文档库 最新最全的文档下载
当前位置:文档库 › 原子物理第二章练习

原子物理第二章练习

原子物理第二章练习
原子物理第二章练习

第二章 练习题

1、选择题

(1)若氢原子被激发到主量子数为n 的能级,当产生能级跃迁时可能发生的所有谱线总条数应为: A .n-1 B .n(n-1)/2 C .n(n+1)/2 D .n

(2)氢原子光谱赖曼系和巴耳末系的系线限波长分别为:

A.R/4 和R/9

B.R 和R/4

C.4/R 和9/R

D.1/R 和4/R

(3)氢原子赖曼系的线系限波数为R,则氢原子的电离电势为:

A .3Rhc/4 B. Rhc C.3Rhc/4e D. Rhc/e

(4)氢原子基态的电离电势和第一激发电势分别是:

A .13.6V 和10.2V;

B –13.6V 和-10.2V; C.13.6V 和3.4V; D. –13.6V 和-3.4V

(5)由玻尔氢原子理论得出的第一玻尔半径0a 的数值是:

A.5.291010-?m

B.0.529×10-10m

C. 5.29×10-12m

D.529×10-12m

(6)根据玻尔理论,若将氢原子激发到n=5的状态,则:

A.可能出现10条谱线,分别属四个线系

B.可能出现9条谱线,分别属3个线系

C.可能出现11条谱线,分别属5个线系

D.可能出现1条谱线,属赖曼系

(7)欲使处于激发态的氢原子发出αH 线,则至少需提供多少能量(eV )?

A.13.6

B.12.09

C.10.2

D.3.4

(8)氢原子被激发后其电子处在第四轨道上运动,按照玻尔理论在观测时间内最多能看到几条线? A.1 B.6 C.4 D.3

(9)氢原子光谱由莱曼、巴耳末、帕邢、布喇开系…组成.为获得红外波段原子发射光谱,则轰击基态氢原子的最小动能为:

A .0.66 eV B.12.09eV C.10.2eV D.12.57eV

(10)用能量为12.7eV 的电子去激发基态氢原子时,受激氢原子向低能级跃迁时最多可能出现几条光谱线(不考虑自旋); A.3 B.10 C.1 D.4

(11)玻尔磁子B μ为多少焦耳/特斯拉?

A .0.9271910-? B.0.9272110-? C. 0.9272310-? D .0.9272510-?

(12)电子偶素是由电子和正电子组成的原子,基态电离能量为:

A.-3.4eV

B.+3.4eV

C.+6.8eV

D.-6.8eV

(13)根据玻尔理论可知,氦离子H e +的第一轨道半径是:

A .20a B. 40a C. 0a /2 D. 0a /4

(14)一次电离的氦离子 H e +处于第一激发态(n=2)时电子的轨道半径为:

A.0.53?10-10m

B.1.06?10-10m

C.2.12?10-10m

D.0.26?10-10m

(15)假设氦原子(Z=2)的一个电子已被电离,如果还想把另一个电子电离,若以eV 为单位至少需提供的能量为:

A .54.4 B.-54.4 C.13.6 D.3.4

(16)夫—赫实验的结果表明:

A 电子自旋的存在;

B 原子能量量子化

C 原子具有磁性;

D 原子角动量量子化

(17)处于基态的氢原子被能量为12.09eV 的光子激发后,其轨道半径增为原来的

A .4倍 B.3倍 C.9倍 D.16倍

2、简答题

(1)用简要的语言叙述玻尔理论,并根据你的叙述导出氢原子基态能量表达式.

(2)写出下列物理量的符号及其推荐值(用国际单位制):真空的光速、普朗克常数、玻尔半径、玻尔磁子、玻尔兹曼常数、万有引力恒量.

原子物理学第二章习题答案

第二章 原子的能级和辐射 试计算氢原子的第一玻尔轨道上电子绕核转动的频率、线速度和加速度。 解:电子在第一玻尔轨道上即年n=1。根据量子化条件, π φ2h n mvr p == 可得:频率 21211222ma h ma nh a v πππν= == 赫兹151058.6?= 速度:61110188.2/2?===ma h a v νπ米/秒 加速度:222122/10046.9//秒米?===a v r v w 试由氢原子的里德伯常数计算基态氢原子的电离电势和第一激发电势。 解:电离能为1E E E i -=∞,把氢原子的能级公式2 /n Rhc E n -=代入,得: Rhc hc R E H i =∞-=)1 1 1(2=电子伏特。 电离电势:60.13== e E V i i 伏特 第一激发能:20.1060.1343 43)2 111(2 2=?==-=Rhc hc R E H i 电子伏特 第一激发电势:20.101 1== e E V 伏特 用能量为电子伏特的电子去激发基态氢原子,问受激发的氢原子向低能基跃迁时,会出现那些波长的光谱线 解:把氢原子有基态激发到你n=2,3,4……等能级上去所需要的能量是: )1 11(22n hcR E H -= 其中6.13=H hcR 电子伏特 2.10)21 1(6.1321=-?=E 电子伏特 1.12)31 1(6.1322=-?=E 电子伏特 8.12)4 1 1(6.1323=-?=E 电子伏特 其中21E E 和小于电子伏特,3E 大于电子伏特。可见,具有电子伏特能量的电子不足以把基

