文档库 最新最全的文档下载
当前位置:文档库 › 超声光栅

超声光栅

超声光栅
超声光栅

超声光栅的原理与制作研究

超声光栅是一种特殊的光栅,在大学物理实验教学中,在光信息实验中,在研究声对光的调制中,有着特殊的作用。

超声光栅的原理如图1所示,它由高频信号发生器、频率计、频率调节器、超声换能器、液体介质和液槽组成。各部分的作用如下:高频信号发生器产生一个超声频率的交变电压信号,频率计是用来测量这个交变信号频率的,而调节器则可以在一定范围内改变交变电压信号的频率和振幅。超声换能器可以将高频交变电压信号转变为同频率的机械振动,从而产生超声波发射出去。超声波必须对液体介质作用才能形成超声光栅,液槽是用来装载液体的,并且可以提供超声波的反射面,以便于形成超声驻波。

超声光栅的形成机理是:超声波在液体中时以弹性纵波的形式传播,它使液体的密度在超声波传播方向上发生周期性的大小变化,即密度呈现“密集——稀疏——密集…”的周期性变化,从而使液体的折射率也发生周期性变化。当有光线垂直于声波传播方向通过液体时,不同位置的光波经历的光程不同,原来是平面波的光波经过液体后,平面波变为弯曲的非平面波,与位相光栅对光的作用相类似,如图

2所示。这种有超声波场的液体就被称为超声光栅,光线通过超声光栅时也会发生光栅衍射现象,此种衍射被称为声光衍射。超声

光栅的光栅常数就是液体折射率在空间变

化的周期,即超声波的波长。

声光衍射同样满足光栅方程:

λθλk Sin k s = (...) ,2,1,0±±=k 上式中λs 为超声波波长,λ为光波波

长,θk 为第k 级衍射光的衍射角。

超声光栅与普通刻线光栅或全息光栅

的不同之处主要有两点:第一是光栅形成的

机理不同;第二是普通的光栅其光栅常数是固定不变的,而超声光栅的光栅常数是随超声波的波长变化的。超声波在液体中形成超声光栅的模式有两种,一种是超声行波光栅,另一种是超声驻波光栅。当液体内只有换能器发射的超声波时,形成的超声光栅称为行波光栅,其结构如图3(a )所示,在换能器的对面安装有吸收声波的材料,液体中只有换能器发射的超声波,没有反射波。行波光栅的栅面在空间是随时间移动的。驻波光栅的结构如图3(b )所示,在换能器的对面有声波的反射面,液体中有换能器的发射波和反射面的反射波,当发射波与反射波叠加且满足驻波形成的条件时,就会形成超声驻波,从而形成超声驻波光栅,驻波光栅光栅的栅面在空间的位置是固定的。驻波的振幅是发射波的2倍,将使液体的折射

率发生更强的变化,从而使通过超声光栅的光波发生更强的衍射。

产生的高频信号频率相匹配。压电陶瓷片可以直接粘贴

在基板上,称为钢性背衬,也可以做成空气背衬,即在

换能器的后背做一个空气的空腔,以减小换能器振动时

换能器 反射面

液槽

的阻力,空气背衬在转换高频电压为超声波时的效率更高一些。换能器的连接导线焊接接时,焊点要尽量小,以免影响换能器的谐振频率。换能器要安装在一个支架上面,放在液槽上后,要能够调节换能器发射面与反射面的平行度和距离,以满足形成超声驻波的条件。超声换能器如图5所示。图5超声换能器

三、液槽

液槽的作用不仅是液体的容器,在形成超声驻波时,液槽的内表面是超声波的一个反射面,反射能力要强,因此,内表面必须光滑。在做声光衍射实验时,在垂直于超声波传播的方向上有光线照射通过,因此,这个方向上必须有透明的地方。早期的液槽多用金属腔体粘贴玻璃片的方式,加工较为复杂,现在大多采用玻璃片粘贴成的液槽,如图6所示。玻璃片要选择质量较好的平板玻璃或光学玻璃,玻璃片的厚度要均匀,尺寸要准确,四周要在磨床上精密加工。粘接时要用专门的夹具固定,以保证玻璃片的互相平行和垂直。平行度不好的液槽,在衍射时会产生多余的衍射光斑。如果反射面与换能器发射面不平行,则不能形成超

