文档库 最新最全的文档下载
当前位置:文档库 › 物理学简明教程第五章课后习题答案 高等教出版社

物理学简明教程第五章课后习题答案 高等教出版社

物理学简明教程第五章课后习题答案 高等教出版社
物理学简明教程第五章课后习题答案 高等教出版社

物理学简明教程第五章课后习题答案高等教出版社

第五章 气体动理论和热力学

5-1 图示两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线.如果2O P )(v 和2H P )(v 分别表示氧气和氢气的最概然速率,则( )

(A) 图中a 表示氧气分子的速率分布曲线且

4)()(2

2

H P O P =v v (B) 图中a 表示氧气分子的速率分布曲线且

41)()(2

2

H P O P =v v (C) 图中b 表示氧气分子的速率分布曲线且

4

1)()(2

2

H P O P =v v (D) 图中b 表示氧气分子的速率分布曲线且

4)()(2

2

H

P O P =v v

分析与解 由M

RT

v 2P =

可知,在相同温度下,由于不同气体的摩尔质量不同,它们的最概然速率P v 也就不同.因22O H M M <,故氧气比氢气的P v 要小,由此可判定图中曲线a 应是对应于氧气分子的速率分布曲线.又因

16

12

2

O

H =

M M ,所以

=

22

H

P O P )()(v v 4

1

2

2

O

H =

M M .故选(B).

题 5-1图

5-2 在一个体积不变的容器中,储有一定量的某种理想气体,温度为0T 时,气体分子的平均速率为0v ,分子平均碰撞次数为0Z ,平均自由程为0λ,当气体温度升高为04T 时,气体分子的平均速率v 、平均碰撞频率Z 和平均自由程λ分别为(

)

(A) 004,4,4λλZ Z ===0v v (B) 0022λλ===,,Z Z 0v v (C)00422λλ===,,Z Z 0v v (D)00,2,4λλ===Z Z 0v v

分析与解 理想气体分子的平均速率M RT π/8=v ,温度由0T 升至04T ,则平均速率变为0v 2;又平均碰撞频率v n d Z 2π2=,由于容器体积不变,即分子数密度n 不变,则平均碰撞频率变为0Z 2;而平均自由程n

d 2

π21

=λ,n 不变,则λ也不变.因此正确答案为(B).

5 -3 处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们( )

(A) 温度,压强均不相同 (B) 温度相同,但氦气压强大于氮气的压强 (C) 温度,压强都相同 (D) 温度相同,但氦气压强小于氮气的压强 分析与解 理想气体分子的平均平动动能23k /kT =ε,仅与温度有关.因此当氦气和氮气的平均平动动能相同时,温度也相同.又由物态方程,当两者分子数密度n 相同时,它们压强也相同.故选(C).

5—4 一物质系统从外界吸收一定的热量,则( )。 A .系统的内能一定增加 B .系统的内能一定减少 C . 系统的内能一定保持不变

D .系统的内能可能增加,也可能减少或保持不变

分析与解 选(D )

5-5 两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体).开始时它们的压强和温度都相同,现将3J 热量传给氦气,使之升高到一定的温度.若使氢气也升高同样的温度,则应向氢气传递热量为( )

(A) 6J (B) 3 J (C) 5 J (D) 10 J

分析与解 当容器体积不变,即为等体过程时系统不作功,根据热力学第一定律

nkT p =

Q =ΔE +W ,有Q =ΔE .而由理想气体内能公式T R i

M m E Δ2

Δ'=,可知欲使

氢气和氦气升高相同温度,须传递的热量

???

? ??'???? ??'=e

e

e

2

2

2

e

2

H H H H H H H

H /:i M m i M m Q Q .再由理想气体物态方程pV =M m 'RT ,初

始时,氢气和氦气是具有相同的温度、压强和体积,因而物质的量相同,则

3/5/:e 2e 2H H H H ==i i Q Q .因此正确答案为(C).

5-6 一定量理想气体分别经过等压,等温和绝热过程从体积1V 膨胀到体积

2V ,如图所示,则下述正确的是 ( )

(A )C A →吸热最多,内能增加 (B )D A →内能增加,作功最少 (C )B A →吸热最多,内能不变 (D )C A →对外作功,内能不变

分析与解由绝热过程方程=γpV 常量,以及等温过程方程pV =常量可知在同一p-V 图中当绝热线与等温线相交时,绝热线比等温线要陡,因此图中B A →为等压过程,C A →为等温过程,D A →为绝热过程.又由理想气体的物态方程

RT pV ν=可知,p-V 图上的pV 积越大,则该点温度越高.因此图中B C A D T T T T <=<.对一定量理想气体内能,RT i

E 2

ν=,由此知0>?AB E ,0=?AC E ,.0

?=V p W d 知道功的数值就等于p-V 图中过程曲线下所对应的面积,则由图可知AD AC AB W W W >>. 又由热力学第一定律Q =W +ΔE 可知

0=>>AD AC AB Q Q Q .因此答案A 、B 、C 均不对.只有(D )正确.

题 5-6 图

5-7 一台工作于温度分别为327 ℃和27 ℃的高温热源与低温源之间的卡诺热机,每经历一个循环吸热2 000 J ,则对外作功( )

(A) 2 000J (B) 1 000J (C) 4 000J (D) 500J

分析与解 热机循环效率η=W /Q 吸,对卡诺机,其循环效率又可表为:η=1-

12T T ,则由W /Q 吸=1 -1

2T T

可求答案.正确答案为(B). 5-8 有N 个质量均为m 的同种气体分子,它们的速率分布如图所示.(1) 说明曲线与横坐标所包围的面积的含义;(2) 由N 和0v 求a 值;(3) 求在速率0v /2到30v /2 间隔内的分子数;(4) 求分子的平均平动动能.

题 5-8 图

分析 处理与气体分子速率分布曲线有关的问题时,关键要理解分布函数

()v f 的物理意义.()υ

d d N N

f =

v ,题中纵坐标()v v d /d N Nf =,即处于速率v 附近单位速率区间内的分子数.同时要掌握()v f 的归一化条件,即()1d 0

=?∞v v f .在此基础上,根据分布函数并运用数学方法(如函数求平均值或极值等),即可求解本题.

解 (1) 由于分子所允许的速率在0 到20v 的范围内,由归一化条件可知图中曲线下的面积

()N Nf S v ==?v v d 0

20

即曲线下面积表示系统分子总数N .

(2 ) 从图中可知,在0 到0v 区间内,()0/v v v a Nf =;而在0 到20v 区间,

()αNf =v .则利用归一化条件有

v v v v

v ??

+=00

20

d d v v a a N

(3) 速率在0v /2到30v /2间隔内的分子数为

12/7d d Δ2/30

00

N a a N =+=??

v v v v v v v

(4) 分子速率平方的平均值按定义为

()v v f v v v d /d 0

20

22

??∞

∞==N N

故分子的平均平动动能为

2022

0302k 36

31d d 212100

v v v v v v v v v v m N a N a m m =??????+==??ε

5-9 在标准状况下,1 cm 3

中有多少个氮分子?氮分子的平均速率为多大?平均碰撞次数为多少?平均自由程为多大?(已知氮分子的有效直径

m 1076.310-?=d )

分析标准状况即为压强Pa 10013.15?=p ,温度K 273=T .则由理想气体物态方程nkT p =可求得气体分子数密度n ,即单位体积中氮分子的个数.而氮气分子的平均速率、平均碰撞次数和平均自由程可分别由公式M

RT

v π8=

,n v d Z 2π2=和n

d 2

π21

=

λ直接求出. 解由分析可知,氮分子的分子数密度为

325m 1069.2-?==

kT

p

n 即3cm 1中约有191069.2?个.

