文档库 最新最全的文档下载
当前位置:文档库 › 信号幅频相频特性的画法(频率响应法)

信号幅频相频特性的画法(频率响应法)

1、频率响应法

?基本思想是把系统中的信号分解为多种不同频率的正弦信号,这些信号经过控制系统时,会以一定的规律产生幅值和相位的变化,通过分析这些

变化规律就能得出关于系统运动的性能指标。

?由于幅值和相位的变化称频率特性函数可以绘制在图形上,因此该方法非常直观。另外,可以用实验法建立系统的模型,也可以据开环频率特性分析闭环系统的特性。该方法具有很高的工程价值,深受工程技术人员欢迎。

6 频率响应分析法2

2、频率特性的图示方法

?为了直观地分析系统的特性,通常把幅频和相频特性以图形的形式表示出来:

1.幅相频率特性(奈氏图)

2.对数频率特性(Bode图)

3.对数幅相特性(尼氏图)

6 频率响应分析法5

2.1 幅相频率特性图

?极坐标图:奈奎斯特(Nyquist)图,幅相特性图,当频率连续变化时,频率特性函数在复平面的运动轨迹。

G(jω)=x(ω)+ j y(ω)

ω:0→+∞

6 频率响应分析法6

2.2 对数频率特性(Bode图)

?对数坐标图:伯德(Bode)图,由两辐图组成。对数幅频特性图+对数相频特性图,横坐标为频率的(以10为底数)对数,单位是10倍频程(dec)。

–对数幅频图的纵坐标为幅频的对数,单位为分

贝(dB)

–对数相频图的纵坐标为相频值,单位为弧度

6 频率响应分析法8

6 频率响应分析法10

伯德(Bode)图的优点

?对数坐标图有如下优点:

–把乘、除的运算变成加、减运算。串联环节的

Bode 图为单个环节的Bode图迭加。

–K 的变化对应于对数幅频曲线上下移动,而相

频曲线不变。

–一张图上可以同时画出低、中、高频的特性。?因此在工程上得到了广泛的应用

6 频率响应分析法11

2.3 对数幅相特性(尼氏图)

对数幅相图

?尼科尔斯(Nichols)图,以对数幅频特性为纵坐标(分贝),相频特性为横坐标,频率ω为参变量。

6 频率响应分析法12

6 频率响应分析法14

6 频率响应分析法20

随机信号分析(常建平-李海林版)课后习题答案

由于百度文库格式转换的原因,不能整理在一个word 文档里面,下面是三四章的答案。给大家造成的不便,敬请谅解 随机信号分析 第三章习题答案 、随机过程 X(t)=A+cos(t+B),其中A 是均值为2,方差为1的高斯变量,B 是(0,2π)上均匀分布的随机变量,且A 和B 独立。求 (1)证明X(t)是平稳过程。 (2)X(t)是各态历经过程吗?给出理由。 (3)画出该随机过程的一个样本函数。 (1) (2) 3-1 已知平稳过程()X t 的功率谱密度为232 ()(16) X G ωω=+,求:①该过程的平均功率? ②ω取值在(4,4)-范围内的平均功率? 解 [][]()[]2 ()cos 2 11 ,cos 5cos 22 X E X t E A E t B A B R t t EA τττ =++=????+=+=+与相互独立 ()()()2 1521()lim 2T T T E X t X t X t X t dt A T -→∞??=<∞ ???==?是平稳过程

()()[]() ()41122 11222222 2 4 2' 4(1)24()()444(0)4 1132 (1 )2244144 14(2)121tan 132 24X X X E X t G d R F G F e R G d d d arc x x τ τωωωωω ππωωπωωπω π ωω∞ ----∞∞ -∞-∞∞--∞∞ ?????==?=???+?? ====+==??+ ?== ??= ++?? =? ????P P P P 方法一() 方:时域法取值范围为法二-4,4内(频域的平均率法功) 2 d ω =

频响指标以及测试方法

频响 频率响应 简称频响,英文名称是Frequency Response,在电子学上用来描述一台仪器对于不同频率的信号的处理能力的差异。同失真一样,这也是一个非常重要的参数指标。一个“完美”的 交流放大器,应该在频响指标上具有如下的素质:对于任何频率的信号都能够保持稳定的放大 率,并且对于相应的负载具有同等的驱动能力。显然这在目前技术水平下是完全不可能的,那么 针对不同的放大器就有了不同的“前缀”,对于音频信号放大器(功率放大器或者小信号放大 器)来说,我们还应该加上如此的“前缀”:在人耳可闻频率范围内以及“可能”影响到该范围 内的频率的信号。这个范围显然缩小了很多,我们知道,人耳的可闻频率范围大约在20~20KHz, 也就是说只要放大器对这个频率范围内的信号能够达到“标准”即可。实际上,根据研究表明, 高于这个频段以及部分低于这个频段的一些信号虽然“不可闻”,但是仍然会对人的听感产生影 响,因此,这个范围还要再扩大,在现代音频领域中,这个范围通常是5~50KHz,某些高要求的放 大器甚至会达到0.1~数百KHz。 但是,上述要求表面上好像是比“完美”低了很多,却仍然是“不可能完成的任务”,目前我们 连这样的要求也不可能达到。于是,就有了“频响”这个指标。(附言:指标本身就代表着“不 完美”,如果一切都“完美”了,指标也就没有存在的理由了。) 放大器有两种失真:线性失真和非线性失真。我们通常把后者叫做“失真”,而把前者用其它方 式表达出来。非线性失真我们已经知道了是一种什么情况了。而线性失真就是指频率和相位方面 的“误差”,即频率失真和相位失真。 频率失真及其产生原因 频率失真是一种“线性失真”,意思是说,发生这种失真时放大器的输出信号波形和输入波形仍 然是“相似形”,它不会使放大器对要处理的信号产生“形变”。一个单纯的频率失真可以看成 放大器对于不同频率的信号放大倍数不同,例如,1个十倍放大器,对1KHz的信号的放大倍数是10 倍,而对于10KHz的交流信号可能放大倍数就变成了9.99倍,于是,我们就可以说这台放大器有频