声驻波,所以,玻璃液槽的四个周边,对边要互相

平行,相邻边要互相垂直,并且与底面要垂直,形

位公差要达到6到7级精度。如果要做不同温度下

的声光衍射实验,还要求液槽能够承受较高的温

度,因此,玻璃的粘接剂要采用能够承受高温并且

耐水的粘接剂,比如紫外

光固化的厌氧胶等。

图6液槽与换能器

四、频率计

频率计是用来测量高频信号频率

的,要求能够将正弦型的波形整形成脉

冲方波,并能够进行适当放大以推动频

率计工作,通常采用数字电路和LED7

段数字显示器做成的频率计。显示的精

度可以根据需要设计。

正在调试试验的超声光栅仪器如图

7所示,机箱上面右边有黑色旋钮的是

振荡电路板,左边有四位数字显示的是

频率计板,液槽中的换能器通过白色导

线与机箱上的接线柱联在一起,振荡电

路正在工作,此时振荡频率为7.88MHz。图7调试中的超声光栅仪超声光栅提供了一种用声波调制光波的方法,对于研究声波、光波在液体中的传播和互相作用,是一个很有价值的仪器。

超声实验报告

超声实验报告 超声实验 学号: 姓名: 班级: 日期: 【摘要】 超声学是一门主要研究超声的产生方法和探测技术、超声在介质中的传播规律、超声与物质的相互作用,包括在微观尺度的相互作用以及超声的众多应用的学科。本实验利用超声在介质中的传播规律测量了超声探头的延迟时间、横波在不同介质中传播的折射角和纵、横波在不同介质中的传播速度,并利用测量得到的传播速度求出了不同介质的弹性模量和泊松比。最后利用超声测距的原理模拟了超声水下勘测,了解了超声在水下勘测和医疗中的作用。 【关键词】 超声,水下勘测,弹性模量 2 一、实验背景超声的研究和发展与媒质中超声的产生和接收的研究密切相关。 自1883年人类首次制成超声气哨,这一类机械型超声换能器在不断改进后至今仍广泛地应用于流体媒质的超声应用当中。 20世纪初,随着电子学的发展人们发现了一些晶体材料的压电效

应和磁致伸缩效应,1917年,法国人朗之万利用天然石英晶体制成了第一个夹心式超声换能器用来探查海底的潜艇。随着军事和国民经济各部门中超声应用的不断发展,又出现更大超声功率的磁致伸缩换能器,以及各种不同用途的电动型、电磁力型、静电型换能器等多种超声换能器。 随着材料科学的发展,机电耦合系数高、价格低廉、性能良好的压电陶瓷、人工压电单晶、压电半导体以及塑料压电薄膜等材料的出现使得产生和检测超声波的频率,由几十千赫提高到上千兆赫,波型也由单纯的纵波扩大为横波、扭转波、弯曲波、表面波等。超声学的一个发展方向便是不断的提高超声的频率,利用超高频超声声子来进行物质结构方面的等基础研究。 同时,近10年来随着计算机图像学的迅猛发展,超声由于其具有的对身体无创伤,机器技术门槛低,检查费用低廉等优势,超声诊断也随之发展起来,并被广泛地应用于工业机械探伤和医疗诊断方面。此外,超声洁牙器、超声洗碗机等产品也相继问世。超声技术已经越来越多地出现在我们生活的方方面面。 本实验通过学习用超声法来测量固体介质常用参数的方法,学习超声扫描成像技术的应用,来促进对超声波产生和发射的机理,以及声探头的结构及作用的了解,并通过读取超声信号的波形图锻炼读图分析的能力,激发学生在超声探测和成像应用及其信号处理方面的兴趣和思考。 二、实验原理本实验的主要器材是CSS-1超声波扫描成像仪。该