态氢原子激发到4≥n 的能级上去,所以只能出现3≤n 的能级间的跃迁。跃迁时可能发出的光谱线的波长为: ο ο ο λλλλλλA R R A R R A R R H H H H H H 102598 )3 111( 1121543)2 111( 1 656536/5)3 121( 1 32 23 22 22 1221 ==-===-===-= 试估算一次电离的氦离子+ e H 、二次电离的锂离子+ i L 的第一玻尔轨道半径、电离电势、第一激发电势和赖曼系第一条谱线波长分别与氢原子的上述物理量之比值。 解:在估算时,不考虑原子核的运动所产生的影响,即把原子核视为不动,这样简单些。 a) 氢原子和类氢离子的轨道半径: 3 1,2132,1,10529177.0443,2,1,44102 22 01212 2220= ======?==? ?===++++++ ++-Li H H Li H H H He Z Z r r Z Z r r Z Li Z H Z H Z me h a n Z n a mZe n h r e 径之比是因此,玻尔第一轨道半;,;对于;对于是核电荷数,对于一轨道半径;米,是氢原子的玻尔第其中ππεππε b) 氢和类氢离子的能量公式: ??=?=-=3,2,1,)4(222 12 220242n n Z E h n Z me E πεπ 其中基态能量。电子伏特,是氢原子的6.13)4(22 204 21-≈-=h me E πεπ 电离能之比: 9 00,4002 222== --==--+ ++ ++ H Li H Li H He H He Z Z E E Z Z E E c) 第一激发能之比:

(完整版)原子物理学复习

第一章 原子的基本状况 一、学习要点 1.原子的质量和大小, R ~ 10-10 m , N o =6.022×1023/mol 2.原子核式结构模型 (1)汤姆孙原子模型 (2)α粒子散射实验:装置、结果、分析 (3)原子的核式结构模型 (4)α粒子散射理论: 库仑散射理论公式: (5)原子核大小的估计 (会推导): 散射角θ:),2sin 11(Z 241 2020θ πε+?=Mv e r m α粒子正入射:20024Z 4Mv e r m πε= ,m r ~10-15-10-14 m 二、基本练习 1.选择 (1)原子半径的数量级是: A .10-10cm; B.10-8m C. 10-10m D.10-13m (2)原子核式结构模型的提出是根据α粒子散射实验中: A.绝大多数α粒子散射角接近180? B.α粒子只偏2?~3? C.以小角散射为主也存在大角散射 D.以大角散射为主也 ()(X)Au A A g M N ==12-27C 1u 1.6605410kg 12 ==?的质量22012c 42v Ze b tg M θπε=

存在小角散射 (3)用相同能量的α粒子束和质子束分别与金箔正碰,测量金原 子核半径的上限. 问用质子束所得结果是用α粒子束所得结果的几倍? A. 1/4 B . 1/2 C . 1 D. 2 4一强度为I 的α粒子束垂直射向一金箔,并为该金箔所散射。若θ=90°对应的瞄准距离为b ,则这种能量的α粒子与金核可能达到的最短距离为: A. b ; B . 2b ; C. 4b ; D. 0.5b 。 2.简答题 (1)简述卢瑟福原子有核模型的要点. (2)简述α粒子散射实验. α粒子大角散射的结果说明了什么? 3.褚书课本P 20-21:(1).(2).(3); 第二章 原子的能级和辐射 一、学习要点: 1.氢原子光谱:线状谱、4个线系(记住名称、顺序)、广义巴尔末公式)1 1 (~22n m R -=ν、 光谱项()2n R n T =、并合原则:)()(~n T m T -=ν 2.玻尔氢原子理论: (1)玻尔三条基本假设的实验基础和内容(记熟)

原子物理学 杨福家第二章习题答案

第二章习题 2-1 铯的逸出功为,试求: (1)铯的光电效应阈频率及阈值波长; (2)如果要得到能量为的光电子,必须使用多少波长的光照射? EhνWhνν为光电效应的最低频率时,∵当=(阈-=W解:(1)频率),即 ν W×1010=××10= /=×/-7whcλhcwλ(m) -19-34 14h ==×∵//=102hνmvW∵-/2=(2) νλcνhνh m = /×== 10=/(m)= ∴+++,Li和两次电-7hc 离的锂离子2-2 对于氢原子、一次电离的氦离子He分别计算它们的: (1)第一、第二玻尔轨道半径及电子在这些轨道上的速度; (2)电子在基态的结合能; (3)由基态到第一激发态所需的激发能量及由第一激发态退激到基态所放光子的波长. 解:(1)由类氢原子的半径公式 由类氢离子电子速度公式 2r/1nm= 1=×∴H: 1H 2r/1=2=×2 H 66V(m/s) 1/1=×=×1010× 1H

66V(m/s)×1010×1/2=×= 2H r/2==×22He+66V(m/s) 2r/2nm= 1He+: =×∴ 1He+2 10×10××2/1= = 1 He+ r/3nm= 1Li: ×=1 Li++ 66V(m/s)10×=×10×2/2= 2 He+++2 V(m/s) 3/1=× 10=×10× 1 Li++66V(m/s) 2r/3=2=× 2 Li++66 3/2=×=×1010× 2 Li++ (2) 结合能:自由电子和原子核结合成基态时所放出来的能量,它等于把电子从基态电离掉所需要的能量。 n=1∵基态时E= H: 1H22ZE==××2He+: =1He+++22ZE=××Li3: ==1Li+2Z3/4=(3) 由里德伯公式 =××注意H、He+、Li++的里德伯常数的近似相等就可以算出如下数值。 ++发生非弹性散射,试问电子欲使电子与处于基态的锂离子Li2-3 至少具有多大的动能? 要点分析:电子与锂质量差别较小, 可不考虑碰撞的能量损失.可以近似认为电子的能量全部传给锂,使锂激发. 解:要产生非弹性碰撞,即电子能量最小必须达到使锂离子从基态达++n=1Li激发到第一激发态从基态第一激发态,分析电子至少要使 n=2. 因为 2++222hcZREEE××3/4eV= -1/2-=(1/1 ⊿=)≈3Li12讨论:锂离子激发需 要极大的能量