随机信号处理论文分析

项目名称:基于信号循环平稳特性的信号 分离技术研究与实现 项目负责人: ***** 学号: ********** 年级专业: **级通信工程***班 所在学院:潇湘学院 联系电话: *********** E-m a i l: ***********@https://www.wendangku.net/doc/e015608638.html, 填写日期: 2016年4月28日

摘要 在信息科技迅猛发展的今天,多个信号时频重叠的情况在通信、雷达以及其他信号处理领域中非常普遍,因而研究多个时频重叠信号的分离在系统抗干扰和提高通信频带利用率等方面都具有非常重要的意义。本文主要研究如何利用信号的循环平稳特性进行信号分离的处理方法及其在实际应用中的参数选择与结构调整。针对基于信号循环平稳特性的信号分离技术,从循环平稳信号的定义出发,讨论了循环自相关性与循环谱相关性,给出了对谱重叠循环平稳信号进行分离的基本思想和基本理论。鉴于在工程实现过程中,无限长时间观测的不可实现性,进一步研究了干扰和噪声在有限数据条件下的消失特性,并在前人平稳干扰消失特性研究的基础上,构造了循环平稳干扰模型,详细推导了循环平稳干扰经循环相关处理后,其均值和方差在有限数据条件下的变化趋势和过程。 关键词:循环平稳信号;信号分离;时频重叠;干扰消失特性;FRESH滤波;DSP;MATLAB

目录 1.1 循环平稳信号与循环平稳性 (4) 1.2 循环平稳信号的定义 (4) 1.3频移(FRESH)滤波基本原理 (5) 1.4实验仿真 (9) 1.5 MATLAB 端主要代码: (10)

1.1 循环平稳信号与循环平稳性 平稳随机过程一般具有时间遍历性特征,因此描述该过程的各阶数字统计量,如均值、相关函数等,均可用时间平均值来代替统计平均值。然而,非平稳信号的统计量是随时间变化的,时间平均不能直接使用。下面讨论一种特殊的非平稳信号–循环平稳信号,分析其均值和相关函数的时间统计特性。下文讨论中,我们不考究数学推导的严密性,而是更多地着重于工程概念的直观理解,主要从同平稳过程的类比中得到所需的结论。由于本论文讨论的方法和性能分析都是围绕着信号的二阶统计特性展开的,所以只讨论信号的二阶统计特性。 1.2 循环平稳信号的定义 定义1.2:所谓循环平稳信号是一种非平稳信号。其统计特性随时间周期性变化,即:如果[x(t)]为二阶的循环平稳信号是指其时变均值和自相关函数都为时间的 周期函数: E[x(t)] = E[x(t + T )] 其中( )?为共轭运算,T为周期。对于具有二阶周期特性的信我

频响频响分析方法总结

频响频响分析方法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

频响分析,或者叫稳态动力学分析在abaqus中包括以下三种方法: 直接稳态动力学分析(direct solution steady state dynamic analysis) 模态稳态动力学分析(mode based steady state dynamic analysis) 子空间稳态动力学分析(subspace projection steady state dynamic analysis) 1)直接稳态动力学 优点:在直接稳态动力学分析中,系统的稳态谐波响应是通过对模型的原始方程直接积分计算出来的。如果分析的对象存在非对称刚度、包含模态阻尼以外的其他阻尼或者必须考虑粘弹性材料特性(频变特性),则不能提取特征模态的情况下,可以应用直接法进行稳态响应的计算和分析。 缺点:进行直接稳态动力学分析不需要提取系统的特征模态,而是在每个频率点对整个模型进行复杂的积分运算。因此,对于具有大阻尼和频变特性的模型,应用直接法比模态分析方法精确,但是耗时较多。 2)模态稳态动力学分析 模态稳态动力学分析方法是基于模态叠加法求解系统的稳态响应。因此,在求解稳态响应之前必须先提取无阻尼系统的特征模态,也就是在说必须在step steady state dynamics,modal前加一步step frequency。另外,必须确定需要保留的特征模态,以确保能够精确描述系统的动力学特性,也就是说如果是进行0-1000hz的分析,step frequency的number of eigenvalues requested选定的阶数的模态频率必须大于1000hz,简单的作法是这里选all……,下面的maximum……填入1000。 模态稳态动力学分析的特点:相较于直接法和子空间法分析速度快,耗时最少,计算精度低于直接法和子空间法,不适合于分析具有大阻尼特性的模型,不适合于分析具有粘弹性材料(频变特性)的模型。 3)子空间稳态动力学分析 子空间稳态动力学分析的基本思想是:首先提取无阻尼、对称系统的特征模态,并选取适当的特征向量组成特征模态子空间,然后将稳态动力学方程组投影到特征模态子空间上,通过直接法求解子空间的稳态动力学方程。 我的感觉是子空间法是直接法和模态法的折中,它的特点是模型可以定义任意形式的阻尼,可以处理具有非对称刚度矩阵的模型,可以处理具有频变特性的模型,计算时间和精度也是在直接法和模态法的中间。