光栅衍射实验实验报告

工物系 核11 李敏 2011011693 实验台号19 光栅衍射实验 一、 实验目的 (1) 进一步熟悉分光计的调整与使用; (2) 学习利用衍射光栅测定光波波长及光栅常数的原理和方法; (3) 加深理解光栅衍射公式及其成立条件; 二、 实验原理 2.1测定光栅常数和光波波长 如右图所示,有一束平行光与光栅的法线成i 角,入射到光栅上产生衍射;出射光夹角为?。从B 点引两条垂线到入射光和出射光。如果在F 处产生了一个明条纹,其光程差AD CA +必等于波长λ的整数倍,即 ()sin sin d i m ?λ ±= (1) m 为衍射光谱的级次, 3,2,1,0±±±.由这个方程,知道了λ?,,,i d 中的三个 量,可以推出另外一个。 若光线为正入射,0=i ,则上式变为 λ ?m d m =sin (2) 其中 m ?为第m 级谱线的衍射角。 据此,可用分光计测出衍射角m ?,已知波长求光栅常数或已知光栅常数求 波长。 2.2用最小偏向角法测定光波波长 如右图。入射光线与m 级衍射光线位于光栅法线同侧,(1)式中应取加号,即d (sin φ+sin ι)=mλ。以Δ=φ+ι为偏向角,则由三角形公式得 2d (sin Δ 2cos φ?i 2 )=mλ (3) 易得,当φ?i =0时,?最小,记为δ,则(2.2.1)变

为 ,3,2,1,0,2 sin 2±±±==m m d λδ (4) 由此可见,如果已知光栅常数d ,只要测出最小偏向角δ,就可以根据(4)算出波长λ。 三、 实验仪器 3.1分光计 在本实验中,分光计的调节应该满足:望远镜适合于观察平行光,平行光管发出平行光,并且二者的光轴都垂直于分光计主轴。 3.2光栅 调节光栅时,调节小平台使光栅刻痕平行于分光计主轴。放置光栅时应该使光栅平面垂直于小平台的两个调水平螺钉的连线。 3.3水银灯 1.水银灯波长如下表 2.使用注意事项 (1)水银灯在使用中必须与扼流圈串接,不能直接接220V 电源,否则要烧 毁。 (2)水银灯在使用过程中不要频繁启闭,否则会降低其寿命。 (3)水银灯的紫外线很强,不可直视。 四、 实验任务 (1)调节分光计和光栅使满足要求。 (2)测定i=0时的光栅常数和光波波长。 (3)测定i=15°时的水银灯光谱中波长较短的黄线的波长

液体中超声波声速的测定实验报告

液体中超声波声速的测定 人耳能听到的声波,其频率在16Hz 到20kHz 范围内。超过20Hz 的机械波称为超声波。光通过受超声波扰动的介质时会发生衍射现象,这种现象称为声光效应。利用声光效应测量超声波在液体中传播速度是声光学领域具有代表性的实验。 一、 实验目的 1. 了解超声波的产生方法及超声光栅的原理 2. 测定超声波在液体中的传播速度 二、 实验仪器 分光计,超声光栅盒,钠光灯,数字频率计,高频振荡器。 三、 实验原理 将某些材料(如石英、铌酸锂或锆钛酸铅陶瓷等)的晶体沿一定方向切割成晶片,在其表面上加以交流电压,在交变电场作用下,晶片会产生与外加电压频率相同的机械振动,这种特性称为晶体的反压电效应。把具有反压电效应的晶片置于液体介质中,当晶片上加的交变电压频率等于晶片的固有频率时,晶片的振动会向周围介质传播出去,就得到了最强的超声波。 超声波在液体介质中以纵波的形式传播,其声压使液体分子呈现疏密相同的周期性分布,形成所谓疏密波, 如图1a)所示。由于折射率与密度有关,因此液体的折射率也呈周性变化。若用N 0表示介质的平均折射率,t 时刻折射率的空间分布为 ()()y K t N N t y N s s -?+=ωcos ,0 式中ΔN 是折射率的变化幅度;ωs 是超声波的波角频率;K s 是超声波的波数,它与超声波波长λs 的关系为K s =2π/λs 。图1b 是某一时刻折射率的分布,这种分布状态将随时以超声波的速度v s 向前推进。