原子物理复习题

第一章: 1. 原子半径的数量级是( ) A. 1010-cm B. 810-m C. 1010-m D. 1310-m 2. 原子质量的数量级为( ) A. 272610 ~10--千克 B. 343510~10--千克 C. 27 2210~10--千克 D. 272510~10--千克 3. 阿伏加德罗常数的正确值( ) A. 236.02210? 摩尔 B. 236.02210? /摩尔 C. 236.62210? 摩尔 D. 236.02210-? /摩尔 4. 利用汤姆逊模型和卢瑟福模型分析α粒子散射实验, α粒子受原子核正电荷作用力情况的异同点是( ) A. 原子内外相同,原子表面和中心处不同 B. 原子外相同,原子表面,原子内不同 C. 原子表面相同,原子内和中心处不同 D. 原子外,原子表面相同,原子内和中心处不同 5. 关于α粒子散射实验,以下说法正确的是( ) A. 绝大多数散射角近180° B. α粒子只偏2°、3 ° C. 以小角散射为主,也有大角散射 D. 以大角散射为主,也存在小角散射 6. 进行卢瑟福理论实验时,发现小角散射与理论不符,这说明( ) A. 原子不一定存在核式结构 B. 散射物太厚 C. 卢瑟福理论是错误的 D. 小角散射时一次散射理论不使用 7. 用相同能量的α粒子束和质子束同金箔正碰。测量金原子半径的上限,问质子束是粒子束结果的几倍?( ) A. 1/4 B. 1/2 C. 1 D. 2 8. 在同一α粒子源和散射靶的条件下,观察到α粒子被散射到90°和60°角方向上,单位立体角内几率之比为(卢瑟福散射公式:2 4222201sin ()()4dn Ze nNt d Mv θπε=Ω)( ) A. 4:1 B. 2 C. 1:4 D. 1:8 第二章: 1. 氢原子光谱赖曼系和巴尔末系的系限波长分别是( ) A. R/4和R/9 B. R 和R/4 C. 4/R 和9/R D. 1/R 和4/R 2. 氢原子所观测到的全部线光谱应理解为( ) A. 处于某一状态的一个原子所产生的

原子物理学 杨福家第二章习题答案

第二章习题 2-1 铯的逸出功为1.9eV ,试求: (1)铯的光电效应阈频率及阈值波长; (2)如果要得到能量为1.5eV 的光电子,必须使用多少波长的光照射? 解:(1) ∵ E =hν-W 当hν=W 时,ν为光电效应的最低频率(阈频率),即 ν =W /h =1.9×1.6×10-19/6.626×10-34 =4.59×1014 ∵ hc /λ=w λ=hc /w =6.54×10-7(m) (2) ∵ mv 2/2=h ν-W ∴ 1.5= h ν-1.9 ν=3.4/h λ=c /ν=hc /3.4(m)=3.65×10-7m 2-2 对于氢原子、一次电离的氦离子He +和两次电离的锂离子Li ++,分别计算它们的: (1)第一、第二玻尔轨道半径及电子在这些轨道上的速度; (2)电子在基态的结合能; (3)由基态到第一激发态所需的激发能量及由第一激发态退激到基态所放光子的波长. n e e πε Z n a ∴H: r 1H =0.053×12/1nm=0.053nm r 2 H =0.053×22/1=0.212nm V 1H =2.19 ×106×1/1=2.19 ×106(m/s) V 2H =2.19 ×106×1/2=1.095 ×106(m/s) ∴He+: r 1He+=0.053×12/2nm=0.0265nm r 2He+=0.053×22/2=0.106nm

V 1 He+=2.19 ×106×2/1=4.38 ×106(m/s) V 2 He+=2.19 ×106×2/2=2.19 ×106(m/s) Li ++: r 1 Li++=0.053×12/3nm=0.0181nm r 2 Li++=0.053×22/3=0.071nm V 1 Li++=2.19 ×106×3/1=6.57 ×106(m/s) V 2 Li++=2.19 ×106×3/2=3.28 ×106(m/s) (2) 结合能:自由电子和原子核结合成基态时所放出来的能量,它 ∵ 基态时n =1 H: E 1H =-13.6eV He+: E 1He+=-13.6×Z 2=-13.6×22=-54.4eV Li ++: E 1Li+=-13.6×Z 2 2(3) 由里德伯公式 =Z 2×13.6× 3/4=10.2Z 2 注意H 、He+、Li++的里德伯常数的近似相等就可以算出如下数值。 2-3 欲使电子与处于基态的锂离子Li ++发生非弹性散射,试问电子至少具有多大的动能? 要点分析:电子与锂质量差别较小, 可不考虑碰撞的能量损失.可以近似认为电子的能量全部传给锂,使锂激发. 解:要产生非弹性碰撞,即电子能量最小必须达到使锂离子从基态达第一激发态,分析电子至少要使Li ++从基态n =1激发到第一激发态n =2. 因为Z n ++ ⊿E =E 2-E 1=Z 2R Li ++hc (1/12-1/22)≈32×13.6×3/4eV=91.8eV 讨论:锂离子激发需要极大的能量

原子物理学第二章习题答案

第二章 原子的能级和辐射 2.1 试计算氢原子的第一玻尔轨道上电子绕核转动的频率、线速度和加速度。 解:电子在第一玻尔轨道上即年n=1。根据量子化条件, π φ2h n mvr p == 可得:频率 21211222ma h ma nh a v πππν= == 赫兹151058.6?= 速度:61110188.2/2?===ma h a v νπ米/秒 加速度:222122/10046.9//秒米?===a v r v w 2.2 试由氢原子的里德伯常数计算基态氢原子的电离电势和第一激发电势。 解:电离能为1E E E i -=∞,把氢原子的能级公式2 /n Rhc E n -=代入,得: Rhc hc R E H i =∞-=)1 1 1(2=13.60电子伏特。 电离电势:60.13== e E V i i 伏特 第一激发能:20.1060.1343 43)2 111(2 2=?==-=Rhc hc R E H i 电子伏特 第一激发电势:20.101 1== e E V 伏特 2.3 用能量为12.5电子伏特的电子去激发基态氢原子,问受激发的氢原子向低能基跃迁时,会出现那些波长的光谱线? 解:把氢原子有基态激发到你n=2,3,4……等能级上去所需要的能量是: )1 11(22n hcR E H -= 其中6.13=H hcR 电子伏特 2.10)21 1(6.1321=-?=E 电子伏特 1.12)31 1(6.1322=-?=E 电子伏特 8.12)4 1 1(6.1323=-?=E 电子伏特 其中21E E 和小于12.5电子伏特,3E 大于12.5电子伏特。可见,具有12.5电子伏特能量的

