文档库 最新最全的文档下载
当前位置:文档库 › 细胞遗传学论文

细胞遗传学论文

细胞遗传学论文
细胞遗传学论文

细胞遗传学

年级专业:10级农学1班

论文作者:杨倩

学号:222010326012020老师:何凤发

染色体分带技术及其应用

杨倩

2010级农学一班

摘要:染色体分带是60年代后期发展起来的一项细胞学技术,借助于某些物理、化学处理使中期染色体显现出深浅不同的带纹,各物种的每一条染色体其带型纹的数目、位置、宽度及深浅度都有相对的恒定性,因此染色体分带是染色体识别的重要依据。这一技术自发展起来便广泛应用,已成为鉴别基因组中的各个染色体或较大的染色体片段、追踪外源染色体的有效手段。

关键词:染色体分带;遗传学;应用

Chromosome banding technique and its application

Yang Qian

Class one of Agriculture

Abstract:Chromosome banding is a cytological technique,development of 60 time later period rises,with the help of some physical,chemical treatment to metaphase chromosomes showed different bands,each species of every chromosome the band profile number,position,width and depth are relatively constant,so the chromosome banding it is the important basis for chromosome identification. This technique is widely used since the developed,it has become the differential genome in various chromosome or larger chromosome fragments,tracking of exogenous chromosomes effective means。

Keyword:Chromosome banding;genetics;application

引言

染色体分带技术是一种用染料对染色体进行分化染色的方法。用一般细胞学染色法,染色体着色是均匀的,但若经过某些物理化学等条件如: 温度、酸碱等处理后再以染料染色,或单经某些荧光染料染色就可以染出深浅不同的带纹的纵向结构。由于这些带纹和结构是染色体固有结构的反映, 因而各不同物种之间、同一物种各(染色体之间同一染色体处在细胞不同分裂时相) 之间所出现的带纹也就不同。这就不仅使我们鉴别染色体组中各个染色体及其大的片段提供了极大的方便, 使追踪某一特定染色体在遗传或杂交中的去向成为可能, 同时也为进一步认识染色体本身的结构和功能提供了一种有利的分析手段。因而有人认为分带技术为核型研究带来了一次革命,看来也并不过分。第一个对染色体作分化染色的是Heitz ,他在1928年报道了苔鲜植物染色体以碱性染料着色后呈现深浅不同的分节构造。之后又有人用各种化学或物理方法处理。染色后使染色体呈现各式花纹, 并曾以此作为研究动、植物核型及对性染色体的识别,但当时由于人们对染色体的结构了解很少, 对其中D N A和染色体蛋白毫无知识, 因此Heitz当时的报告未被重视。1968年Caspersson 等人开创了用氮芥哇叮咙(Quinaerine Mustard ,Q M,一种荧光染料)在蚕豆、延令草属等植物细胞和中国

田鼠的细胞的染色体上染得亮、暗相间清晰的荧光分带。1 9 7 0 年又成功地获得人染色体荧光分带带纹即Q 带。同年在原位杂交检测D N A高度重复顺序的工作中, 发现在细胞学水平上D N A变性、接着在复性之后, 以Giemsa 染色, 能使重复顺序D N A相应节段上深染, 这就是C 带。1 9 7 1 年发展了一种以碱和盐处理后, 再染以Giemsa,可以使人类各条染色体出现特有带纹,即G 带。这些分带技术首先在人类染色体上发展起来,成功地确定了标准的人类核型。在临床

应用上, 描述了某些特定染色体带纹的改变所产生的综合征。然后又扩大到哺乳动物到其他动物, 再到植物。但在植物上应用的成就不及动物方面显著。在我国, 动物染色体分带工作也在70 年代开始, 以核型分析为主, 临床上、则以染色体异常疾患为主。目前人类染色体分带在不少医院中正成为常规化验项目之一。

植物方面也有不少文章, 但以建立方法为主。

1 染色体分带简述

1.1 染色体分带的带纹种类

1.1.1Q带

瑞典细胞化学家T . Caspersson等用荧光染料芥子喹吖因作染色剂处理,染色体制片在荧光显微镜下观察,染色体呈现明暗相间的清晰带纹。不久,C.G.Vosa发现用与芥子喹吖因类似的喹吖因处理也能使植物染色体显带.由这两种染料处理产生的带称为Q带。

1.1.2G带

G带是动物细胞遗传学研究中常用的技术。它是用碱盐溶液对染色体制片进行预处理,有时也用胰蛋白本酶或链霉蛋白酶进行处理,然后用Giemsa染料染色。一般认

为G带显示的是常染色质构成的染色粒,它所反映的很可能是蛋白质尤其是组蛋白在染色

体上的不均一分布。

1.1.3C带

C带是用酸、碱对染色体标本进行变性处理,然后置于溶液中,在600C下保温30~120min不等,再以Giemsa染料染色。由于起初在哺乳动物中发现带纹位于着丝粒区域,故称之为着丝粒带,简称C带。C带技术对辨认Y染色体是非常有用的。C带已广泛应用于植物材料的研究,如利用C带能识别小麦的21对染色体。

1.1.4N带

N带Matsui等为显示NOR建立的方法。N带是用三氯醋酸和盐酸先后处理,Giemsa染料染色后获得。N带并非专一地显示核仁组织区,在次缢痕、随体、着丝粒、端粒及臂间的异染色质区域均能显带。N带技术方法简便,结果稳定,在植物染色体研究中得到较广泛的应用。

1.2 染色体分带技术的命名

由于染色体分带技术是分化染色技术,所以习惯上常按所使用的染料或染出的结构来命名。近五年来随着分带技术应用的逐渐普及和采用的染料逐渐增多, 分带名称也日益增多。有些工作者曾试图以染色体的固有结构把分带技术划分为儿大类, 但由于分带机理目前尚未有定论, 这种分类方法也未趋统一。这里仍按习惯以所使用的染料归类, 如下:

1.2.1 荧光染料

以荧光染料处理染色体后, 在荧光显微镜下, 可见深浅不同的带纹, 按染料常见的有以下几种:

Q 带: 以荧光染料Quinaerine 染色, 故名。所染标本在荧光显微镜下, 经紫外光照

射后显示出强度不同的淡黄色荧光, 可以区分出亮带Q+和暗带Q-。Q 带十分恒定, 因

此目前已前利用电子计算机来作核型分析,能检出微小的畸变。

H 带: 以Hoeehest 3 3 2 5 8 染出的带纹。相似于Q 带。

A O 带: 若在染色前先经BrdU 溶液处理, 再以磷酸缓冲液浸泡一定时间, 然后结合叮吮橙染色, 在动物细胞染色体上呈现出黄色的类似R 带的带纹。

此外, 还有以D A PI染色的D A PI 带, 也是显示对应于不同异染色质部分。荧光染料分

带的优点是材料处理比较简单, 重复性好。虽易退色但可重染。缺点是所制标本不能保存, 月需要荧光显微镜等特殊设备。

1.2.2 Giemsa染料

常规制成的染色体标本, 经温度或不问浓度的酸、碱、盐、尿素、酶等试剂处理后,再以Giemsa染液染色, 便可使染色体呈现不同的带纹, 主要有:

C 带: 染色体标本经一定浓度的N a O H或B a( 0 H )2处理后, 然后在缓冲盐溶液中热水解, 再以Giemsa染液染色。经此法处理后所染出的结构, 在哺乳动物主要在着丝点或着丝点附近的次绕痕及人的Y 染色体长臂远端1 / 2 处出现深染区。在植物中C 带也分布在次隘痕、随体、着丝点基部和染色体两端部及中间部位。C 带显示的主要是结构异染色质, 因此C 带深染部分不仅在中期染色体, 也可在间期核中看到。

