009、VD010,L1,L2,C017~C020

变为适合于焊接的低压大电流。其中PCB1为过压保护板,PCB3为阻容保护板,PCB2为主控板,L3和L4起限制晶闸管导通时电流上升率即限制di/dt的作用。控制电路通过控制主电路逆变器中VT3、VT4的开通频率来控制逆变振荡频率,经二次侧整流输出可调的焊接电流。

5.3.2 外特性控制

借助电子电路和电弧电压、电流反馈信号的配合,并通过自动运算调节电路去控制大功率电子元件VT007、VT008的开通频率,使焊机的输出特性可进行任意的控制,以满足各种弧焊工艺方法的需要。ZX7系列焊机为恒流带外拖特性,并具有限制最大电流和最高空载电压的功能。动特性采用对给定信号与反馈电流信号的差值进行PI调节运算后,转换为调频脉冲,对输出电流的变化自动调节。

5.3.3 控制电路(主控板PCB2)工作原理

主控板PCB2如图5—3所示,控制电路可由各部分功能分块来分析,整个控制部分可分为以下几部分.a.控制电源+15V

DC;b.给定和气阀控制;c.反馈电路;d.PI调节;e.压频转换;f.限流保护、限压保护;g.触发脉冲产生、间隔时间设定;h.触发选通、脉冲形成以及微分驱动;i.逻辑和同步电路等。a由N13、N14及外围相关元件组成.b由VT80、VT81、N12、V77等组成;c由N10及相关元件组成;d由N8和外围元件组成;e由N7、N6、V74等构成;f由N4、VD6、N9、VD36等组成;g由单稳态电路N

及相关阻容元件构成;h由N2、N3、V68、V69和相关元件VD11、R5、R7、C7、C9、C10、R10、C11、R13等组成;i由N5、V70、V71、V72、V73、C17、VS64、VS66、VLE15及其他元件组成。

给定信号与经分流器放大后的电流信号经运算放大器求差后,进行比例积分放大,再经压频转换器成为频率可控的脉冲,经N6、V75整形后送入N1组成的脉冲产生电路与电压限制信号、过流保护,选通锁定信号相与后在C3上得到脉冲信号输入单稳产生触发脉冲,和选通信号在N,组成的脉冲形成电路中相与后形成触发脉冲,经微分后驱动脉冲变压器去触发主电路晶闸管VT007、VT008,从而控制振荡频率。

同步电路的实现和保护功能。同步电路主要是通过N2组成的同步切换和选通电路来实现的。因主电路是串联逆变电路,VT007、VT008必须交替开关,且必须在1只晶闸管关断后一段时间才允许触发另1只,所以要检测主晶闸管是否可靠关断,并为控制电路提供1组关断信号。电路上是由光电耦合器N5组成的反压信号检测电路构成的,逻辑判断电路在第1个触发脉冲输出后锁定脉冲产生和选通电路,等待与其相对应的主晶闸管的关断脉冲信号,当主晶闸管关断后,关断信号经N5输入给同步逻辑电路经N2的2R端(为高电

平),解开锁定,同时选通切换至另1只主晶闸管,当压频转换电路的数字脉冲输入单稳时,产生另1只主晶闸管的触发脉冲,并经间隔时间设定电路产生锁定脉冲,锁定切换与选通电路,并等待主晶闸管的触发脉冲,当晶闸管关断后,经过逻辑电路解锁后切换至上次的状态。这样通过轮流切换触发脉冲保证了主晶闸管VT007、VT008不会同时导通,并且通过同步电路保证了主电路的振荡为自然换流振荡。

5.3.4 主电路工作原理(参照图5—5)

当VT007导通时有流过主变压器正向电流顺序:电容C008、C009放电经L3、VT007、Tc2一次绕组、C008、C009负极;当VT007关断,VT008导通时,则有充电电流流过Tc2,一次绕组,电流方向与上相反,顺序为电容C008、C009从正到负、Tc2一次绕组、VT008、L4、电源负极,构成充电回路的电流回路,如图5—5所示。

VT007、VT00B各导通1次,即将输入的直流变换为正、负半波的交流,实现了DC逆变AC。

PCB2各点波形如图5-6所示。维修时可用示波器观察其波形或用万用表测量其电压值以分析故障原因。

5.4 ZX7系列焊机操作使用

使用时应特别注意:

a.后面板上的自动保护空气开关起保护作用,焊机的通断电应由用户配电板上的开关控制。严禁带负载板动QK1。

b.手工焊/氩弧焊开关位置应和实际焊接方法相对应。

c.电流控制分大小2档,选择或调节电流时应对应大小档开关位置相应的刻度。

d.远控/近控开关应在相应位置。当选用远控调节时应置于“远控”一边(左边),并接上远控盒插头,对应大小档选择焊接电流。

e.引弧电流是为改善起弧性能所设,使用时可根据焊接规范选取适当值,氩弧焊时无引弧电流。

f.输出极性应正确。手工焊时一般是工件接“-”极,焊钳接“+”极;氩弧焊时工件接“+”极,焊枪接“-”极。

g.氩弧焊时应连接好气管、焊枪控制接头,并调节好氩气流量,选好焊接电流,工件连接固定良好以后可进行焊接。ZX7-ST焊机采用接触起弧方式。

ZX7.400逆变弧焊整流器输出特性如图5—7和图5—8所示。

ZX7系列逆变式直流弧焊机的功能和常见故障及检查维修

5.5 焊机的功能及使用方法

5.5.1 ZX7—3 15S/400S焊机

5.5.1.1 前面板(见图5-9)

a.手工弧焊/氩弧焊选择开关。将开关置于手工弧焊处可进行手工焊;将开关置于氩

弧焊处可进行氩弧焊。

b.电流表。指示输出直流电流值。

C.电压表。指示输出直流电压值。

d.起弧电流调节旋钮。为改善焊机的起弧性能,本焊机设有“热起动”功能,即在起弧时再叠加1个起弧电流,其强弱可根据实际情况由旋钮4调节。

e.指示灯。指示焊机电源是否接通,接通时灯亮。

f.遥控(远距离控制)插座。将遥控盒电缆插头接入此插座后,即可进行远距离操作。

2.本机控制/遥控选择开关。需要遥控时,将遥控盒接入遥控插座,并将此开关置于“遥控”一边(左边),即可由遥控盒上的旋钮来调节输出电流大小,需要本机控制时,将此开关置于旋钮9这边(右边),电流值则由机上旋钮9调节。

h.电流分档开关。此开关有2档,用于选择电流调节范围。

电流分档开关只能在空载时使用,禁止带负载切换。

i.输出电流调节旋钮。使用时应注意刻度读数要与分档开关所置档数对应。

j.输出电缆插座。接插时先将插头上的小凸台与插座上的缺口对准,插入后顺时针用力旋转,直到转不动为止,接触不良会产生高热烧坏插头座。进行焊条焊时,若使用直流焊条,则将焊钳接入“+”插座,工件接“-”插座;进行氩弧焊时,将焊枪接“-”插座,工件接“+”插座。

5.5.1.2 后面板(见图5-l0)

a.电源电缆。三相4芯电缆,注意接地良好,确保安全。

b.自动空气开关。装在三相电源进线处,正常情况下,开关应处于“合”的状态。只要接通电源,即可施焊。出现异常或超载使用时,此开关自动跳开,断电,起保护作用。

注意:焊机电源的通、断应由用户配电板(柜)上的开关控制,严禁带负载时人为扳动此开关,以免开关触头烧损,影响开关性能和寿命。

e.铭牌。按照国内外有关标准,标示有产品的有关技术数据和使用特性,用户应在接通电源和使用操作前,仔细阅读铭牌各项内容。

5.5.1.3 遥控盒(见图5—11)