原子物理 杨福家 第二章 答案

原子物理杨福家第二章答案 第二章习题解22 对于氢原子、一次电离的氦离子He+和两次 电离的锂离子Li++,分别计算它们的:(1) (1)第一、第二玻尔轨道半径及电子在这些轨道上的速度;(2) (2)电子在基态的结合能;(3)由基态到第一激发态所需的激 发能量及由第一激发态退激到基态所放光子的波长、解:(1)由 类氢原子的半径公式由类氢离子电子速度公式∴H: r1H =0、 053×12nm=0、053nm r2 H =0、053×22=0、212nm V1H= 2、19 ×106×1/1= 2、19 ×106(m/s) V2H= 2、19 ×106×1/2= 1、095 ×106(m/s)∴He+: r1He+=0、053×12/2nm=0、 0265nm r2He+=0、053×22/2=0、106nm V1 He+= 2、19 ×106×2/1= 4、38 ×106(m/s) V2 He+= 2、19 ×106×2/2= 2、19 ×106(m/s)Li++: r1 Li++=0、053×12/3nm=0、 0181nm r2 Li++=0、053×22/3=0、071nm V1 Li++= 2、19 ×106×3/1=

6、57 ×106(m/s) V2 Li++= 2、19 ×106×3/2= 3、28 ×106(m/s)(2) ∵ 基态时n=1H: E1H=- 13、6eVHe+: E1He+=- 13、6×Z2=- 13、6×22=- 54、4eVLi++: E1He+=- 13、6×Z2=- 13、6×32=-1 22、4eV(3) 由里德伯公式=Z2× 13、6×3/4= 10、2 Z2注意H、He+、Li++的里德伯常数的近似相等就可以算出如下数值。H: ΔE= 10、2eV He+: ΔE≈ 40、8eV Li++: ΔE≈ 91、8eV 2-3 欲使电子与处于基态的锂离子Li++发生非弹性散射,试问电子至少具有多大的动能?解:分析电子至少要使Li++从基态n=1激发到第一激发态n= 2、因为⊿E=E2-E1=Z2RLi++hc(1/12-1/22)≈32×

原子物理学杨福家第二章习题答案

第二章习题 2-1 铯的逸出功为,试求: (1)铯的光电效应阈频率及阈值波长; (2)如果要得到能量为的光电子,必须使用多少波长的光照射 解:(1) ∵ E =hν-W 当hν=W 时,ν为光电效应的最低频率(阈频率),即 ν =W /h =××10-19/×10-34 =×1014 ∵ hc /λ=w λ=hc /w =×10-7(m) (2) ∵ mv 2/2=h ν-W ∴ = h ν ν=h λ=c /ν=hc /(m)=×10-7m 2-2 对于氢原子、一次电离的氦离子He +和两次电离的锂离子Li ++,分别计算它们的: (1)第一、第二玻尔轨道半径及电子在这些轨道上的速度; (2)电子在基态的结合能; (3)由基态到第一激发态所需的激发能量及由第一激发态退激到基态所放光子的波长. n e e Z n a ∴H: r 1H =×12/1nm= r 2 H =×22/1= V 1H = ×106×1/1= ×106(m/s) V 2H = ×106×1/2= ×106(m/s) ∴He+: r 1He+=×12/2nm= r 2He+=×22/2= V 1 He+= ×106×2/1= ×106(m/s) V 2 He+= ×106×2/2= ×106(m/s) Li ++: r 1 Li++=×12/3nm= r 2 Li++=×22/3=

V 1 Li++= ×106×3/1= ×106(m/s) V 2 Li++= ×106×3/2= ×106(m/s) (2) 结合能:自由电子和原子核结合成基态时所放出来的能量,它等于把电子从基态电离掉所需要的能量。 ∵ 基态时n =1 H: E 1H = He+: E 1He+=×Z 2=×22= Li ++: E 1Li+=×Z 2=×32= (3) 由里德伯公式 Z 2××3/4= 注意H 、He+、Li++的里德伯常数的近似相等就可以算出如下数值。 2-3 欲使电子与处于基态的锂离子Li ++发生非弹性散射,试问电子至少具有多大的动能 要点分析:电子与锂质量差别较小, 可不考虑碰撞的能量损失.可以近似认为电子的能量全部传给锂,使锂激发. 解:要产生非弹性碰撞,即电子能量最小必须达到使锂离子从基态达第一激发态,分析电子至少要使Li ++从基态n =1激发到第一激发态n =2. 因为 Z n ⊿E =E 2-E 1=Z 2R Li ++hc (1/12-1/22)≈32××3/4eV= 讨论:锂离子激发需要极大的能量 2-4 运动质子与一个处于静止的基态氢原子作完全非弹性的对心碰撞,欲使氢原子发射出光子,质子至少应以多大的速度运动 要点分析:质子与氢原子质量相近,要考虑完全非弹性碰撞的能量损失.计算氢原子获得的实际能量使其能激发到最低的第一激发态. 解: 由动量守恒定律得 m p V =(m p +m H )V ' ∵ m p =m H V’=V /2 由能量守恒定律,传递给氢原子使其激发的能量为:

原子物理学第二章习题答案

第二章 原子得能级与辐射 2、1 试计算氢原子得第一玻尔轨道上电子绕核转动得频率、线速度与加速度。 解:电子在第一玻尔轨道上即年n=1。根据量子化条件, π φ2h n mvr p == 可得:频率 21211222ma h ma nh a v πππν= == 赫兹151058.6?= 速度:61110188.2/2?===ma h a v νπ米/秒 加速度:222122/10046.9//秒米?===a v r v w 2、2 试由氢原子得里德伯常数计算基态氢原子得电离电势与第一激发电势。 解:电离能为1E E E i -=∞,把氢原子得能级公式2 /n Rhc E n -=代入, 得:Rhc hc R E H i =∞-=)1 1 1(2 =13、60电子伏特。 电离电势:60.13== e E V i i 伏特 第一激发能:20.1060.1343 43)2 111(2 2=?==-=Rhc hc R E H i 电子伏特 第一激发电势:20.101 1== e E V 伏特 2、3 用能量为12、5电子伏特得电子去激发基态氢原子,问受激发得氢原子向低能基跃迁时,会出现那些波长得光谱线? 解:把氢原子有基态激发到您n=2,3,4……等能级上去所需要得能量就是: )1 11(22n hcR E H -= 其中6.13=H hcR 电子伏特 2.10)21 1(6.1321=-?=E 电子伏特 1.12)31 1(6.1322=-?=E 电子伏特 8.12)4 1 1(6.1323=-?=E 电子伏特 其中21E E 和小于12、5电子伏特,3E 大于12、5电子伏特。可见,具有12、5电子伏特能量

原子物理第六章习题答案

第六章 磁场中的原子 6.1 已知钒原子的基态是2/34F 。(1)问钒原子束在不均匀横向磁场中将分裂为几束?(2)求基态钒原子的有效磁矩。 解:(1)原子在不均匀的磁场中将受到力的作用,力的大小与原子磁矩(因而于角动量)在磁场方向的分量成正比。钒原子基态2/34F 之角动量量子数2/3=J ,角动量在磁场方向的分量的个数为412 3 212=+?=+J ,因此,基态钒原子束在不均匀横向磁场中将分裂为4束。 (2)J J P m e g 2=μ h h J J P J 2 15)1(= += 按LS 耦合:5 2 156)1(2)1()1()1(1==++++-++ =J J S S L L J J g B B J h m e μμμ7746.05 15 215252≈=???= ∴ 6.2 已知He 原子0111S P →跃迁的光谱线在磁场中分裂为三条光谱线,其间距 厘米/467.0~=?v ,试计算所用磁场的感应强度。 解:裂开后的谱线同原谱线的波数之差为: mc Be g m g m v πλλ4)(1'1~1122-=-=? 氦原子的两个价电子之间是LS 型耦合。对应11 P 原子态,1,0,12-=M ;1,1,0===J L S , 对应01S 原子态,01=M ,211.0,0,0g g J L S =====。 mc Be v π4/)1,0,1(~-=? 又因谱线间距相等:厘米/467.04/~==?mc Be v π。 特斯拉。00.1467.04=?= ∴e mc B π 6.3 Li 漫线系的一条谱线)23(2/122/32P D →在弱磁场中将分裂成多少条谱线?试作出相应的能级跃迁图。

原子物理学-杨福家第二章习题答案上课讲义

原子物理学-杨福家第二章习题答案

第二章习题 2-1 铯的逸出功为1.9eV ,试求: (1)铯的光电效应阈频率及阈值波长; (2)如果要得到能量为1.5eV 的光电子,必须使用多少波长的光照射? 解:(1) ∵ E =hν-W 当hν=W 时,ν为光电效应的最低频率(阈频率),即 ν =W /h =1.9×1.6×10-19/6.626×10-34 =4.59×1014 ∵ hc /λ=w λ=hc /w =6.54×10-7(m) (2) ∵ mv 2/2=h ν-W ∴ 1.5= h ν-1.9 ν=3.4/h λ=c /ν=hc /3.4(m)=3.65×10-7m 2-2 对于氢原子、一次电离的氦离子He +和两次电离的锂离子Li ++,分别计算它们的: (1)第一、第二玻尔轨道半径及电子在这些轨道上的速度; (2)电子在基态的结合能; (3)由基态到第一激发态所需的激发能量及由第一激发态退激到基态所放光子的波长. n e e Z n a ∴H: r 1H =0.053×12/1nm=0.053nm r 2 H =0.053×22/1=0.212nm V 1H =2.19 ×106×1/1=2.19 ×106(m/s) V 2H =2.19 ×106×1/2=1.095 ×106(m/s) ∴He+: r 1He+=0.053×12/2nm=0.0265nm r 2He+=0.053×22/2=0.106nm

V 1 He+=2.19 ×106×2/1=4.38 ×106(m/s) V 2 He+=2.19 ×106×2/2=2.19 ×106(m/s) Li ++: r 1 Li++=0.053×12/3nm=0.0181nm r 2 Li++=0.053×22/3=0.071nm V 1 Li++=2.19 ×106×3/1=6.57 ×106(m/s) V 2 Li++=2.19 ×106×3/2=3.28 ×106(m/s) (2) 结合能:自由电子和原子核结合成基态时所放出来的能量,它 ∵基态时n =1 H: E 1H =-13.6eV He+: E 1He+=-13.6×Z 2=-13.6×22=-54.4eV Li ++: E 1Li+=-13.6× 22(3) 由里德伯公式Z 2×13.6× 3/4=10.2Z 2 注意H 、He+、Li++的里德伯常数的近似相等就可以算出如下数值。 2-3 欲使电子与处于基态的锂离子Li ++发生非弹性散射,试问电子至少具有多大的动能? 要点分析:电子与锂质量差别较小, 可不考虑碰撞的能量损失.可以近似认为电子的能量全部传给锂,使锂激发. 解:要产生非弹性碰撞,即电子能量最小必须达到使锂离子从基态达第一激发态,分析电子至少要使 Li ++从基态n =1激发到第一激发态n =2. 因为Z n ⊿E =E 2-E 1=Z 2R Li ++hc (1/12-1/22)≈32×13.6×3/4eV=91.8eV