F一B S G 法: 植物细胞染色体经火焰干燥等一系列处理后, 再进行B S G 法处理。国

内应用此法已在65 种农作物上显示C 带带纹

G 带: 若在染色前的处理较C 带技术温和些, 则在动物染色体上所显示出带纹较C带带纹丰富, 称为G 带。如染色标本经胰酶或S D S 处理染色后显示G 带, 经照相后标本入50 % 醋酸数秒钟退色后, 再经碱和热盐水解, 染色后即得C 带。同样染色体标本在尿素液内温育数秒钟后染色获G 带, 若延长至2 小时即显C 带。在不同时间处理的标本中可见G 带逐渐破坏的图象。动物中G 带只见于中期分裂相的染色体, 其带纹与Q带相似, 但并不完全一致。一般认为G带深染部分代表异染色质区域。在植物中往往不能染出典型的G带。

R 带: 即反带(Reversebandiog ) , 若将G 带技术染色前处理稍加改变, 则染色后所呈现的带纹恰好与Q 带和G 带相反。在Q带和G带中的显带区, R 带中则为浅色区, 故名反带。它可以弥补Q 带和G 带, 有助于确定两臂末端上结构的变化。在R 带中深染部分代表染色体中活动的常染色质区。

N 带: 染色体标本经一种特殊的与C 带技术相似的强烈方法, 例如三氯醋酸, D Nase等处理后, 可使核仁组织者区深染。此法重复性好, 在植物中使用较多。

C d 带: 经盐水加热处理后, 经Giemsa染色, 在着丝点区域呈现两个大小相等的小点, 可能是代表与纺锤丝相联结的小球。

1.2.3 其它染料

银染: 一般用氨银法处理染色体, 可以使有转录活性的核仁组织者区域(N O R ) 着色, 此法应用颇广。

H y 带: 染色体经热的盐酸处理后, 以醋酸洋红染色, 在植物中可以相当快地产生一种特殊的H y+和H y—带纹。可能是染色体蛋白被分化性的抽提。

O 带:染色体标本温育在含有地衣红的SSC溶液中能获得与G 带相似的O 带。

F 带: 经孚尔根染色法产生的带纹称F带。人的Y 染色体长臂远端一半区域Q和

G 带为负反应, F 带则为正反应。

有人发现孚尔根分带法可以在间期和中期区分结构异染色质和富A T 和G C 的类型。这是Giemsa 染色植物体所做不到的。

1.2.4免疫化学染色法

各种核苷或核苷酸与载体蛋白的结合物免疫家兔后获得相对应的抗体。一种是直接标记荧光于抗体上, 与变性的染色体D NA染色后即可在荧光镜下观察。另一种是采用简接荧光法和间接免疫酶标法,即以上述对应抗体作为第一抗体与变性染色体的D N A 作用后, 再以荧光标记或过氧化物酶标记的羊抗免,γ球蛋白为第二抗体染色后, 前者即在荧光镜下呈现出各种核苷或核苷酸抗体的Q 带、R 带、C 带, 后者需再经D A B 在H2O2存在下显示棕色分带着色。不同核苷酸抗体需要不同的染色体D N A 变性处理, 一般采用光氧化或U V 变性此法对分析染色体结构和功能是一种新的手段。

2 几种染色体分带技术的应用

2.1 染色体的荧光组织化学

染色体的荧光组织化学近年发展很快, 其中一个重要方面就是多种荧光染料的联合使用。通常首先使用和O N A 相结合的荧光染料, 然后以另一种荧光或非荧光染料复染。组合使用的优点是1. 选用适当的组合, 当单一染料显示的带纹不够清晰时, 以另一种染料复染常可带纹或多态区更为清晰, 反差更为强烈;2 一些组合可以显示特定的染色体多态区, 如强荧光的异染色质区(DA/DAPI染色)。看来荧光染料的联合使用对于染色体精细带纹的显示, 染色体多态性、染色体重组的研究都是非常有用的(表1 )。

表1 荧光染料的联合使用

类型初染复染显示的带纹G一C / A一T 色霉素A3 甲基绿R 带

G一C / A一T 色霉素A3 纺睡菌素R 带

A一T / G一C Hoechst33258 放线菌素D QFH

A一T / G一C 阿的平放线菌素D或QFQ

7 一氨基放线菌素D

A一T /A一T Hoechst33258 纺锤菌素DA—DAPI

利用这种染料组合的方法, Schnede 等(1981) 以色霉素A3 /远霉素A和DAPI(DA一DAPI ) 染色, 证明猪染色体上分布有两类不同的异染色质。双臂染色体(Nos. l一12 )和X 染色体的异染色质富于GC。以色霉素A 3 染色显示亮荧光。端着丝点染色体(N os.13 一18 ) 的异染色质区可为DA一DAPI 所显示。也可为另一种新的荧光染料D287/ 170 所染色, 发

亮光。虽然DA一DAPI 和D287/170染色的机制尚未得知, 但至少说明, 猪的染色体组里有两类不同的结构异染色质。一种分布于双臂染色体, 另一种分布于端着丝点染色体。这对于了解家猪的起源, 异染色质的分化, 罗伯逊易位的意义等是有帮助的。

2.2 高分辨率G带

大家知道, 通常哺乳动物细胞停留在前期的时间很短, 只有2一3分钟。但是PCC 方法的发明已使可能得到纤细的带状G2或G 1染色体。两者都可作G分带染色。其长度比中期染色体长4 倍以上(表2) 。带纹也更为丰富。中期染色体含3个横带的区域在G2染色体可呈现6 个带。

表2 黑田鼠(Mie r o tu s a g r e st is) X 染色体G Z期和中期长度的比较

时相测量的染色体数平均长度(μM) 相对长度

早G2 3 48.0 4.2

中G213 39.6 3.5

后G2 4 16.4 1.5

中期20 11.3 1.0

人工多线化的第二个可能途径是内复制。有关人工诱发内复制的研究已给这方面投下了希望的曙光。Sutou等(1974)以4 NQO , Captan , 环磷酞胺, 叮吮橙等处理离体的中国仓鼠细胞, 观察到内复制率明显增高。Kusyk等(1979)以Hoechst33258 ,rubidazone 两者连合使用, 可使小鼠L细胞和CHO细胞的内复制率高达20一50% , 最高可达7 % 。可以期待, 随着人功内复制和PCC技术的进一步改进, 有朝一日我们将会得到哺乳动物的多线染色体, 使G 带技术进入一个完全崭新的时代。

3 染色体分带技术的前景展望

随着染色体分带技术越来越成熟,我相信在以后的研究中,人们会利用染色体分带技术对动、植物的染色体进行更深入的探索。相信染色体分带技术也会随着人类的发展,一点一点变得更加完美!染色体分带技术的精进,会使人类越来越了解染色体,从而可以从根本上解决一些疾病的治疗。我相信染色体分带技术将会被广泛应用于生物科学的研究领域中。