系统频率特性

第三章 系统频率特性 系统的时域分析是分析系统的直接方法,比较直观,但离开计算机仿真,分析高阶系统是困难的。系统频域分析是工程广为应用的系统分析和综合的间接方法。频率分析不仅可以了解系统频率特性,如截止频率、谐振频率等,而且可以间接了解系统时域特性,如快速性,稳定性等,为分析和设计系统提供更简便更可靠的方法。 本章首先阐明频率响应的特点,给出计算频率响应的方法,接着介绍Nyquist 图和Bode 图的绘制方法、系统的稳定裕度及系统时域性能指标计算。 3.1 频率响应和频率特性 3.1.1 一般概念 频率响应是指系统对正弦输入的稳态响应。考虑传递函数为G(s)的线性系统,若输入正弦信号 t X t x i i ωsin )(= (3.1-1) 根据微分方程解的理论,系统的稳态输出仍然为与输入信号同频率的正弦信号,只是其幅值和相位发生了变化。输出幅值正比于输入的幅值i X ,而且是输入正弦频率ω的函数。输出的相位与i X 无关,只与输入信号产生一个相位差?,且也是输入信号频率ω的函数。即线性系统的稳态输出为 )](sin[)()(00ω?ωω+=t X t x (3.1-2)

由此可知,输出信号与输入信号的幅值比是ω的函数,称为系统的幅频特性,记为)(ωA 。输出信号与输入信号相位差也是ω的函数,称为系统的相频特性,记为)(ω?。 幅频特性: )()()(0ωωωi X X A = (3.1-3) 相频特性: )()()(0ω?ω?ω?i -= (3.1-4) 频率特性是指系统在正弦信号作用下,稳态输出与输入之比对频率的关系特性,可表示为: )()()(0ωωωj X j X j G i = (3.1-5) 频率特性)(ωj G 是传递函数)(s G 的一种特殊形式。任何线性连续时间系统的频率特性都可由系统传递函数中的s 以ωj 代替而求得。 )(ωj G 有三种表示方法: )()()(ω?ωωj e A j G = (3.1-6) )()()(ωωωjV U j G += (3.1-7) )(sin )()cos()()(ω?ωωωωjA A j G += (3.1-8) 式中,实频特性: )(cos )()(ω?ωωA U = 虚频特性:

随机信号分析实验

实验一 随机序列的产生及数字特征估计 一、实验目的 1、学习和掌握随机数的产生方法; 2、实现随机序列的数字特征估计。 二、实验原理 1. 随机数的产生 随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。进行随机信号仿真分析时,需要模拟产生各种分布的随机数。 在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。 (0,1)均匀分布随机数是最最基本、最简单的随机数。(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即U(0,1)。实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下: N y x N ky Mod y y n n n n /))((110===-, (1.1) 序列{}n x 为产生的(0,1)均匀分布随机数。 下面给出了上式的3组常用参数: (1) 7101057k 10?≈==,周期,N ; (2) (IBM 随机数发生器)8163110532k 2?≈+==,周期,N ; (3) (ran0)95311027k 12?≈=-=,周期,N ; 由均匀分布随机数,可以利用反函数构造出任意分布的随机数。 定理1.1 若随机变量X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有

)(1R F X x -= (1.2) 由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。 2. MATLAB 中产生随机序列的函数 (1) (0,1)均匀分布的随机序列 函数:rand 用法:x = rand(m,n) 功能:产生m ×n 的均匀分布随机数矩阵。 (2) 正态分布的随机序列 函数:randn 用法:x = randn(m,n) 功能:产生m ×n 的标准正态分布随机数矩阵。 如果要产生服从2N(,)μσ分布的随机序列,则可以由标准正态随机序列产生。 (3) 其他分布的随机序列 MATLAB 上还提供了其他多种分布的随机数的产生函数,下表列出了部分函数。 MATLAB 中产生随机数的一些函数 表1.1 MATLAB 中产生随机数的一些函数 3、随机序列的数字特征估计 对于遍历过程,可以通过随机序列的一条样本函数来获得该过程的统计特性。这里我们假定随机序列X (n)为遍历过程,样本函数为x(n),其中n=0,1,2,…,N-1。那么,X (n)的均值、方差和自相关函数的估计为

随机信号通过线性和非线性系统后地特性分析报告 实验报告材料

实验三 随机信号通过线性和非线性系统后的特性分析 一、实验目的 1、了解随机信号的均值、均方值、方差、自相关函数、互相关函数、概率密度、频谱及功率谱特性。 2、研究随机信号通过线性系统和非线性系统后的均值、均方值、方差、自相关函数、互相关函数、概率密度、频谱及功率谱有何变化,分析随机信号通过线性系统和非线性系统后的特性 二、实验仪器与软件平台 1、 微计算机 2、 Matlab 软件平台 三、实验步骤 1、 根据本实验内容和要求查阅有关资料,设计并撰写相关程序流程。 2、 选择matlab 仿真软件平台。 3、 测试程序是否达到设计要求。 4、 分析实验结果是否与理论概念相符 四、实验内容 1、 随机信号通过线性系统和非线性系统后的特性分析 (1)实验原理 ①随机信号的分析方法 在信号系统中,可以把信号分成两大类:确定信号和随机信号。确定信号具有一定的变化规律,二随机信号无一定的变化规律,需要用统计特性进行分析。在这里引入了一个随机过程的概念。所谓随机过程,就是随机变量的集合,每个随机变量都是随机过程的一个采样序列。随机过程可以分为平稳的和非平稳的,遍历的和非遍历的。如果随机信号的统计特性不随时间的推移而变化。则随机过程是平稳的。如果一个平稳的随机过程的任意一个样本都具有相同的统计特性。则随机过程是遍历的。下面讨论的随机过程都认为是平稳的遍历的随机过程,因此,可以随机取随机过程的一个样本值来描述随机过程中的统计特性。 随机过程的统计特性一般采用主要的几个平均统计特性函数来描述,包括、均方值、方差、自相关系数、互相关系数、概率密度、频谱及功率谱密度等。 a.随机过程的均值 均值E[x(t)]表示集合平均值或数学期望值。基于过程的各态历经行,可用时间间隔T 内的幅值平均值表示,即 ∑-==1 /)()]([N t N t x t x E 均值表达了信号变化的中心趋势,或称之为直流分量。