杨家富《原子物理》第二章答案

杨家富《原子物理》 第二章答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第二章习题 2-1 铯的逸出功为1.9eV ,试求: (1)铯的光电效应阈频率及阈值波长; (2)如果要得到能量为1.5eV 的光电子,必须使用多少波长的光照射? 解:(1) ∵ E =hν-W 当hν=W 时,ν为光电效应的最低频率(阈频率),即 ν =W /h =1.9×1.6×10-19/6.626×10-34 =4.59×1014 ∵ hc /λ=w λ=hc /w =6.54×10-7(m) (2) ∵ mv 2/2=h ν-W ∴ 1.5= h ν-1.9 ν=3.4/h λ=c /ν=hc /3.4(m)=3.65×10-7m 2-2 对于氢原子、一次电离的氦离子He +和两次电离的锂离子Li ++,分别计算它们的: (1)第一、第二玻尔轨道半径及电子在这些轨道上的速度; (2)电子在基态的结合能; (3)由基态到第一激发态所需的激发能量及由第一激发态退激到基态所放光子的波长. n e e πε Z n a ∴H: r 1H =0.053×12/1nm=0.053nm r 2 H =0.053×22/1=0.212nm V 1H =2.19 ×106×1/1=2.19 ×106(m/s) V 2H =2.19 ×106×1/2=1.095 ×106(m/s) ∴He+: r 1He+=0.053×12/2nm=0.0265nm r 2He+=0.053×22/2=0.106nm

V 1 He+=2.19 ×106×2/1=4.38 ×106(m/s) V 2 He+=2.19 ×106×2/2=2.19 ×106(m/s) Li ++: r 1 Li++=0.053×12/3nm=0.0181nm r 2 Li++=0.053×22/3=0.071nm V 1 Li++=2.19 ×106×3/1=6.57 ×106(m/s) V 2 Li++=2.19 ×106×3/2=3.28 ×106(m/s) (2) 结合能:自由电子和原子核结合成基态时所放出来的能量,它 ∵基态时n =1 H: E 1H =-13.6eV He+: E 1He+=-13.6×Z 2=-13.6×22=-54.4eV Li ++: E 1Li+=-13.6×Z 2 2(3) 由里德伯公式Z 2×13.6× 3/4=10.2Z 2 注意H 、He+、Li++的里德伯常数的近似相等就可以算出如下数值。 2-3 欲使电子与处于基态的锂离子Li ++发生非弹性散射,试问电子至少具有多大的动能? 要点分析:电子与锂质量差别较小, 可不考虑碰撞的能量损失.可以近似认为电子的能量全部传给锂,使锂激发. 解:要产生非弹性碰撞,即电子能量最小必须达到使锂离子从基态达第一激发态,分析电子至少要使Li ++从基态 n =1激发到第一激发态 n =2. 因为Z n ++ ⊿E =E 2-E 1=Z 2R Li ++hc (1/12-1/22)≈32×13.6×3/4eV=91.8eV

原子物理复习题

第一章 1、求动能为4.5MeV 的α粒子被金核以90度散射时的瞄准距离。 2、求动能为5.0MeV 的α粒子与金核对心碰撞时的最小距离。 第二章 1、由氢原子里德伯常数计算氢原子光谱巴尔末系中波长最长和最短的谱线波长。 2、已知Li 原子的第一激发电势为1.85V ,基态的电离电势为5.37V ,试求Li 原子光谱主线系最长波长和辅线系系限波长的值。(1240hc nm eV =?) 习题2-1、2-14 第三章 习题3-1、3-7 第四章 1、试求原子态2 P 3/2状态下的的轨道角动量和磁矩、自旋角动量和磁矩和总角动量和磁矩,及其可能取向。 2、在斯特恩-盖拉赫实验中,极不均匀的横向磁场梯度为 1.0/z B T cm z ?=?,磁极的纵向长度d=10cm, 磁极中心到屏的长度D=30cm(如图所示), 使用的原子束是处于基态32P 的氧原子,(或加热炉温度)原子的动能 k E =2210-?eV 。试问在屏上应该看到几个条纹?相邻条纹(边沿成分)间距是多少?(410.578810B eV T μ--=??) 3、在施特恩-盖拉赫实验中,基态的氢原子(21/2S )从温度为400K 的加热炉中射出,在屏上接收到两条氢束线,间距为0.60cm 。 若把氢原子换成氯原子(基态为23/2P ) ,其它实验条件不变,在屏上可以接收到几条氯束线?其相邻两束的间距为多少? 第五章 1、写出下列原子的基态的电子组态和原子态: 11Na ,12Mg, 13Al ,17Cl 、18Ar ,19K ,20Ca 2、氦原子基态的电子组态是1s1s ,若其中有一个电子被激发到3s 态。从形成的激发态向低能态跃迁有几种光谱跃迁?要求写出与跃迁有关的电子组态及在L-S 耦合下各电子

原子物理学杨福家1-6章_课后习题答案

原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社) 第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论 第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X射线 第一章习题1、2解 速度为v的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad. 要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动. 证明:设α粒子的质量为Mα,碰撞前速度为V,沿X方向入射;碰撞后,速度为V',沿θ方向散射。电子质量用me表示,碰撞前静止在坐标原点O处,碰撞后以速度v沿φ方向反冲。α粒子-电子系统在此过程中能量与动量均应守恒,有: (1) (2) (3) 作运算:(2)×sinθ±(3)×cosθ,得(4) (5) 再将(4)、(5)二式与(1)式联立,消去V’与v,