此论文仅是我查阅资料后,所得的一家之言,希望老师能批评指正。

参考文献

1.植物染色体Giemsa 分带技术的研究,陈瑞阳等

2.染色体分带技术的进展,高明君

3.染色体分带技术的回顾与展望,施立明

4.染色体分带技术及其现状,朱季美

遗传学实验指导

遗传学实验指导 实验1 细胞有丝分裂与减数分裂 实验1.1 植物根尖细胞有丝分裂过程的制片与观察 目的要求 学习和掌握植物细胞有丝分裂制片技术;观察植物细胞有丝分裂过程中染色体的形态特征及染色体的动态行为变化。 实验原理 有丝分裂是植物体细胞进行的一种主要分裂方式。有丝分裂的目的是增加细胞的数量而使植物有机体不断生长。在有丝分裂过程中,细胞核内的遗传物质能准确地进行复制,然后能有规律地均匀地分配到两个子细胞中去。植物有丝分裂主要在根尖、节间、茎的生长点、芽及其它分生组织里进行。将生长旺盛的植物分生组织经取材、固定、解离、染色、压片等处理即可以观察到细胞内的有丝分裂图象。如若需要进行染色体计数,则需进行前处理,即取材之后采用物理的或化学的方法,阻止细胞分裂过程中纺锤体的形成,使细胞分裂停止在中期。这时,染色体不排到赤道板上,而是散在整个细胞质中。这十分便于对染色体的形态、数目进行观察。 试剂和器材 1材料 均可以大蒜(Allium sativum 染色体数目2n=16)、玉米(Zea mays 染色体数目2n=20)、洋葱(Allium cepa染色体数目2n=16)或蚕豆(V icla faba染色体数目2n=12) 等根尖为实验材料。 2试剂 95%乙醇、冰乙酸、石炭酸品红、l mol/L HCl。 3器材 恒温培养箱、显微镜、水浴锅、载玻片、盖玻片、单面刀片、镊子、培养皿、量筒、吸水纸。 操作方法 1生根 植物根尖是植物的分生组织,取材容易,操作方便。植物根尖细胞分裂旺盛,因此,它是细胞有丝分裂相制备与观察的理想选取部位。大蒜、洋葱易于在水培、沙培、土培条件下生根。采用水培时要注意在暗处培养,以满足根生长条件,使根系生长旺盛。玉米和蚕豆种子可先用温水浸泡1天之后,再转入铺有多层吸水纸或纱布的培养皿中,上面盖双层湿纱布置于24~26℃温箱中培养,每天换水二次。 2取材 待根长至l.5~2.0 cm时,将根取下。若实验只需观察细胞有丝分裂的过程和各时期的特征,可将根尖直接放入Carnoy固定液(95%乙醇:冰乙酸=3:1)中固定;如果要观察染色体形态和数目,则必须对根尖进行前处理后才能固定。取材和固定必须要在细胞分裂高峰期进行,即分裂细胞占细胞总数最大值时进行,这样分裂细胞比例大,便于选择和观察。 不同的植物在不同的环境条件,其细胞分裂高峰的时间是不同的。大蒜和洋葱的细胞分裂高峰期通常

细胞遗传学复习资料

细胞遗传学复习资料 第二章染色体的形态结构 Chromosome: A molecular of DNA, and associated protein bound together. Each chromosome contains: Centromere, Kinetochore, Telomere, Euchromatin and Heterochromatin. 染色质(Chromatin):在尚未分裂的细胞核中,显微镜下可见的可被碱性染料染色较 深的、纤细的网状物。 染色体(Chromosome): 细胞分裂时,由染色质卷缩(螺旋化)而形成的呈现为一定数目 和形态的细胞结构,是遗传物质的最主要的载体。 研究染色体形态最适合的时期: ?有丝分裂中期 ?减数分裂第一次分裂前期I的粗线期 第一节有丝分裂中期染色体 大小:不同物种间染色体的大小差异很大,长度的变幅为(0.20-50 μm),宽度的变幅为(0.20-2.00 μm)。(显微镜的最小分辨率δ=0.61λ/ NA ,λ=0.55 μm NA=1.4,δ约为0.25 μm。NA为物镜的数值孔径) 同一物种不同染色体宽度大致相同,其染色体大小主要对长度而言。 小麦:染色体平均长度11.2 μm,总长235.4 μm。 在细胞周期中,染色体处于动态的收缩过程中。 绝对长度:实际测量值。 相对长度:特定染色体的长度在单倍染色体组总长度中所占的比例。 染色体大、数目少的物种是细胞遗传学研究的优良实验材料,如果蝇(2n=8)、玉米、蚕豆、洋葱、麦类。 着丝粒(Centromere):A specialized chromosome region to which spindle fibers attach during cell division. 着丝粒是细胞分裂时,纺锤丝附着(attachment)的区域,又称为着丝点。 着丝粒不会被染料染色,所以在光学显微镜下表现为染色体上一缢缩部位(无色间隔点),所以又称为主缢痕(primary constriction)。 着丝粒所连接的两部分称为染色体臂(arm)。 着丝点:具有聚合微管蛋白的作用,是微管组织中心(microtubule organized center, MTOC),因而与细胞分裂过程中牵引染色体移动的驱动力有关系。 1.按着丝粒位置将染色体分为几种类型: 1)中着丝粒染色体 2)近中着丝粒染色体 3)亚中着丝粒染色体 4)亚端着丝粒染色体 5)近端着丝粒染色体 6)端着丝粒染色体 臂比(arm ratio,A)=长臂/短臂(q/p或L/S) 着丝粒指数(Centromeric Index,C)=短臂长度(p)/染色体长度(p+q)×100% 动粒(Kinetochore): 为着丝粒的外层结构,是细胞分裂时纺锤体微管附着部位。 动粒的类型: ?固定位置动粒( localized kinetochore)

《植物逆境生理学》课 程 论 文

《植物逆境生理学》课程论文 论文题目论植物的抗性生理综述 学生专业班级 学生姓名学号 指导教师 完成时间

论植物的抗性生理综述 摘要:对植物产生伤害的环境成为逆境。逆境会伤害植物,严重时会导致死亡。逆境可分为生物胁迫和非生物胁迫。其中生物胁迫有病害等,非生物胁迫有寒冷,高温,干旱,盐渍等。有些植物不能适应这些不良环境,无法生存,有些植物却能适应这些环境,生存下去。这种对不良环境的适应性和抵抗力叫做植物抗逆性。植物抗性生理是指逆境对生命活动的影响,以及植物对逆境的抵御抗性能力。本文将对植物的抗冷性,抗冻性,抗热性,抗旱性,抗涝性,抗盐性,抗病性等方面具体阐述植物的抗性生理,以利于更深入的研究。 关键词:抗冷性 ; 抗冻性 ; 抗热性 ; 抗旱性 ; 抗病性 引言:抗性是植物长期进化过程中对逆境的适应形成的。我国幅员辽阔,地形复杂,气候多变,各地都有其特殊的环境,抗性生理与农林生产关系极为密切。我们研究植物的抗性生理,对农作物产量的提高,保护森林等具有重要的意义。 1植物的抗冷性 低温冷害是指零度以上低温对植物造成的伤害或死亡的现象。当植物受到冷胁迫后, 会发 生一系列形态及生理生化方面的变化。植物的这种对低温冷害的忍受和适应的特性, 就是植物的抗冷性。[1]低温胁迫是影响植物正常生长的主要障碍因子之一, 植物尤其是经济作物的抗冷性强弱直接影响作物产量。 1.1细胞膜系统与植物抗冷性 细胞膜的流动性和稳定性是细胞乃至整个植物体赖以生存的基础。在低温下植物细胞膜由液晶态转变成凝胶状态, 膜收缩; 温度逆境不可逆伤害的原初反应发生在生物膜系统类脂分子的相变上。大量研究证实, 膜系中脂肪酸的不饱和度或膜流动性与植物抗寒性密切相关。膜脂上的不饱和脂肪酸成分比例越大, 膜流动性越强, 植物的相变温度越低, 抗寒性越强。[2] 1.2植物的渗透调节与抗冷性 1.2.1脯氨酸植物在低温条件下,游离脯氨酸的大量积累被认为是对低温胁迫的适应性反应。脯氨酸具有溶解度高,在细胞内积累无毒性,水溶液水势较高等特点,因此,脯氨酸可作为植物抗冷保护物质。植物在受到冷害时,游离脯氨酸可能是通过保护酶的空间结构,为生化反应提供足够的自由水及化学和生理活性物质,对细胞起保护作用。 1.2.2 可溶性糖低温胁迫下植物体内可溶性糖的含量增加,它的含量与植物的抗冷性密切相关。低温下植株中可溶性糖积累是作为渗透调节物质和防脱水剂而起作用的,它们可降低细胞水势,增强持水力。