[频响] 频响分析方法总结

频响分析,或者叫稳态动力学分析在abaqus中包括以下三种方法: 直接稳态动力学分析(direct solution steady state dynamic analysis) 模态稳态动力学分析(mode based steady state dynamic analysis) 子空间稳态动力学分析(subspace projection steady state dynamic analysis) 1)直接稳态动力学 优点:在直接稳态动力学分析中,系统的稳态谐波响应是通过对模型的原始方程直接积分计算出来的。如果分析的对象存在非对称刚度、包含模态阻尼以外的其他阻尼或者必须考虑粘弹性材料特性(频变特性),则不能提取特征模态的情况下,可以应用直接法进行稳态响应的计算和分析。 缺点:进行直接稳态动力学分析不需要提取系统的特征模态,而是在每个频率点对整个模型进行复杂的积分运算。因此,对于具有大阻尼和频变特性的模型,应用直接法比模态分析方法精确,但是耗时较多。 2)模态稳态动力学分析 模态稳态动力学分析方法是基于模态叠加法求解系统的稳态响应。因此,在求解稳态响应之前必须先提取无阻尼系统的特征模态,也就是在说必须在step steady state dynamics,modal 前加一步step frequency。另外,必须确定需要保留的特征模态,以确保能够精确描述系统的动力学特性,也就是说如果是进行0-1000hz的分析,step frequency的number of eigenvalues requested选定的阶数的模态频率必须大于1000hz,简单的作法是这里选all……,下面的maximum……填入1000。 模态稳态动力学分析的特点:相较于直接法和子空间法分析速度快,耗时最少,计算精度低于直接法和子空间法,不适合于分析具有大阻尼特性的模型,不适合于分析具有粘弹性材料(频变特性)的模型。 3)子空间稳态动力学分析 子空间稳态动力学分析的基本思想是:首先提取无阻尼、对称系统的特征模态,并选取适当的特征向量组成特征模态子空间,然后将稳态动力学方程组投影到特征模态子空间上,通过直接法求解子空间的稳态动力学方程。 我的感觉是子空间法是直接法和模态法的折中,它的特点是模型可以定义任意形式的阻尼,可以处理具有非对称刚度矩阵的模型,可以处理具有频变特性的模型,计算时间和精度也是在直接法和模态法的中间。 直接法在定义边界条件时通过选项*boundary的amplitude参数来引用频变幅值,但这里默认的好像是位移,如果我有的是加速度或者速度数据,想用直接法进行分析应该如何设定呢,希望知道的大神能相告。 模态法和子空间法不能使用*boundary选项定义边界条件的运动,而只能通过选项*base motion来定义边界条件的运动。

随机信号分析(常建平,李林海)课后习题答案第四章习题讲解

4-4设有限时间积分器的单位冲激响应 h(t)=U(t)-U(t -0.5) 它的输入是功率谱密度为 210V Hz 的白噪声,试求系统输出的总平均功率、交流平均功率和输入输出互相关函数 ()() ()()() 2 222 1:()2[()][()]0Y Y Y Y XY X P E Y t G d D Y t E Y t m E Y R R R h ωω πτττ∞ -∞??==????=-==??=*?思路 ()()()10()() 10()10[()(0.5)] ()()10[()(0.5)] XY X YX XY R R h h h U U R R U U τττδτττττττττ=*=*==--=-=----解:输入输出互相关函数 000 2 0.0 25 ()0()10()10()0()()()()10(()00[()(0.)() 10()()()10()()10101100.55 [()5)]](0)X X X Y X Y X Y Y X t m G R m m h d R U R h h h h h h d R h h d d d E Y t R U ωτττττττττλτλδτλλλ λλλλ μ∞ ∞ ∞∞ ==?====**-=*-=+=+=-=-=?=?==????? 时域法 平均功是白噪声,,, 率面积法 : 22 5 [()][()]5 Y Y D Y t E Y t m ==-=P 交流:平均功率 ()h t 白噪声 () Y R τ

()()()2 14 12 24 2 22Y 2 (P1313711()2415()()()102 42411 5112522242j j j Y X Y U t U t Sa e H e Sa G G H e Sa Sa G d Sa S d a d ωτωωωτ ττωωωωωωωωωωωπ π ωωπ - --∞ ∞ ∞ -∞ ∞--∞??--?? ??? ?? -???= ? ?? ???? === ? ? ???? ?? = = =??= ? ? ?? ??? ??P 矩形脉冲A 的频谱等于A 信号与线性系统书式域法 ) 频()()22 20000 [()][()][()]5 Y X Y Y m m H H D Y t E Y t m E Y t =?=??=-===P 交直流分量为平均功率:流

