文档库 最新最全的文档下载
当前位置:文档库 › 赤道仪的使用方法.

赤道仪的使用方法.

赤道仪的使用方法.
赤道仪的使用方法.

赤道仪的使用方法

追踪因日周运动而移动的天体,最简单的方法是使用赤道仪式台架,确实比经纬仪方便得多。只要明白了使用的要领,作目视观则或照相均会产生很好的效果。晚间的星空, 以北天极和南天极联机的自转轴为中心,每日旋转一次,称为日周运动。在赤道仪的台架上,把极轴(或称赤经轴)向北天极延长(在南半球时向南天极),就能简单地追踪星星的移动。换句话说,让赤道仪的极轴和地球的地轴平行,这个作业称为极轴调整,使用赤道仪时绝不能忘记,事先要与极轴

对准平。

赤道仪的台架分为附有赤经、赤纬微动杆的, 以及附装极轴马达追踪式两种。附有微动杆的比经纬台的星星追踪方便, 但须连续手动以便继续追踪, 如果预算许可,最好是采用马

达追踪式,会方便得多。必须调整赤道仪赤纬轴和极轴全体的平衡。如果平衡状态调节良好,固定螺丝放松时镜筒会静止,赤道仪的运转就会很圆滑,使用起来很平稳。

近年生产商在高级的赤道仪加进了GOTO功能,使用者可以指令望远镜自动指向观察目标。但耗电量大,野外观星时要携带大型蓄电池。

赤道仪的种类有很多。业余天文爱好者最常用的赤道仪有两种:分别是德国式及叉式赤道仪。德国式赤道仪适合折射、反射及折反射望远镜。而叉式赤道仪一般配合折反射望远镜使用。叉式赤道仪比德国式优胜的是不须要平衡锤,减轻仪器重量,方便野外观星。但是业余级数的叉式赤道仪稳定性不及德国式赤道仪。博冠系列望远镜用的赤道仪是德国式的赤道仪(如图)。

那我们就主要讲讲德国式赤道仪的使用方法吧!

(一) 赤道仪简介

肉眼可见的天体,用寻星镜就可对准,赤道仪之作微调跟踪之用。而深空天体就必须利用赤道仪的时角、赤纬度盘才能找到。

赤道仪有三个轴:

1.地平轴。垂直于地平面,下端与三脚架台连接,上端与极轴连接,有地平高度刻度盘。绕地平轴旋转可调整望远镜的地平方位角。

2.极轴。一端与地平轴相连,上下扳动极轴可调整地平高度角。另一端与赤纬轴成90o角连接,装有时角度盘,用于望远镜指向的时角(赤经)调整。

3.赤纬轴。与极轴成90o相连,上端与主镜筒成90o相连,以保证镜筒与极轴平行。下端连接平衡锤,装有赤纬度盘,用于望远镜指向的赤纬度调整。

(二)对准、观测深空暗天体

第一步:极轴调整。使望远镜极轴和地球自转轴平行,指向北天极。

1.主镜与赤道仪、三角架连接好,把有“N”标志的一条腿摆在正北方。调整三角架高度,使三角架台水平。

2.松开极轴(赤经轴)制紧螺钉,把主镜旋转到左边或右边。松开平衡锤制紧螺钉,移动平衡锤,使望远镜与锤平衡。把望远镜旋回上方,制紧螺钉。

3.松开地平制紧螺钉,转动赤道仪,使极轴(望远镜)指向北方(指南针定向),制紧螺钉。

4.松开极轴与地平轴连接制紧螺钉,上下扳动极轴,使指针对准观测地点的地理纬度(例:济南地理纬度为+36.6o,即北纬+36.6o),制紧螺钉。(海宁市地理坐标为北纬30°15’-30°3 5’,东经120°18’-120°52’)

5.松开赤纬轴制紧螺钉,转动望远镜使其与极轴平行(亦即与当地经线圈平行),制紧螺钉。

6.从望远镜(或调好光轴的寻星镜)中观看北极星是否在视场中央,如有偏差,则需对极轴的地平方位角,地平高度角作精细调整,直至北极星在视场中央不再移动。

7.拧动时角刻度盘,零时(0h)对准指针;拧动赤纬刻度盘,90o对准指针(有的在出厂时已经固定好90o或0o)。

至此,您的望远镜就与地球自转轴、观测点子午面完全平行。任凭地球转动,望远镜始终都对着北极星。

特别提示:极轴调整好后,三脚架、极轴方位角、高度角都不能有丝毫移动,否则要重新调整。北天极与北极星不完全重合,而是向小熊座β星偏1o。

第二步:计算出观测点观测时刻的地方恒星时。

例:计算2002年5月1日北京时间19时的济南地方恒星时。

1.从当年天文年历(北京天文馆每年出版一本)中查出2002年5月1日世界时0h格林尼治地方恒星时为:14h35m00s。

2.从相关资料中查出济南(观测点)地理经度为东经117o,化为时角为7h48m00s(15o=1h,1o=4m,1’=4s)。

3.用下面公式计算

s=So+(m北-8h+λ)+(m北-8h)*0.002738

式中s 地方恒星时,在观测点所测定的春分点γ的时角

So世界时0h格林尼治地方恒星时

m北北京地方平时

λ 观测点的地理经度(时角)

8h 北京时间是东八时区标准区时

0.002738 换算系数(1/365.2422)

将已知数据代入公式

S=14h35m00s+(19h00m00s-8h+7h48m00s)+(19h00m00s-8h)*0.002738

=14h35m00s+18h48m00s+00h1m48s =33h24m48s

因为结果大于24h,所以要把其中的24h化为一天,减去24h。S=43h25m13s-24h=19h25m13s

答:2002年5月1 日北京时间19h00m00s时的济南地方恒星时是

5月2日09h24m48s。

第三步:计算被观测天体观测时刻的时角(t)。

t:以本地子午圈为起点,由东向西将整个圆周分为24小时(每小时等于15o)。

例:狮子座内的m65(河外星系)。

1.查出该天体在天球上的坐标为:

赤经α=11h18m00s;赤纬δ=13o13’。

赤经α:天体在天球上的经度,以通过春分点γ的经纬为0点,由西向东将圆周分为24小时。

赤纬δ:天体在天球上的纬度,以天赤道为0o,向北正向南负,各分90o。

2.用公式计算

t=s-α t=09h24m48s-11h18m00s= -1h53m12s

第四步:操作望远镜对准天体。

1.松开赤纬轴制紧螺钉,旋转主镜,先对准天赤道(赤纬度盘0o),然后向北旋转δ=13o13’,对准赤纬度盘指针,制紧螺钉。

2.松开极轴制紧螺钉,绕极轴向东(时角t为负)旋转望远镜,将m65的时角-1h53m12s 对准时角刻度盘指针,制紧螺钉。

3.先用低倍镜观测m65,如不在市场中央,可用赤经赤纬微调手轮将天体调整到视场中央。由于地球转动,目标会渐渐移出视场,要不断用微调手轮跟踪。若为自动跟踪赤道仪,打开电门即可。

特别提示:第二天再观测该天体时,因地球公转,该天体的时角将增加3m56s,变为-1h49m16s。

要领:

1、赤纬手轮——可以调赤纬刻度0~90度。

2、赤经手轮——可以调时间盘,本来是用来配合天体坐标来找目标的,这里要是不会也没有关系,不妨碍使用。

3、此款无极轴镜,需通过主镜来进行极轴辅助校准。首先把赤经轴对准北极星,然后安装低倍目镜,转赤纬,使主镜正对北极星方向(不是在主镜里找到北极星),调节支架前后两个螺杆,这是调节当地使用纬度的,调这个,使赤道仪渐渐变换仰角,在主镜视野中心中有北极星,这样粗对极轴,目视精度就可以了。