氮气的摩尔质量为M =28 ×10-3

kg ·mol -1

,其平均速率为

M

RT

v π8=

=454 1s m -? 则平均碰撞次数为

-192s 107.7π2?==n v d Z

平均自由程为

m 106π218

2

-?==

n

d λ 讨论本题主要是对有关数量级有一个具体概念.在通常情况下,气体分子平均以每秒几百米的速率运动着,那么气体中进行的一切实际过程如扩散过程、热传导过程等好像都应在瞬间完成,而实际过程都进行得比较慢,这是因为分子间每秒钟上亿次的碰撞导致分子的自由程只有几十纳米,因此宏观上任何实际过程的完成都需要一段时间.

5-10 一容器内储有氧气,其压强为Pa 100115?.,温度为27 ℃,求:(1)气体分子的数密度;(2) 氧气的密度;(3) 分子的平均平动动能;(4) 分子间的平均距离.(设分子间均匀等距排列)

分析 在题中压强和温度的条件下,氧气可视为理想气体.因此,可由理想气体的物态方程、密度的定义以及分子的平均平动动能与温度的关系等求解.又因可将分子看成是均匀等距排列的,故每个分子占有的体积为30d V =,由数密度的含意可知n V /10=,d 即可求出.

解 (1) 单位体积分子数

325m 1044.2?==

kT

p

n

(2) 氧气的密度

3-m kg 30.1/?===RT

pM

V m ρ

(3) 氧气分子的平均平动动能

J 102162321k -?==./kT ε

(4) 氧气分子的平均距离

m 10453193-?==./n d

通过对本题的求解,我们可以对通常状态下理想气体的分子数密度、平均平动动能、分子间平均距离等物理量的数量级有所了解.

5-11 当温度为0C 时,可将气体分子视为刚性分子,求在此温度下:(1)氧分子的平均动能和平均转动动能;(2)kg 100.43-?氧气的内能;(3)

kg 100.43-?氦气的内能.

分析(1)由题意,氧分子为刚性双原子分子,则其共有5个自由度,其中包括3个平动自由度和2个转动自由度.根据能量均分定理,平均平动动能kT 2

3

kt =

ε,平均转动动能kT kT ==

22kr ε.(2)对一定量理想气体,其内能为RT i

M m E 2

'=,

它是温度的单值函数.其中i 为分子自由度,这里氧气i =5、氦气i =3.而m '为气体质量,M 为气体摩尔质量,其中氧气13mol kg 1032--??=M ;氦气

1

3m o l

kg 100.4--??=M .代入数据即可求解它们的内能. 解根据分析当气体温度为T=273 K 时,可得 (1)氧分子的平均平动动能为

J 107.52

3

21kt -?==kT ε

氧分子的平均转动动能为

J 108.32

221kr -?==kT ε

(2)氧气的内能为

J 10 7.1J 27331.82

51032100.4223

3?=?????='=--RT i M m E (3)氦气的内能为

J 10 3.4J 27331.82

3100.4100.423

3

3?=?????='=--RT i M m E 5-12 在容积为2.0 ×10-3 m 3的容器中,有内能为6.75 ×102

J 的刚性双原子分子某理想气体.(1) 求气体的压强;(2) 设分子总数为5.4×1022个,求分子的平均平动动能及气体的温度.

分析 (1) 一定量理想气体的内能RT i

M m E 2

=

,对刚性双原子分子而言,i =5.由上述内能公式和理想气体物态方程pV =νRT 可解出气体的压强.(2)求得压强后,再依据题给数据可求得分子数密度,则由公式p =nkT 可求气体温度.气体分子的平均平动动能可由23k /kT ε=求出.

解 (1) 由RT i

E 2

ν=和pV =νRT 可得气体压强

Pa 1035.125?==

iV

E

p (2) 分子数密度n =N/V ,则该气体的温度

()()K 1062.3//2?===nk pV nk p T

气体分子的平均平动动能为

J 104972321k -?==./kT ε

5-13 储有1mol 氧气,容积为1m 3的容器以v =10-1s m ?的速度运动,设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能.试求气体的温度及压强各升高了多少.

分析 容器作匀速直线运动时,容器内分子除了相对容器作杂乱无章的热运动外,还和容器一起作定向运动.其定向运动动能(即机械能)为22

1

mv .按照题意,

当容器突然停止后,80%定向运动动能转为系统的内能.对一定量理想气体内能是温度的单值函数,则有关系式:

T R M m v m E Δ2

5%8021Δ2'=?'=成立,从而可求ΔT .再利用理想气体物态方

程,可求压强的增量.

解 由分析知T R M m m E Δ2

528.0Δ2?'='=v ,

其中m '为容器内氧气质量.又氧气的摩尔质量为12mol kg 1023--??=.M ,解得

ΔT =6.16 ×10-2 K

当容器体积不变时,由pV =

M

m

RT 得 Pa 51.0ΔΔ==

T V

R

M m p 5-14 位于委内瑞拉的安赫尔瀑布是世界上落差最大的瀑布,它高979m.如果在水下落的过程中,重力对它所作的功中有50%转换为热量使水温升高,求水由瀑布顶部落到底部而产生的温差.( 水的比热容c 为4.18×103

J ·kg -1

·K -1

)

分析 取质量为m 的水作为研究对象,水从瀑布顶部下落到底部过程中重力作功W =mgh ,按题意,被水吸收的热量Q =0.5W ,则水吸收热量后升高的温度可由Q =mc ΔT 求得.

解 由上述分析得

mc ΔT =0.5mgh

水下落后升高的温度

ΔT =0.5gh /c =1.15K

5-15 如图所示,1 mol 氦气,由状态),(11V p A 沿直线变到状态),(22V p B ,求这过程中内能的变化、对外作的功、吸收的热量.

分析由题 8-4 分析可知功的数值就等于p-V 图中B A →过程曲线下所对应的面积,又对一定量的理想气体其内能RT i

E 2

ν

=,而氦气为单原子分子,自

由度i =3,则 1 mol 氦气内能的变化T R E ?=

?2

3

,其中温度的增量T ?可由理想气体物态方程RT pV ν=求出.求出了B A →过程内能变化和做功值,则吸收的热量可根据热力学第一定律E W Q ?+=求出.

解由分析可知,过程中对外作的功为

))((2

1

1212p p V V W +-=

内能的变化为

)(2

3

231122V p V p T R E -=?=

? 吸收的热量

)(2

1

)(212211122V p V p V p V p E W Q -+-=?+=

题 5-15 图

8-8 一定量的空气,吸收了1.71×103

J 的热量,并保持在1.0 ×105

Pa 下膨胀,体积从

1.0×10-2

m 3

增加到1.5×10-2

m 3,问空气对外作了多少功?它的内能改变了多少?

分析 由于气体作等压膨胀,气体作功可直接由W =p (V 2-V 1 )求得.取该空气为系统,根据热力学第一定律Q =ΔE +W 可确定它的内能变化.在计算过程中要注意热量、功、内能的正负取值.

解 该空气等压膨胀,对外作功为

W =p (V 2-V 1 )=5.0 ×102

J

其内能的改变为

ΔE =Q -W =1.21 ×103

J

5-16 如图所示,在绝热壁的汽缸内盛有1mol 的氮气,活塞外为大气,氮气的压强为

1.51 ×105

Pa ,活塞面积为0.02m 2

.从汽缸底部加热,使活塞缓慢上升了0.5m.问(1) 气体经历了什么过程? (2) 汽缸中的气体吸收了多少热量? (根据实验测定,已知氮气的摩尔定压热容C p ,m =29.12J ·mol -1

·K -1

,摩尔定容热容C V ,m =20.80J ·mol -1

·K -1

)

题 5-16 图

分析 因活塞可以自由移动,活塞对气体的作用力始终为大气压力和活塞重力之和.容器内气体压强将保持不变.对等压过程,吸热T C Q p Δm p,v =.ΔT 可由理想气体物态方程求出.