频率响应介绍_频率响应概念

频率响应介绍_频率响应概念 频率响应是指将一个以恒电压输出的音频信号与系统相连接时,音箱产生的声压随频率的变化而发生增大或衰减、相位随频率而发生变化的现象,这种声压和相位与频率的相关联的变化关系称为频率响应。也是指在振幅允许的范围内音响系统能够重放的频率范围,以及在此范围内信号的变化量称为频率响应,也叫频率特性。在额定的频率范围内,输出电压幅度的最大值与最小值之比,以分贝数(dB)来表示其不均匀度。频率响应在电能质量概念中通常是指系统或计量传感器的阻抗随频率的变化。 频率响应确定方法分析法基于物理机理的理论计算方法,只适用于系统结构组成易于确定的情况。在系统的结构组成给定后,运用相应的物理定律,通过推导和计算即可定出系统的频率响应。分析的正确程度取决于对系统结构了解的精确程度。对于复杂系统,分析法的计算工作量很大。 实验法频率响应图册采用仪表直接量测的方法,可用于系统结构难以确定的情况。常用的实验方式是以正弦信号作为试验信号,在所考察的频率范围内选择若干个频率值,分别测量各个频率下输入和稳态输出正弦信号的振幅和相角值。输出与输入的振幅比值随频率的变化特性是幅频特性,输出与输入的相角差值随频率的变化特性是相频特性。 频率响应性能系统的过渡过程与频率响应有着确定的关系,可用数学方法来求出。但是除一阶和二阶系统外,这样做常需要很多时间,而且在很多情况下实际意义不大。常用的方法是根据频率响应的特征量来直接估计系统过渡过程的性能。频率响应的主要特征量有:增益裕量和相角裕量、谐振峰值和谐振频率、带宽和截止频率。 增益裕量和相角裕量它可提供控制系统是否稳定和具有多大稳定裕量的信息。 谐振峰值Mr和谐振频率rMr和r规定为幅频特性|G(j)|的最大值和相应的频率值。对于具有一对共轭复数主导极点(见根轨迹法)的高阶线性定常系统,当Mr值在(1.0~1.4)M0范围内时,可获得比较满意的过渡过程性能。其中M0是=0时频率响应的幅值。r的大小表征过渡过程的快速性:r值越大,系统在单位阶跃作用下输出响应的快速性越好。带宽和截止频率截止频率c规定为幅频特性|G(j)|达到0.7M0并继续下降时的临界频率。

实验3 随机信号平稳性分析

实验3 随机信号平稳性分析(验证性实验) 一、实验目的 (1)掌握平稳随机信号的特点; 二、实验内容 已知随机信号的三个样本函数为2)(1=t x ,t t x cos 2)(2=,t t x sin 3)(1=,每个样本发生的概率相等,画图显示该随机信号,并计算显示该随机信号的期望和方差。 三、实验步骤 1、用计算机仿真产生上述三个样本; 2、因为是均匀分布,用下列公式计算三个样本的数学期望和方差; 3) ()()(x )(321n x n x n n m ++= 3)]()([)]()([)]()([x )(2 322212 n m n x n m n x n m n n -+-+-=σ 需要注意的是本实验和实验二的不同,其中实验二的随机信号是一个平稳而且各态历经的随机信号,仿真的随机信号中只有一个样本,用其时间均值和时间自相关逼近其统计均值和统计自相关,然后用其估计随机信号的功率谱密度。 3、利用图形显示随机信号的样本及其数学期望和方差。并判断该信号是否为平稳随机信号。 4、利用教材69页随机信号功率谱密度公式2.3.7计算该随机信号的功率谱密度。先计算随机信号每个样本的频谱密度,然后求统计平均。 四、实验代码及结果 实验代码 clear; N=50; n=1:0.5:N; x1=2*ones(1,length(n));

x2=2*cos(n); x3=3*sin(n); x=(x1+x2+x3)/3; %计算均值估值plot(n,x1,'g'); hold on; plot(n,x2,'r'); plot(n,x3,'y'); plot(n,x,'-'); a=((x1-x).^2+(x2-x).^2+(x3-x).^2)/3; %方差估值plot(n,a,'-') title(‘计算方差估值’)

14.频率响应方法

频率响应方法 伯德图 一个系统的频率传递函数或它用Kz(jw)/P(jw)表示的函数可以用Nyquist图(极坐标图)表示,或者用在输入频率的振幅比和相角来表示。一般来说,我们经常在输入频率的对数坐标下画出振幅比和相角,振幅比以分贝来表示,相角用度来表示。以这种形式表示的图,就称为伯德图。准确的伯德图,可以用计算机画出来,用一些画图规则可以很方便快速地画出用直线表示的草图,本文中将讨论这些画图规则。 系统的伯德图可以用来确定包括阶跃输入在内的不同输入对于系统稳态响应的影响。因为频率响应是稳态响应,则系统必须稳定,在使用系统伯德图之前,就必须判断系统的稳定性。 伯德图通常使用频率函数Kz(jw)/P(jw)来判断系统的稳定性。当函数在S的右半平面没有极点或零点时,例如系统是最小相位系统,可以根据出现在函数中的下面四个基本的元素快速地画出系统的伯德图。这四个元素是: 1.频率不变项K; 2.在原点处的零极点; 3.一阶项或实的零点或极点。 4.二阶零极点。 对于乘积Kz(jw)/P(jw),M=M1M2,相角Phi表示成和,如果用分贝作为单位的话,幅值也可以表示成求和的形式, 在伯德图中,随W变化的用分贝表示的幅值M和用度为单位的相角画在半对数纸上。画法如下:幅值和相角伯德图可以通过求该函数中各个基本环节的和的方法获得。这些图比或Nyquist图或极坐标图容易做出。可以很方便地表示系统的性能。 1.增益K大于零,相角等于零,和W无关。 2.积分环节,极点位于原点处,在W=10时,距W=1十倍频程处的幅值为-20n。于是,在草图上可以用一条每十倍频程下降20n分贝的一条斜线来表示幅值曲线。相 角为Phi=—n90度,和频率无关。 3.微分环节,零点在原点处,微分环节的伯德图是积分环节伯德图关于0分贝和0度轴对称的镜像。下面的超前环节和滞后环节的伯德图也是如此。 4.简单的滞后环节,其近似伯德图如图2-4-1C上的直线所示,渐近线和伯德图在转折频率或转角频率处相交,转折频率为归一化图上,令Wt=1时的频率。 越靠近Wt=1,准确值可以通过2-4-1计算,在Wt=1处,误差为-3分贝,相角为-45 度。 5.二阶滞后环节(二阶震荡环节) 其中Wn是无阻尼的自然频率,KSi是阻尼比。二阶振荡环节的伯德图在低频为坐 标轴,高频渐近线是一条在W/Wn=1处穿过0分贝线,且以40dB/dec下降的斜线。 在W/Wn=1处,可以根据2-4-2式计算准确值。阻尼比越小,相角在W/Wn=1处的 凸起就越尖锐,改变越剧烈。 伯德图可以通过对各个基本环节的幅值和相角求和来获得。 在伯德图中,相角裕度Phim为180加上令KZ/P=1等于1的频率处的相角。于是,如图2-4-2中所示的部分伯德图,相角裕度是相角曲线在转折频率Wc和-180度的 距离,转折频率Wc即幅值曲线与0分贝线的交点处的频率。类似的,幅值裕度等 于使得相角为-180度时的频率处的幅值的倒数,即该频率处幅值距0分贝线的距离。 如图2-4-2所示。 伯德图中的根轨迹