4、支架要求水平,如果没有水平泡,就要考虑买一个,不然极轴精度更低。

5、附件盘要撑开,这可以大幅提高支架的稳定度。

6、松开赤经锁紧杆(一般在赤经轴上),转动赤经,配重和负载应该做到平衡。

补充:

调极轴的时候将赤道仪的赤经归零赤纬放在0度或是90度上然后就不要动赤道仪了,用赤道仪下面的地平的经纬系统对北极星,对准后就不要再去动地平系统了。松开赤道仪的定位锁紧钮,将望远镜对向你要看的天体的大约位置,然后再锁紧赤道仪的定位钮用调整手柄将目标居中,这样你就可以用单轴(赤经)跟踪天体了。带电跟的就打开开关调好角速来自动跟星。

对于天文初学者,请先学会认识几颗亮星:仙女座α星(2.1等),猎户座α星(0.6等),狮子座α星(1.3等),牧夫座α星(0.2等),牛郎星和织女星。你在任何时候都能找到其中1至2颗亮星。以其中1颗为基点,设置刻度盘。

利用刻度盘找天体

(1)记住这几颗亮星的时角和纬度

表1:

(2)对准表1中某一颗星,同时将可转动的赤经和赤纬两个刻度盘分别转动到列表中的数字;

(3)从天体位置表中选择你要观测的天体,将望远镜转到该天体的时角和纬度上,对于手动赤道仪,时角略加几分,一般都能观测到你想要观测的天体,除非是望镜口径不够大或者刻度盘不够精确。

(4)对于赤纬刻度盘不能转动的赤道仪,如:EM9,对准表1中某颗星,(譬如:轩辕十四),并转动赤经刻度盘到10?

○八米,锁紧。然后,记下赤纬的读数,譬如:+12°,它与轩辕十四的赤纬1° 00'相差+11°。以后你要观测时,如:大熊(开阳)ζ星,只要将望远镜转到赤经刻度13H的24分,,赤纬刻度54°55 '加上+11°= +66°,就可以看到大熊(开阳)ζ星了。

因为赤道仪EM9的刻度盘较小,可能误差较大。

美丽的星云和双星:

这里要提一句,你必须先调整好极轴。调整极轴有几种方法,赤道仪使用说明书中都讲到了。

楼主不会是打算摆好后,直接对着赤道仪上标着的刻度,把镜子转到要找天体的赤经和赤纬,然后目视吧?

以我的经验来说,这样找到的几率实在是太低了。

我也可以说还是新手吧,第一支镜,也是唯一的一支镜,是博冠的114/900.赤道仪好像是EQ3的,如果我没记错。赤道仪看上去比这个EM9个头要大点,但我觉得还是很粗糙的,不是很准,我的赤道仪赤纬还有很大的空程差,用起来很不爽。

当年第一次拿到镜子时,也有这样的想法,后来发现,这做根本不可行,误差太大了。后来有了手提电脑,对着星图,通过星座来定位想找的天体来目视的。用这种方法,一找就找到了几个M天体,还是比较容易找到的。至于那些刻度盘,我觉得没什么用了。

其实只要极轴对准了,我觉得基本就没有什么问题了,至少目视是没有什么问题的。

至于怎样对极轴,总体来说,我是这样做的,先让极轴指着正北方,再调节俯仰,让极轴指着北极星。

先把主镜转到与极轴平行,就是说赤纬调到90度。但由于刻度盘可能不会很准,甚至有很大的误差(我的就是这样)。如果你能明显看出主镜与极轴不平行,就要靠你目测去调到平行了。

然后水平转动赤道仪(不知EM9可不可以这样转,我的EQ3是可以的,有个螺钉,松开后,赤道仪就可是整个水平转动,而不用动三脚架)。转到主镜大致对着正北方向。然后在寻星镜中找到北极星(我现在用的是指星笔,我那个寻星镜太垃圾了),有可能极轴角度差得太远,在寻星镜中看不到北极星,这时可以先调一调极轴的俯仰,让极轴仰角大致与北极星的目视仰角相等,极轴大致对着北极星,在寻星镜中能看到北极星就行了。在寻星镜中看着北极星,再调一调赤道仪的水平方位,直至主镜大致是指着正北方(就是说,在寻星镜中看北极星,大致在中间。注意,不一定在中心,微微转动赤道仪,看到北极星在视野中走动时,让北极星走到中间就行了)。再用低倍目镜,从主镜中找到北极星,一直调到主镜指着正北方。这样,赤道仪的水平方位就确定下来了。这时要把赤道仪锁住,不能再水平转动了。

接下来,就是调节极轴的俯仰角度。调节那两个螺杆就可以调节俯仰角度,直至在主镜中看到北极星在主镜中心。这样,极轴就大致指着北极星了(其实这样做还是有一定的误差的,不过对目视影响不大)。

这样调好后,目视应该没什么问题了。

DDS-11A电导率仪使用说明书

*DDS-11A型数字电导率仪说明书 一、概述 DDS-11A电导率仪是一种数字显示精密台式电导率仪。仪器广泛适用于科研、生产、教学和环境保护等许多学科和领域。用于测量各种液体介质电导率,当配以0.1、0.01规格常数的电导电极时,仪器可以测量高纯水电导率。 仪器主要设计特点: ?高可靠性、高稳定性 ?先进的电路结构 ?输出测量讯号 ?高清晰度数码显示(字高20mm 3 1/2位) 二、技术性能 1、仪器使用条件 供电电源:AC220V±10%V,50 Hz /60Hz 为保证仪器测量值精确可靠,测量时请在下列环境条件下 使用:环境温度0℃~40℃;空气相对湿度≤85%;无显著的振动、强磁场干扰。 2、主要技术参数 测量范围 0~2×105(μS/cm) 准确度±1% F*S 仪器稳定性 0.5% 温度补偿范围 15~35(℃) 输出测量讯号 0~20(mV) 仪器外形尺寸 270×180×60(mm) 仪器重量:1.5(Kg) 消耗功率:3(W) 可配电极规格常数:0.01、0.1、1、10 四种 三、使用和维护 1、电导电极规格常数和电导池常数 常用电导电极规格常数(J 0)有四种:0.01、0.1、1和10。 其实际电导池常数(J实)允差为≤±20%。即同一规格常数的电导电极,其实际电导池常数的存在范围为J实=(0.8~1.2)J0。 测量液体介质,选用何种规格的电导电极,应根据被测液介质电导率范围而定。一般地,四种规格电导电极,适用电导率测量范围参照表1。 本仪器配套供应(标准套)电导电极(光亮、铂黑)各一支,其规格常数J0=1。其它规格常数电极,用户根据需要另配。 2、仪器量程显示范围 本仪器设有四档量程。 当选用规格常数J0=1电极测量时,其量程显示范围如表2。

赤道仪入门手册

赤道仪使用入门手册 一、操作赤道仪 赤道仪的操纵主要是高度和方位角调节,这两处调节用于观测较大方向改变,在仪器下面有一个大滚花旋钮用于方位角调节,松开旋钮可旋转赤道仪上部方向轴,用T字旋钮调节高度,这些用于校准极轴。 高度调节 方位调节 另外,赤道仪还有赤经RA(HA时角)和赤纬DEC方向控制,用于观测,松开锁钮可形成大的方向转变,在锁钮锁住后可用控制杆进行微调。在高度调节轴上附加刻度盘,用于根据当地纬度校准极轴。 赤纬刻度赤纬锁钮 赤经刻度 赤经微调赤纬微调