解 (1) 由分析可知气体经历了等压膨胀过程.

(2) 吸热T C Q Δm p,p v =.其中ν=1 mol ,C p,m =29.12J·mol -1

·K-1

.由理想气体物态方程pV =νRT ,得

ΔT =(p 2V 2-p 1 V 1 )/R =p(V 2-V 1 )/R =p · S · Δl/R

则J 105.293m p,p ?=?=

R

l

pS C Q

5-17 一压强为1.0 ×105

Pa,体积为1.0×10-3

m 3

的氧气自0℃加热到100 ℃.问:(1) 当压强不变时,需要多少热量?当体积不变时,需要多少热量?(2) 在等压或等体过程中各作了多少功?

分析 (1) 由量热学知热量的计算公式为T C Q ?=m ν.按热力学第一定律,

在等体过程中,T

C E Q V V ?=?=m ,ν;在等压过程中,

??=?+=.d m ,T C E V p Q p P ν

(2) 求过程的作功通常有两个途径.①利用公式()V V p W d ?=;②利用热力学第一定律去求解.在本题中,热量Q 已求出,而内能变化可由

()12m V ,V ΔT T C E Q -==v 得到.从而可求得功W .

解 根据题给初态条件得氧气的物质的量为

mol 1041.421

1

1-?==

RT V p v 氧气的摩尔定压热容R C 2

7m p,=,摩尔定容热容R C 25

m V,=.

(1) 求Q p 、Q V

等压过程氧气(系统)吸热

()J 1.128Δd 12m p,p =-=+=?T T C E V p Q v

等体过程氧气(系统)吸热

()J 5.91Δ12m V ,V =-==T T C E Q v

(2) 按分析中的两种方法求作功值

①利用公式()V V p W d ?=求解.在等压过程中,T R M

m

V p W d d d =

=,则得 J 6.36d d 21

p ===?

?T T T R M

m

W W 而在等体过程中,因气体的体积不变,故作功为

()0d V ==?V V p W

②利用热力学第一定律Q =ΔE +W 求解.氧气的内能变化为

()J 5.91Δ12m V,V =-=

=T T C M

m

E Q 由于在(1)中已求出Q p 与Q V ,则由热力学第一定律可得在等压过程、等体过程中所作的功分别为

J 6.36Δp p =-=E Q W

0ΔV V =-=E Q W

5-18如图所示,系统从状态A沿ABC变化到状态C的过程中,外界有326J

的热量传递给系统,同时系统对外作功126J.当系统从状态C沿另一曲线CA返回到

状态A时,外界对系统作功为52J,则此过程中系统是吸热还是放热?传递热量是

多少?

题 5-18 图

分析已知系统从状态C到状态A,外界对系统作功为W CA,如果再能知道此过

程中内能的变化ΔE CA,则由热力学第一定律即可求得该过程中系统传递的热量Q

.由于理想气体的内能是状态(温度)的函数,利用题中给出的ABC过程吸热、CA

作功的情况,由热力学第一定律即可求得由A至C过程中系统内能的变化ΔE AC,而

ΔE AC=-ΔE CA,故可求得Q CA.

解系统经ABC过程所吸收的热量及对外所作的功分别为

Q

=326J,W ABC=126J

ABC

则由热力学第一定律可得由A到C过程中系统内能的增量

ΔE AC=Q ABC-W ABC=200J

由此可得从C到A,系统内能的增量为

ΔE CA=-200J

从C到A,系统所吸收的热量为

Q

=ΔE CA+W CA=-252J

CA

式中负号表示系统向外界放热252 J.这里要说明的是由于CA是一未知过程,

上述求出的放热是过程的总效果,而对其中每一微小过程来讲并不一定都是放

热.

5-19、将体积为1.0×10-4m3、压强为1.01 ×105的氢气绝热压强,使其体

积变为2.0 ×10-5m3,求压缩过程中气体所作的功。

分析可采用题5.10中气体作功的两种计算方法。(1)气体作功可由积分

w=fp(v)dv 求解,其中函数p (v)可通过绝热过程方程pv /=c 得出。(2)因为过程是绝热的,故Q=0,因此,系统内能的变化可由系统的始末状态求出。.

5-21 一劲度系数k =312 1m N -?的轻弹簧,一端固定,另一端连接一质量

kg 3.00=m 的物体,放在光滑的水平面上,上面放一质量为kg 2.0=m 的物体,

两物体间的最大静摩擦系数5.0=μ.求两物体间无相对滑动时,系统振动的最大能量.

分析简谐运动系统的振动能量为2

p k 2

1kA E E E =

+=.因此只要求出两物体间无相对滑动条件下,该系统的最大振幅max A 即可求出系统振动的最大能量.因为两物体间无相对滑动,故可将它们视为一个整体,则根据简谐运动频率公式可得其振动角频率为m

m k

+=

0ω.然后以物体m 为研究对象,它和m 0一起作简谐

运动所需的回复力是由两物体间静摩擦力来提供的.而其运动中所需最大静摩擦力应对应其运动中具有最大加速度时,即max 2max A m ma mg ωμ==,由此可求出

max A .

解根据分析,振动的角频率

m

m k

+=

由max 2max A m ma mg ωμ==得

k

g

m m g A μωμ)(02

max +=

则最大能量

J

1062.92)(]

)([212132

2202

02max max -?=+=+==k

g m m k

g m m k kA E μμ 5-22 一卡诺热机的低温热源温度为7℃,效率为40%,若要将其效率提高到50%,问高温热源的温度需提高多少?

解 设高温热源的温度分别为1T '、1T '',则有

12/1T T η'-=', 12/1T T η''-=''

其中T 2 为低温热源温度.由上述两式可得高温热源需提高的温度为

K 3.931111Δ211=???

?

??'--''-='-''=T ηηT T T

5-23 一小型热电厂内,一台利用地热发电的热机工作于温度为227℃的地下热源和温度为27℃的地表之间.假定该热机每小时能从地下热源获取1.8 ×1011

J的热量.试从理论上计算其最大功率为多少?

分析 热机必须工作在最高的循环效率时,才能获取最大的功率.由卡诺定理可知,在高温热源T 1和低温热源T 2之间工作的可逆卡诺热机的效率最高,其效率为η=1-T 2/T 1 .由于已知热机在确定的时间内吸取的热量,故由效率与功率的关系式Q

Pt

Q W ==

η,可得此条件下的最大功率. 解 根据分析,热机获得的最大功率为

()1-712s J 100.2/1??=-=

=

t

Q T T t

Q

p η

5-24 在夏季,假定室外温度恒定为37℃,启动空调使室内温度始终保持在17 ℃.如果每天有2.51 ×108

J 的热量通过热传导等方式自室外流入室内,则空调一天耗电多少? (设该空调制冷机的制冷系数为同条件下的卡诺制冷机制冷系数的60%)