细胞遗传学完整版答案讲课教案

《细胞遗传学》复习题 第一章染色体的结构与功能+第三章染色体识别 1.什么是花粉直感?花粉直感是怎样发生的?作物种子的哪些部分会发生花粉直感? 花粉直感又叫胚乳直感,植物在双受精后,在3n胚乳上由于精核的影响而直接表现父本的某些性状。 由雄配子供应的一份显性基因能够超过由母本卵核或两个极核隐形基因的作用,杂交授粉当代母本植株所结的种子表现显性性状。 胚乳和胚性状均具有花粉直感的现象。 2.什么叫基因等位性测验?如何进行基因等位性测验? 确定两个基因是否为等位基因的测验为基因的等位性测验。 将突变性状个体与已知性状的突变种进行杂交,凡是F1表现为已知性状,说明两对基因间发生了互补,属于非等位基因。若F1表现为新性状,表明被测突变基因与已知突变基因属于等位基因。 3.原位杂交的原理是什么?原位杂交所确定的基因位置与遗传学上三点测验所确定的基 因位置有何本质的不同? 根据核酸碱基互补配对原则,将放射性或非放射性标记的外源核酸探针,与染色体经过变性的单链DNA互补配对,探针与染色体上的同源序列杂交在一起,由此确定染色体特定部位的DNA序列的性质;可将特定的基因在染色体上定位。 第一步,制备用来进行原位杂交的染色体制片;第二步,对染色体DNA进行变性处理;第三步,进行杂交;第四步,信号检出和对染色体进行染色;第五步,显微镜检查。 原位杂交是一种物理图谱绘制的方法,它所确定是特定基因在染色体上的物理位置;三点测验是绘制连锁图谱的实验方法,它是利用三对连锁基因杂合体,通过一次杂交和一次测交,确定三对基因在同一染色体上排列顺序以及各个基因的相对距离。 4.什么叫端粒酶(telomerase)?它有什么作用? 端粒酶是参与真核生物染色体末端的端粒DNA复制的一种核糖核蛋白酶,由RNA 和蛋白质组成,其本质是一种逆转录酶。 作用:它以自身的RNA作为端粒DNA复制的模版,合成出富含G的DNA序列后添加到染色体的末端并与端粒蛋白质结合,从而稳定了染色体的结构。 端粒起到细胞分裂计时器的作用,端粒核苷酸复制和基因DNA不同,每复制一次减少50-100 bp,正常体细胞染色体缺乏端粒酶活性,故随细胞分裂而变短,细胞随之衰老。人的生殖细胞和部分干细胞染色体具有端粒酶活性,所以人的生殖细胞染色体末端比体细胞染色体末端长几千个bp。肿瘤细胞和永生细胞系具有端粒酶的活性。端粒酶的活性是癌细胞的一种标誌,可以作为癌症治疗中的一个靶子。 5.染色质修饰和DNA修饰如何影响基因的表达? 染色质修饰包括: (1)组蛋白的化学修饰:组蛋白乙酰化使之对DNA的亲和力降低,降低了核小体之间的相互作用,异染色质中组蛋白一般不被乙酰化,而功能域中组蛋白常被乙酰化;组蛋白去乙酰化抑制基因组活化区域。 (2)核小体重塑:核小体的重塑影响基因的表达,核小体的重新排列,它可以改变核小体在基因启动子区域的排列,从而增加启动子的可接近性,调节基因的表达。基因激活伴随着DNA酶I敏感位点的形成,影响基因的表达。基因激活伴随着DNA酶I敏感位点的形成。DNA修饰包括:(1)DNA甲基化(2)基因组印记 甲基化是指在甲基化酶的作用下,将一个甲基添加在DNA分子的碱基上。DNA甲基化修

2013细胞遗传学试题

一、名词解释 细胞遗传学(Cytogenetics)是建立在遗传学(genetics) 和细胞学(cytology) 相结合的一个遗传学的分支学科。它是用细胞学和遗传学的方法阐明生物的遗传和变异现象及其表观规律。是遗传学中最早发展起来的学科,也是最基本的学科。 染色体数目:不同种类的动植物染色体数目是相对恒定的,在动植物的体细胞中,染色体往往是成对存在的,以2n表示;而性细胞中的染色体则为体细胞中的一半,以n表示。 三体(trisomic):是指在双体(2n)染色体中某同源染色体多了一条额外的染色体。2n+1,2m+1+1(双三体)三体一般都能存活、都能繁殖,都会表现与其亲本性状有所不同的变异。 初级三体(primary trisomy)添加的染色体和染色体组中的一对染色体完全同源 次级三体(Secondary trisomy)添加的一条是等臂染色体(两臂组成一样)。 补偿三体(compensating trisomic)一个个体缺少一条染色体,而在遗传上为另外2条分别涉及该染色体2个臂的易位染色体所补偿。用2n-1+c+c表示染色体组成(c代表易位染色体)。 平衡隐性致死:各个复合组内含有一个隐性致死基因。纯合时合子死亡,但v和g组内的致死基因并不是等位的,在杂结合的情况下可以互补,合子得以成活,这种现象叫平衡隐性致死 1、附着X染色体:指两条X染色体在着丝粒一端连在一起的染色体,在减数分裂中部发生分离,像一条染色体一样,其性连锁和性决定行为与一般果蝇不同。 2、交叉一面说:F.A Janssens 等认为在显微镜下观察到的细胞学交叉是遗传学交叉的直接结果,双线期看到的圆环是由姐妹染色单体构成的,二价体中只有一个减数面,因此成为交叉一面说。其要点是:⑴交叉等于交换,认为交叉就表示交换,是非姐妹染色单体间交换的结果。⑵先有交换,后有交叉。⑶双线期所看到的圆环(减数面)都是姐妹染色单体在一起。 3、舒尔兹·雷德菲尔德效应:在倒位杂合体中,倒位二价体自身交换频率的下降,往往会导致其它二价体交换频率的提高,使细胞中整个染色体的交换频率维持不变。 4、B染色体:在有些真核生物中除常染色体(也称为A染色体)外,还存在一些形态较小、类型和数量多样的额外染色体,我们称之为B染色体,也可称之为副染色体、额外的染色体或超数染色体。 5、核仁组织区:在大多数生物中,次缢痕通常出现在核仁所在的区域,在前期与核仁联系在一起,并参与末期核仁的形成,因此此区域被成为核仁组织区。 6、新着丝粒:是一种次级着丝粒(secondary centromere),它是细胞分裂时除了正常的着丝粒外,在染色体上出现的具有类似着丝粒功能的其他区域。 7、G带:是在染色体的全部长度上显示丰富的带纹。现也叫高分辨G带,高分辩带。 8、单端单体:缺失一对同源染色体,但保留由该对同源染色体中的1条染色体臂形成的端着丝粒染色体,染色体组成为2n-2+t。9、染色体消减:指多倍体或混倍体组织回复到二倍体亲本之一原来的染色体数目的趋势。 10、二体异代换系:染色体代换也可以发生在不同的染色体组之间,被代换的个体称为异源染色体代换系或称异代换系,涉及1对外源染色体代换的个体称二体异代换系。 11、灯刷染色体:两栖类卵母细胞减数分裂前期Ⅰ中形成的巨大染色体。由纤细的DNA中轴和许多成对的DNA侧袢组成,形似灯刷状。灯刷染色体是卵母细胞进行第一次减数分裂时, 停留在双线期的染色体。 12、双减数:对于四价体来说,同一区段的分离在减数分离之后,仍然可能发生后减数分离,结果是原来为姐妹染色单体的两个区段,最后同时进入一个子细胞中,这就是双减数。 13、交叉两面说:该学说认为平常所见到的交叉,并不代表一个染色体的实质交换,而是先在交叉处发生断裂,由断裂端重接才产生交换。要点:(1)交叉步等于交换。因为染色体向两极移动时,交叉产生断裂后再重接,如果非姐妹染色单体连在一起,就发生交换。(2)交叉是因,交换是果。(3)均等面与减数面总是交替排列。 二、染色体组分析(genome analysis):是阐明生物的染色体组的构成,特别是指利用染色体配对,了解染色体之间的同源性,分析染色体组的演变以及物种起源和进化的情况。从而为物种起源和进化的研究提供客观根据,为调查异源染色体的附加、代换乃至易位提供细胞学证明。常用的染色体组分析方法:①研究杂种F1减数分裂时染色体的联会行为。②单倍体减数分裂时染色体的联会行为。 ③原位杂交法。 要想对这一植物进行染色体组来源的分析,其方法可为:将此物种(被测种)与可能的物种A、B、C(基本种)分别进行杂交。然后观察杂交子代在减数分裂过程中染色体的配对行为。 ◆如果被测种与基本种的杂交子代减数分裂过程中发现相当于基本种染色体基数的二价体,便说明异源多倍体的一个染色体组来源于这一基本种。 ◆当有几个物种符合时,染色体联会最广泛最紧密的那个物种就被认为是真正的祖先。 ◆分析是否正确,还要做检验:就是把视为祖先的几个基本种进行人工合成多倍体,当合成的和天然的异源多倍体彼此非常相似,并具有可孕的后代时,就可确定分析是正确的。 三多线染色体的形态特征与结构特点? ⑴多线性:染色体(染色单体,DNA)反复进行纵向分裂,数目增加,但不分离,成为平行的一束染色体,这样在间期核内染色体增加了很多倍而形成多线的现象,称为多线性。每条多线染色体的纤丝数目是种特异的,最多可达4000多。 ⑵巨大性:正常的染色体只有在细胞分裂时才能看到,在细胞间期只能看到染色质,而多线染色体在间期唾液腺细胞里就可以看到。 ⑶体细胞联会:即体细胞中的同源染色体进行联会。在果蝇的幼虫唾液腺体细胞中,经过多次DNA的复制形成的染色体通过染色体配对聚合在一起,形成4条多线染色体,此时细胞内染色体的数目为正常体细胞染色体数目的一半,即单倍体数。但每一条多线染色体实际上代表着两条紧密联会的同源染色体,从而使得两条同源染色体从外观上看起来像是独立的一条染色体,4条多线染色体在染色中心通过着丝粒区域结合在一起。植物的多线染色体在形态与动物总的有一些差异。最明显的差异是同源染色体的不配对,除偶尔在泻根中有配对的情况外。