自动控制原理 第五章频率响应分析法习题及答案

第五章习题与解答5-1试求题5-1图(a)、(b)网络的频率特性。 u r R1 u c R2 C R2 R1 u r u c (a) (b) 题5-1图 R-C网络 解(a)依图: ? ? ? ? ?? ? ? ? + = = + = + + = + + = 2 1 2 1 1 1 1 2 1 2 1 1 1 1 1 1 2 2 1 )1 ( 1 1 ) ( ) ( R R C R R T C R R R R K s T s K sC R sC R R R s U s U r cτ τ ω ω τ ω ω ω ω ω 1 1 1 2 1 2 1 2 1 2 1 ) 1( ) ( ) ( ) ( jT j K C R R j R R C R R j R j U j U j G r c a+ + = + + + = = (b)依图: ? ? ? + = = + + = + + + = C R R T C R s T s sC R R sC R s U s U r c ) ( 1 1 1 1 ) ( ) ( 2 1 2 2 2 2 2 2 1 2τ τ ω ω τ ω ω ω ω ω 2 2 2 1 2 1 1 ) ( 1 1 ) ( ) ( ) ( jT j C R R j C R j j U j U j G r c b+ + = + + + = = 5-2某系统结构图如题5-2图所示,试根据频率特性的物理意义,求下列输入信号作用时,系统的稳态输出) (t c s 和稳态误差) (t e s (1)t t r2 sin ) (= (2)) 45 2 cos( 2 ) 30 sin( ) (? - - ? + =t t t r 题5-2图反馈控制系统结构图

频率响应测量的方法

频率响应测量的方法 频率响应测量的方法很多,一般同使用的测试信号有关。 可分为:i. 点测法:完全按定义设计的测量方法,逐个频率输入振幅恒定的正弦信号,逐个点测量相应频率扬声器输出声压级,在频率响应坐标纸上绘出相应的点,把这些不连续的点的平滑连线即为频率响应曲线。测量耗时、测量有限的非连续频率点,过渡点是推测的。 ii. 扫频自动记录法:使用机械传动的方法改变振荡电路中的电容,使信号的频率连续改变,输出电压恒定,这叫扫频信号,记录仪上记录纸的频率刻度与信号源同步,记录扬声器的输出声压级随频率的变化,即为频率响应曲线,这方法叫扫频自动记录法。后来,机械扫频信号改成电压控制频率的压控振荡器,改进了机械传动的麻烦。这是60~80年代丹麦B&K 公司为代表的测量技术。扫频自动测量原理大约已有40年的历史,其测量原理没有变化,改变的只是使用的技术,譬如扫频信号的产生方法,测量传声器测得的数据的采集、处理、运算和输出数据和曲线都可以由计算机完成。其中需要特别一提的是:对扫频信号的理解和生成技术,连续扫频信号过去理解为点频信号随时间变化,但点频信号是一个连续周期信号,从示波器看到的是一个按周期重复的正弦波形,而扫频信号没有一个频率是经历时间周期的,随扫频时间变化的是它的瞬时频率。瞬时频率数学上是相位对时间的微分。可以这样理解:譬如f=100Hz正弦信号的周期是T=0.01秒,其走过的相位φ= 2π弧度(360°),而f=200Hz时,T=0.005秒,其走过的相位仍然是φ= 2π弧度,这样,一个微小时间内的相位变化(等效于相位对时间的微分)同周期成反比,相当于稳态频率。同稳态信号不同的是它引入扫频速率(S:Hz/s)的概念,瞬时频率fi =S t +f0;t为扫频时间;f0为扫频初始频率。t和f0确定扫频频率范围。稳态单频信号的公式是u(t)=Acos(2πft);f为稳态单频信号的频率。而扫频信号的公式是u(t)=ACos(πSt2),B&K公司的2012音频分析仪的TSR(时选响应)技术中使用的测试信号,就是采用该数学模型生成的信号。 iii. 阶步步进的猝发声测量。猝发声是若干个周期的正弦信号脉冲,或称正弦波列。它由连续周期信号加一时间控制电路组成,当测量声压级的时间窗正好在猝发声的稳定部分时,它更接近点频测量。由一个个不同频率的猝发声组成一个阶步步进的猝发声,用对应的跟踪滤波器跟踪每一个猝发声,类似点频测量得到扬声器的频率响应。美国ATI公司的扬声器测量系统LMS使用的正是这种信号源,它最多可以在一个十进制频率范围内设置200个猝发声频率点,即频率阶步的间隔是1/60倍频程。 iv. 多频音(Muiti-tone Burst也叫多频猝发声)它是数字生成的M个纯音信号的叠加的一个短时间间隔的信号,该时间间隔对M个频率来说正好都是整周期的,并且这由低到高M个频率之间没有谐波关系,即2个频率相除(大数除小数)的商不会是整数。例如:14.5,31.9,37.7,49.3,55.1……Hz;可以排列成一个数列,选择适当的频率间隔,组成M个频率的多频音。其M个频率的同步FFT即为基频即幅频响应,由其谐波可以实现其谐波失真测量。该技术使用在AP公司的“系统1”和“系统2”的仪器上。 v. 脉冲数字测量技术上面所有的方法都离不开正弦信号,只是频率的连续变化、频率的阶步变化和有限频率成分的合成信号,脉冲信号和MLS信号需要进行时域(时间波形)和频域(频率响应和频率分析)之间的变换,从中可以得到更多信息,它作用于被测系统后的输出响应,经过变换和运算可以得到被测系统的许多信息,这需要对测试信号有充分了解,涉及信号与系统的基本理论,又要借助数字信号处理技术进行变换运算。单脉冲信号的性质,