二、极轴校准 为了望远镜在天空中准确跟踪目标,首先需要校准赤道仪。方法是移动赤道仪指向北(南)天极,北半球的人们很容易在北天极附近找到很亮的北极星,如果目视,粗调极轴就足够了。在开始观测之前,首先确保你的赤道仪水平,寻星镜与望远镜对齐。 1. 设置纬度 转动望远镜桶并保持平衡,查询本地纬度和时区,用地图或GPS 查询本地地理位置,在赤道仪底座旁边,能发现一个0-90高度刻度盘。 EQ1 EQ3/EQ4 轻轻逆时针转动锁杆,来松开转轴。底部有一个螺丝推动转轴下面一个“舌头”,改变角度,旋转直到指针对准当地纬度,然后锁住转轴。 2. 寻找北极星

北极星,从北天极(NCP)观测小于一等星,由于北极星并不是正好位于北天极,因此当地球自转,北极星轨迹是一个很小的圆。北极星偏移北天极,靠近仙后座,与北斗星柄根部连线上。 3. 定位望远镜对准北极星 打开赤纬(DEC)锁钮,旋转望远镜桶直到指针对准刻度盘90读数,拧紧赤纬锁钮。移动三脚架以便望远镜向北(EQ3/EQ4赤道仪有“N”标识对准北面),赤经(RA)轴粗对北极星,这步可使用指南针。打开底座下面方位调节钮,通过寻星镜使北极星位于十字中心,虽然真正北天极距离北极星可能有二倍月亮视直径(北极星每天环绕北极一圈),除非你长期摄影曝光,否则不会发现这个问题。

赤道仪详细使用方法

赤道仪的使用方法 追踪因日周运动而移动的天体,最简单的方法是使用赤道仪式台架,确实比经纬仪方便得多。只要明白了使用的要领,作目视观则或照相均会产生很好的效果。晚间的星空,以北天极和南天极联机的自转轴为中心,每日旋转一次,称为日周运动。在赤道仪的台架上,把极轴(或称赤经轴)向北天极延长(在南半球时向南天极),就能简单地追踪星星的移动。换句话说,让赤道仪的极轴和地球的地轴平行,这个作业称为极轴调整,使用赤道仪时绝不能忘记,事先要与极轴对准平。 赤道仪的台架分为附有赤经、赤纬微动杆的, 以及附装极轴马达追踪式两种。附有微动杆的比经纬台的星星追踪方便,但须连续手动以便继续追踪,如果预算许可,最好是采用马达追踪式,会方便得多。必须调整赤道仪赤纬轴和极轴全体的平衡。如果平衡状态调节良好,固定螺丝放松时镜筒会静止,赤道仪的运转就会很圆滑,使用起来很平稳。 近年生产商在高级的赤道仪加进了GOTO功能,使用者可以指令望远镜自动指向观察目标。但耗电量大,野外观星时要携带大型蓄电池。 赤道仪的种类有很多。业余天文爱好者最常用的赤道仪有两种:分别是德国式及叉式赤道仪。德国式赤道仪适合折射、反射及折反射望远镜。而叉式赤道仪一般配合折反射望远镜使用。叉式赤道仪比德国式优胜的是不须要平衡锤,减轻仪器重量,方便野外观星。但是业余级数的叉式赤道仪稳定性不及德国式赤道仪。博冠系列望远镜用的赤道仪是德国式的赤道仪(如图)。 那我们就主要讲讲德国式赤道仪的使用方法吧! (一)赤道仪简介 肉眼可见的天体,用寻星镜就可对准,赤道仪之作微调跟踪之用。而深空天体就必须利用赤道仪的时角、赤纬度盘才能找到。 赤道仪有三个轴: 1.地平轴。垂直于地平面,下端与三脚架台连接,上端与极轴连接,有地平高度刻度盘。绕地平轴旋转可调整望远镜的地平方位角。 2.极轴。一端与地平轴相连,上下扳动极轴可调整地平高度角。另一端与赤纬轴成90o角连接,装有时角度盘,用于望远镜指向的时角(赤经)调整。 3.赤纬轴。与极轴成90o相连,上端与主镜筒成90o相连,以保证镜筒与极轴平行。下端连接平衡锤,装有赤纬度盘,用于望远镜指向的赤纬度调整。 (二)对准、观测深空暗天体 第一步:极轴调整。使望远镜极轴和地球自转轴平行,指向北天极。 1.主镜与赤道仪、三角架连接好,把有“N”标志的一条腿摆在正北方。调整三角架高度,使三角架台水平。 2.松开极轴(赤经轴)制紧螺钉,把主镜旋转到左边或右边。松开平衡锤制紧螺钉,移动平衡锤,使望远镜与锤平衡。把望远镜旋回上方,制紧螺钉。 3.松开地平制紧螺钉,转动赤道仪,使极轴(望远镜)指向北方(指南针定向),制紧螺钉。

电导率仪使用说明

DDS-11A型电导率仪使用方法 (1).未开电源开关前,观察表针是否指零,如不指零,可调整表头上的螺丝使表针 指零。 (2)将校正、测量开关扳在校正位置。 (3)插接电源线,打开电源开关,并预热分钟,调节调正器使电表满度指示。(4)当使用前8个量程来测量电导率低于300 us.cm-1的液体时,选用低周,这时设置低 周即可。当使用后4个量程来测量电导率在300 us.cm-1至105 us.cm-1范围里的液 体时,则设置为高周。将量程选择开关扳到所需要的测量范围,如预先不知被测溶液 电导率的大小,应先把其扳在最大电导率测量档,然后逐档下降,以防表针打弯。 (5).测量读数:一般的测量其常数,然后再慢慢地调节,把测量开关打到校正档调 好零点,选好量程,再把测量开关打到测量的位置然后再读数。(6).电极的使用: 当被测溶液的电导率低于10u ,使用DJS——1型光亮电极。这时应把R 调节在与所 配套的电极的常数项对应的位置上。例如,若配套电极的常数为0.95,则应调节在 0.95处,有如若配套电极的常数为1.1,则应把R调节在1.1的位置上。 (7).将电极插头插入插口内,旋紧插口上的紧固螺丝,在将电极浸入待测溶液中。 接着校正,当用1~8量程测量时,校正时扳在低周。当用9~12量程测量时,则校正 时扳向高周,即将扳到校正,调节使指示针满度。(8).当用0~0.1或0~0.3 这两档测量高纯水时,先把电极引线插入电极插孔,在电极未浸入溶液之前,调节使电表指 示为最小值,然后开始测量,当量程开关扳在×0.1,扳在低周。但电导池插口未插 接电极时,电表就有指示,这是正常现象,因电极插口及接线有电容存在。只要调节:电容补偿便可将此指示调为零,但不必这样做,只须待电极引线插入插口后,再将指 示调为最小值即可。用奇数各档时,都看表面上面一条刻度;而当用偶数各档时,都 看表面下面一条刻度。 (9).测量工作条件:1.环境温度:5-35℃;2.相对湿度:≤80%; 3.供电电压:220±22V,50±1H (10).测量时电极插头插入插孔,电极浸入待测溶液中,电极引线不能潮湿,否则测试不准。 (11).电导率测试处数据后,转换为电阻:R(电阻)=1/G(电导率) (11).测试标准:无水乙醇:≥10MΩ异丙醇:≥30MΩ