细胞遗传学复习资料

第一章绪论 一、细胞遗传学的研究对象和任务 细胞遗传学是遗传学与细胞学相互交叉与结合的一个遗传学的分支学科。它是用细胞学和遗传学的方法阐明生物的遗传和变异现象及其表观规律的一门基础科学。 细胞遗传学的研究对象、任务和内容: 以高等动植物为主要研究对象。研究任务:揭示染色体与生物遗传、变异和进化的关系。内容包括:染色体的数目、形态、结构、功能与运动等特征以及这些特征的各类变异对遗传传递、重组、表达与调控的作用和影响。 第二章染色体的形态特征和结构 §1.染色体的一般形态特征 一、染色体数目不同种类动植物染色体数目是相对恒定的。 二、染色体大小不同染色体之间大小有很大差异是染色体最明显的形态特征。 ●影响染色体大小变异的因素 1.与物种亲缘关系有关一般是亲缘关系越远,大小变异越明显。 科间﹥属间﹥种间﹥种内 2.与生长发育有关 3.与外界环境条件有关如化学试剂、温度影响 三、着丝粒及其超微结构 ●定义:着丝粒是一个细长的DNA片段(染色体主缢痕部位的染色质),不紧密卷曲,连接两个染色单体,是染色体分离与运动装置。缺少着丝粒的染色体不能分离并导致染色体丢失。 ●功能:着丝粒又称动原体,是染色体的运动器官,也是姐妹染色单体在分开前相互连接的部位。两侧为异染色质区,由短的DNA串联重复序列构成。着丝粒断裂、缺失,会使染色体运动受阻,造成染色体丢失。 ●类型根据着丝粒在染色体上的位置和分布,分为: 1.有固定位置的着丝粒在染色体上着丝粒具有永久性的固定区域。 2.新着丝粒细胞分裂时除了正常着丝粒外,在染色体上出现的具有类似着丝粒功能的其他区域。 3.无固定位置的着丝粒指纺锤体附着点在染色体上没有固定的位置。 (1)多着丝粒在一个染色体上可附着多个纺锤丝,且着丝粒被非着丝粒片段隔开。 (2)全身性着丝粒染色体的每一点都表现有着丝粒的活性,即整个染色体上均有着丝粒分布现象,又称为分散型着丝粒。 四、次缢痕、核仁组织区和随体 ●次缢痕和核仁组织区 在一个染色体组中,除了主缢痕外,任何其他的缢痕都属于次缢痕。次缢痕与末期核仁的形成有关,并在间期和前期与核仁联系在一起,又被称为核仁组织区。 核仁的超显微结构: 1)纤维中心2)致密纤维组分3)颗粒组分 ●随体是指位于染色体末端的球形或圆柱形染色体片段,通过次缢痕区与染色体主体部分相连。 根据随体在染色体上的位置,分为两大类: ?端随体位于染色体末端,被一个次缢痕隔开。 ?中间随体位于两个次缢痕之间。 根据随体形状和大小分为四类:小随体、大随体、线状随体和串联随体。 五、染色粒 染色粒:是指局部染色质在减数分裂粗线期的染色体上形成的、染色较深的呈线性排列的念球状突起,是在核小体组装成染色体过程中,连续的DNA丝局部螺旋化产生的结构,是DNA和蛋白质的复合体,是染色体上重复DNA顺序密集的区域。 六、染色纽 染色纽:或染色质结或疖,是粗线期染色体上一种染色特别深的大染色粒。位置和数量对特定物种是恒定的。位置多在染色体的末端或亚末端。主要是由结构异染色质组成,遗传活性很低。

血液病材料-细胞遗传学

恶性血液病的细胞遗传学 中国医学科学院中国协和医学大学血液学研究所血液病医院 刘世和 一、背景 染色体发展历史 染色体检查在恶性血液病中的应用价值 国内外发展动态 染色体分析发展历史 1960-1971:非显带时期 1971-1980:显带、高分辨 1980-至今:与分子生物学相结合时期,分子细胞遗传学(FISH) 意义 诊断与分型 疗效判断 验证移植成功与否或确定白血病的复发及其来源。 预后分析与指导治疗 查找新的致病基因,探讨发病机制 国内外发展动态 国外:广泛开展,白血病与淋巴瘤必查项目 国内:相对薄弱 原因 技术 劳动强度大 价格 患者经济 开展染色体检查要素 技术 合理的价格 规模化:降低成本,提高效率,缩短报告时间 二、人类细胞遗传学命名 根据1995版人类细胞遗传学国际命名体制,正常核型男:46,XY; 女:46,XX。异常核型包括体质性和获得性:体质性异常;获得性异常 表1 核型命名常用的缩写符号