遥控盒是专为远距离调节焊接电流大小所设计的操作装置。

a.遥控输出电流调节旋钮。使用时注意刻度读数要与电流分档开关所置档数对应。

b.遥控盒体。整体为金属结构,使用时避免严重挤压、摔碰造成的损坏及控制失灵。

c.遥控电缆。拉长线时注意不要被其他物体挂断。

d.遥控插头。将此插头插入前面板上的遥控插座中,将螺帽旋紧,并将开关7扳向左边,几棵进行遥控操作。

5.5.2 ZX7-315ST/400ST焊机

.5.2.1 前面板(见图5-12)

a.图5-12中1~11的功能及使用方法与图5-9中1~11相同,详见5.5.1.1。

b.氩弧焊控制插座。进行氩弧焊时,将与氩弧焊开关相连的插头插入此插座,即可用焊枪上的开关控制电流及气阀的通断。

c.12、13为氩气接口。此两端为氩弧焊时连接氩气管用。12焊接枪上进气管,13接气瓶。

注意:接气管时注意进气、出气方向一定要接正确,否则气阀工作不正常。

5.5.2.2后面板。与5.5.1.2所述相同。

5.5.2.3遥控盒。与5.5.1.3所述相同。

5.5.3操作使用说明

5.5.3.1设备安装

本机为便携式设备,并可配小推车随操作者频繁移动,不需要固定安装,但应放置在干燥通风处。本机电源为三相380V,50/60Hz,用户应有相应的配电板,并应安装自动空气开关或铁壳开关,地线要连接牢固。

后面板上焊机电源既可接上三相插头(4芯,须有接地)与配电板上的插座

配合使用,也可直接皆在配电板上的铁壳开关上,由铁壳开关控制焊机的通断。

注意:无论是配接插头、插座还是接入铁壳开关,都应保证接线正确、牢靠,特别注意接地线;后面板空气开关是在出现异常情况时自动跳开,起保护作用的,通常处于闭合状态(开关扳至朝上),焊机电源的通断应由用户配电板(柜)上的开关控制。严禁带负载扳动,以免拉弧而烧坏触头。

5.5.3.2 手工焊条电弧焊

ZX7系列晶闸管逆变弧焊整流器均可进行手工焊条电弧焊,无论是ZX7—315S/400S焊机,还是ZX7—315ST,400ST焊机,操作步骤相同。

a.停电检查。不接电源,对焊机进行全面外观检查。所有开关、旋钮功能正常。

前面板(见图5-9、图5-12)开关1扳至手工弧焊位置;开关7扳到右边旋钮9处,即采用本机电流调节,若需要远距离控制则将开关7扳到左边指向遥控插座6;旋钮4调节起弧电流大小;注意开关8与旋钮9的相应关系及旋钮9按所需焊接规范确定。

后面板(见图5-10)电源线1与用户配电板正常配合使用;空气开关2扳至闭合状态(朝上)。

输出端连接正确。前面板下部的输出端标有+、-号,表示输出极性的正、负,应按需要正确接入焊把及工件。

b.通电空载检查。停电检查正常后,方可进行此项检查。

焊机二次侧不接任何负载,呈空载状态,由用户配电板合闸供电,焊机风机转动,面板电源指示灯亮,电压表读数70-80V,并有轻微的“哒、哒”声,此时焊机空载正常。

g.焊接。空载正常后,即可施焊。按所用焊条及正常焊接工艺规范施焊,应得到良好焊缝。

注意:焊条、规范、输出极性、起动电流选择是否正确、适当。

焊接过程中除风机噪声外,焊机产生一种轻轻的连续响声,属正常现象。

5.5.3.3 钨极氩弧焊

ZX7—315ST/400ST焊机是手工焊条电弧焊/手工氩弧焊两用焊机,氩弧焊时操作步骤如下。

a.停电检查。不接电源,对焊机进行全面外观检查。所有开关、旋钮功能正常。

前面板(见图5-12)开关1扳至氩弧焊位置,旋钮4不起作用。其他参见5.5.3.2中a条。

后面板(见图5—10)与5.5.3.2中a所述相同。

焊枪及气路连接:

焊枪。焊枪接输出端的“-”极,焊枪控制插头接入图5-12中的氩弧焊控制插座11,工件接在输出端的“+”极。

气路。图5-12中的13接气瓶,12接焊枪上的进气管。不得接错。

b.通电空载检查。与5.5.3.2中b所述相同,只是空载电压值为30V 左右,详见5.5.3.2。空载电压正常后,打开气瓶,按动焊枪上开关,检查气路是否畅通。

g.焊接。按动焊枪上的开关,气阀动作、气路导通,起弧采用接触划擦方式,轻轻划动即可。

注意:电源规范、气压值、钨极大小选择正确与否。本电源氩弧焊时不可自行外配高频起弧装置,否则易造成事故。

停止焊接时,仍须按一下焊枪上的开关,电流衰减到零,之后气路断开。

5.5.3.4 焊机串、并联使用说明

ZX7系列焊机为积木式电源,可直接多台并联(大电流)供埋弧焊、电弧气刨、电弧螺柱焊使用,也可多台串联(高工作电压)作为切割电源,焊机的串、并联机如图5-13所示。

串、并联时注意极性一定要接对,接错时,焊机无法正常工作。

并联时,输出电流为各电源输出电流之和。例如:两机并联时,电源甲前面板上的开关8置于115~400A档,旋钮9调至340A,电源乙的开关8置于40~140A 档,旋钮9调至80A,则输出电流为340A+80A=420A,若两机都调至400A,则输出电流为800A。

串联时,各台电源的输出电流应调到一样大,输出电压为各电源输出电压之和。

5.6 焊机的维修保养

焊机的基本维护保养与ZX5系列类似。焊机的检修应由专业维修人员负责,当用户遇到不能排除的故障或不具备维修能力的单位在焊机出现故障时,应及时与生产厂家联系。

应注意的是:机内最高电压达600V,为确保安全,严禁随意打开机壳,维修时应做好防止电击等安全防护工作。

5.7 检查维修

ZX7—400S/ST型焊机的维修一般可按以下步骤进行。

5.7.1 步骤1

a.关断总电源,检查输入电缆是否正确可靠,焊机地线是否可靠,焊机输出电缆线是否正确,接触是否良好。

b.用万表测量二次侧输出端正反向电阻(正常情况下正向电阻约3kΩ,反向电阻几十欧),以判断二次侧元器件有无损坏;如要准确判断二次侧元件好坏,应拆开侧板、底板对元器件直接测量。

e.检查主电路一次侧元器件有无损坏,主要检查晶闸管VT007、VT008、C008~C011、R028、PCB1(VT003、VT006、VD001、VD0o0等)、R001、桥堆VC1、限流电阻R002等有无损坏。

5.7.2 步骤2

a.脱开PCB2(主控板)上触发脉冲接口M、N、G3、K3。

b.检查供电电源是否在340~420V范围内,有无缺相。

c.合上自动保护开关QK ,再接通焊机供电开关,通电检查PCB2,主电路电压是否正常。

d.检查EV转动是否正常,风向是否正确,指示灯HL。是否正常。

e.检查PCB2(主控板)上各点电压、波形是否正常。

5.7-3 步骤3

当PCB2工作正常后,可接上触发脉冲,然后再通电检查输出空载电压是否正常,主电路空载正常后可进行负载焊接,整定电流刻度。

主控制板PCB2的各点正常波形如图5-6所示,维修时可按以下步骤检查:

a.首先检查+15V电压是否正常;

b.检查C 上放电波形是否正常;(负载时可测量其是否连续可调)

c.C3上调频脉冲是否正常,若不正常查相关的脉冲信号;

d.同步电路C17充放电波形是否正常,若不正常检查相关电路;

e.同步触发选通R7,R5是否正常;

f.触发脉冲是否正常;

g.同步电路触发脉冲正常后可接上触发插头,通电进行空载检查,空载正常后可带负载。

5.8 常见故障

常见故障及原因见表5—2。

5.9 维修实例

从目前焊机的使用情况来看,国产晶闸管式逆变焊机在设计和技术上比较成熟,但由于制造上的原因,不同厂家生产的焊机,其质量差异却很大。现以对某厂生产的ZX7-400型逆变焊机维修情况举例说明。

5.9.1 故障现象及修理步骤(可参看图5—2、图5—3)

使用过程中,机上空气开关跳闸,机内向外冒烟。

开机检查,发现输出滤波电容有不同程度的损坏。继续对主电路作全面(元件及绝缘)检查,发现有1只快速晶闸管被击穿。

更换元件后,合上电源开关,焊机上的空气开关还是跳闸再次检查机内各元件,未发现问题。于是,换上好的印刷板电路板,空气开关不跳闸了。不过,焊机空载电压不够稳定。试焊时,引弧困难,电弧不稳,不能正常焊接。