ZEQ25GT全平衡中国式赤道仪(CEM) 使用说明书剖析

ZEQ25GT全平衡中国式赤道仪(CEM) 使用说明书 一.概述 赤道仪已有几百年的历史,在中小型赤道仪领域用的最多的就是德国式赤道仪(GEM)。然而就系统而言,德国式赤道仪(GEM)大部分情况下都不处于平衡状态(纬度越低,不平衡越严重),针对此缺陷iOptron公司在全球独一无二的推出世界首创的全平衡中国式赤道仪(CEM)。相对于德国式赤道仪(GEM)系统的重心在赤经轴的前端,全平衡中国式赤道仪(CEM)将系统的重心处于赤经轴的中部底座的支撑点上(图1)。这样的设计使得赤道仪在任意纬度位置都接近全平衡状态,即使在装有望远镜和平衡锤满载的情况下高度方位调节也非常轻松,同时由于重心下移,赤道仪体积减小,钢性增加,本体重量下降,便携性更好。由于全平衡中国式赤道仪(CEM)的特殊结构即使在低纬度甚至赤道区域不需要任何附件原配三脚架也能正常使用。 图1 ZEQ25GT赤道仪(CEM)带自动寻星(GOTO)和跟踪功能,特别适用于天文观测与摄影。它采用大口径整体钢主轴配合大模数大直径蜗轮和大孔径球轴承,底部为双臂支撑结构和大直径底座,纬度调节采用双螺纹千斤顶结构,因此具有非常优异的刚性和稳定性。经过优化设计该赤道仪体积小巧,自重轻,承重大(12.3kg)。蜗轮蜗杆弹性消间隙机构,蜗杆与电机的传动为同步皮带,驱动为

工作时功耗极低。跟踪速度有自动Solar,Lunar,Sidereal。ZEQ25GT赤道仪(CEM)都标配经过精密调校的高精度极轴望远镜(#7100), 与一般德国式赤道仪不同的是ZEQ25GT赤道仪(CEM)赤纬轴在任何位置都不会遮挡极轴镜。赤纬电机电缆在任意位置都不会缠绕。ZEQ25GT赤道仪(CEM)燕尾座采用滑块夹紧方式,避免损伤望远镜燕尾。 ZEQ25GT赤道仪带自动导星接口(ST - 4),暗视野照明接口Reticle,ioptron 标准接口iOptron Port(电动调焦,指星笔,园顶随动控制等). #8408控制手柄也采用32位ARM高性能控制器,大屏幕4行LCD,实时显示赤道仪各种状态数据。控制手柄装有大容量星表数据库(59,000+),具有极轴校准程序(在没有极轴镜或有遮挡的情况下可校准极轴),具有星体识别功能,带串行RS232接口可通过计算机对控制手柄和电机控制板在线升级,兼容ASCOM协议,并通过ASCOM控制赤道仪。 二.性能参数 1. 赤道仪类型:全平衡中国式赤道仪(CEM) 2. 最大载重:12.3 kg (不包括重锤) 3. 赤道仪本体重: 4.7 kg (不含平衡杆和平衡锤) 4. 纬度调节范围:0~60°(0~38°,33~60°) 5. 方位调节范围:±10° 6. 赤经蜗轮:144齿Φ88 mm (蜗轮蜗杆消间隙) 7. 赤纬蜗轮:144齿Φ88 mm (蜗轮蜗杆消间隙) 8. 赤经轴:Φ35 mm 钢 9. 赤纬轴:Φ35 mm 钢 10. 赤经轴承:Φ55 mm 球轴承 11. 赤纬轴承:Φ55 mm 球轴承 12. 平衡杆:Φ20 x 300 mm(0.7kg) 13. 平衡锤: 4.7 kg 14. 底座直经:Φ98 mm 15. 驱动电机:行星减速直流伺服电机(带光电编码器) 16. 分辨率:0.14角秒 17. 回转速度: 4.5°/秒(MAX) 18. 电源:直流12V 1.5A 19. 功耗:约0.25A (跟踪) 0.75A (GOTO) 20. 极轴镜:约2角分,带调光暗视野照明(#7100) 21. 水平指示:水平泡 22. 燕尾座: 3.4寸(86mm) 滑块式Vixen 23. 三脚架: 1.5寸不锈钢5 kg (可选配2寸不锈钢8 kg) 24. 星表数据库:59,000+ 星体,具有星体识别功能 25. 极轴对准:极轴镜或极轴校准程序 26. 过中天处理:停止,自动翻转或继续跟踪 27. 导星接口:ST - 4 28. 通讯接口:RS-232 29. 间隙补偿:RA 和DEC 分别设置 30. PEC :PEC

新手入门天文望远镜使用小常识

新手入门——天文望远镜使用小常识 一、如何调试寻星镜 1、白天,先将主镜筒对准远处的一个目标(约500米远),如烟囱、空调室外机等。装上低倍率目镜(如20MM目镜)寻找目标。将镜筒大致对准目标后,调节焦距系统直到目标清晰,并使之处于主镜中心点,然后将脚架全部锁紧。 2、小心调整寻星镜上的三个螺丝,将主镜看到的目标调到寻星镜的十字架中心。 3、更换高倍率目镜(如10MM目镜),重复上述的步骤。调试时,主镜里的目标始终控制在寻星镜的十字架中心。 *寻星镜调准后,千万不要动它。观测月亮,尽量选择在“弯月”,这时能更清晰的看到环形山、月海等。 二、赤道仪的简介和调整 (一)赤道仪简介 赤道仪有三个轴: 1、地平轴。垂直于地平面,下端与三脚架台连接,上端与极轴连接,有地平高度刻度盘。绕地平轴旋转可调整望远镜的地平方位角。 2、极轴(赤经轴)。一端与地平轴相连,上下扳动极轴可调整地平高度角。另一端与赤纬轴成90o角连接,装有时角度盘,用于望远镜指向的时角(赤经)调整。

3、赤纬轴。与极轴成90o相连,上端与主镜筒成90o相连,以保证镜筒与极轴平行。下端连接平衡锤,装有赤纬度盘,用于望远镜指向的赤纬度调整。 (二)赤道仪的调整 极轴调整。使望远镜极轴和地球自转轴平行,指向北天极。 1、主镜与赤道仪、三角架连接好,把将有“N”标志的一条腿摆在正北方。调整三角架高度,使三角架台水平。 2、松开极轴(赤经轴)螺钉,把主镜旋转到左边或右边。松开平衡锤螺钉,移动平衡锤,使望远镜与锤平衡。把望远镜旋回上方,制紧螺钉。 3、松开地平螺钉,转动赤道仪,使极轴(望远镜)指向北方(指南针定向),制紧螺钉。 4、松开极轴与地平轴连接螺钉,上下扳动极轴,使指针对准观测地点的地理纬度,制紧螺钉。 5、松开赤纬轴螺钉,转动望远镜使其与极轴平行(亦即与当地经线圈平行),制紧螺钉。 6、从望远镜(或调好光轴的寻星镜)中观看北极星是否在视场中央,如有偏差,则需对极轴的地平方位角,地平高度角作精细调整,直至北极星在视场中央不再移动。 7、拧动时角刻度盘,零时(0h)对准指针;拧动赤纬刻度盘,90o对准指针。 至此,望远镜就与地球自转轴、观测点子午面完全平行。