化简上式,得 (6) 若记,可将(6)式改写为 (7) 视θ为φ的函数θ(φ),对(7)式求θ的极值,有 令,则 sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sinθ=0 若 sinθ=0, 则θ=0(极小)(8) (2)若cos(θ+2φ)=0 ,则θ=90o-2φ(9) 将(9)式代入(7)式,有 由此可得 θ≈10-4弧度(极大)此题得证。 (1)动能为的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大(2)如果金箔厚μm,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几 要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n值. ,其他值从书中参考列表中找. 解:(1)依和金的原子序数Z2=79 答:散射角为90o所对所对应的瞄准距离为. (2)解: 第二问解的要点是注意将大于90°的散射全部积分出来. (问题不知道nA,但可从密度与原子量关系找出) 从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=×104kg/m3 依: 注意到:即单位体积内的粒子数 为密度除以摩尔质量数乘以阿伏加德罗常数。 是常数其值为 最后结果为:d N’/N=×10-5,说明大角度散射几率十分小。 1-3~1-4 练习参考答案(后面为褚圣麟1-3~1-4作业) 1-3 试问的α粒子与金核对心碰撞时的最小距离是多少若把金核改为7Li核,则结果如何 要点分析: 计算简单,重点考虑结果给我们什么启示,影响靶核大小估计的因素。 解: 对心碰撞时,时, 离金核最小距离 离7Li核最小距离 结果说明: 靶原子序数越小,入射粒子能量越大,越容易估算准核的半径. 反之易反。 1-4 ⑴假定金核半径为 fm,试问入射质子需要多少能量才能在对头碰撞时刚好到达金核的表面 ⑵若金核改为铝时质子在对头碰撞时刚好到达铝核的表面,那么入射质子的能量应为多少设铝核的半径为 fm。

原子物理学习题答案褚圣麟很详细

1.原子的基本状况 1.1解:根据卢瑟福散射公式: 2 02 22 442K Mv ctg b b Ze Ze αθ πεπε== 得到: 2192 1501522 12619079(1.6010) 3.97104(48.8510)(7.681010) Ze ctg ctg b K ο θαπεπ---??===??????米 式中2 12 K Mv α=是α粒子的功能。 1.2已知散射角为θ的α粒子与散射核的最短距离为 2202 1 21 ()(1)4sin m Ze r Mv θ πε=+ , 试问上题α粒子与散射的金原子核之间的最短距离m r 多大? 解:将1.1题中各量代入m r 的表达式,得:2min 202 1 21 ()(1)4sin Ze r Mv θπε=+ 1929 619479(1.6010)1910(1)7.6810 1.6010sin 75ο --???=???+???14 3.0210-=?米 1.3 若用动能为1兆电子伏特的质子射向金箔。问质子与金箔。问质子与金箔原子核可能达到的最 解:当入射粒子与靶核对心碰撞时,散射角为180ο。当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。 根据上面的分析可得: 22 0min 124p Ze Mv K r πε==,故有:2min 04p Ze r K πε= 1929 13 619 79(1.6010)910 1.141010 1.6010 ---??=??=???米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核

代替质子时,其与靶核的作用的最小距离仍为131.1410-?米。 1.7能量为3.5兆电子伏特的细α粒子束射到单位面积上质量为22/1005.1米公斤-?的银箔上,α粒 解:设靶厚度为't 。非垂直入射时引起α粒子在靶物质中通过的距离不再是靶物质的厚度't ,而是ο60sin /'t t =,如图1-1所示。 因为散射到θ与θθd +之间Ωd 立体 角内的粒子数dn 与总入射粒子数n 的比为: dn Ntd n σ= (1) 而σd 为:2 sin )()41 (4 2 2 22 0θ πεσΩ=d Mv ze d (2) 把(2)式代入(1)式,得: 2 sin )()41(4 22220θπεΩ =d Mv ze Nt n dn (3) 式中立体角元0'0'220,3/260sin /,/====Ωθt t t L ds d N 为原子密度。'Nt 为单位面上的原子数,10')/(/-==N A m Nt Ag Ag ηη,其中η是单位面积式上的质量;Ag m 是银原子的质量;Ag A 是银原子的原子量;0N 是阿佛加德罗常数。 将各量代入(3)式,得: 2 sin ) ()41(324 2222 0θπεηΩ=d Mv ze A N n dn Ag 由此,得:Z=47 第二章 原子的能级和辐射 2.1 试计算氢原子的第一玻尔轨道上电子绕核转动的频率、线速度和加速度。

原子物理学杨福家1-6章-课后习题答案

原子物理学课后前六章答案(第四版) 杨福家著(高等教育出版社) 第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论 第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X射线 第一章习题1、2解 1.1 速度为v的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad. 要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动. 证明:设α粒子的质量为Mα,碰撞前速度为V,沿X方向入射;碰撞后,速度为V',沿θ方向散射。电子质量用me表示,碰撞前静止在坐标原点O处,碰撞后以速度v沿φ方向反冲。α粒子-电子系统在此过程中能量与动量均应守恒,有: 2 2 2 2 1 2 1 2 1 v m V M V M e + ' = α α (1) ? θ α α cos cos v m V M V M e + ' = (2) ? θ α sin sin 0v m V M e - ' = (3) 作运算:(2)×sinθ±(3)×cosθ,得 ) sin( sin ? θ θ α+ =V M v m e (4) ) sin( sin ? θ ? α α+ ='V M V M (5) 再将(4)、(5)二式与(1)式联立,消去V’与v, ) ( sin sin ) ( sin sin 2 2 2 2 2 2 2 2 ? θ θ ? θ ? α α α+ + + =V m M V M V M e 化简上式,得

(6) θ?μ?θμ222sin sin )(sin +=+ (7) 视θ为φ的函数θ(φ),对(7)式求θ的极值,有 令 sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0 若 sin θ=0, 则 θ=0(极小) (8) (2)若cos(θ+2φ)=0 ,则 θ=90o-2φ (9) 将(9)式代入(7)式,有θ?μ?μ2202)(90si n si n si n +=- θ≈10-4弧度(极大)此题得证。 1.2(1)动能为5.00MeV 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大? (2)如果金箔厚1.0 μm ,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几? 要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n 值 . 其他值从书中参考列表中找. 解:(1)依 金的原子序数Z2=79 答:散射角为90o所对所对应的瞄准距离为22.8fm. (2)解: 第二问解的要点是注意将大于90°的散射全部积分出来.