大学物理简明教程习题解答9

第12章 量子物理学 12-1 氦氖激光器发射波长632.8nm 的激光。若激光器的功率为1.0mW ,试求每秒钟所发射的光子数。 解 一个光子的能量λ νhc h E ==,激光器功率P 数值上等于每秒钟发射光子的总能量, 故每秒钟所发射的光子数 1/s 1018.315?=== hc P E P N λ 12-2 某种材料的逸出功为3.00eV ,试计算能使这种材料发射光电子的入射光的最大波长。 解 光子的能量λ hc E =,要使这种材料发射光电子,入射光子的能量不能小于逸出功W , 即有 W hc E == min λ 解得入射光的最大波长为 nm 4141014.470=?== -W hc λ 12-3 从铝中移去一个电子需要能量4.20eV 。用波长为200nm 的光投射到铝表面上,求: (1)由此发射出来的最快光电子和最慢光电子的动能; (2)遏止电势差; (3)铝的红限波长。 解 (1)根据爱因斯坦光电效应方程 W E h km +=ν 最快光电子的动能 W hc W h m E -=-== λ ν2m max k 21v eV 2.02J 1023.319=?=- 最慢光电子逸出铝表面后不再有多余的动能,故0min k =E (2)因最快光电子反抗遏止电场力所做的功应等于光电子最大初动能,即max k E eU a =, 故遏止电势差 V 02.2max k == e E U a (3)波长为红限波长λ0的光子,具有恰好能激发光电子的能量,由λ0与逸出功的关系W hc =0 λ 得铝的红限波长 nm 296m 1096.270=?== -W hc λ 12-4 在一个光电效应实验中测得,能够使钾发射电子的红限波长为562.0nm 。 (1)求钾的逸出功; (2)若用波长为250.0nm 的紫外光照射钾金属表面,求发射出的电子的最大初动能。 解 (1)波长为红限波长λ0的光子具有恰能激发光电子的能量,即光子能量等于逸出功 由W hc =0λ,得钾的逸出功 eV 2.21J 1054.3190 =?==-λhc W

学习固体物理的目的和难点

JISHOU UNIVERSITY 《固体物理》期末 考核报告 摘要:本课以本科理论物理的“四大力学”为基础。又是学习凝聚态物理学和材料科学的基础,它是最基础的、又同专业关系最密切的一门课程。通过本课的学习,一方面是对以前所学基础理论知识的复习和应用,另一方面也为今后了解、掌握现代高新技术和从事科学研究打下基础。 关键字:力学、基础、课程-现代高新科技、应用 一、引言 固体物理就是研讨固体(主要是晶体)材料物理特性的一门科学。它是从固体中的原子和电子状态的根本特点出发来讨论固体的物理性质,所以是最基础的、又同专业关系最密切的一门课程,它也讨论非晶体材料的性质,是学习金属物理、半导体物理、电介质物理、磁学等的基础、先行课程。 虽然固体物理主要是讨论固体材料的问题,但是实际上对于讨论液体、气体材料也有参考价值,同时还体现了应用基础课的特点,既要讲有关的理论体系,又要讲和实验、生产的密切关系.特别要突出科学的研究方法。对于物理类和电

子科学类的专业,固体物理是必修课。所以。对于了解学习固体物理的目的和难点是非常有必要的。 二、学习固体物理的目的 2.1 固体物理学的发展 固体物理对于技术的发展有很多重要的应用,晶体管发明以后,集成电路技术迅速发展,电子学技术、计算技术以至整个信息产业也随之迅速发展。其经济影响和社会影响是革命性的。这种影响甚至在日常生活中也处处可见。新的实验条件和技术日新月异,正为固体物理不断开拓新的研究领域。极低温、超高压、强磁场等极端条件、超高真空技术、表面能谱术、材料制备的新技术、同步辐射技术、核物理技术、激光技术、光散射效应、各种粒子束技术、电子显微术、穆斯堡尔效应、正电子湮没技术、磁共振技术等现代化实验手段,使固体物理性质的研究不断向深度和广度发展。由于固体物理本身是微电子技术、光电子学技术、能源技术、材料科学等技术学科的基础,也由于固体物理学科内在的因素,固体物理的研究论文已占物理学中研究论文三分之一以上。其发展趋势是:由体内性质转向研究表面有关的性质;由三维体系转到低维体系;由晶态物质转到非晶态物质;由平衡态特性转到研究瞬态和亚稳态、临界现象和相变;由完整晶体转到研究晶体中的杂质、缺陷和各种微结构;由普通晶体转到研究超点阵的材料。这些基础研究又将促进新技术的发展,给人们带来实际利益。同时,固体物理学的成就和实验手段对化学物理、催化学科、生命科学、地学等的影响日益增长,正在形成新的交叉领域。 2.2 学习固体物理的要求 固体物理是很抽象的,在于他研究的对象已经不是一般的某个体系,而是涉及组成物体的原子分子之间的结构能量问题,有些类似于原子物理,但又不一样。想要学好固体物理完全没有必要纠结于难记的公式和复杂的推导,关键是理解固体物理中引进的其它物理分支中没有的概念和研究方法,举个例子,一开始介绍倒格矢,概念很抽象,但是它的目的是研究晶格,晶体性质的,那么就需要站在晶体结构的角度理解它;研究满带,空带,就需要联系分子之间能量来理解它。要区分微观和宏观研究方法的不同,不要带着以往学物理的方法来学习固体物理。 对于大学生所学的固体物理,其中的内容都是比较浅显易懂,我们所要做的就是在课堂所学的基础上,去为将要学习更深的内容做好准备。利用大学所学的基础知识,对固体物理的一些基础的知识的了解,去更好的用到生活中去。这样才能做到真正的学以致用。

大学物理简明教程(吕金钟)第四章习题答案

第四章电磁学基础 静电学部分 4.2解:平衡状态下受力分析 +q受到的力为: 处于平衡状态: (1) 同理,4q 受到的力为: (2) 通过(1)和(2)联立,可得:, 4.3解:根据点电荷的电场公式: 点电荷到场点的距离为: 两个正电荷在P点产生的电场强度关于中垂线对称: 所以: 当与点电荷电场分布相似,在很远处,两个正电荷q组成的电荷系的电场分布,与带电量为2q的点电荷的电场分布一样。 4.4解:取一线元,在圆心处 产生场强: 分解,垂直x方向的分量抵消,沿x方向 的分量叠加: 方向:沿x正方向 4.5解:(1 (2)两电荷异号,电场强度为零的点在外侧。 4.7解:线密度为λ,分析半圆部分: 点电荷电场公式: + +

在本题中: 电场分布关于x 轴对称:, 进行积分处理,上限为,下限为: 方向沿x轴向右,正方向 分析两个半无限长: ,,, 两个半无限长,关于x轴对称,在y方向的分量为0,在x方向的分量: 在本题中,r为场点O到半无限长线的垂直距离。电场强度的方向沿x轴负方向,向左。那么大O点的电场强度为: 4.8解:E的方向与半球面的轴平行,那么 通过以R为半径圆周边线的任意曲面的 电通量相等。所以 通过S1和S2的电通量等效于通过以R为半 径圆面的电通量,即: 4.9解:均匀带电球面的场强分布: 球面 R 1 、R2的场强分布为: 根据叠加原理,整个空间分为三部分: 根据高斯定理,取高斯面求场强: 图4-94 习题4.8用图 S1 S2 R O

场强分布: 方向:沿径向向外 4.10解:(1)、这是个球对称的问题 当时,高斯面对包围电荷为Q 当,高斯面内包围电荷为q 方向沿径向 (2)、证明:设电荷体密度为 这是一个电荷非足够对称分布的带电体,不能直接用高斯定理求解。但可以把这一带电体看成半径为R、电荷体密度为ρ的均匀带电球体和半径为R`、电荷体密度为-ρ的均匀带电体球相叠加,相当于在原空腔同时补上电荷体密度为ρ和-ρ的球体。由电场 叠加原理,空腔内任一点P的电场强度为: 在电荷体密度为ρ球体内部某点电场为: 在电荷体密度为-ρ球体内部某点电场为: 所以 4.11解:利用高斯定理,把空间分成三部分