电导率仪的使用方法和电导率仪工作原理

电导率仪的使用方法和电导率仪工作原理 一.电导率仪的概念 电导率:水的导电性即水的电阻的倒数,通常用它来表示水的纯净度。电导率是物体传导电流的能力。电导率测量仪的测量原理是将两块平行的极板,放到被测溶液中,在极板的两端加上一定的电势(通常为正弦波电压),然后测量极板间流过的电流。根据欧姆定律,电导率(G)--电阻(R)的倒数,是由电压和电流决定的。 二.电导率仪的单位 电导的基本单位是西门子(S),原来被称为姆欧,取电阻单位欧姆倒数之意。因为电导池的几何形状影响电导率值,所以标准的测量中用单位S/cm来表示电导率,以补偿各种电极尺寸造成的差别。单位电导率(C)简单的说是所测电导(G)与电导池常数(L/A)的乘积.这里的L为两块极板之间的液柱长度,A为极板的面积。=ρl=l/σ (1)定义或解释电阻率的倒数为电导率。σ=1/ρ; (2)单位: 在国际单位制中,电导率的单位是西门子/米,其它单位有:s/cm, us/cm。1S/m=0.01s/cm=10000us/cm; (3)说明电导率的物理意义是表示物质导电的性能。电导率越大则导电性能越强,反之越小。 三.电导率的测量原理 引起离子在被测溶液中运动的电场是由与溶液直接接触的二个电极产生的。此对测量电极必须由抗化学腐蚀的材料制成。实际中经常用到的材料有钛等。由二个电极组成的测量电极被称为尔劳施(Kohlrausch)电极。 电导率的测量需要弄清两方面。一个是溶液的电导,另一个是溶液中1/A的几何关系,电导可以通过电流、电压的测量得到。这一测量原理在当今直接显示测量仪表中得到应用。 而K= L /A A——测量电极的有效极板 L——两极板的距离 这一值则被称为电极常数。在电极间存在均匀电场的情况下,电极常数可以通过几何尺寸算出。当两个面积为1cm2的方形极板,之间相隔1 cm组成电极时,此电极的常数K=1cm-1。如果用此对电极测得电导值G=1000μS,则被测溶液的电导率K=1000μS/ cm。

天文摄影之自动导星超级入门

天文摄影之自动导星超级入门(日文原创翻译) 天文摄影, 入门, 导星, 超级, 自动 星云星团摄影之自动导星“超级”入门 1 在长时间曝光的天文摄影中,代替人们完成对天体转动来精密追踪的就是自动导星。在这个自动导星的世界里,有使用摄像头的,有通过电脑软件来控制赤道仪的电机转动等等,在新的时代里价格便宜的产品陆续登场,都成为了流行的话题。在这里,太高了、太难了、完全不懂……等这样想象而放弃了自动导星的你,不想来挑战下吗? 用天文望远镜对星云星团的拍摄是天文摄影中的热门之一。读者的天文摄影角也好,每个月都有很多星云星团的照片入选。投稿的比例中,压倒性地超过了其他体裁的天文摄影。绚丽多彩的犹如蒙上层面纱的星云,能让你感受到宇宙的宏伟的旋涡星系等等之类的照片,我想有很多人都因为憧憬着这等美图而开始进行天文摄影的吧。但是这里要面临两个困难,就是【合焦】和【导星】。 合焦方面的话,例如大家很多在使用的单反相机,最近的新出的机器都有“Live View”模式,就当作差不多都能解决这个问题了。假如你现在揣着钱准备入手单反的话,强烈推荐带有Live View模式的相机。(图1) 剩下的就是导星了。以SBIG公司的ST-4和TSV为开端,使用了冷却CCD的独立型自动导星(图2),和需用电脑的ST-5C和ST-402类似的冷却CCD自动导星,都是获得好评且人气很高的产品。但是,不管多少高价位的装置,对各种功能都能熟练操作都是需要相当的经验和处理能力的,所以对新手来说是很难推荐的。 话又说回来,这1、2年里,有使用USB摄像头,网络摄像头、PC摄像头等便宜的小型摄像头,然后用自动导星软件(免费软件也有很多)通过电脑来控制赤道仪,另外一个自动导星装置迅速调整(正确的来说应该是同时进行调整…这个可是内外厂家和业余爱好者通过努力而得到的东西)。读者的天文摄影角的资料栏中有【用PHD导星】等等【摄星套件】之类进行表示的,就是在实际拍摄中有用电动导星的作品,这些软件新手也能使用,而且令人高兴的是,不算电脑的话,用相当少的开销就可以了。 和去年本杂志评测用的赤道仪E-ZEUS化(天文导读2007年6月号、9月号)一样,准备了各种各样这种自动导星装置以及相关联的零件,加上笔记本电脑(Windows XP Windows Vista),反复测试。结果,虽然和带冷却CCD摄像头的自动导星相比较在星星的亮度方面有点劣势,但可以知道,在导星的精度和软件的易用性方面已经具备了充分的实力。不管你对自动导星方面有多少的知识和经验,不看下此类文章的话,会多多少少将有些错误的手法带入到新的导星系统中去。因此,和编辑部商量了下,好不容易引进了廉价的导星装置,对于以前从未使用过导星装置的,面向“超级”新手的自动导星设置相关的文章将在本栏目中连载,为了不再让你迷茫,本文将尽量采用简明易懂的文字来阐述。 究竟为什么非得用【导星】呢? 话题就此展开(文章好像也太菜鸟了,算了算了,请往下看吧) 地球以每86164.09秒自转一周。与自转轴可以平行调整的【极轴】装置的赤道仪,极轴以每86164.09秒/周自转和反向旋转的话,望远镜的准直视界(向着望远镜的中心视界)应该可以一直朝着同个天体,这个就是赤道仪最大的特长。你有连带极轴驱动马达的赤道仪的话,就是真正的天体追踪装置了。所以如图4,在装载于有极轴驱动马达的赤道仪上的天文望远镜的直焦上拍摄的话,就可以简单地进行长时间曝光的星云星团拍摄了。 但是!实际该怎么说呢,只要不是短时间的曝光,那单单这样拍摄的话也是拍不好的。如图5,图像都有拖线了,到底是什么地方不对呢? 你的问题? 在新手中常有的就是由于赤道仪的调整误差引起的。很多赤道仪极轴里都内藏了极轴镜,用极轴镜看到北极星,把赤道仪正确地调整到让极轴指向北天极(图6)。这时,调整的误差大的话,时间一长望远镜就不准直了。拍摄的时候就会发现有拖线的现象了。 调整误差的影响,在望远镜的焦距越是长的类型上越是能看得清楚,因曝光时间,调整的误差的方向和多少,天球上的天体的位置等等因素的影响而改变(单单看数字上稍微有点难,有兴趣的人请参考【2008年版天文年鉴】P.328页) 但是,也可以断言因为你自己而引起赤道仪的调整误差的事也是有的。因为极轴镜的调整偏差这种事很少见。 说起【你的问题】这种场合,也有因为望远镜的摆放场所不对等原因,如地面比较软,脚下顶着霜柱等地面,还有调整望远镜而影响准直偏离。

在线电导率仪说明书

在线电导率仪说明 书 1

工业电导率(TDS)仪 Industrial Conductivity Controller 使用说明书 Instruction Manual 用户须知: ●请在使用本仪器前,详细阅读本说明书。 ●仪表在出厂前已经设置好了配套电极系数,如更换电极需重新输出新 的电极系数。 ●在使用过程中若发现仪器工作异常或损坏请联系经销商,切勿自行修 理。

一、性能特征: MIK-ZTDS210型工业电导率(TDS)仪表,是工业电导率仪表智能化产品,可对各种工业用水的电导率(TDS)值进行连续测量和控制,本装置广泛应用于科学实验装备、化工、制药、环保、冶金、造纸、食品、饮料及供水等行业。 根据水工业的环境和特点结合国际供电标准,考虑了特殊环境的电气设计规范,增加了220V AC(MIK-ZTDS210A)以及安全的低电压24V AC,24V DC(MIK-ZTDS210B)供电选择。 本产品的主要特点: ?出厂标准配置中文界面,语言化菜单,可中英切换 ?可进行电导率(TDS)和温度的测量、上限控制、电流输出、数字通讯 ?可自由调整电导率温度补偿系数和TDS转换系数 ?双路继电器,可对电导率(TDS)和温度分别进行控制,迟滞量可自由调 整 ?一组仪表模式隔离变送端口,可组态成电导率(TDS)或温度,最大环 路电阻300Ω ?声讯报警可开关功能,经过界面选项设定开或关 ?液晶背光可选择节能模式,定时自动关闭 ?高性能CPU,良好的电磁兼容性能 ?具有一键恢复出厂参数功能 ?密码管理功能,防止非专业人员的误操作