用示波器检查印刷板输出的触发脉冲,波形正常,见图5-14。

于是,仔细地检查机内各电器及其线路,着重于接触不良的检查,发现近/远控选择开关内部触头接触不良。换了开关后,焊接正常了。

修好焊机后,再来修理坏了的印刷板。用示波器对其进行检查,从最后一级,即触发脉冲的输出开始,逐级往前检查。当测G4-K4之间的波形时,无脉冲输出,而测G3-K3之间有脉冲输出。于是,检查V2三极管,已损坏。换上好的三极管后,印刷板工作正常了。

5.9.2 原因分析

前面谈到,4个电容有不同程度的损坏。当电容被击穿时,输出短路,空气开关(有热脱扣和电磁脱扣保护)就会跳闸。当1只晶闸管被击穿时,输入整流器短路,也会引起空气开关跳闸。

为什么元件易损坏呢?主要是元件的质量问题,生产厂家没有把好元件的质量关。1996年5月至1997年8月,上海某公司的8台ZX7-400型焊机的维修,换过快速晶闸管3个,修理印刷板11次,换过三极管V1、V2(4429)、V6(9014),

集成块4013、4538、4011、555和稳压块7915,还有二极管、电阻等。此外,还坏过空气开关、控制变压器、风扇等。

5.9.3 希望与建议

a.把好焊机制造中各个环节的质量关,生产出可靠性高的产品。

b.对使用中出现的问题,抓住不放,尽快改进。例如,珠海某公司生产的TC-400逆变焊机,使用1年多后,才频繁出现热保护动作停机现象。如果该公司能够解决好这个问题,这种焊机是受用户欢迎的。

c.有完整的图纸资料。不仅要有主电路原理图,还应有印刷板的电原理简图,提供主要测试点的电压或波形。

电焊机常见故障维修 本文首先以BX -330型电焊机为例介绍了电焊机的工作原理,然后以表格的形式列出了BX 型电焊机的常见故障及其排除方法,给出了电焊机的日常维护方法。最后以BX-3系列为例介绍了典型故障的维修方法。 关键字:BX 型电焊机故障维护 电焊机被广泛使用于建筑、维修、制造业等行业中,尤其以BX 型使用最为广泛。因此了解BX 型焊机的常见故障及其排除方法是非常重要的。 1.工作原理 首先以BX -330型电焊机为例介绍它的工作原理。 BX -330 型电焊机,是一种动铁芯漏磁式电焊机,电焊机的空载电压为60 V~70 V,工作电压为30 V。电流调节范围为50 A~450 A。图1是BX -330型电焊机的初级、次级绕组的接线图。焊接电流的粗调节是靠改变次级绕组的接线方式来实现的,当连接2端头和3端头时,空载电压为70 V。焊接电流为160 A -450 A。电流的微调节是靠可动铁芯的移动,增减电焊机的漏磁来实现的。 BX -330型电焊机的初级、次级绕组接线图 2.常见故障及其排除方法 2.1BX 型焊机常见故障以及排除方法见下表: 1.焊机无焊接电流输出 1、焊机输入端无电压输入; 2、内部接线脱落或断路; 3、内部线圈烧坏。 1、检查配电箱到焊机输入端的开关、导线、熔断丝是否完好; 2、检查焊机内部开关、线圈的接线是否完好; 3、更换烧坏的线圈。 2.焊机电流偏小或引弧困难 1、网络电压过低; 2、电源输入线截面积太小; 3、焊接电缆过长或截面积过太小;

4、工件上有油漆等污物; 5、焊机输出电缆与工件接触不良。 1、待网络电压恢复到额定值后再使用; 2、按照焊机的额定输入电流配备足够截面积的电源线; 3、加大焊接电缆截面积或减少焊接电缆长度,一般不超过15米; 4、清除焊缝处的污物; 5、使输出电缆与工件接触良好。 3.焊机发烫、冒烟或有焦味冒出 1、焊机超负载使用; 2、输入电压过高或接错电压(对于可用220伏和380伏二种电压的焊机,错把380伏电压按220伏输入); 3、线圈内部短路; 4、风机不转(新焊机初次使用时,有轻微绝缘漆味冒出是属正常) 1、严格按照焊机的负载持续率工作,避免过载使用; 2、按实际车入电压接线的操场作; 3、检查线圈,排除短路故障; 4、检查风机,排除风机故障。 4.焊机噪声大 1、线圈短路; 2、线圈松动; 3、动铁芯振动; 4、外壳或底架紧固螺钉松动。 1、检查线圈,排除短路处; 2、检查线圈,紧固好松动处;

逆变电焊机的基本工作原理: 逆变电焊机主要是逆变器产生的逆变式弧焊电源, 又称弧焊逆变器, 是一种新型的焊接电源。 是将工频(50Hz)交流电, 先经整流器整流和滤波变成直流, 再通过大功率开关电子元件(晶闸管SCR、晶体管GTR、场效应管MOSFET或IGBT),逆变成几kHz~几十kHz的中频交流电, 同时经变压器降至适合于焊接的几十V电压, 再次整流并经电抗滤波输出相当平稳的直流焊接电流。 其变换顺序可简单地表示为: 工频交流(经整流滤波)→直流(经逆变)→中频交流(降压、整流、滤波)→直流。即为:AC→DC→AC→DC 因为逆变降压后的交流电, 由于其频率高, 则感抗大, 在焊接回路中有功功率就会大大降低。 所以需再次进行整流。 这就是目前所常用的逆变电焊机的机制。 逆变电源的特点: 弧焊逆变器的基本特点是工作频率高, 由此而带来很多优点。 因为变压器无论是原绕组还是副绕组, 其电势E与电流的频率f、磁通密度B、铁芯截面积S及绕组的匝数W有如下关系:E=4.44fBSW 而绕组的端电压U近似地等于E,即: U≈E=4.44fBSW 当U、B确定后,若提高f,则S减小,W减少, 因此, 变压器的重量和体积就可以大大减小。 就能使整机的重量和体积显著减小。 还有频率的提高及其他因素而带来了许多优点, 与传统弧焊电源比较, 其主要特点如下: 1.体积小、重量轻,节省材料,携带、移动方便。 2.高效节能,效率可达到80%~90%,比传统焊机节电1/3以上。 3.动特性好,引弧容易,电弧稳定,焊缝成形美观,飞溅小。 4.适合于与机器人结合,组成自动焊接生产系统。 5.可一机多用,完成多种焊接和切割过程。

IGBT的结构和工作原理 图1所示为一个N 沟道增强型绝缘栅双极晶体管结构,N+ 区称为源区,附于其上的电极称为源极。N+ 区称为漏区。器件的控制区为栅区,附于其上的电极称为栅极。沟道在紧靠栅区边界形成。在漏、源之间的P 型区(包括P+ 和P 一区)(沟道在该区域形成),称为亚沟道区(Subchannel region )。而在漏区另一侧的P+ 区称为漏注入区(Drain injector ),它是IGBT 特有的功能区,与漏区和亚沟道区一起形成PNP 双极晶体管,起发射极的作用,向漏极注入空穴,进行导电调制,以降低器件的通态电压。附于漏注入区上的电极称为漏极。 IGBT 的开关作用是通过加正向栅极电压形成沟道,给PNP 晶体管提供基极电流,使IGBT 导通。反之,加反向门极电压消除沟道,流过反向基极电流,使IGBT 关断。IGBT 的驱动方法和MOSFET 基本相同,只需控制输入极N一沟道MOSFET ,所以具有高输入阻抗特性。当MOSFET 的沟道形成后,从P+ 基极注入到N 一层的空穴(少子),对N 一层进行电导调制,减小N 一层的电阻,使IGBT 在高电压时,也具有低的通态电压。 2.IGBT 的工作特性 1.静态特性 IGBT 的静态特性主要有伏安特性、转移特性和开关特性。 IGBT 的伏安特性是指以栅源电压Ugs 为参变量时,漏极电流与栅极电压之间的关系曲线。输出漏极电流比受栅源电压Ugs 的控制,Ugs 越高,Id 越大。它与GTR 的输出特性相似.也可分为饱和区1 、放大区2 和击穿特性3 部分。在截止状态下的IGBT ,正向电压由J2 结承担,反向电压由J1结承担。如果无N+ 缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT 的某些应用范围。 IGBT 的转移特性是指输出漏极电流Id 与栅源电压Ugs 之间的关系曲线。它与MOSFET 的转移特性相同,当栅源电压小于开启电压Ugs(th) 时,IGBT 处于关断状态。在IGBT 导通后的大部分漏极电流范围内,Id 与Ugs呈线性关系。最高栅源电压受最大漏极电流限制,其最佳值一般取为15V左右。 IGBT 的开关特性是指漏极电流与漏源电压之间的关系。IGBT 处于导通态时,由于它的PNP 晶体管为宽基区晶体管,所以其B 值极低。尽管等效电路为达林顿结构,但流过MOSFET 的电流成为IGBT 总电流的主要部分。此时,通态电压Uds(on) 可用下式表示: Uds(on) =Uj1 +Udr +IdRoh 式中Uj1 —— JI 结的正向电压,其值为0.7 ~1V ;Udr ——扩展电阻Rdr 上的压降;Roh ——沟道电阻。