黄昆版固体物理学课后答案解析答案

《固体物理学》习题解答 黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考) 第一章 晶体结构 1.1、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, Vc nV x = (1)对于简立方结构:(见教材P2图1-1) a=2r , V= 3 r 3 4π,Vc=a 3,n=1 ∴52.06r 8r 34a r 34x 3 333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 3 3 4a r 4a 3=?= n=2, Vc=a 3 ∴68.083)r 3 34(r 342a r 342x 3 3 33≈π=π?=π?= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=?= n=4,Vc=a 3 74.062) r 22(r 344a r 344x 3 3 33≈π=π?=π?= (4)对于六角密排:a=2r 晶胞面积:S=62 60sin a a 6S ABO ??=??=2 a 233 晶胞的体积:V=332r 224a 23a 3 8 a 233C S ==?= ? n=1232 1 26112+?+? =6个 74.062r 224r 346x 3 3 ≈π=π?= (5)对于金刚石结构,晶胞的体对角线BG=3 r 8a r 24a 3= ??= n=8, Vc=a 3

固体物理学习心得

固体物理学习心得 篇一:学习固体物理后的感想 学习固体物理的感受 经过了十几周的学习,我们这门《固体物理学》也结束了最后的任务,虽然说这门课对于咱们专业的同学来说总体上难度很大,但是在您的指导下,同学们还是基本能够按时出勤,最重要的是达到了开设这门课的最初用意,能够为我们以后学习和了解更多物理学相关的知识打下良好的基础。 本课程是材料科学与工程专业的物理类基础课,包括晶格结构、晶格振动与热性质、固体电子理论、半导体、固体磁性质、绝缘体、介电体等部分。这门课程系统介绍固体物理研究的基本理论与重要试验方法提示丰富多彩的固体形态(如金属、绝缘体、磁性材料等)形成的基本物理规律,给出研究这些固体的实验(如X光衍射、中子散射、磁

散射等)设计的基本原理。简单地说,固体物理学的基本问题有:固体是由什么原子组成?它们是怎样排列和结合的?这种结构是如何形成的?在特定的固体中,电子和原子取什么样的具体的运动形态?它的宏观性质和内部的微观运动形态有什么联系?各种固体有哪些可能的应用?探索设计和制备新的固体,研究其特性,开发其应用。其实固体物理学是研究固体的性质、它的微观结构及其各种内部运动,以及这种微观结构和内部运动同固体的宏观性质的关系的学科。固体通常指在承受切应力时具有一定程度刚性的物质,包括晶体和非晶态固体。固体的内部结构和运动形式很复杂,这方面的研究是从晶体开始的,因为晶体的内部结构简单,而且具有明显的规律性,较易研究。晶体或多或少都存在各种杂质和缺陷,它们对固体的物性, 以及功能材料的技术性能都起重要的作用。半导体的电学、发光学等性质

依赖于其中的杂质和缺陷;大规模集成电路的工艺中控制和利用杂质及缺陷是极为重要的。非晶态固体的物理性质同晶体有很大差别,这同它们的原子结构、电子态以及各种微观过程有密切联系。从结构上来分,非晶态固体有两类。一类是成分无序,在具有周期性的点阵位置上随机分布着不同的原子或者不同的磁矩;另一类是结构无序,表征长程序的周期性完全破坏,点阵失去意义。但近邻原子有一定的配位关系,类似于晶体的情形,因而仍然有确定的短程序。在无序体系中,电子态有局域态和扩展态之分。在局域态中的电子只有在声子的合作下才能参加导电,这使得非晶态半导体的输运性质具有新颖的特点。1974年人们掌握了在非晶硅中掺杂的技术,现在非晶硅已成为制备高效率太阳能电池的重要材料。无序体系是一个复杂的新领域,非晶态固体实际上是一个亚稳态。目前对许多基本问题还存在着争论,有待进一步的探索和研究。

原子物理学第一章习题参考答案

第一章习题参考答案 速度为v的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角-4 约为10rad. 要点分析:碰撞应考虑入射粒子和电子方向改变,并不是像教材中的入射粒子与靶核的碰撞(靶核不动),注意这里电子要动. 证明:设α粒子的质量为M α,碰撞前速度为V,沿X方向入射;碰撞后,速度为V',沿θ方向散射.电子质量用m e表示,碰撞前静止在坐标原点O处,碰撞后以速度v沿φ方向反冲.α粒子-电子系统在此过程中能量与动量均应守恒,有: (1) (3) (2) 作运算:(2)×sinθ±(3)×cosθ,得 (4) (5) 再将(4)、(5)二式与(1)式联立,消去V’与V, 化简上式,得 (6) 若记,可将(6)式改写为 (7)

视θ为φ的函数θ(φ),对(7)式求θ的极值,有 令,则sin2(θ+φ)-sin2φ=0 即2cos(θ+2φ)sinθ=0 (1)若sinθ=0则θ=0(极小)(8) (2)若cos(θ+2φ)=0则θ=90o-2φ(9) 将(9)式代入(7)式,有 由此可得 θ≈10弧度(极大)此题得证. (1)动能为的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大(2)如果金箔厚μm,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几 解:(1)依和金的原子序数Z 2=79 -4 答:散射角为90o所对所对应的瞄准距离为. (2)要点分析:第二问解的要点是注意将大于90°的散射全部积分出来.90°~180°范围的积分,关键要知道n,问题不知道nA,但可从密度与原子量关系找出注意推导出n值.,其他值从书中参考列表中找. 从书后物质密度表和原子量表中查出Z Au=79,A Au=197,ρ Au=×10kg/m

固体物理习题解答

1. 解理面是面指数低的晶面还是指数高的晶面?为什么? [解答] 晶体容易沿解理面劈裂,说明平行于解理面的原子层之间的结合力弱,即平行解理面的原子层的间距大. 因为面间距大的晶面族的指数低, 所以解理面是面指数低的晶面. 2. 在晶体衍射中,为什么不能用可见光? [解答] 晶体中原子间距的数量级为10 10 -米,要使原子晶格成为光波的衍射光栅,光波的波长 应小于10 10-米. 但可见光的波长为7.6?4.07 10-?米, 是晶体中原子间距的1000倍. 因此, 在晶体衍射中,不能用可见光. 3. 原子间的排斥作用和吸引作用有何关系? 起主导的范围是什么? [解答] 在原子由分散无规的中性原子结合成规则排列的晶体过程中, 吸引力起到了主要作用. 在吸引力的作用下, 原子间的距离缩小到一定程度, 原子间才出现排斥力. 当排斥力与吸引力相等时, 晶体达到稳定结合状态. 可见, 晶体要达到稳定结合状态, 吸引力与排斥力缺一不可. 设此时相邻原子间的距离为0r , 当相邻原子间的距离r >0r 时, 吸引力起主导作用; 当相邻原子间的距离r <0r 时, 排斥力起主导作用. 4. 紧束缚模型下, 内层电子的能带与外层电子的能带相比较, 哪一个宽? 为什么? [解答] 以s 态电子为例. 由图5.9可知, 紧束缚模型电子能带的宽度取决于积分s J 的大小, 而积分 r R r R r r r d )()]()([)(* n at s n at N at s s V V J ----=???Ω 的大小又取决于) (r at s ? 与相邻格点的)(n at s R r -?的交迭程度. 紧束缚模型下, 内层电子的 )(r at s ?与)(n at s R r -?交叠程度小, 外层电子的)(r at s ?与)(n at s R r -?交迭程度大. 因此, 紧 束缚模型下, 内层电子的能带与外层电子的能带相比较, 外层电子的能带宽. 5. 在布里渊区边界上电子的能带有何特点? [解答] 电子的能带依赖于波矢的方向, 在任一方向上, 在布里渊区边界上, 近自由电子的能带一般会出现禁带. 若电子所处的边界与倒格矢n K 正交, 则禁带的宽度 )(2n K V E g =, )(n K V 是周期势场的付里叶级数的系数. 不论何种电子, 在布里渊区边界上, 其等能面在垂直于布里渊区边界的方向上的斜率为零, 即电子的等能面与布里渊区边界正交. 6. 高指数的晶面族与低指数的晶面族相比, 对于同级衍射, 哪一晶面族衍射光弱? 为什么? 对于同级衍射, 高指数的晶面族衍射光弱, 低指数的晶面族衍射光强. 低指数的晶面族面间距大, 晶面上的原子密度大, 这样的晶面对射线的反射(衍射)作用强. 相反, 高指数的晶面族面间距小, 晶面上的原子密度小, 这样的晶面对射线的反射(衍射)作用弱. 另外, 由布拉格反射公式 λθn sin 2=hkl d 可知, 面间距hkl d 大的晶面, 对应一个小的光的掠射角θ. 面间距hkl d 小的晶面, 对应一个大的光的掠射角θ. θ越大, 光的透射能力就越强, 反射能力就越弱.