二、主要技术指标: 测量范围: 0.01 电极: 0.02~20.00 uS/cm-1 0.1 电极: 0.2~200.0 uS/cm-1 1.0 电极: 2~ uS/cm-1 10.0电极: 20 us/cm~20.00 mS/cm-1 准确度:+ 1% FS 稳定性:±1%(FS)/24h 配套电极: 电极常数:1.0cm-1 材质:不锈钢 温补元件:NTC 10K 温度显示范围:0~100℃(分辨率0.1℃) 介质温度:5 ~ 100℃ 螺纹尺寸:1/2"管螺纹 介质压力:0~0.5MPa 线缆长度:5m或约定______m 温度补偿:以25℃为基准,温补系数可修正 显示方式:128*64液晶 输出信号:两组继电器,报警转换触点(3A/250 V AC) 供电电源:MIK-ZTDS210A (AC 220V±10% 50Hz) MIK-ZTDS210B(AC/DC 24V ±10% )

DDS-11A电导率仪使用说明书

*DDS-11A型电导率仪说明书 一、概述 DDS-11A电导率仪是一种数字显示精密台式电导率仪。仪器广泛适用于科研、生产、教学和环境保护等许多学科和领域。用于测量各种液体介质电导率,当配以0.1、0.01规格常数的电导电极时,仪器可以测量高纯水电导率。 仪器主要设计特点: ?高可靠性、高稳定性 ?先进的电路结构 ?输出测量讯号 ?高清晰度数码显示(字高20mm 31/2位) 二、技术性能 1、仪器使用条件 供电电源:AC220V±10%V,50 Hz /60Hz 为保证仪器测量值精确可靠,测量时请在下列环境条件下 使用:环境温度0℃~40℃;空气相对湿度≤85%;无显著的振动、强磁场干扰。 2、主要技术参数 测量范围 0~2×105(μS/cm) 准确度±1% F*S 仪器稳定性 0.5% 温度补偿范围 15~35(℃) 输出测量讯号 0~20(mV) 仪器外形尺寸 270×180×60(mm) 仪器重量:1.5(Kg) 消耗功率:3(W) 可配电极规格常数:0.01、0.1、1、10 四种 三、使用和维护 1、电导电极规格常数和电导池常数 常用电导电极规格常数(J0)有四种:0.01、0.1、1和10。 其实际电导池常数(J实)允差为≤±20%。即同一规格常数的电导电极,其实际电导池常数的存在范围为J实=(0.8~1.2)J0。 测量液体介质,选用何种规格的电导电极,应根据被测液介质电导率范围而定。一般地,四种规格电导电极,适用电导率测量范围参照表1。 本仪器配套供应(标准套)电导电极(光亮、铂黑)各一支,其规格常数J0=1。其它规格常数电极,用户根据需要另配。 2、仪器量程显示范围 本仪器设有四档量程。 当选用规格常数J0=1电极测量时,其量程显示范围如表2。

电导率仪的测定原理及操作步骤

电导率仪的测定原理及操作步骤 测定原理 电导率测量仪的测量原理是将两块平行的极板,放到被测溶液中,在极板的两端加上一定的电势(通常为正弦波电压),然后测量极板间流过的电流。根据欧姆定律,电导率(G)--电阻(R)的倒数,由导体本身决定的。电导率的基本单位是西门子(S),原来被称为欧姆。因为电导池的几何形状影响电导率值,标准的测量中用单位电导率S/cm来表示,以补偿各种电极尺寸造成的差别。单位电导率(C)简单的说是所测电导率(G)与电导池常数(L/A)的乘积.这里的L为两块极板之间的液柱长度,A为极板的面积。水溶液的电导率直接和溶解固体量浓度成正比,而且固体量浓度越高,电导率越大。电导率和溶解固体量浓度的关系近似表示为:1.4μS/cm=1ppm或2μS/cm=1ppm(每百万单位CaCO3)。利用电导率仪或总固体溶解量计可以间接得到水的总硬度值,如前述,为了近似换算方便,1μs/cm 电导率=0.5ppm硬度。电导率是物质传送电流的能力,与电阻值相对,单位Siemens/cm(S/cm),该单位的10-6以μS/cm表示,10-3时以mS/cm表示。但是需要注意:(1)以电导率间接测算水的硬度,其理论误差约20-30ppm(2)溶液的电导率大小决定分子的运动,温度影响分子的运动,为了比较测量结果,测试温度一般定为20℃或25℃(3)采用试剂检测可以获取比较准确的水的硬度值。水的电导率与其所含无机酸、碱、盐的量有一定关系。当它们的浓度较低时,电导率随浓度的增大而增加,因此,该指标常用于推测水中离子的总浓度或含盐量。不同类型的水有不同的电导率。新鲜蒸馏水的电导率为0.2-2μS/cm,但放置一段时间后,因吸收了CO2,增加到2—4μS/cm;超纯水的电导率小于0.10/μS/cm;天然水的电导率多在50—500μS/cm之间,矿化水可达500—1000μS/cm;含酸、碱、盐的工业废水电导率往往超过10000μS/cm;海水的电导率约为30000μS/cm。电极常数常选用已知电导率的标准氯化钾溶液测定。不同浓度氯化钾溶液的电导率(25℃)列于下表。溶液的电导率与其温度、电极上的极化现象、电极分布电容等因素有关,仪器上一般都采用了补偿或消除措施。水样采集后应尽快测定,如含有粗大悬浮物质、油和脂,干扰测定,应过滤或萃取除去。1)先将铂黑电极浸在去离子水中数分钟。2)调节表头螺丝M,使指针指在零点。3)将校正、测量开关K2扳到“校正”位置。4)打开电源开关K 预热数分钟后,调节校正调节器Rw3使指针在满刻度上。5)将高周、低周开关K3扳向适当的档上。6)将量程选择开关R1扳到适当的档上。7)调节电极常数调节器Rw2,使其与所用电极的常数相对应(这样就相当于把电极常数调整为1,所测得溶液的电导率在数值上就等于溶液的电导)。8)用少量待测溶液冲洗电极后,将其插头插在电极插口Kx内,并浸入待测溶液中。9)调节校正调节器Rw3至满刻度后,将校正、测量开关K2扳到测量位置。读得表针的指示数,再乘上量程选择开关R1所指的倍数,即为此溶液的电导率。重复测定一次,取其平均值。10)将校正、测量开关K2扳到“校正”位置,取出电极。11)测量完毕,断开电源。电极用去离子水荡洗后,浸到去离子水中备用。

电导率仪的使用方法和电导率仪工作原理

电导率仪的使用方法和电导率仪工作原理新的一年到来了,最近来电很多,都是咨询电导率仪的使用方法,现在诚缘人发布以下知识,仅供参考! 一.电导率仪的概念 电导率:水的导电性即水的电阻的倒数,通常用它来表示水的纯净度。电导率是物体传导电流的能力。电导率测量仪的测量原理是将两块平行的极板,放到被测溶液中,在极板的两端加上一定的电势(通常为正弦波电压),然后测量极板间流过的电流。根据欧姆定律,电导率(G)--电阻(R)的倒数,是由电压和电流决定的。 二.电导率仪的单位 电导的基本单位是西门子(S),原来被称为姆欧,取电阻单位欧姆倒数之意。因为电导池的几何形状影响电导率值,所以标准的测量中用单位S/cm来表示电导率,以补偿各种电极尺寸造成的差别。单位电导率(C)简单的说是所测电导(G)与电导池常数(L/A)的乘积.这里的L为两块极板之间的液柱长度,A为极板的面积。=ρl=l/σ (1)定义或解释电阻率的倒数为电导率。σ=1/ρ; (2)单位: 在国际单位制中,电导率的单位是西门子/米,其它单位有:s/cm,us/cm。1S/m=0.01s/cm=10000us/cm;