第一章主回路工作原理 一、什么叫主回路 主回路指焊机中提供功率电源的电路部分。 二、主回路原理图(以ARC160例) 三、组成器件说明 1、K——电源开关 用以接通(或切断)与市电(220V、50赫兹)的联系 2、RT——起动电阻 因焊机启动时要给后面的滤波电解电容充电。为避免过大的开机浪涌电流损坏开关及触发空开跳闸,在开机时接入启动电阻,用以限制浪涌电流。正常工作后,启动电阻被继电器短路。实际电路中,为避免因开机浪涌电流冲击造成启动电阻损坏,起动电阻采用了热敏电阻(PTC和NTC),它们具有良好的耐冲击性。 3、J1——继电器 开关接通之后,电流通过启动电阻给滤波电解电容充电,当电容电压达到一定值时,辅助电源开始工作提供24V电,使继电器吸合,将启动电阻短路。 4、DB——硅桥 此硅桥用于一次整流,将市电220V、50赫兹交流电整流后输出308V的直流电。 5、C1——电解滤波电容 整流后输出的308V的直流电为脉动直流,此电容起滤平作用 6、R——放电电阻 在关机以后,滤波电容中存有很高电压,为了安全,用此电阻将存电放掉。 7、C2——高频滤波电容 在高频逆变中,需要给开关管提供高频电流,而电解滤波电容因本身电感及引线电感的原因,不能提供高频电流,因此需要高频电容提供。 8、Q——开关管 开关管Q1、Q2、Q3、Q4组成全桥逆变器,在驱动信号作用下,将308V直流转 变成100Kz(10万赫兹)交流电的。 9、C3——隔直电容 为避免直流电流流过变压器肇成变压器饱而接入此电容。

10、T1——主变压器 变压器的作用是将308V的高压变换成适合电弧焊接所需要的几十伏的低压。 11、D——快速恢复二极管 D5、D6的作用是二次整流,即将100KHz的高频交流电流再次转变成直流电流。 12、L1——电抗器 电抗器具有平波续流作用,可使输出电流变得连续稳定,保证焊接质量。 13、RF——分流器 分流器是用锰铜制成的大功率小阻值的电阻,用于检测输出电流的大小,提供反馈信号。 四、全桥逆变器工作原理 1、全桥逆变器的电路图 2、全桥逆变器工作原理 全桥逆变器每个工作周期分四个时段,分别为t1、t2、t3、t4,其工作原理如下: t1时段K1、K4导通,K2、K3关断 电流方向:正极K1 C1 T K4 地 t2时段K1、K4、K2、K3关断 无电流 t3时段K1、K4关断,K2、K3导通 电流方向:正极K2 C1 T K3 地 t4时段K1、K4、K2、K3关断 无电流 从上述分析看,在t1与t3时段里,流过变压器T的电流方向正好相反,也就是将直流电变成了交流电。 五、主回路中点波形图

igbt工作原理及应用 绝缘栅双极型晶体管(IGBT)的保护 引言 绝缘栅双极型晶体管IGBT是由MOSFET和双极型晶体管复合而成的一种器件,其输入极为MOSFET,输出极为PNP晶体管,因此,可以把其看作是MOS输入的达林顿管。它融和了这两种器件的优点,既具有MOSFET器件驱动简单和快速的优点,又具有双极型器件容量大的优点,因而,在现代电力电子技术中得到了越来越广泛的应用。在中大功率的开关电源装置中,IGBT由于其控制驱动电路简单、工作频率较高、容量较大的特点,已逐步取代晶闸管或GTO。但是在开关电源装置中,由于它工作在高频与高电压、大电流的条件下,使得它容易损坏,另外,电源作为系统的前级,由于受电网波动、雷击等原因的影响使得它所承受的应力更大,故IGBT的可靠性直接关系到电源的可靠性。因而,在选择IGBT时除了要作降额考虑外,对IGBT的保护设计也是电源设计时需要重点考虑的一个环节。 1 IGBT的工作原理 IGBT的等效电路如图1所示。由图1可知,若在IGBT的栅极和发射极之间加上驱动正电压,则MOSFET导通,这样PNP晶体管的集电极与基极之间成低阻状态而使得晶体管导通;若IGBT的栅极和发射极之间电压为0V,则MOSFET截止,切断PNP晶体管基极电流的供给,使得晶体管截止 由此可知,IGBT的安全可靠与否主要由以下因素决定:

——IGBT栅极与发射极之间的电压; ——IGBT集电极与发射极之间的电压; ——流过IGBT集电极-发射极的电流; ——IGBT的结温。 如果IGBT栅极与发射极之间的电压,即驱动电压过低,则IGBT不能稳定正常地工作,如果过高超过栅极-发射极之间的耐压则IGBT可能永久性损坏;同样,如果加在IGBT集电极与发射极允许的电压超过集电极-发射极之间的耐压,流过IGBT集电极-发射极的电流超过集电极-发射极允许的最大电流,IGBT的结温超过其结温的允许值,IGBT都可能会永久性损坏。 2 保护措施 在进行电路设计时,应针对影响IGBT可靠性的因素,有的放矢地采取相应的保护措施。 2.1 IGBT栅极的保护 IGBT的栅极-发射极驱动电压VGE的保证值为±20V,如果在它的栅极与发射极之间加上超出保证值的电压,则可能会损坏IGBT,因此,在IGBT的驱动电路中应当设置栅压限幅电路。另外,若IGBT的栅极与发射极间开路,而在其集电极与发射极之间加上电压,则随着集电极电位的变化,由于栅极与集电极和发射极之间寄生电容的存在,使得栅极电位升高,集电极-发射极有电流流过。这时若集电极和发射极间处于高压状态时,可能会使IGBT发热甚至损坏。如果设备在运输或振动过程中使得栅极回路断开,在不被察觉的情况下给主电路加上

ZX7逆变焊机工作原理 核心提示: 主电路主要由输入整流器、逆变电路和输出整流器所组成,现以逆变电路为半桥式串联逆变电路为例,如图1 所示。 图1(1) ZX 7 系列逆变直流弧焊机主电路电气原理图(1)

图1(2)ZX 7 系列晶闸管逆变直流弧焊机主电路电气原理图(2) (一) 输入整流器 输入整流电路由三相整流桥堆VC1、限流R2和滤波C1~C4所组成。此外,还有自动空气开关QF1、电阻R1。QF1内有热脱扣和电磁脱扣装置,当发生过载、短路等故障时,能自动切断电源以保护焊机。本开关只作保护用。启动焊机和停止焊接时,应由用户配电板的空气开关控制。R1为压敏电阻,作过电压保护。三相380V的电压经三相桥式整流后以及由于滤波电容的作用,电压高达600V,带电检查焊机的