随机信号分析(常建平-李林海)课后习题答案第三章-习题讲解

、随机过程 X(t)=A+cos(t+B),其中A 是均值为2,方差为1的高斯变量,B 是(0,2π)上均匀分布的随机变量,且A 和B 独立。求 (1)证明X(t)是平稳过程。 (2)X(t)是各态历经过程吗?给出理由。 (3)画出该随机过程的一个样本函数。 (1) (2) 3-1 已知平稳过程()X t 的功率谱密度为232()(16) X G ωω=+,求:①该过程的平均功率? ②ω取值在(4,4)-范围内的平均功率? 解 [][]()[]2()cos 211,cos 5cos 22X E X t E A E t B A B R t t EA τττ=++=????+=+=+与相互独立()()()21521()lim 2T T T E X t X t X t X t dt A T -→∞??=<∞ ???==?是平稳过程

()()[]()()4112211222222242'4(1)24()()444(0)4 1132(1 )224414414(2)121tan 13224X X X E X t G d R F G F e R G d d d arc x x ττωωωωωππ ωωπωωπω πωω∞ ----∞∞ -∞-∞∞--∞∞?????==?=???+?? ====+==??+ ?==??= ++?? =?????P P P P 方法一() 方:时域法取值范围为法二-4,4内(频域的平均率 法功) 2 d ω=

3-7如图3.10所示,系统的输入()X t 为平稳过程,系统的输出为()()()Y t X t X t T =--。证明:输出()Y t 的功率谱密度为()2()(1cos )Y X G G T ωωω=- [] []: ()[()()] {()()}{()(}2()()()()()()()()2(()[)()(()()]()())Y X X X Y X X Y Y Y X X X Y Y j T j T R E Y t Y t E X t X t T X t X t T R R R R E Y t Y t G F R T T e e G R G R G G G G ωωτττττωτωττωττττωωωω-??=+=--+-+-=--=+=-??∴=-+-=已知平稳过程的表达式利用定义求利用傅解系统输入输出立叶平变稳换的延时特性2()2()22()(1cos )j T j T X X X e e G G G T ωωωωωω-??+-???? =-

02实验二:随机信号平稳性分析

实验二 随机信号平稳性分析 一.【实验目的】 通过对几个实用随机信号(语音信号,音乐信号)的平稳性分析,加深对随机信号平稳性的理解。 二.【实验环境】 1.硬件实验平台:通用计算机,麦克风。 2.软件实验平台:MATLAB 2012A 版本。 三.【实验任务】 1. 获取语音信号; 2. 使用通过MATLAB 计算语音信号的相关特征,验证语音信号的短时平稳性; 3. 撰写实验报告。 四.【实验原理】 随机信号的平稳性可以分为严格平稳和广义平稳,分别定义如下: 1. 严格平稳性:随机过程{}T t t X ∈),(,如果其任意n 维概率分布函数具有下述的移动不变性:任取n n n R x x x T t t t ∈∈,...,,,...,,2121与,对于满足T t t t n ∈+++τττ,...,,21的任意τ值,始终有 ),...,,;,...,,(),...,,;,...,,(21212121τττ+++=n n n n t t t x x x F t t t x x x F 成立。则称X (t ) 具有严格平稳性(或强平稳性),也称X (t )是严格平稳随机信号(或强平稳随机信号)。 2. 广义平稳性:随机过程{}T t t X ∈),(,如果其均值与相关函数存在,并且满足:均值为常数;相关函数与两时刻),(21t t 的绝对值无关,只与相对差21t t -=τ有关,即 )(),(),()]([21ττηR t t R t t R t X E =+===常数 则称X(t) 具有广义平稳性(或弱平稳性、宽平稳性),也称X(t)是广义平稳随机信号(或弱平稳随机信号、宽平稳随机信号)。

电子科技大学随机信号分析期末考试题2011

………密………封………线………以………内………答………题………无………效…… 电子科技大学20 -20 学年第 学期期 考试 卷 课程名称:_________ 考试形式: 考试日期: 20 年 月 日 考试时长:____分钟 课程成绩构成:平时 10 %, 期中 10 %, 实验 %, 期末 80 % 本试卷试题由___2__部分构成,共_____页。 一、填空题(共20分,共 10题,每题2 分) 1. 设随机过程0()cos( ),X t A t t ω=+Φ-∞<<∞,其中0ω为常数,A Φ和是相互独立的随机变量,[]01A ∈,且均匀分布,Φ在[]02π,上均匀分布,则()X t 的数学期望为: 0 2. 已知平稳随机信号()X t 的自相关函数为2()2X R e ττ-=,请写出()X t 和(2)X t +的协方差12-e 3. 若随机过程()X t 的相关时间为1τ,()Y t 的相关时间为2τ,12ττ>,则()X t 比()Y t 的相关 性要__大___,()X t 的起伏特性比()Y t 的要__小___。 4. 高斯随机过程的严平稳与___宽平稳_____等价。 5. 窄带高斯过程的包络服从___瑞利___分布,相位服从___均匀___分布,且在同一时刻其包络和相 位是___互相独立___的随机变量。 6. 实平稳随机过程的自相关函数是___偶____(奇、偶、非奇非偶)函数。 7. 设)(t Y 是一均值为零的窄带平稳随机过程,其单边功率谱密度为)(ωY F ,且0()Y F ωω-为一偶函 数,则低频过程)()(t A t A s c 和是___正交___。