染色体倒位(inv) 指同一染色体上的两个断点之间的片段发生180o旋转,如发生于单一臂内称为臂内倒位,发生于两臂称臂间倒位。 染色体重复(dup) 在一个染色体的某一位点上重复一段染色体片段。 插入(ins) * 包括2个染色体之间的插入和一个染色体内的插入。2个染色体之间的插入为插入易位,接受插入片段的染色体总是列于前面,而提供易位片段的染色体列于次。 * 一个染色体内的染色体插入可分为正向插入与反向插入。 等臂染色体(iso) 指一条染色体含有完全相同的臂。 易位(t): 至少2个染色体之间发生的遗传物质的互换。 平衡易位和不平衡易位 两条染色体之间的易位描述方式为按染色体由小到大的排列顺序 易位:3个染色体以上 罗伯逊易位(rob) 发生于D组或/和G组端着丝粒染色体易位,为两个长臂对接。 Rob(14;21) 缺失(del) 在某一个染色体上丢失部分遗传物质;分为中间缺失和末端缺失,如5q- 增加(add) 表示在某一染色体上获得来源不明的遗传物质,通常代表在染色体的末端增加。 15q+ 区带的命名 区的定义是一个染色体上位于两个相邻的界标之间的区段。 带则是根据染色体上染色强度的强或弱与相邻形成反差而划分,每一条带可再分为亚带。 书写方式 书写方式:①染色体号数,②臂的符号,③区号,④带,⑤小数点,⑥亚带 如1p33.11 读作:1号染色体短臂3区3带1亚带1 克隆的定义 来自一个细胞的细胞群体称之为一个克隆, 通常指具有相同或近似的异常染色体组成的一群细胞。标准为:至少2个细胞具有相同的染色体增加或结构异常,或至少3个细胞有一致的染色体丢失。克隆性异常

第十一章 植物的逆境生理 复习参考 植物生理学复习题(推荐文档)

第十一章植物的逆境生理 一、名词解释 1.CaM 2.渗透调节与逆境蛋白 3.耐逆性与御逆性 4.植物对逆境的耐性与御性 5.逆境蛋白 6.活性氧清除系统 7.膜脂相变 8.热激反应与热激蛋白 9.活性氧 10.交叉适应 二、填空 1.用来解释干旱伤害机理的假说主要是__________和_________。 2.根据所含金属元素的不同,SOD可以分三种类型:______、______和____。 3.干旱条件下,植物为了维持体内水分平衡,一方面要________,另一方面要_______。 4.干旱条件下,植物体内大量积累的氨基酸是________,大量产生的激素是______;低温锻炼后,植物体内________脂肪酸和_______水的含量增

多。 5.植物体活性氧清除系统包括________和________两种系统。 6.植物受到干旱等逆境胁迫时,渗透调节能力增强,细胞主动合成的有机溶剂是_________、________和__________。 7.在逆境下,植物体内主要有_______、_______、_______、_____等渗透调节物质。 8.经过抗寒锻炼的植物会发生的变化有: A 双硫键增加 B 自由水增加 C 膜脂双键增加 三、选择题 1.冬季植物体内可溶性糖的含量()。 A.增多 B. 减少 C.变化不大 D. 不确定 2.干旱条件下,植物体内哪一种氨基酸显著增加?() A. 丙氨酸 B.脯氨酸 C. 天冬氨酸 D. 甘氨酸 3.植物细胞中属于相容性物质的是: A、Ca B、ABA C、Pro 4. 植物抗盐的SOS途径中,与Na+外排和区域化实现不直接相关的是: A. Ca+-CaM B. Na+/H+ symporter C. Na+/H+ antiporter 三、问答 1.水稻幼苗经过0.1mol/L NaCI预处理24h后,再转移到8~10℃环境中,能表现出良好的抗冷性。试分析其原因。

植物逆境生理学论文(改)

青岛农业大学 植物逆境生理学课程论文 学院:经济与管理学院 专业:财务管理 班级:11级6班 姓名:刘菲菲 学号:20111607 2012年11月14日

植物抗旱生理的研究及降低干旱对植物伤害的建议 姓名:刘菲菲班级:财务管理11级6班学号:20111607 摘要:旱灾是世界上分布最广的自然灾害。每年因为干旱,人们遭受了许多不可弥补的损失。干旱有多种分类,对植物的伤害也是因植物而不同的,植物虽然具有一定的抗旱性,能对外界环境对自身的生理影响做出调节,但其调节能力也是有限的,所以人们必须了解的抗旱的有关知识,通过一定的措施来降低干旱给植物造成的伤害和对自己造成的经济损失。 关键字:旱灾后果抗旱性建议 引言:植物的地理分布,生长发育以及产量形成等均受到环境的制约。干旱是对植物生长影响最大的环境因素之一。世界上干旱半干旱区遍及50多个国家和地区,其总面积约占陆地总面积的三分之一,且有逐年增加的趋势。在我国华北、西北、内蒙古和青藏高原绝大部分地区属于干旱半干旱地区,约占全国土地总面积的45﹪。由于全球荒漠化问题的严重性,加之干旱问题对人类的困扰,人们迫切希望通过提高植物的抗旱性以及选育抗旱性强的农作物或林木品种以合理利用水资源,达到生产人们所需要的农林收获物和改善环境的目的。因而尽管提高植物的抗旱性的难度很大,人们从来也没有停止过对这个问题的探索。相信在不久的将来人们在此方面的研究会有所突破的。 1旱害 1.1干旱的概念 旱害指因气候严酷或不正常的干旱而形成的气象灾害。一般指因土壤水分不足,农作物水分平衡遭到破坏而减产或歉收从而带来粮食问题,甚至引发饥荒。同时,旱灾亦可令人类及动物因缺乏足够的饮用水而致死。此外,旱灾后则容易发生蝗灾,进而引发更严重的饥荒,导致社会动荡。1.2 干旱的分类 根据引起水分亏缺的原因,干旱可分为(1)大气干旱,是指空气过度干燥,相对湿度过低,伴随高温和干风,这时植物蒸腾过强,根系吸水补偿不了失水。(2)土壤干旱,是指土壤中没有或只有少量的有效水,严重降低植物吸水,使其水分亏缺引起永久萎蔫。(3)生理干旱,土壤中的水分