大学物理简明教程课后习题答案解析

大学物理简明教程习题答案解析 习题一 1-1 |r ?|与r ? 有无不同t d d r 和t d d r 有无不同 t d d v 和t d d v 有无不同其不同在哪里试举例 说明. 解:(1)r ?是位移的模,?r 是位矢的模的增量,即 r ?12r r -=,12r r r ??-=?; (2)t d d r 是速度的模,即t d d r ==v t s d d . t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则 t ?r ?t r t d d d d d d r r r += 式中t r d d 就是速度径向上的分量, ∴t r t d d d d 与 r 不同如题1-1图所示. 题1-1图 (3)t d d v 表示加速度的模,即 t v a d d ? ?= ,t v d d 是加速度a 在切向上的分量. ∵有ττ??(v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d ττ???+= 式中dt dv 就是加速度的切向分量. (t t r d ?d d ?d τ??Θ与 的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出 r =22y x +,然后根据v =t r d d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的 分量,再合成求得结果,即 v =2 2 d d d d ??? ??+??? ??t y t x 及a = 2 22222d d d d ? ??? ??+???? ??t y t x 你认为两种方法哪一种正确为什么两者差别何在 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r ? ??+=,

固体物理学整理要点

固体物理复习要点 第一章 1、晶体有哪些宏观特性? 答:自限性、晶面角守恒、解理性、晶体的各向异性、晶体的均匀性、晶体的对称性、固定的熔点 这是由构成晶体的原子和晶体内部结构的周期性决定的。说明晶体宏观特性是微观特性的反映 2、什么是空间点阵? 答:晶体可以看成由相同的格点在三维空间作周期性无限分布所构成的系统,这些格点的总和称为点阵。 3、什么是简单晶格和复式晶格? 答:简单晶格:如果晶体由完全相同的一种原子组成,且每个原子周围的情况完全相同,则这种原子所组成的网格称为简单晶格。 复式晶格:如果晶体的基元由两个或两个以上原子组成,相应原子分别构成和格点相同的网格,称为子晶格,它们相对位移而形成复式晶格。 4、试述固体物理学原胞和结晶学原胞的相似点和区别。 答:(1)固体物理学原胞(简称原胞) 构造:取一格点为顶点,由此点向近邻的三个格点作三个不共面的矢量,以此三个矢量为边作平行六面体即为固体物理学原胞。 特点:格点只在平行六面体的顶角上,面上和内部均无格点,平均每个固体物理学原胞包含1个格点。它反映了晶体结构的周期性。 (2)结晶学原胞(简称晶胞) 构造:使三个基矢的方向尽可能地沿着空间对称轴的方向,它具有明显的对称性和周期性。 特点:结晶学原胞不仅在平行六面体顶角上有格点,面上及内部亦可有格点。其体积是固体物理学原胞体积的整数倍。 5、晶体包含7大晶系,14种布拉维格子,32个点群?试写出7大晶系名称;并写出立方晶系包含哪几种布拉维格子。 答:七大晶系:三斜、单斜、正交、正方、六方、菱方、立方晶系。 6.在晶体的宏观对称性中有哪几种独立的对称元素?写出这些独立元素。 答: 7.密堆积结构包含哪两种?各有什么特点? 答:(1)六角密积 第一层:每个球与6个球相切,有6个空隙,如编号1,2,3,4,5,6。 第二层:占据1,3,5空位中心。 第三层:在第一层球的正上方形成ABABAB······排列方式。 六角密积是复式格,其布拉维晶格是简单六角晶格。 基元由两个原子组成,一个位于(000),另一个原子位于 c b a r 213132:++=即 (2)立方密积 第一层:每个球与6个球相切,有6个空隙,如编号为1,2,3,4,5,6。 第二层:占据1,3,5空位中心。 第三层:占据2,4,6空位中心,按ABCABCABC······方式排列,形成面心立方结构,称为立方密积。 8.试举例说明哪些晶体具有简单立方、面心立方、体心立方、六角密积结构。并写出这几种结构固体物理学原胞基矢。 答:CsCl 、ABO3 ; NaCl ; ; 纤维锌矿ZnS 9.会从正格基矢推出倒格基矢,并知道倒格子与正格子之间有什么区别和联系? 11.会求晶格的致密度。 14.X 射线衍射的几种基本方法是什么?各有什么特点? 答:劳厄法:(1)单晶体不动,入射光方向不变;(2)X 射线连续谱,波长在 间变化,反射球半径 转动单晶法:(1)X 射线是单色的;(2)晶体转动。 粉末法 :(1)X 射线单色(λ固定);(2)样品为取向各异的单晶粉末。 第二章 1、什么是晶体的结合能,按照晶体的结合力的不同,晶体有哪些结合类型及其结合力是什么力? 答:晶体的结合能就是将自由的原子(离子或分子)结合成晶体时所释放的能量。 结合类型:离子晶体—离子键 分子晶体—范德瓦尔斯力 共价晶体—共价键 金属晶体—金属键 氢键晶体—氢键 max min ~λλ

原子物理学答案

原子物理学答案

原子物理学习题解答 刘富义 编 临沂师范学院物理系 理论物理教研室 第一章 原子的基本状况 1.1 若卢瑟福散射用的α粒子是放射性物质镭' C 放射的, 其动能为6 7.6810?电子伏特。散射物质是原子序数79Z =的金 箔。试问散射角150ο θ=所对应的瞄准距离b 多大? 解:根据卢瑟福散射公式: 2 02 22 442K Mv ctg b b Ze Ze αθ πεπε== 得到: 21921501522 12619 079(1.6010) 3.97104(48.8510)(7.681010) Ze ctg ctg b K ο θαπεπ---??===??????米 式中2 12K Mv α =是α粒子的功能。 1.2已知散射角为θ的α粒子与散射核的最短距离为

2202 1 21 ()(1)4sin m Ze r Mv θ πε=+ ,试问上题α粒子与散射的 金原子核之间的最短距离m r 多大? 解:将 1.1题中各量代入 m r 的表达式,得: 2min 202 1 21()(1)4sin Ze r Mv θπε=+ 1929 619479(1.6010)1910(1)7.6810 1.6010sin 75ο --???=???+??? 143.0210-=?米 1.3 若用动能为1兆电子伏特的质子射向金箔。问质子与金箔。问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大? 解:当入射粒子与靶核对心碰撞时,散射角为180ο 。当入 射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。 根据上面的分析可得: 22 0min 124p Ze Mv K r πε==,故有:2 min 04p Ze r K πε= 192 9 13 61979(1.6010)910 1.141010 1.6010 ---??=??=???米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为13 1.1410-?米。 1.4 钋放射的一种α粒子的速度为7 1.59710?米/秒,正面垂直