杨家富《原子物理》第二章答案

第二章习题 2-1铯的逸出功为,试求: (1)铯的光电效应阈频率及阈值波长; (2)如果要得到能量为的光电子,必须使用多少波长的光照射解:(1) ∵E=hν-W当hν=W时,ν为光电效应的最低频率(阈频率),即ν=W/h=××10-19/×10-34=×1014 ∵hc/λ=wλ=hc/w=×10-7(m) (2)∵mv2/2=hν-W ∴=hνν=hλ=c/ν=hc/(m)=×10-7m 2-2对于氢原子、一次电离的氦离子He+和两次电离的锂离子Li++,分别计算它们的: (1)第一、第二玻尔轨道半径及电子在这些轨道上的速度; (2)电子在基态的结合能; (3)由基态到第一激发态所需的激发能量及由第一激发态退激到基态所放光子的波长. 解:(1)由类氢原子的半径公式 由类氢离子电子速度公式 ∴H:r 1H=×12/1nm= r 2 H=×22/1= V

1H=×106××106(m/s) V 2H=×106××106(m/s) ∴He+:r 1He+=×12/2nm= r 2He+=×22/2= V 1 He+=×106××106(m/s) V 2 He+=×106××106(m/s) Li++:r 1 Li++=×12/3nm= r 2 Li++=×22/3= V 1 Li++=×106××106(m/s) V 2 Li++=×106××106(m/s) (2)结合能:自由电子和原子核结合成基态时所放出来的能量,它等于把电子从基态电离掉所需要的能量。 ∵基态时n=1

H:E 1H= He+:E 1He+=×Z2=×22= Li++:E 1Li+=×Z2=×32= (3)由xx公式=Z2×× 注意H、He+、Li++的里德伯常数的近似相等就可以算出如下数值。 2-3欲使电子与处于基态的锂离子Li++发生非弹性散射,试问电子至少具有多大的动能 要点分析:电子与锂质量差别较小,可不考虑碰撞的能量损失.可以近似认为电子的能量全部传给锂,使锂激发. 解:要产生非弹性碰撞,即电子能量最小必须达到使锂离子从基态达第一激发态,分析电子至少要使Li++从基态n=1激发到第一激发态n=2. 因为 ⊿E=E 2-E 1=Z2R Li++hc22)≈32×× 讨论:锂离子激发需要极大的能量 2-4运动质子与一个处于静止的基态氢原子作完全非弹性的对心碰撞,欲使氢原子发射出光子,质子至少应以多大的速度运动

原子物理学习题课

原子物理学习题 第一章 原子的核式结构 1.选择题: (1)原子半径的数量级是:C A .10- 10cm; B.10-8m C. 10-10m D.10-13m (2)原子核式结构模型的提出是根据α粒子散射实验中 D A. 绝大多数α粒子散射角接近180? B.α粒子只偏2?~3? C. 以小角散射为主也存在大角散射 D. 以大角散射为主也存在小角散射 (3)进行卢瑟福理论实验验证时发现小角散射与实验不符这说明:D A. 原子不一定存在核式结构 B. 散射物太厚 C. 卢瑟福理论是错误的 D. 小角散射时一次散射理论不成立 (4)用相同能量的α粒子束和质子束分别与金箔正碰,测量金原子核半径的上限. 问用质子束所得结果是用α粒子束所得结果的几倍?B A. 1/4 B . 1/2 C . 1 D. 2 (5)动能E K =40keV 的α粒子对心接近Pb(z=82)核而产生散射,则最小距离为(m ):D A.5.910 10 -? B.3.012 10 -? C.5.9?10-12 D.5.9?10-15 (6)如果用相同动能的质子和氘核同金箔产生散射,那么用质子作为入射粒子测得的金原子半径上限是用氘核子作为入射粒子测得的金原子半径上限的几倍?C A.2 B.1/2 C.1 D .4 2.简答题: (1)简述卢瑟福原子有核模型的要点. (2)简述α粒子散射实验. α粒子大角散射的结果说明了什么? (3)为什么说实验证实了卢瑟福公式的正确性,就是证实了原子的核式结构? (4)普朗能量子假说的基本内容是什么?与经典物理有何矛盾? (5)为什么说爱因斯坦的光量子假设是普朗克的能量子假设的发展. (6)何谓绝对黑体?下述各物体是否是绝对黑体? (a)不辐射可见光的物体; (b)不辐射任何光线的物体; (c)不能反射可见光的物体;(d)不能反射任何光线的物体; (e)开有小孔空腔. 3.计算题: (1)当一束能量为4.8Mev 的α粒子垂直入射到厚度为4.0×10-5 cm 的金箔上时探测器沿20°方向上每秒记录到2.0×104个α粒子试求: ①仅改变探测器安置方位,沿60°方向每秒可记录到多少个α粒子? ②若α粒子能量减少一半,则沿20°方向每秒可测得多少个α粒子? ③α粒子能量仍为4.8MeV,而将金箔换成厚度的铝箔,则沿20°方向每秒可记录到多少个α粒子?(ρ金=19.3g/cm 3 ρ铅=27g /cm 3;A 金=179 ,A 铝=27,Z 金=79 Z 铝=13) 解:由公式, )2/(sin /')()41 ('4222022 0θπεr S Mv Ze Nnt dN =) 2/(sin /') 2()41(42 2220θπεαr S E Ze Nnt = ①当?=60θ时, 每秒可纪录到的α粒子2'dN 满足:

相关文档
相关文档 最新文档