(3)说明电导率的物理意义是表示物质导电的性能。电导率越大则导电性能越强,反之越小。 三.电导率的测量原理 引起离子在被测溶液中运动的电场是由与溶液直接接触的二个电极产生的。此对测量电极必须由抗化学腐蚀的材料制成。实际中经常用到的材料有钛等。由二个电极组成的测量电极被称为尔劳施(Kohlrausch)电极。 电导率的测量需要弄清两方面。一个是溶液的电导,另一个是溶液中1/A的几何关系,电导可以通过电流、电压的测量得到。这一测量原理在当今直接显示测量仪表中得到应用。 而K= L /A A——测量电极的有效极板 L——两极板的距离 这一值则被称为电极常数。在电极间存在均匀电场的情况下,电极常数可以通过几何尺寸算出。当两个面积为1cm2的方形极板,之间相隔1 cm组成电极时,此电极的常数K=1cm-1。如果用此对电极测得电导值G=1000μS,则被测溶液的电导率K=1000μS/ cm。 一般情况下,电极常形成部分非均匀电场。此时,电极常数必须用标准溶液进行确定。标准溶液一般都使用KCl溶液这是因为KC l的电导率的不同的温度和浓度情况下非常稳定,准确。0.1 mol/l

在线电导率仪说明书

工业电导率(TDS)仪 Industrial Conductivity Controller 使用说明书 Instruction Manual 用户须知: ●请在使用本仪器前,详细阅读本说明书。 ●仪表在出厂前已经设置好了配套电极系数,如更换电极需重新输出新的电极系数。 ●在使用过程中若发现仪器工作异常或损坏请联系经销商,切勿自行修理。 一、性能特征: MIK-ZTDS210型工业电导率(TDS)仪表,是工业电导率仪表智能化产品,可对各种工业用水的电导率(TDS)值进行连续测量和控制,本装置广泛应用于科学实验装备、化工、制药、环保、冶金、造纸、食品、饮料及供水等行业。 根据水工业的环境和特点结合国际供电标准,考虑了特殊环境的电气设计规范,增加了220V AC (MIK-ZTDS210A)以及安全的低电压24V AC,24V DC(MIK-ZTDS210B)供电选择。 本产品的主要特点: ?出厂标准配置中文界面,语言化菜单,可中英切换 ?可进行电导率(TDS)和温度的测量、上限控制、电流输出、数字通讯 ?可自由调整电导率温度补偿系数和TDS转换系数 ?双路继电器,可对电导率(TDS)和温度分别进行控制,迟滞量可自由调整

?一组仪表模式隔离变送端口,可组态成电导率(TDS)或温度,最大环路电阻300Ω ?声讯报警可开关功能,通过界面选项设定开或关 ?液晶背光可选择节能模式,定时自动关闭 ?高性能CPU,良好的电磁兼容性能 ?具有一键恢复出厂参数功能 ?密码管理功能,防止非专业人员的误操作 二、主要技术指标: 测量范围: 0.01 电极: 0.02~20.00 uS/cm-1 0.1 电极: 0.2~200.0 uS/cm-1 1.0 电极: 2~2000 uS/cm-1 10.0电极: 20 us/cm~20.00 mS/cm-1 准确度:+ 1% FS 稳定性:±1%(FS)/24h 配套电极: 电极常数:1.0cm-1 材质:不锈钢 温补元件:NTC 10K 温度显示范围:0~100℃(分辨率0.1℃) 介质温度:5 ~ 100℃ 螺纹尺寸:1/2"管螺纹 介质压力:0~0.5MPa 线缆长度:5m或约定______m 温度补偿:以25℃为基准,温补系数可修正 显示方式:128*64液晶 输出信号:两组继电器,报警转换触点(3A/250 V AC) 供电电源:MIK-ZTDS210A (AC 220V±10% 50Hz) MIK-ZTDS210B(AC/DC 24V ±10% ) 电源消耗:<=3W 环境条件:(1)温度0~60 ℃(2)湿度≤85%RH 外形尺寸:96×96×110mm(高×宽×深) 开孔尺寸:92×92mm(高×宽) 三.固定支架安装 将控制器从面板前放入,再装上下两个固定夹,用螺丝批锁紧即可固定。

望远镜安装与使用

观测攻略之如何选购望远镜 FSQ106-赤道式 FSQ106物镜

Meade203-地平式

目镜 开普勒折射镜原理图 我该买什么样的天文望远镜? 相信这是每个想买望远镜的同好面临的第一个问题,也是各大天文论坛的相关版面经常能见到的问题。对于这个问题,大家一般都能热心的进行解答,但是常见的解答往往是先问提问者:你准备投资多少

钱?你主要希望观测什么目标?是以目视观测为主还是摄影观测为主?不同的观测对象和观测形式应该选择不同的望远镜……等等。 等到提问者回答了,大家就又热心的帮助,告诉他应该买什么类型的望远镜,参数是什么样的,大约需要多少钱……等等。这样就基本解决了问题。 必须承认,这是对于这个问题的一个比较科学的解答流程。但是,这种解答方式只适用于提问者本身具备一定的观测基础。其实,更多的提问者只是刚刚入门的同好,他们并不知道自己主要会观测什么目标,也不太清楚会常用哪种观测形式,这样问反而有可能把他们问晕,导致最后买不到合适的器材。并且,对于杂志这样的平面媒体,交互性远远不如网络,也不可能针对每一个读者的需求提出建议,因此我倒是觉得,应该换一个思路来推荐器材。 这个思路有一个基本的假设,那就是假定大多数同好在刚入门时对于观测的需求和我类似,观测水平的成长性也和我类似。这样,我

就可以根据自己的情况来制定一个适合多数入门同好的器材购买方案。剩下的一些有比较特殊需求的同好再进行单独讨论。 以折射镜起步 望远镜不外乎三大类——折射式、反射式、折反射式。其中最基础,也是最容易上手的,非折射镜莫属。折射镜的制造成本不是三类中最低的,但它的光路结构是最简单的,也最符合普通人对于望远镜的认识和使用习惯。入门级的折射镜价格便宜,成像清晰锐利,比较明显的缺陷可能只是会有一些色差(什么叫色差我们后面的文章会谈到)。折射镜适用的观测范围非常之大,日常维护却比较省心。这种种优点决定了折射镜是入门级爱好者最适合使用的天文望远镜。 在经济条件允许的情况下,我建议大家购买这么一套装备(第一遍看可能很多名词和参数看不懂,没关系,后面我们会详细解释): 1、购买知名品牌的产品。国内品牌在价格上有一些优势,国际品牌在质量上可能会略胜一筹,如果你是第一次购镜手头又不是特别宽裕,还是考虑国内品牌吧。 2、主镜口径80mm-102mm,焦距600mm-1000mm。

电导率仪标准操作程序

标准操作程序 确保实验数据的正确和仪器的精度。 适用范围:适用于电导率仪。 职责:质量管理部:应按照确保设备产出符合规定要求的原则,对所有化验员进行设备操作的理论和实操培训,确保化验员能够按照规定的要求,正确、规范操作设备。化验员:均应遵照培训内容,执行本程序规定的操作要求。 1.仪器的主要技术性能 1.1测量范围 1.2推荐仪器使用电极常数