故障时,应特别注意人身安全,做好防护工作。 (二) 逆变电路 这是主电路的核心部分,它由换向电容C5~C8、开关元件——晶闸管VT7和VT8、主T1、限制冲击电流的L1等组成。现通过其电路简图来说明逆变的原理和过程。 图2 逆变电路简图 参看图2,当VT7被触发导通而VT8为关断时,C5、C6经VT7、器T1的一次绕组N1放电,电流为I1’,电压U5-6逐渐下降至零,于是C5、C6中电场的能量转变成变压器的磁场能量。接着,磁场释放能量而向C5、C6反向充电;与此同时,输入整流器经VT7、N1给电容C7、C8充电,充电电流为I1”。I1’和I1”构成了变压器T1一次侧绕组N1中的正半波电流I1,即I1=I1’+I1”。当C5、C6被反向充电,U5-6为负值时促使VT7关断。 VT7关断后,VT8被触发导通,逆变工作过程与上述相似,即C7、C8经T1的N1、VT8放电,电流为I’2。放电至零时,接着变压器磁场能量向C7、C8反向充电,UC7-8为负值;与此同时,输入整流器向C5、C6充电,电流为I2”。显然,与电流I1方向相反,因而构成了N1中的负半波电流。在UC7-8为负值时,促使VT8关断。 这样,每当VT7和VT8交替导通、关断一次,就在主变压器T1绕组中产生一个周波的电流。晶闸管每秒钟通、断的次数就决定了逆变器的工作频率。 由上述逆变过程可以看出:一个晶闸管关断后,另一个晶闸管才能导通。否则,将造成短路,烧坏晶闸管,并使逆变过程失败。为使逆变器能正常工作,在任意工作范围内,必须使流经晶闸管的瞬时电流过零的时刻(即换向电容放电,电压降到零后又出现负值)至其关断的这段时间间隔tx(称晶闸管的休止时间)均应大于晶闸管的关断时间tq,即 tx>tq 而且,还应该对晶闸管的最高工作频率加以限制,即要求: fm≤1/2tx

解析IGBT工作原理及作用 一、IGBT是什幺 ?IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半 导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小, 开关速度快,但导通压降大,载流密度小。IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。非常适合应用于直流电压为600V及以上的变流 系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。 ?通俗来讲:IGBT是一种大功率的电力电子器件,是一个非通即断的开关,IGBT没有放大电压的功能,导通时可以看做导线,断开时当做开路。三大特点就是高压、大电流、高速。 ?二、IGBT模块 ?IGBT是Insulated Gate Bipolar Transistor(绝缘栅双极型晶体管)的缩写,IGBT是由MOSFET和双极型晶体管复合而成的一种器件,其输入极为MOSFET,输出极为PNP晶体管,它融和了这两种器件的优点,既具有MOSFET器件驱动功率小和开关速度快的优点,又具有双极型器件饱和压降 低而容量大的优点,其频率特性介于MOSFET与功率晶体管之间,可正常工 作于几十kHz频率范围内,在现代电力电子技术中得到了越来越广泛的应用,在较高频率的大、中功率应用中占据了主导地位。 ?IGBT的等效电路如图1所示。由图1可知,若在IGBT的栅极和发射极之 间加上驱动正电压,则MOSFET导通,这样PNP晶体管的集电极与基极之 间成低阻状态而使得晶体管导通;若IGBT的栅极和发射极之间电压为0V,

IGBT 驱动原理 目录 一、简介 二、工作原理 三、技术现状 四、测试方法 五、选取方法 简介: 绝缘栅双极晶体管IGBT 是第三代电力电子器件,安全工作,它集功率晶体管GTR 和功率场效应管MOSFET的优点于一身,具有易于驱动、峰值电流容量大、自关断、开关频率高 (10-40 kHz) 的特点,是目前发展最为迅速的新一代电力电子器件。广泛应用于小体积、高 效率的变频电源、电机调速、UPS 及逆变焊机当中。IGBT 的驱动和保护是其应用中的关 键技术。 1 IGBT 门极驱动要求 1.1 栅极驱动电压 因IGBT 栅极- 发射极阻抗大,故可使用MOSFET 驱动技术进行驱动,但IGBT 的输入电容较MOSFET 大,所以IGBT 的驱动偏压应比MOSFET驱动所需偏压强。图 1 是一个典型的例子。在+20 ℃情况下,实测60 A ,1200 V 以下的IGBT 开通电压阀值为 5 ~6 V ,在实际使用时,为获得最小导通压降,应选取Ugc ≥(1.5 ~3)Uge(th) ,当Uge 增加时,导通时集射电压Uce 将减小,开通损耗随之减小,但在负载短路过程中Uge 增加,集电极电流Ic 也将随之增加,使得IGBT 能承受短路损坏的脉宽变窄,因此Ugc 的选择不应太大,这足以使IGBT 完全饱和,同时也限制了短路电流及其所带来的应力( 在具有短路工作过程的设备中,如在电机中使用IGBT 时,+Uge 在满足要求的情况下尽量选取最小值,以提高其耐短路能力) 。

1.2 对电源的要求 对于全桥或半桥电路来说,上下管的驱动电源要相互隔离,由于IGBT 是电压控制器件,所需要的驱动功率很小,主要是对其内部几百至几千皮法的输入电容的充放电,要求能提供较大的瞬时电流,要使IGBT 迅速关断,应尽量减小电源的内阻,并且为防止IGBT 关断时产生的du/dt 误使IGBT 导通,应加上一个-5 V 的关栅电压,以确保其完全可靠的关断 ( 过大的反向电压会造成IGBT 栅射反向击穿,一般为-2 ~10 V 之间) 。 1.3 对驱动波形的要求 从减小损耗角度讲,门极驱动电压脉冲的上升沿和下降沿要尽量陡峭,前沿很陡的门极电压使IGBT 快速开通,达到饱和的时间很短,因此可以降低开通损耗,同理,在IGBT 关断时,陡峭的下降沿可以缩短关断时间,从而减小了关断损耗,发热量降低。但在实际使用中,过快的开通和关断在大电感负载情况下反而是不利的。因为在这种情况下,IGBT 过快的开通与关断将在电路中产生频率很高、幅值很大、脉宽很窄的尖峰电压Ldi/dt ,并且这种尖峰很难被吸收掉。此电压有可能会造成IGBT 或其他元器件被过压击穿而损坏。所以在选择驱动波形的上升和下降速度时,应根据电路中元件的耐压能力及du/dt 吸收电路性能综合考虑。 1.4 对驱动功率的要求 由于IGBT 的开关过程需要消耗一定的电源功率,最小峰值电流可由下式求出: I GP = △ U ge /R G +R g ; 式中△Uge=+Uge+|Uge| ;RG 是IGBT 内部电阻;Rg 是栅极电阻。 驱动电源的平均功率为: P AV =C ge △ Uge 2 f, 式中. f 为开关频率;Cge 为栅极电容。 1.5 栅极电阻 为改变控制脉冲的前后沿陡度和防止震荡,减小IGBT 集电极的电压尖峰,应在IGBT 栅极串上合适的电阻Rg 。当Rg 增大时,IGBT 导通时间延长,损耗发热加剧;Rg 减小时,di/dt 增高,可能产生误导通,使IGBT 损坏。应根据IGBT 的电流容量和电压额定值以及开关频率来选取Rg 的数值。通常在几欧至几十欧之间( 在具体应用中,还应根据实际情况予以适当调整) 。另外为防止门极开路或门极损坏时主电路加电损坏 IGBT ,建议在栅射间加入一电阻Rge ,阻值为10 k Ω左右。 1.6 栅极布线要求 合理的栅极布线对防止潜在震荡,减小噪声干扰,保护IGBT 正常工作有很大帮助。 a .布线时须将驱动器的输出级和lGBT 之间的寄生电感减至最低( 把驱动回路包围的面积减到最小) ; b .正确放置栅极驱动板或屏蔽驱动电路,防止功率电路和控制电路之间的耦合; c .应使用辅助发射极端子连接驱动电路; d .驱动电路输出不能和IGBT 栅极直接相连时,应使用双绞线连接(2 转/ cm) ; e .栅极保护,箝位元件要尽量靠近栅射极。 1.7 隔离问题

ZX7逆变焊机工作原理 主电路主要由输入整流器、逆变电路和输出整流器所组成,现以逆变电路为半桥式串联逆变电路为例,如图1所示。 图1(1) ZX7系列晶闸管逆变直流弧焊机主电路电气原理图(1)