大学物理简明教程(吕金钟)第四章习题答案

第四章 电磁学基础 静电学部分 4.2 解:平衡状态下受力分析 +q 受到的力为: 20''41 r q q F qq πε= ()()2 4441l q q F q q πε= 处于平衡状态:()04'=+q q qq F F ()0441'41 2 020=+l q q r q q πεπε (1) 同理,4q 受到的力为:()()()20'44'41 r l q q F q q -= πε ()()204441 l q q F q q πε= ()()04'4=+q q q q F F ()()()04414'41 2020=+-l q q r l q q πεπε (2) 通过(1)和(2)联立,可得: 3 l r =,q q 94'-= 4.3 解:根据点电荷的电场公式: r e r q E 2041 πε= 点电荷到场点的距离为:22l r + 2 2041 l r q E += +πε 两个正电荷在P 点产生的电场强度关于中垂线对称: θcos 2//+=E E 0=⊥E 2 2 cos l r r += θ 所以: ( ) 2 32 202 2 2 2021 412 cos 2l r qr l r r l r q E E += ++==+π επεθ q l q +

当l r >> 2 02024121 r q r q E πεπε== 与点电荷电场分布相似,在很远处,两 个正电荷q 组成的电荷系的电场分布,与带电量为2q 的点电荷的电场分布一样。 4.4 解:取一线元θλRd dq =,在圆心处 产生场强:2 0204141 R Rd R dq dE θλπεπε== 分解,垂直x 方向的分量抵消,沿x 方向 的分量叠加: R R Rd dE x 00 202sin 41πελ θθλπεπ ==? ? 方向:沿x 正方向 4.5 解:(1)两电荷同号,电场强度为零的点在内侧; (2)两电荷异号,电场强度为零的点在外侧。 4.7 解:线密度为λ,分析半圆部分: θλλrd dl dq == 点电荷电场公式: r e r q E 2 041 πε= 在本题中: 2 41r rd E θ λπε= 电场分布关于x 轴对称:θθ λπεθsin 41sin 2 r rd E E x ==,0=y E 进行积分处理,上限为2π ,下限为2π-: r d r r rd E E 0000 2 2sin 4sin 41sin πελ θθπελθθ λπεθππ == ==?? ? 方向沿x 轴向右,正方向 分析两个半无限长: )cos (cos 4d sin 4210021 θθπελ θθπελθθ-===? ?x x dE E x x )sin (sin 4d cos 412002 1 θθπελθθπελθθ-===? ?x x dE E y y x

固体物理学发展简史

固体物理学发展简史 固体物理学是研究固体物质的物理性质、微观结构、构成物质的各种粒子的运动形态,及其相互关系的科学。它是物理学中内容极丰富、应用极广泛的分支学科。 固体通常指在承受切应力时具有一定程度刚性的物质,包括晶体和非晶态固体。简单地说,固体物理学的基本问题有:固体是由什么原子组成?它们是怎样排列和结合的?这种结构是如何形成的?在特定的固体中,电子和原子取什么样的具体的运动形态?它的宏观性质和内部的微观运动形态有什么联系?各种固体有哪些可能的应用?探索设计和制备新的固体,研究其特性,开发其应用。 在相当长的时间里,人们研究的固体主要是晶体。早在18世纪,阿维对晶体外部的几何规则性就有一定的认识。后来,布喇格在1850年导出14种点阵。费奥多罗夫在1890年、熊夫利在1891年、巴洛在1895年,各自建立了晶体对称性的群理论。这为固体的理论发展找到了基本的数学工具,影响深远。 1912年劳厄等发现X射线通过晶体的衍射现象,证实了晶体内部原子周期性排列的结构。加上后来布喇格父子1913年的工作,建立了晶体结构分析的基础。对于磁有序结构的晶体,增加了自旋磁矩有序排列的对称性,直到20

世纪50年代舒布尼科夫才建立了磁有序晶体的对称群理论。 第二次世界大战后发展的中子衍射技术,是磁性晶体结构分析的重要手段。70年代出现了高分辨电子显微镜点阵成像技术,在于晶体结构的观察方面有所进步。60年代起,人们开始研究在超高真空条件下晶体解理后表面的原子结构。20年代末发现的低能电子衍射技术在60年代经过改善,成为研究晶体表面的有力工具。近年来发展的扫描隧道显微镜,可以相当高的分辨率探测表面的原子结构。 晶体的结构以及它的物理、化学性质同晶体结合的基本形式有密切关系。通常晶体结合的基本形式可分成:高子键合、金属键合、共价键合、分子键合和氢键合。根据X 射线衍射强度分析和晶体的物理、化学性质,或者依据晶体价电子的局域密度分布的自洽理论计算,人们可以准确地判定该晶体具有何种键合形式。 固体中电子的状态和行为是了解固体的物理、化学性质的基础。维德曼和夫兰兹于1853年由实验确定了金属导热性和导电性之间关系的经验定律;洛伦兹在1905年建立了自由电子的经典统计理论,能够解释上述经验定律,但无法说明常温下金属电子气对比热容贡献甚小的原因;泡利在1927年首先用量子统计成功地计算了自由电子气的顺磁性,索末菲在1928年用量子统计求得电子气的比热容和输运现象,解决了经典理论的困难。

原子物理学期末考试试卷(E)参考答案

《原子物理学》期末考试试卷(E)参考答案 (共100分) 一.填空题(每小题3分,共21分) 1.7.16?10-3 ----(3分) 2.(1s2s)3S1(前面的组态可以不写)(1分); ?S=0(或?L=±1,或∑ i i l=奇?∑ i i l=偶)(1分); 亚稳(1分)。 ----(3分) 3.4;1;0,1,2 ;4;1,0;2,1。 ----(3分) 4.0.013nm (2分) , 8.8?106m?s-1(3分)。 ----(3分) 5.密立根(2分);电荷(1分)。 ----(3分) 6.氦核 2 4He;高速的电子;光子(波长很短的电磁波)。(各1分) ----(3分) 7.R aE =α32 ----(3分) 二.选择题(每小题3分, 共有27分) 1.D ----(3分) 2.C ----(3分) 3.D ----(3分) 4.C ----(3分) 5.A ----(3分) 6.D 提示: 钠原子589.0nm谱线在弱磁场下发生反常塞曼效应,其谱线不分裂为等间距的三条谱线,故这只可能是在强磁场中的帕邢—巴克效应。 ----(3分) 7.C ----(3分) 8.B ----(3分) 9.D ----(3分)

三.计算题(共5题, 共52分 ) 1.解: 氢原子处在基态时的朗德因子g =2,氢原子在不均匀磁场中受力为 z B z B z B Mg Z B f Z d d d d 221d d d d B B B μμμμ±=?±=-== (3分) 由 f =ma 得 a m B Z =±?μB d d 故原子束离开磁场时两束分量间的间隔为 s at m B Z d v =?=??? ? ? ?212 22 μB d d (2分) 式中的v 以氢原子在400K 时的最可几速率代之 m kT v 3= )m (56.010400 1038.131010927.03d d 3d d 232 232B 2 B =??????=?=??= --kT d z B kT md z B m s μμ (3分) 由于l =0, 所以氢原子的磁矩就是电子的自旋磁矩(核磁矩很小,在此可忽略), 故基态氢原子在不均匀磁场中发生偏转正好说明电子自旋磁矩的存在。 (2分) ----(10分) 2.解:由瞄准距离公式:b = 22a ctg θ及a = 2 1204z z e E πε得: b = 20012*79 **30246e ctg MeV πε= 3.284*10-5nm. (5分) 22 22 ()()(cot )22 (60)cot 30 3:1(90)cot 45 a N Nnt Nnt b Nnt N N θ σθπθπ?=?==?==? (5分) 3.对于Al 原子基态是2P 1/2:L= 1,S = 1/2,J = 1/2 (1分) 它的轨道角动量大小: L = = (3分) 它的自旋角动量大小: S = = 2 (3分) 它的总角动量大小: J = = 2 (3分) 4.(1)铍原子基态的电子组态是2s2s ,按L -S 耦合可形成的原子态: 对于 2s2s 态,根据泡利原理,1l = 0,2l = 0,S = 0 则J = 0形成的原子态:10S ; (3分) (2)当电子组态为2s2p 时:1l = 0,2l = 1,S = 0,1 S = 0, 则J = 1,原子组态为:11P ; S = 1, 则J = 0,1,2,原子组态为:30P ,31P ,32P ; (3分) (3)当电子组态为2s3s 时,1l = 0,2l = 0,S = 0,1 则J = 0,1,原子组态为:10S ,31S 。 (3分) 从这些原子态向低能态跃迁时,可以产生5条光谱线。 (3分)