1.3仪器键盘说明 a)“Setup”键,此键为设置键,在测量状态下,按此键可进入电导常数设置、温度数值设置。 b)“On/Off”键,此键为仪器开关键。 c)“Exit”键,此键返回退出键,在常数设置和温度设置状态下返回至前次状态。 d)“▲”键,此键为数值调节上升键。在测量状态下长按此键可以进行电导率和TDS测量状态转换。 e)“▼”键,此键为数值调节下降键。在测量状态下长按此键可以进行电导率和TDS测量状态转换。 f g h)“Enter”键,此键为确认键,按此键为确认上一步操作 1.4正常使用条件 a) 环境温度:(0~40)℃; b) 相对湿度:不大于85%; c) 供电电源:直流电源DC 9V/400mA; d) 除地球磁场外无其他磁场干扰 2.标准操作程序: 2.1开机电源线插入仪器电源插座,按电源开关,接通电源,预热30分钟后,可进行测量。 2.2温度设置 2.2.1 DDS-307A型电导率仪一般情况下不需要对温度进行设置。2.2.2 如需要设置温度,应在不接温度电极的情况下,用温度计测出被测溶液温度,然后按“温度△”或“温度▽”键调节显示值,使温度显示为被测溶液的温度,按“确认”键,即完成当前温度的设置:

PRO系列赤道仪SynScan(PRO系列赤道仪使用说明书)

随着PRO系列赤道仪在国内的拥有量逐渐增多,或者有很多同好虽然没有这系列赤道仪,但对于它们也充满了好奇。寻找EQ3PRO HEQ5PRO EQ6PRO的说明书,它们的安装说明书跟普通的赤道仪没有什么太大区别,主要在调试使用方面,由于增加了自己的创新科技和功能,所以与其它有一些不同。也就是它们共有的Synscan手控器的调试和使用。对于新手来说对他充满了好奇,所以特在新手指导中,发下此帖,以供大家参考,有不详细或者疏漏错误的地方请大家指正!先列下三种赤道仪以及他们的有关数据介绍吧!由于上传附件限制,我会陆续在帖子里上传。(以下仅代表个人意见) EQ3PRO HEQ5PRO EQ6PRO

它们的主要特色是配置了SYNSCANGOTO系统手控制器,全电脑自动化控制,内置了强大的超过13400颗星体数据库,可以很方便的对星体的搜寻和定位,所以PRO 系列托架是天文爱好者观测星空的一个很理想的选择,另外在官方网站https://www.wendangku.net/doc/e815655819.html,上长期提供最新的软件升级下载。主要参数 1:通过对软件的增强,提高观测精度,补偿械误误差,使定位精度可达1弧分。 2:马达1.8°步进,64微步驱动。 3:回转速度可达3.4°/秒(800x)。 4:在追踪天体时,为单轴追踪,振动微小,非常适合长时间曝光条件下的摄影。 5:具备完善的导航速度:0.25x 0.50x 0.75 或1x。 6:包含有完整的M, NGC, IC 星体数据库目录。 7:具有很强的定期纠错功能。 8:通过R232数据线可与PC兼容。 9:官方网站https://www.wendangku.net/doc/e815655819.html,长期提供SYNSCANG手控器最新软件的升级及下载。 (1)HEQ5 PRO 本体重:10kg 重锤重:2 x 5.1kg 钢托架尺寸:1.75" 钢托架重:5.6kg 电源:12V,2A 直流插头外径55内径21 速比:705 总重:25.8kg 承重:13.5kg(保证跟踪精度前提下) (2)EQ6 PRO 本体重:16kg 重锤重:2 x 5.1kg 钢托架尺寸:2.0” 钢托架重:7.5 kg 电源:12V,2A 速比:705 总重:33.7kg 承重:18.5kg(保证跟踪精度前提下 EQ3 RPO 本体重:4 kg 重锤重:3.8kg 支架:5.6kg, 承重:7KG

最新教您天文望远镜基础知识入门

教您天文望远镜基础知识入门 一、望远镜种类 (一)折射式望远镜 折射式望远镜的构造如下图: 折射式望远镜由两个透镜组成:固定在镜筒前端的是物镜(其口径大小直接决定望远镜的性能);在镜筒尾端可以调换的是目镜。

上图为星特朗AstroMaster系列 90EQ 优点:视野较大、星像明亮,使用和维护比较方便,反差及锐利度较同口径的反射镜佳,摄影及高倍行星观测,效果都相当不错。缺点:有色像差(色差)问题,会降低分辨率。 (二)反射式望远镜 反射式望远镜的构造如下图:

上图为牛顿式反射式望远镜。

上图为星特朗AstroMaster系列130EQ 优点:无色差、强光力和大视场,非常适合深空天体的目视观测。缺点:彗差和像散较大,视野边缘像质变差,操作不太容易, 维护相对复杂。 (三)折反射式望远镜 折反射式望远镜的构造如下图:

上图为星特朗Omni XLT 127

综合了折射镜和反射镜的优点:视野大、像质好、镜筒短、携带方便。有施密特-卡塞格林式和马克苏托夫-卡塞格林2种。 三种类型望远镜优缺点对比: (1)折射式:通常小型(口径80毫米以下)折射望远镜具有便携优势,结构简单可靠性高,可以在旅行时随身携带。在拍摄要求不高的情况完全可以满足摄影需求,而且与相机连接简单可以作为长焦镜头使用。 (2)反射式:大口径反射虽然不便携,但比其他类型望远镜有很多优势。首先,造价低廉,很多爱好者可以自己磨制。其次,大口径成像效果更好,利于高倍观测,而且焦比较小,适合观测和拍摄深空天体。 (3)折反式:折反同时具备折射式望远镜的便携和反射式望远镜的成像优势,但价格较贵。 三种望远镜优缺点对比: 折射式 优点:结构简单,便携,成像锐度好, 缺点:镜筒封闭维护保养容易有色差、球差,口径大的价格相对较贵 光学结构:物镜——目镜结构 反射式 优点:口径大,成像亮度高,无色差,价格相对便宜 缺点:不便携,有球差,镜筒开放维护保养相对困难 光学结构:反射镜——副镜——目镜结构 折反式 优点:便携,成像质量较好,镜筒封闭维护保养容易,

雷磁DDSJF型电导率仪使用说明书

DDSJ-308F型电导率仪使用说明书 上海仪电科学仪器股份有限公司

敬告用户: ●欢迎您选用DDSJ-308F型电导率仪,请您在初次使用或长 时间未使用本仪器前详细阅读使用说明书,它将帮助您更好的使用本仪器。 ●仪器超过一年必须送计量部门或有资格的单位复检,合格 后方可使用。

目录 一、概述 二、仪器主要技术性能 三、仪器结构 四、仪器使用 五、仪器的维护 六、仪器的成套性 七、附录

一、概述 DDSJ-308F型电导率仪是一台新颖、实用的实验室分析仪器,适用于实验室精确测量水溶液的电导率、电阻率、总溶解固态量(TDS)、盐度值,也可用于测量纯水的纯度与温度,以及海水淡化处理中的含盐量的测定,其主要特点为: 1、支持测量电导率、电阻率、总固态溶解物(TDS)、盐度值、温度值。 2、在全量程范围内,具有自动温度补偿、自动校准、自动量程、自动频率切换等功能。 3、支持标定功能,用户可以标定电极常数或TDS转换系数。 4、采用点阵式液晶,显示清晰,外形美观。具有良好的人机界面,操作方便。 5、支持GLP规范: a、仪器要求设置操作者编号,并记录所有操作者的过程; b、记录并允许查阅、打印标定数据。 c、支持存贮符合GLP规范的测量数据200套。 6、允许查阅、打印、删除存贮的测量数据。 7、支持三种测量模式:连续测量模式、定时测量模式和平衡测量模式,可以满足用户的不同测量需要。 8、具有USB接口,配合专用的通信软件,可以实现与PC的连接。 9、具有断电保护功能,在仪器使用完毕关机后或非正常断电情况下,仪器内部贮存的测量数据、标定数据以及设置的参数不会丢失。 10、带有背光设计,可以在阴暗的环境下使用。 11、采用新型材料PC面板,轻触按键设计,可靠性好,寿命长。

相关文档
相关文档 最新文档