图1(2)ZX7系列晶闸管逆变直流弧焊机主电路电气原理图(2) (一)输入整流器 输入整流电路由三相整流桥堆VC 1、限流电阻R 2 和滤波电容C 1 ~C 4 所组成。此 外,还有自动空气开关QF 1、电阻R 1 。QF 1 内有热脱扣和电磁脱扣装置,当发生 过载、短路等故障时,能自动切断电源以保护焊机。本开关只作保护用。启动 焊机和停止焊接时,应由用户配电板的空气开关控制。R 1为压敏电阻,作过电

压保护。三相380V的电压经三相桥式整流后以及由于滤波电容的作用,电压高达600V,带电检查焊机的故障时,应特别注意人身安全,做好防护工作。 (二)逆变电路 这是主电路的核心部分,它由换向电容C 5~C 8 、开关元件——晶闸管VT 7 和VT 8、主变压器T 1 、限制冲击电流的电感L 1 等组成。现通过其电路简图来说明 逆变的原理和过程。 图2 逆变电路简图 参看图2,当VT 7被触发导通而VT 8 为关断时,C 5 、C 6 经VT 7 、变压器T 1 的一 次绕组N 1放电,电流为I 1 ’,电压U 5-6 逐渐下降至零,于是C 5 、C 6 中电场的能 量转变成变压器的磁场能量。接着,磁场释放能量而向C 5、C 6 反向充电;与此 同时,输入整流器经VT 7、N 1 给电容C 7 、C 8 充电,充电电流为I 1 ”。I 1 ’和I 1 ” 构成了变压器T 1一次侧绕组N 1 中的正半波电流I 1 ,即I 1 =I 1 ’+I 1 ”。当C 5 、C 6 被反向充电,U 5-6为负值时促使VT 7 关断。 VT 7关断后,VT 8 被触发导通,逆变工作过程与上述相似,即C 7 、C 8 经T 1 的 N 1、VT 8 放电,电流为I’ 2 。放电至零时,接着变压器磁场能量向C 7 、C 8 反向充 电,U C7-8为负值;与此同时,输入整流器向C 5 、C 6 充电,电流为I 2 ”。显然, 与电流I 1方向相反,因而构成了N 1 中的负半波电流。在U C7-8 为负值时,促使 VT 8 关断。 这样,每当VT 7和VT 8 交替导通、关断一次,就在主变压器T 1 绕组中产生 一个周波的电流。晶闸管每秒钟通、断的次数就决定了逆变器的工作频率。 由上述逆变过程可以看出:一个晶闸管关断后,另一个晶闸管才能导通。 否则,将造成短路,烧坏晶闸管,并使逆变过程失败。为使逆变器能正常工作,在任意工作范围内,必须使流经晶闸管的瞬时电流过零的时刻(即换向电容放电,电压降到零后又出现负值)至其关断的这段时间间隔t x (称晶闸管的休止 时间)均应大于晶闸管的关断时间t q ,即

第十一章IGBT系列焊机工作原理 一、功率开关管的比较 常用的功率开关有晶闸管、IGBT、场效应管等。其中,晶闸管(可控硅)的开关频率最低约1000次/秒左右,一般不适用于高频工作的开关电路。 1、效应管的特点: 场效应管的突出优点在于其极高的开关频率,其每秒钟可开关50万次以上,耐压一般在500V以上,耐温150℃(管芯),而且导通电阻,管子损耗低,是理想的开关器件,尤其适合在高频电路中作开关器件使用。 但是场效应管的工作电流较小,高的约20A低的一般在9A左右,限制了电路中的最大电流,而且由于场效应管的封装形式,使得其引脚的爬电距离(导电体到另一导电体间的表面距离)较小,在环境高压下容易被击穿,使得引脚间导电而损坏机器或危害人身安全。 2、IGBT的特点: IGBT即双极型绝缘效应管,符号及等效电路图见图11.1,其开关频率在20KHZ~30KHZ 之间。但它可以通过大电流(100A以上),而且由于外封装引脚间距大,爬电距离大,能抵御环境高压的影响,安全可靠。 图11.1 二、场效应管逆变焊机的特点 由于场效应管的突出优点,用场效应管作逆变器的开关器件时,可以把开关频率设计得很高,以提高转换效率和节省成本(使用高频率变压器以减小焊机的体积,使焊机向小型化,微型化方便使用。(高频变压器与低频变压器的比较见第三章《逆变弧焊电源整机方框图》。 但无论弧焊机还是切割机,它们的工作电流都很大。使用一个场效应管满足不了焊机对电流的需求,一般采用多只并联的形式来提高焊机电源的输出电流。这样既增加了成本,又降低了电路的稳定性和可靠性。 三、IGBT焊机的特点 IGBT焊机指的是使用IGBT作为逆变器开关器件的弧焊机。由于IGBT的开关频率较低,电流大,焊机使用的主变压器、滤波、储能电容、电抗器等电子器件都较场效应管焊机有很大不同,不但体积增大,各类技术参数也改变了。

IGBT的工作原理和工作特性 IGBT的开关作用是通过加正向栅极电压形成沟道,给PNP晶体管提供基极电流,使IGBT导通。反之,加反向门极电压消除沟道,流过反向基极电流,使IGBT关断。IGBT的驱动方法和MOSFET基本相同,只需控制输入极N一沟道MOSFET,所以具有高输入阻抗特性。当MOSFET的沟道形成后,从P+基极注入到N一层的空穴(少子),对N一层进行电导调制,减小N一层的电阻,使IGBT在高电压时,也具有低的通态电压。 IGBT的工作特性包括静态和动态两类: 1.静态特性 IGBT的静态特性主要有伏安特性、转移特性和开关特性。IGBT的伏安特性是指以栅源电压Ugs为参变量时,漏极电流与栅极电压之间的关系曲线。输出漏极电流比受栅源电压Ugs的控制,Ugs越高,Id越大。它与GTR的输出特性相似.也可分为饱和区1、放大区2和击穿特性3部分。在截止状态下的IGBT,正向电压由J2结承担,反向电压由J1结承担。如果无N+缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT的某些应用范围。 IGBT的转移特性是指输出漏极电流Id与栅源电压Ugs之间的关系曲线。它与MOSFET的转移特性相同,当栅源电压小于开启电压Ugs(th)时,IGBT处于关断状态。在IGBT导通后的大部分漏极电流范围内,Id与Ugs呈线性关系。最高栅源电压受最大漏极电流限制,

其最佳值一般取为15V左右。IGBT的开关特性是指漏极电流与漏源电压之间的关系。IGBT处于导通态时,由于它的PNP晶体管为宽基区晶体管,所以其B值极低。尽管等效电路为达林顿结构,但流过MOSFET的电流成为IGBT总电流的主要部分。此时,通态电压Uds(on)可用下式表示: Uds(on)=Uj1+Udr+IdRoh (2-14) 式中Uj1——JI结的正向电压,其值为0.7~IV; Udr——扩展电阻Rdr上的压降;Roh——沟道电阻。 通态电流Ids可用下式表示: Ids=(1+Bpnp)Imos (2-15) 式中Imos——流过MOSFET的电流。 由于N+区存在电导调制效应,所以IGBT的通态压降小,耐压1000V 的IGBT通态压降为2~3V。IGBT处于断态时,只有很小的泄漏电流存在。 2.动态特性 IGBT在开通过程中,大部分时间是作为MOSFET来运行的,只是在漏源电压Uds下降过程后期,PNP晶体管由放大区至饱和,又增加了一段延迟时间。td(on)为开通延迟时间,tri为电流上升时间。实际应

CO2气体保护焊接设备原理 一.CO2气体保护焊的工艺理论 1. CO2焊的冶金原理 2.1 保护气体与金属的相互作用 1.2 CO2焊生成的气孔问题 1.3 合金元素的烧损与控制 2. CO2焊的电弧与熔滴过度特点 2.1CO2焊的电弧特点 2.2焊丝的熔化特性 2.3CO2焊熔滴过度 3. CO2焊焊接参数的选择 3.1焊丝直径 3.2焊接电流 3.3电弧电压 3.4焊接速度 3.5焊丝干伸长 3.6气体流量 二.CO2气体保护焊对焊接设备的要求 1. CO2焊自动调节系统 1.1 弧焊过程中的自身调节系统 1.2 电弧电压反馈自动调节而系统 2. 焊接飞溅与焊缝成形