固体物理学概念和习题答案

固体物理学概念和习题 答案 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

《固体物理学》概念和习题固体物理基本概念和思考题: 1.给出原胞的定义。 答:最小平行单元。 2.给出维格纳-赛茨原胞的定义。 答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。 3.二维布喇菲点阵类型和三维布喇菲点阵类型。 4. 请描述七大晶系的基本对称性。 5. 请给出密勒指数的定义。 6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。 7. 给出三维、二维晶格倒易点阵的定义。 8. 请给出晶体衍射的布喇格定律。 9. 给出布里渊区的定义。 10. 晶体的解理面是面指数低的晶面还是指数高的晶面为什么 11. 写出晶体衍射的结构因子。 12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。 13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。 14. 请写出晶格振动的波恩-卡曼边界条件。 15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式)

16. 给出声子的定义。 17. 请描述金属、绝缘体热容随温度的变化特点。 18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。 19. 简述晶体热膨胀的原因。 20. 请描述晶体中声子碰撞的正规过程和倒逆过程。 21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式) 22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。 23. 写出金属的电导率公式。 24. 给出魏德曼-夫兰兹定律。 25. 简述能隙的起因。 26. 请简述晶体周期势场中描述电子运动的布洛赫定律。 27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。 28. 给出空穴概念。 29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。 30. 描述金属、半导体、绝缘体电阻随温度的变化趋势。 31. 解释直接能隙和间接能隙晶体。 32. 请说明本征半导体与掺杂半导体的区别。 33. 请解释晶体中电子的有效质量的物理意义。 34. 给出半导体的电导率。 35. 说明半导体的霍尔效应与那些量有关。 36. 请解释德哈斯-范阿尔芬效应。

大学物理简明教程习题

17级临床医学《大学物理》复习题 班级:____________ 姓名:_________ 学号:___________________

习题1 1.1选择题 (1) 一运动质点在某瞬时位于矢径),(y x r 的端点处,其速度大小为 ( ) (A)dt dr (B)dt r d (C)dt r d || (D)22)()(dt dy dt dx + 答案:(D)。 (2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2 /2s m a -=,则 一秒钟后质点的速度 ( ) (A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。 答案:(D)。 (3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为 ( ) (A) t R t R ππ2,2 (B)t R π2,0 (C)0,0 (D)0,2t R π 答案:(B)。 1.2填空题 (1) 一质点,以1 -?s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。 答案: 10m ; 5πm 。 (2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m·s -1,则当t 为3s 时,质点的速度v= 。 答案: 23m·s -1 . (3) 一质点从静止出发沿半径R=1 m 的圆周运动,其角加速度随时间t 的变化规律是α=12t 2-6t (SI),则质点的角速度ω =__________________;切向加速度τa =_________________. 答案:4t 3 -3t 2 (rad/s), 12t 2 -6t (m/s 2 ) 1.5 一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求: (1) 第2秒内的平均速度;(2)第2秒末的瞬时速度; (3) 第2秒内的路程.

(完整版)原子物理学练习题及答案

填空题 1、在正电子与负电子形成的电子偶素中,正电子与负电子绕它们共同的质心的运动,在n = 2的状态, 电子绕质心的轨道半径等于 nm 。 2、氢原子的质量约为____________________ MeV/c 2。 3、一原子质量单位定义为 原子质量的 。 4、电子与室温下氢原子相碰撞,欲使氢原子激发,电子的动能至少为 eV 。 5、电子电荷的精确测定首先是由________________完成的。特别重要的是他还发现了_______ 是量子化的。 6、氢原子 n=2,n φ =1与H + e 离子n=?3,?n φ?=?2?的轨道的半长轴之比a H /a He ?=____,半短 轴之比b H /b He =__ ___。 7、玻尔第一轨道半径是0.5291010-?m,则氢原子n=3时电子轨道的半长轴a=_____,半短轴 b?有____个值,?分别是_____?, ??, . 8、 由估算得原子核大小的数量级是_____m,将此结果与原子大小数量级? m 相比, 可以说明__________________ . 9、提出电子自旋概念的主要实验事实是-----------------------------------------------------------------------------和_________________________________-。 10、钾原子的电离电势是4.34V ,其主线系最短波长为 nm 。 11、锂原子(Z =3)基线系(柏格曼系)的第一条谱线的光子能量约为 eV (仅需两位有效数字)。 12、考虑精细结构,形成锂原子第二辅线系谱线的跃迁过程用原子态符号表示应为——————————————————————————————————————————————。 13、如果考虑自旋, 但不考虑轨道-自旋耦合, 碱金属原子状态应该用量子数———————————— 表示,轨道角动量确定后, 能级的简并度为 。 14、32P 3/2→22S 1/2 与32P 1/2→22S 1/2跃迁, 产生了锂原子的____线系的第___条谱线的双线。 15、三次电离铍(Z =4)的第一玻尔轨道半径为 ,在该轨道上电子的线速度为 。 16、对于氢原子的32D 3/2能级,考虑相对论效应及自旋-轨道相互作用后造成的能量移动与电子动能及电子与核静电相互作用能之和的比约为 。 17、钾原子基态是4s,它的四个谱线系的线系限的光谱项符号,按波数由大到小的次序分别 是______,______,_____,______. (不考虑精细结构,用符号表示). 18、钾原子基态是4S ,它的主线系和柏格曼线系线系限的符号分别是 _________和 __ 。 19、按测不准关系,位置和动量的不确定量 ?x,x p ? 之间的关系为_____ 。 20、按测不准关系,位置和动量的不确定量 ?E,t ? 之间的关系为_____ 。 21、已知He 原子1P 1→1S 0跃迁的光谱线在磁场中分裂为三条光谱线。若其波数间距为?~v ,

大学物理简明教程课后习题加答案《完整版》

大学物理简明教程习题解答 习题一 1-1 |r ?|与r ?有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v 有无不同?其不同在哪里?试 举例说明. 解:(1)r ?是位移的模,?r 是位矢的模的增量,即 r ?12r r -=,12r r r -=?; (2)t d d r 是速度的模,即t d d r ==v t s d d . t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则 t ?r ?t r t d d d d d d r r r += 式中t r d d 就是速度径向上的分量, ∴t r t d d d d 与 r 不同如题1-1图所示. 题1-1图 (3)t d d v 表示加速度的模,即 t v a d d = ,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d ττ += 式中dt dv 就是加速度的切向分量. (t t r d ?d d ?d τ 与 的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求 出r =22y x +,然后根据v =t r d d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度 的分量,再合成求得结果,即 v =2 2 d d d d ??? ??+??? ??t y t x 及a = 2 22222d d d d ? ??? ??+???? ??t y t x 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r +=,

相关文档
相关文档 最新文档