随机信号分析理论的应用综述

随机信号分析理论的应用综述 (结课论文) 学院: 系别:电子信息工程 班级: 姓名: 学号: 指导老师:

目录 第一章概述 1.1 随机信号分析的研究背景 1.2 随机信号分析的主要研究问题 第二章随机信号分析的主要内容 2.1 随机信号分析的主要研究内容 2.2 随机信号分析的基本研究方法 第三章随机信号分析的应用实例 3.1均匀分布白噪声通过低通滤波器 3.2语音盲分离 3.3系统辨识 3.4基于bartlett的周期图法估计功率谱 3.5基于MATLAB_GUI的Kalman滤波程序第四章展望 参考文献

第一章概述 1.1随机信号分析的研究背景 在一般的通信系统中,所传输的信号都具有一定的不确定性,因此都属于随机信号,否则不可能传递任何信息,也就失去了通信的意义。随机信号是一种不能用确定的数学关系式来描述的、无法预测未来时刻精准值的信号,也无法用实验的方法重复实现。 随机信号是客观上广泛存在的一类信号,它是持续时间无限长,能量无限大的功率信号,这类信号的分析与处理主要是研究它们在各种变化域中的统计规律,建立相应的数学模型,以便定性和定量的描述其特性,给出相关性能指标,并研究如何改善对象的动静态性能等。随机信号分析内容涉及线性系统与信号、时间序列分析、数字信号处理、自适应滤波理论、快速算法、谱估计等方面的知识。 我们所学的是从工程应用的角度讨论随机信号的理论分析和研究方法,主要以分析随机信号与系统的相互作用为主要内容。 近年来,随着现代通讯和信息理论的飞速发展,对随机信号的研究已渗透到的各个科学技术领域,随机信号的处理是现代信号处理的重要理论基础和有效方法之一。 1.2主要研究问题 对随机过程(信号)的分析来讲,我们往往不是对一个实验结果(一个实现或一个具体的函数波形)感兴趣,而是关心大量实验结果的某些平均量(统计特性),因而随机过程(信号)的描述方式以及推演方式都应以统计特性为出发点。这样,尽管从个别的实现看不出什么规律性的东西,但从统计的角度却表现出一定的规律性,即统计规律性,它是本门学科一个最根本的概念。 随机信号分析重点研究一般化(抽象化)的系统干扰和信号,往往仅给出他们的系统函数模型和数学模型,而不是讨论具体的系统,更不会局限于一些具体的电路系统上。

第五章:频率响应法

第五章系统的频率特性分析 本章目录 5.1 频率特性 5.2 对数坐标图 5.3 极坐标图 5.4 乃奎斯特稳定判据 5.5 相对稳定性分析 5.6 频域性能指标和时域性能指标的关系 小结 本章简介 在经典的控制系统分析方法中,有两种基本方法是可以不需解微分方程而可对控制系统的性能进行分析和校正的:其一是上一章的根轨迹法,其二即本章介绍的频率特性分析法。频率响应法是一种工程方法,是以传递函数为基础的一种控制系统分析方法。这种方法不仅能根据系统的开环频率特性图形直观地分析系统的闭环响应,而且还能判别某些环节或参数对系统性能的影响,提示改善系统性能的信息。控制系统的频域分析方法不仅可以对基于机理模型的系统性能进行分析,也可以对来自于实验数据的系统进行有效分析。它同根轨迹法一样是又一种图解法,研究的主要手段有极坐标图(Nyquist图)和伯德图(Bode图)法。 与其它方法相比较,频率响应法还具有如下的特点: 1)频率特性除可以由前述传递函数确定外,也可以用实验的方法来确定,这对于难以列写微分方程式的元部件或系统来说,特别便于工程上的应用。 2)由于频率响应法主要是通过开环频率特性的图形对系统进行分析,因而具有形象直观和计算量较少的特点。 3)频率响应法不仅适用于线性定常系统,而且还适用于传递函数不是有理数的纯滞后系统和部分非线性系统的分析。 由于上述的特点,频率响应法不仅至今仍为控制理论中的一个重要内容,而且它的有关理论和分析方法已经广泛应用于鲁棒多变量系统和参数不确定系统等复杂系统的研究中。

本章我们将在介绍控制系统频率特性的基本概念后,着重于开环控制系统的频率特性分析:极坐标图(Nyquist图)和半对数坐标图(Bode图),同时将应用Matlab工具分析控制系统的频率特性,最后简要分析开环控制系统的频率特性与闭环控制系统的频率特性的关系,并研究它们与控制系统性能指标的关系。 5.1频率特性 频率特性又称频率响应,它是指系统或元件对不同频率的正弦输入信号的响应特性。系统的频率特性可由两个方法直接得到:(1) 机理模型—传递函数法;(2) 实验方法。 5.1.1 由传递函数求系统的频率响应 设系统的开环传递函数 (5—1) 对应的频率特性为 (5—2) 如果在S平面的虚轴上任取一点,把该点与的所有零、极点连接成向量,并将这些向量分别以极坐标的形式表示: 则式(5-3)可改写为 (5-3) 由上式得到其对应的幅值和相角:

相关文档
相关文档 最新文档