2.1 焊接飞溅问题及对飞溅的控制 2.2 CO2焊焊缝成形问题 3. 对CO2焊接设备的要求 3.1 对电源外特性的要求 3.2 对电源动特性的要求 3.3 对电源调节特性的要求 3.4 对送丝机的要求 3.5 对焊机控制系统的要求 三.CO2气体保护焊设备 1. CO2气体保护焊焊接电源 1.1 变压器抽头式硅整流电源1.1.1 三相焊接变压器 1.1.2 三相桥式硅整流器 1.2 晶闸管整流电源 1.2.1晶闸管整流电源主电路 1.2.2晶闸管的移相触发电路 1.2.3触发脉冲传输方式 1.2.4网络电压补偿 1.2.5整流器的晶闸管选择与保护1.3逆变电源 1.3.1逆变弧焊整流电源的特点1.3.2逆变弧焊整流电源的组成

1.3.3逆变弧焊整流电源的工作原理 1.3.4逆变弧焊整流电源的控制电路 2. 送丝机调速电路 2.1 直流电动机的基本性能 2.2 转速自动调节方式 2.3 程序控制电路 3. 送丝系统 3.1 送丝机 3.2 焊枪及软管 4. 气路系统 4.1 气体钢瓶 4.2 预热器 4.3 减压器 4.4 流量计 4.5 电磁阀 4.6 配比器

逆变触发电路图:

脉冲及时序板原理图:

IGBT逆变电焊机工作原理及输出特性 本机采用三相交流380V电压经三相桥式整流、滤波后供给以新型IGBT为功率开关器件的逆变器进行变频(20KC)处理后,由中频变压器降压,再经整流输出可供焊接所需的电源,通过集成电路构成的逻辑控制电路对电压、电流信号的反馈进行处理,实现整机闭环控制,采用脉宽调制PWM为核心的控制技术,从而获得快速脉宽调制的恒流特性和优异的焊接工艺效果。 DC/AC逆变器的制作 -------------------------------------------------------------------------------- https://www.wendangku.net/doc/ed18406227.html, 江苏电子网QQ:99296827 这里介绍的逆变器(见图)主要由MOS 场效应管,普通电源变压器构成。其输出功率取决于MOS 场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍该逆变器的工作原理及制作过程。--拓普电子 1.电路图

2.工作原理 这里我们将详细介绍这个逆变器的工作原理。 方波信号发生器(见图3) 图3 这里采用六反相器CD4069构成方波信号发生器。电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。电路的振荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC。图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz。由于元件的误差,实际值会略有差异。其它多余的反相器,输入端接地避免影响其它电路。 场效应管驱动电路。

igbt逆变器工作原理_igbt在逆变器中的作用 IGBT(绝缘栅双极型晶体管),是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件,兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。 IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。目前国内缺乏高质量IGBT模块,几乎全部靠进口。绝缘栅双极晶体管(IGBT)是高压开关家族中最为年轻的一位。由一个15V高阻抗电压源即可便利的控制电流流通器件从而可达到用较低的控制功率来控制高电流。 IGBT的工作原理和作用通俗易懂版:IGBT就是一个开关,非通即断,如何控制他的通还是断,就是靠的是栅源极的电压,当栅源极加+12V(大于6V,一般取12V到15V)时IGBT 导通,栅源极不加电压或者是加负压时,IGBT关断,加负压就是为了可靠关断。 IGBT没有放大电压的功能,导通时可以看做导线,断开时当做开路。 IGBT有三个端子,分别是G,D,S,在G和S两端加上电压后,内部的电子发生转移(半导体材料的特点,这也是为什么用半导体材料做电力电子开关的原因),本来是正离子和负离子一一对应,半导体材料呈中性,但是加上电压后,电子在电压的作用下,累积到一边,形成了一层导电沟道,因为电子是可以导电的,变成了导体。如果撤掉加在GS两端的电压,这层导电的沟道就消失了,就不可以导电了,变成了绝缘体。 IGBT的工作原理和作用电路分析版:IGBT的等效电路如图1所示。由图1可知,若在IGBT 的栅极和发射极之间加上驱动正电压,则MOSFET导通,这样PNP晶体管的集电极与基极之间成低阻状态而使得晶体管导通;若IGBT的栅极和发射极之间电压为0V,则MOSFET截止,切断PNP晶体管基极电流的供给,使得晶体管截止。 由此可知,IGBT的安全可靠与否主要由以下因素决定: --IGBT栅极与发射极之间的电压;

电焊机工作原理 百科名片 焊条和焊件分别和电源的两个输出端相连。开始焊接时先让焊条和焊件接触。这时电源短路,流过接触处的电流很大,再加上焊条和焊件的接触面较粗糙,实际上只有几个点接触,接触电阻较大,所以接触处产生很大的热量。稍后提焊条,让焊条和焊件有一定的间隙。 目录 概述 1普通电焊机工作原理 1电焊原理 1焊条药皮 1电焊机主回路简介 1什么叫主回路 1组成器件说明 1全桥逆变器 展开 编辑本段概述 电焊机就是一个特殊的变压器。所不同的是变压器接负载时电压下降小,电焊机接负载时电压下降大.这主在是通过调解磁通和串联电感的电感量来实现的普通电焊机的工作原理和变压器相似,是一个降压变压器。在次级线圈的两端是被焊接工件和焊条,引燃电弧,在电弧的高温中将工件的缝隙和焊条熔接。电焊变压器有自身的特点,就是具有电压急剧下降的特性。在焊条引燃后电压下降;在焊条被粘连短路时,电压也是急剧下降。这种现象产生的原因,是电焊变压器的铁芯特性产生的。电焊机的工作电压的调节,除了一次的220/380电压变换,二次线圈也有抽头变换电压,同时还有用铁芯来调节的,可调铁芯的进入多少,就分流磁路,进入越多,焊接电压越低。虽然电路是闭合的,可正是因为电路是闭合的才使得在整个闭合电路和电流处处相等;但各处的电阻可是不一样的,特别是在不固定接触处的电阻最大,这个电阻在物理中叫接触电阻。根据电流的热效应定律(也叫焦尔定律),Q=I方Rt可知,电流相等,则电阻越大的部位发热越高,电焊在焊接时焊条的触头也被接的金属体的接触处的接触电阻最大,则在这个部位产生的电热自然也就最多,焊条又是熔点较低的合金,自然的容易熔化了,熔化后的合金焊条芯沾合在被焊物体上后经过冷却,就把焊接对象粘合在一块了。此时,由于焊条提起的瞬间上述间隙极小,焊条和焊件之间的电压又较高(60--70v),再加上上述预热使焊条端点和焊件被焊处容易发射电子,

IGBT 的工作原理和工作特性 IGBT的开关作用是通过加正向栅极电压形成沟道,给PNP晶体管提供基极电流,使IGBT导通。反之,加反向门极电压消除沟道,流过反向基极电流,使IGBT 关断。IGBT的驱动方法和MOSFET基本相同,只需控制输入极N一沟道MOSFET,所以具有高输入阻抗特性。 当MOSFET的沟道形成后,从P+基极注入到N一层的空穴(少子),对N 一层进行电导调制,减小N一层的电阻,使IGBT在高电压时,也具有低的通态电压。

IGBT的工作特性包括静态和动态两类: 1.静态特性IGBT的静态特性主要有伏安特性、转移特性和开关特性。 IGBT的伏安特性是指以栅源电压Ugs为参变量时,漏极电流与栅极电压之间的关系曲线。输出漏极电流比受栅源电压Ugs的控制,Ugs越高,Id越大。它与GTR的输出特性相似.也可分为饱和区1、放大区2和击穿特性3部分。在截止状态下的IGBT,正向电压由J2结承担,反向电压由J1结承担。如果无N+缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT的某些应用范围。 IGBT的转移特性是指输出漏极电流Id与栅源电压Ugs之间的关系曲线。它与MOSFET的转移特性相同,当栅源电压小于开启电压Ugs(th)时,IGBT处于关断状态。在IGBT导通后的大部分漏极电流范围内,Id与Ugs呈线性关系。最高栅源电压受最大漏极电流限制,其最佳值一般取为15V左右。 IGBT的开关特性是指漏极电流与漏源电压之间的关系.IGBT处于导通态时,由于它的PNP晶体管为宽基区晶体管,所以其B值极低。尽管等效电路为达林顿结构,但流过MOSFET的电流成为IGBT总电流的主要部分。此时,通态电压Uds(on)可用下式表示 Uds(on)=Uj1+Udr+IdRoh(2-14) 式中Uj1——JI结的正向电压,其值为0.7~IV;