细胞和分子细胞遗传学技术

细胞和分子细胞遗传学技术 发表时间:2012-08-10T08:14:01.827Z 来源:《中外健康文摘》2012年第19期供稿作者:张亚丽[导读] 经典的细胞遗传学技术是指通过制备染色体标本,分析染色体数目和结构改变与人类疾病之间的关系。张亚丽(黑龙江省森工总医院 150040)【中图分类号】R394.2【文献标识码】A【文章编号】1672-5085(2012)19-0151-02 经典的细胞遗传学技术是指通过制备染色体标本,分析染色体数目和结构改变与人类疾病之间的关系。近代分子生物学技术与细胞遗传学技术相结合,形成了细胞和分子遗传学技术。其中比较成熟、具有实用价值的技术是:①荧光原位杂交;②比较基因组杂交。 1 人外周血淋巴细胞染色体检测技术 人外周血淋巴细胞染色体检测属于经典的细胞遗传学技术。用作染色体分析的标本包括外周血、脐带血、羊水、胎盘绒毛组织和肿瘤组织等。外周血是应用最多的材料。其他组织样本染色体制备方法与制备人外周血淋巴细胞的方法基本类同,只是标本的处理和培养条件有所调整。 1.1 基本原理 体外培养的外周血淋巴细胞,在植物凝集素(PHA)的刺激下转化成为能进行有丝分裂的淋巴母细胞;在秋水仙素(纺锤体抑制剂)作用下,淋巴母细胞有丝分裂停滞,从而获得处于有丝分裂中期的淋巴细胞染色体标本。 1.2 基本操作程序 (1)取血3ml(空针用0.1~0.2ml肝素抗凝)。 (2)用7号针头向每瓶培养液(内装有5ml培养液)接种血液标本15~16滴,摇匀后,静置于37℃的隔水式恒温培养箱中培养72h。 (3)终止培养前3h,用7号针头向培养瓶中加入秋水仙素3滴(浓度为20μg/ml)并混匀。 (4)按以下程序制片。 ①收集细胞:由培养瓶中吸取培养物10ml置于离心管中,离,l~,10min(1 500~2 000r/min)离心后,弃上清液,留下沉淀物。 ②低渗处理沉淀物:向沉淀物中加入已预温(37℃)的KCI(0.075mol/L)8ml,充分吹打,以使细胞分散,并将离心管置于37℃水浴中20~30min。 ③固定沉淀物:向每只离心管中加入新鲜配制的甲醇一冰醋酸(3:1)固定液1~2ml(预固定),轻轻混匀后离心10min(2 500r/min),去上清液,留沉淀物;向每只离心管中再加上述固定液8ml,轻轻混匀后静置30min以上,离心10min(2500r/min);然后,再重复固定、离心1次。 ④制作标本片:尽量弃去离心管中的上清液,用吸管轻轻吹打其中的沉淀物,再加入6~7滴新鲜的固定液并混匀,然后,将该沉淀物滴加于已经预冷的载玻片上(预冷载玻片:将清洁载玻片放在盛有蒸馏水的小搪瓷盆中置于4℃冰箱中数小时以上);将标本片晾干后,置于75℃烤箱中烘烤2.5h,然后自然冷却,也可将标本片吹干后用火焰烘干。 ⑤标本片染色:用Giemsa染液(以pH7.4的磷酸缓冲液配制,1.10)染色10min,自来水冲净并晾干。 ⑥显微镜观察:低倍镜下,选择标本片中染色体分散好、无细胞质背景、处于中期核分裂的培养细胞;然后,在高倍镜、油镜下观察染色体形态,进行计数、分组和性别鉴定;拍摄照片以进行正确的核型分析,并将典型图片存档。可根据需要进行染色体的Q显带、G显带、C显带、R显带和T显带。 1.3 注意事项 PHA是体外细胞培养成败的关键因素,其应用浓度应根据各批号PHA的效价作适当调整。秋水仙素的浓度和作用时间影响标本的分析。浓度低或作用时间短,会使标本中的分裂细胞减少;浓度高或作用时间长,会使染色体过于缩短,以致形态特征模糊。采血和接种培养时,不要加入过多肝素,肝素过多可抑制淋巴细胞转化。显带检测,以存放3d左右的标本片效果较好。观察G显带时,检材要用胰酶液消化。消化液的配制和消化条件的控制要认真探索,以获得最佳结果。 2 荧光原位杂交技术(FISH) 2.1 基本原理 2.1.1 原位杂交是用标记了已知序列的核苷酸片段作为探针,通过核酸杂交,直接在组织切片(冷冻切片或石蜡切片)、细胞涂片、染色体制备标本或培养细胞爬片上,检测或定位某一特定的目的DNA或目的RNA的存在。 2.1.2 FISH是以荧光素标记已知序列的核苷酸片段(探针),通过检测荧光来定性和定位目的核酸片段,具有敏感、快速、能同时显示多种颜色等优点,不但能显示中期核分裂象的染色体,还能检测间期细胞核的DNA。 (1)FISH的直接法:以荧光素直接标记DNA探针,特异性强,方法简便。随着荧光标记技术的改进,直接法的敏感性不断提高,是目前常用的方法。 (2)FISH的间接法:以非荧光素标记物标记DNA探针,再桥连一个荧光标记抗体。 2.2 基本方法 2.2.1 探针和试剂。用于FISH的探针有不同类型。已有商品化的探针用于 FISH。avidin-FITC、anti-avidin和PI等检测试剂均可购得。 2.2.2 原位杂交。杂交前标本和探针应经变性处理。 2.2.3 检测。杂交后的标本除去封胶,置2×SSC中洗去盖片。经多步骤漂洗后依次在亲和素一荧光素、抗亲和素抗体和亲和素一荧光素中各孵育20min(生物素标记探针),其间及其后各用1×PBD洗3次,每次2min。若用直接法FISH进行检测,后续免疫结合反应可省略,最后应加抗荧光衰变剂和DNA复染剂后封片。 2.3 注意事项 实验室必须优化FISH操作过程的各项条件。整个杂交和杂交后检测过程要始终保持标本片的湿润,以防载玻片干燥后引起非特异性染色。复染时要避光。根据荧光染料的不同选择相关的荧光显微镜滤色片。 3 比较基因组杂交(CGH)

细胞遗传学题库

一,名词解释 1. Barr小体:正常女性的间期细胞核膜内缘有一染色较深椭圆型1um大小的小体。 2. chromosomal polymorphism:在正常人群中,染色体存在着各种恒定的微小变异,主 要表现在同源染色体之间在形态结构、带纹宽窄、着色强度等方面的明显差异,这种变异并无明显得表型效应或病理学意义。 3. Karyotype:将一个细胞的全部染色体,依据其形态特征分组编号,按顺序排列所构成的 图形。 4. Karyotype analysis:对一个个体的核型进行分析,判断其是否属于正常核型的过程。 5. X chromatin:正常女性的间期细胞核膜内缘有一染色较深椭圆型1um大小的小体。 6. X染色质:正常女性的间期细胞核膜内缘有一染色较深椭圆型1um大小的小体。 7. Y染色质:男性间期的细胞核用荧光染料如盐酸喹丫因QH染色后,可看到一个直径约 0.3um的强荧光小体,可能这代表Y染色体长臂的一部分,称之为荧光小体(F body)8. 常染色质:细胞间期核内纤维折叠盘曲程度小,分散度大,染色较浅且具有转录活性的 染色质,常位于核中央。 9. 高分辨显带;用氨甲蝶呤等首先使细胞生长同步化于S期,然后解除阻滞,选择适当时 期收获细胞,可获得大量处于分裂前期和早中期的细长染色体,单组染色体上显带的条纹可由一般常规显带的322条上升到550~850条,甚至更多。 10. 核型;将一个细胞的全部染色体,依据其形态特征分组编号,按顺序排列所构成的图形。 11. 核型分析:对一个个体的核型进行分析,判断其是否属于正常核型的过程。 12. 兼性异染色质:指在特定细胞的某一发育阶段所具有的凝缩状态的染色质。 13. 结构异染色质:指各类细胞的全部发育过程中都处于凝缩状态的染色质。大多位于着丝 粒区和端粒区,不具有转录活性。

核心结合因子相关性急性髓系白血病常见基因突变和细胞遗传学分析解析

核心结合因子(CBF)相关性急性髓系白血病(AML)是指一组以t(8;21)和inv(16)/t(16;16)异常为特征的白血病亚型,占AML的15 %,具有独特的临床及生物学特征,通常认为预后良好,给予大剂量阿糖胞苷(Ara-C)强化巩固治疗可以使患者获得长期生存。尽管如此,仍然有约50 %的患者复发,远期生存率仅50 %左右[1 ],提示一些患者可能伴有不良的遗传学表型。c-Kit、FLT3、N-ras基因突变可协同作用,共同构成“二次打击”,导致这一类型白血病的发生。近年来同属于Ⅲ型家族的FLT3、c-Kit基因突变已 核心结合因子相关性急性髓系白血病 常见基因突变和细胞遗传学分析 冯雅青杨永平张艳芳刘喜张利东 037008 山西省大同市第三人民医院血液科 通信作者:冯雅青,Email:yaqing3@https://www.wendangku.net/doc/ef15616385.html, DOI:10.3760/cma.j.issn.1009-9921.2016.07.004 【摘要】目的研究核心结合因子相关性急性髓系白血病(CBF-AML)c-Kit、FLT3基因突变发生情 况及患者的核型特征。方法采用基因组DNA聚合酶链反应(PCR)法结合碱基测序方法,检测48例 CBF-AML患者初诊时c-Kit、FLT3基因内部串联重复(ITD)突变和FLT3第二酪氨酸激酶结构域(TKD)点 突变发生情况及核型特征变化。结果48例CBF-AML患者中,13例(27.1%)出现c-Kit错义突变,包括 8号外显子突变5例,17号外显子突变8例。t(8;21)AML患者c-Kit基因突变发生率高于inv(16)AML 患者[33.3%(9/27)比19.0%(4/21),P<0.05]。1例(2.1%)患者FLT3-ITD突变,3例(6.3 %)患者FLT3- TKD突变。RUNX1-RUNX1T1阳性附加染色体异常的发生率达25.9%(7/27),其中性染色体缺失最为常 见,CBFβ-MYH11阳性附加染色体异常发生率较低。结论在CBF-AML中c-Kit基因突变发生率高, RUNX1-RUNX1T1阳性的附加染色体异常易见,为研究个体化治疗提供了一定的参考。 【关键词】白血病,髓样,急性;核心结合因子类;c-Kit;FLT3;细胞遗传学 基金项目:山西省科技攻关项目(20140313011-1) Analysis of common gene mutations and cytogenetics in core binding factor related acute myeloid leukemia Feng Yaqing,Yang Yongping,Zhang Yanfang,Liu Xi,Zhang Lidong Department of Hematology,the Third People's Hospital of Datong City,Datong037008,China Corresponding author:Feng Yaqing,Email:yaqing3@https://www.wendangku.net/doc/ef15616385.html, 【Abstract】Objective To assess the prevalence of c-Kit and FLT3gene mutations in core binding factor related acute myeloid leukemia(CBF-AML)and analyze the karyotype characteristics of the CBF-AML patients.Methods Mutations of c-Kit,FLT3-ITD and FLT3-TKD were detected by genomic DNA PCR and sequencing,and the karyotype changes were analyzed in48newly diagnosed CBF-AML patients.Results c-Kit aberrations were detected in13(27.1%)out of48patients,including5cases with exon8mutation and8 cases with exon17mutation.c-Kit was more prominent in t(8;21)AML patients than in inv(16)AML patients [(33.3%(9/27)vs19.0%(4/21),P<0.05].Only1case(2.1%)had FLT3-ITD mutation(FLT3-ITD+)and3 cases(6.3%)had FLT3-TKD mutation(FLT3-TKD+).Prevalence of RUNX1-RUNX1T1with additional chromosome abnormality was as high as25.9%(7/27),in which sex chromosome elimination was the most common one,while prevalence of CBFβ-MYH11with additional chromosome abnormality was low. Conclusion c-Kit gene mutations and RUNX1-RUNX1T1additional chromosome abnormalities are common in patients with CBF-AML and would be helpful for individualized treatment studies. 【Key words】Leukemia,myeloid,acute;Core binding factor;c-Kit;FLT3;Cytogenetics Fund program:Science and Technology Research Project of Shanxi Province(20140313011-1) ·论著·

细胞遗传学论文

细胞融合技术的发展及其应用 摘要 细胞融合技术作为细胞工程的一项核心技术在农业、医药、环保等领域得到迅速发展和应用,且其应用领域不断扩大。本文简述了细胞融合技术技术中的常用方法:仙台病毒(HVJ)诱导法、聚乙二醇(PEG)化学诱导法、电融合诱导法、激光诱导法及此技术的最新研究进展:空间细胞融合技术、离子束细胞融合技术、非对称细胞融合技术等。该技术不仅为核质关系、基因定位、基因调控、遗传互补、细胞免疫、疾病发生、膜蛋白动力学等理论领域的研究提供了有力的手段,而且被广泛应用于免疫学、遗传学、发育生物学,在实际应用中特别是在单克隆抗体、抗肿瘤疫苗及动植物远缘杂交育种和微生物茵种选育,绘制基因图谱等方面具有十分重要的意义。随着细胞融合技术的不断改进和完善,动物、植物及微生物细胞融合技术无论在基础理论研究还是在实际应用产生的影响将日益显著。 关键词:细胞融合;方法;应用;进展 细胞融合技术是近年来迅速发展起来的一项新生物工程技术。所谓细胞融合指在外力(诱导剂或促融剂)作用下,两个或两个以上的异源(种、属间)细胞或原生质体相互接触,从而发生膜融合、胞质融合和核融合,并形成杂种细胞的现象称为细胞融合(cell fusion)或细胞杂交(cell hybridization)[1]。利用现代科学技术,把来自于不同种生物的单个细胞融合成一个细胞,这个新细胞(杂合细胞)得到了来自两个细胞的遗传物质(包括细胞核的染色体组合和核外基因),将具有新的遗传学或生物学特性。目前,通过原生质体融合进行体细胞杂交已成为细胞工程研究的重要内容之一[2]。 细胞融合技术不仅为核质相互关系、基因调控、遗传互补、肿瘤发生、基因定位、衰老控制等领域的研究提供了有力的手段,而且在遗传学、动植物远缘杂交育种、发生生物学、免疫医学以及医药、食品、农业等方面都有广泛的应用价值。特别是在单克隆抗体的制备、哺乳动物的克隆以及抗癌疫苗的研发等技术中,细胞融合技术已成为关键技术。随着研究的不断深入,细胞融合技术的应用领域越来越广,产生的影响也日益显著。本文就其目前的研究进展及其应用进行综述。

细胞遗传学

染色体原位杂交技术在植物研究中的应用 摘要:染色体原位杂交(chromosome in situ hybridization,CISH)是一种新兴的日趋完善的技术。本文从以下几个方面对其在植物研究中的应用进行了综述:(1)外源染色质及远缘杂种的鉴定;(2)多倍体起源、非整倍体的鉴定;(3)植物基因工程及基因表达研究;(4)物种进化及亲缘关系的探讨;(5)植物基因物理图谱的构建等。 关键词:染色体原位杂交;植物;细胞遗传学 Abstract: In situ hybridization (chromosome in situ hybridization, CISH) is an emerging maturing technology. Its application in plant research are reviewed as follows: (1) exogenous chromatin and Identification of distant hybrids; (2) polyploid origin, identification of aneuploidy; (3) plant genetic engineering and gene expression studies; (4) the evolution of species and of kinship; (5)physical map construction of plant genes. Keywords: in situ hybridization; plants; cytogenetic 引言 原位杂交技术最早是由Gall和Parue[1]利用标记的rDNA探针与非洲爪蟾细胞核杂交建立起来的。该技术是从Southern和Northern杂交技术衍生而来的,其中染色体原位杂交在原位杂交技术中应用最为广泛。染色体原位杂交技术是根据核酸分子碱基互补配对原则,利用标记的DNA或寡核苷酸等探针同染色体上的DNA进行杂交,从而对染色体的待测核酸进行定位、定性或相对定量分析。 早期的染色体原位杂交技术,由于使用的探针为放射性标记,虽然该方法对于组织及染色体样本制备的要求不太高,且具有较高的灵敏度,但它不安全、不稳定、背景不理想,周期长,因而该技术发展较慢;然而20世纪80年代以后,非放射性探针的使用及PCR技术的发明,使得染色体原位杂交技术在动物及人类遗传学和分子生物学研究中迅速得到了广泛的应用,但在植物研究中一直很难有突破性的进展[2,3]。原因主要是由于植物细胞较低的有丝分裂指数和细胞壁的存在。随着植物染色体制备技术的改进,染色体显带技术、荧光标记技术、检测技术及电镜技术的发展和完善,染色体原位杂交技术在植物学研究上展示了更加广阔的应用前景。 1染色体原位杂交技术在植物研究中的应用

相关文档
相关文档 最新文档