普通电焊机的工作原理和变压器相似,是一个降压变压器。在齿及线圈的两端是被焊接工件和焊条,引燃电弧,在电弧的高温中将工件的缝隙和焊条熔接。 电焊变压器有自身的特点,就是具有电压急剧下降的特性。在焊条引燃后电压下降;在焊条被粘连短路时,电压也是急剧下降。这种现象产生的原因,是电焊变压器的铁芯特性产生的。 电焊机的工作电压的调节,除了一次的220/380电压变换,二次线圈也有抽头变换电压,同时还有用铁芯来调节的,可调铁芯的进入多少,就分流磁路,进入越多,焊接电压越低。 交流电焊机又称弧焊变压器,是一种特殊的降压变压器,它是由降压变压器、阻抗调节器、手柄和焊接电弧等组成。为了使焊接顺利进行,这种变压器电源能按焊接过程的需要而具有如下特点: 1)具有陡降的特性 一般的用电设备都要求电源的电压不随负载的变化而变化,其电压是恒定的,如为380V(单相)或220V。虽然接入焊接变压器的电压是一定的,如为380V或220V,但通过这种变压器后所输出的电压可随输出电流(负载)的变化而变化,且电压随负载增大而迅速降低,此称为陡降特性或称下降特性,这就适应了焊接所需各种的电压要求: ①初级电压:即接入电焊机的外电压。 由于弧焊变压器初级线圈两端要求的电压为单项380V,因此一般交流电焊机接入电网的电压为单项380V。 ②零电压:为了保证焊接过程频繁短路(焊条与焊件接触)时,要求电压能自动降至趋近于零,以限制短路电流不致无限增大而烧毁电源。 ③空载电压:为了满足引弧与安全的需要,空载(焊接)时,要求空载电压约为 60 ~80V,这既能顺利起弧,又对人身比较安全。 ④工作电压:焊接起弧以后,要求电压能自动下降到电弧正常工作所需的电压,即为工作电压,约为20~40 V,此电压也为安全电压。 ⑤电弧电压:即电弧两端的电压,此电压是在工作电压的范围内。焊接时,电弧的长短会发生变化:电弧长度长,电弧电压应高些;电弧长度短,则电弧电压应低些。因此,弧焊变压器应适应电弧长度的变化而保证电弧的稳定。 ⑵具有焊接电流的可调节性 为了适应不同材料和板厚的焊接要求,焊接电流能从几十安培调到几百安培,并可根据工件的厚度和所用焊条直径的大小任意调节所需的电流值。电流的调节一般分为两级:一级是粗调,常用改变输出线头的接法(Ⅰ位置连接或Ⅱ位置连接),从而改变内部线圈的圈数来实现电流大范围的调节,粗调时应在切断电源的情况下进行,以防止触电伤害;另一级是细调,常用改变电焊机内“可动铁芯”(动铁芯式)或“可动线圈”(动圈式)的位置来达到所需电流值,细调节的操作是通过旋转手柄来实现的,当手柄逆时针旋转时电流值增大,手柄顺时针旋转时电流减小,细调节应在空载状态下进行。各种型号的电焊机粗调与细调的范围,可查阅标牌上的说明

IGBT管的结构与工作原理 1.IGBT的结构与工作原理图1所示为一个N 沟道增强型绝缘栅双极晶体管结构, N+ 区称为源区,附于其上的电极称为源极。N+ 区称为漏区。器件的控制区为栅区,附于其上的电极称为栅极。沟道在紧靠栅区边界形成。在漏、源之间的P 型区(包括P+ 和P 一区)(沟道在该区域形成),称为亚沟道区( Subchannel region )。而在漏区另一侧的P+ 区称为漏注入区( Drain injector ),它是IGBT 特有的功能区,与漏区和亚沟道区一起形成PNP 双极晶体管,起发射极的作用,向漏极注入空穴,进行导电调制,以降低器件的通态电压。附于漏注入区上的电极称为漏极。 IGBT 的开关作用是通过加正向栅极电压形成沟道,给PNP 晶体管提供基极电流,使IGBT 导通。反之,加反向门极电压消除沟道,流过反向基极电流,使IGBT 关断。IGBT 的驱动方法和MOSFET 基本相同,只需控制输入极N一沟道MOSFET ,所以具有高输入阻抗特性。当MOSFET 的沟道形成后,从P+ 基极注入到N 一层的空穴(少子),对N 一层进行电导调制,减小N 一层的电阻,使IGBT 在高电压时,也具有低的通态电压。 2.IGBT 的工作特性 1.静态特性 IGBT 的静态特性主要有伏安特性、转移特性和开关特性。 IGBT 的伏安特性是指以栅源电压Ugs 为参变量时,漏极电流与栅极电压之间的关系曲线。输出漏极电流比受栅源电压Ugs 的控制,Ugs 越高, Id 越大。它与GTR 的输出特性相似.也可分为饱和区1 、放大区2 和击穿特性3 部分。在截止状态下的IGBT ,正向电压由J2 结承担,反向电压由J1结承担。如果无 N+ 缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT 的某些应用范围。 IGBT 的转移特性是指输出漏极电流Id 与栅源电压Ugs 之间的关系曲线。它与MOSFET 的转移特性相同,当栅源电压小于开启电压Ugs(th) 时,IGBT 处于关断状态。在IGBT 导通后的大部分漏极电流范围内, Id 与Ugs呈线性关系。最

主电路电气原理图

主控制板电器原理图:

逆变触发电路图:

脉冲及时序板原理图: 本机采用三相交流380V电压经三相桥式整流、滤波后供给以新型IGBT为功率开关器件的逆变器进行变频(20KC)处理后,由中频变压器降压,再经整流输出可供焊接所需的电源,通过集成电路构成的逻辑控制电路对电压、电流信号的反馈进行处理,实现整机闭环控制,采用脉宽调制PWM为核心的控制技术,从而获得快速脉宽调制的恒流特性和优异的焊接工艺效果。

IGBT逆变电焊机工作原理及输出特性 这里介绍的逆变器(见图)主要由MOS 场效应管,普通电源变压器构成。其输出功率取决于MOS 场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍该逆变器的工作原理及制作过程。--拓普电子 1.电路图 2.工作原理 这里我们将详细介绍这个逆变器的工作原理。 方波信号发生器(见图3)这里采用六反相器CD4069 构成方波信号发生器。电路中R1是补偿电阻,用于改善 图3

由于电源电压的变化而引起的振荡频率不稳。电路的振荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC 。图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz 。由于元件的误差,实际值会略有差异。其它多余的反相器,输入端接地避免影响其它电路。 场效应管驱动电路。 由于方波信号发生器输出的振荡信号电压最大 振幅为0~5V ,为充分驱动电源开关电路,这里用 TR1、TR2将振荡信号电压放大至0~12V 。如图4 所示。 MOS 场效应管电源开关 电路。 这是该装置的核心,在 介绍该部分工作原理之 前,先简单解释一下MOS 场效应管的工作原理。 MOS 场效应管也 被称为MOS FET , 既 Metal Oxide Semiconductor Field Effect Transistor (金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的为增强型MOS 场效应管,其内部结构见图5。它可分为NPN 型PNP 型。NPN 型通常称为N 沟道型,PNP 型也叫P 沟道型。由图可看出,对于N 沟道的场效应管其源极和漏极接在N 型半导体上,同样对于P 沟道的场效应管 其源极和漏极则接在P 型半导体上。 我们知道一般三极管是由输入的电流 控制输出的电流。但对于场效应管, 其输出电流是由输入的电压(或称电 场)控制,可以认为输入电流极小或 没有输入电流,这使得该器件有很高 的输入阻抗,同时这也是我们称之为 场效应管的原因。 图4 图5 图6

相关文档
相关文档 最新文档