图1 密度和折射率呈周期分布 如果在超声波前进的方向上垂直放置一表面光滑的金属反射器,那么,到达反射器表面的超声波将被反射而沿反向传播。适当调节反射器与波源之间的距离则可获得一共振驻波(纵驻波)。设前进波与反射波分别沿y 轴正方向传播,它们的表达式为 ()y K t A s s -=ωξcos 1 ()y K t A s s +=ωξcos 2 其合成波为 ()()y K t A y K t A s s s s +=+-=+=ωξωξξξcos cos 121

物理实验报告《用分光计和透射光栅

物理实验报告《用分光计和透射光栅测光波波长》 本文是关于物理实验报告《用分光计和透射光栅测光波波长》,仅供参考,希望对您有所帮助,感谢阅读。 【实验目的】 观察光栅的衍射光谱,掌握用分光计和透射光栅测光波波长的方法。 【实验仪器】 分光计,透射光栅,钠光灯,白炽灯。 【实验原理】 光栅是一种非常好的分光元件,它可以把不同波长的光分开并形成明亮细窄的谱线。 光栅分透射光栅和反射光栅两类,本实验采用透射光栅,它是在一块透明的屏板上刻上大量相互平行等宽而又等间距刻痕的元件,刻痕处不透光,未刻处透光,于是在屏板上就形成了大量等宽而又等间距的狭缝。刻痕和狭缝的宽度之和称为光栅常数,用d表示。 由光栅衍射的理论可知,当一束平行光垂直地投射到光栅平面上时,透过每一狭缝的光都会发生单缝衍射,同时透过所有狭缝的光又会彼此产生干涉,光栅衍射光谱的强度由单缝衍射和缝间干涉两因素共同决定。用会聚透镜可将光栅的衍射光谱会聚于透镜的焦平面上。凡衍射角满足以下条件 k = 0,±1,±2, (10) 的衍射光在该衍射角方向上将会得到加强而产生明条纹,其它方向的光将全部或部分抵消。式(10)称为光栅方程。式中d为光栅的光栅常数,θ为衍射角,λ为光波波长。当k=0时,θ= 0得到零级明纹。当k =±1,±2…时,将得到对称分立在零级条纹两侧的一级,二级…明纹。

实验中若测出第k级明纹的衍射角θ,光栅常数d已知,就可用光栅方程计算出待测光波波长λ。 【实验内容与步骤】 1.分光计的调整 分光计的调整方法见实验1。 2.用光栅衍射测光的波长 (1)要利用光栅方程(10)测光波波长,就必须调节光栅平面使其与平行光管和望远镜的光轴垂直。先用钠光灯照亮平行光管的狭缝,使望远镜目镜中的分划板上的中心垂线对准狭缝的像,然后固定望远镜。将装有光栅的光栅支架置于载物台上,使其一端对准调平螺丝a,一端置于另两个调平螺丝b、c的中点,如图12所示,旋转游标盘并调节调平螺丝b或c,当从光栅平面反射回来的“十”字像与分划板上方的十字线重合时,如图13所示,固定游标盘。 物理实验报告·化学实验报告·生物实验报告·实验报告格式·实验报告模板 图12光栅支架的xx13分划板 (2)调节光栅刻痕与转轴平行。用钠光灯照亮狭缝,松开望远镜紧固螺丝,转动望远镜可观察到0级光谱两侧的±1、±2级衍射光谱,调节调平螺丝a (不得动b、c)使两侧的光谱线的中点与分划板中央十字线的中心重合,即使两侧的光谱线等高。重复(1)、(2)的调节,直到两个条件均满足为止。 (3)测钠黄光的波长 ①转动望远镜,找到零级像并使之与分划板上的中心垂线重合,读出刻度盘上对径方向上的两个角度θ0和θ0/,并记入表4中。 ②右转望远镜,找到一级像,并使之与分划板上的中心垂线重合,读出刻度盘上对径方向上的两个角度θ右和θ右/,并记入表4中。 ③左转望远镜,找到另一侧的一级像,并使之与分划板上的中心垂线重合,读出刻度盘上对径方向上的两个角度θ左和θ左/,并记入表4中。

实验报告超声波

袂四川大学实验报告书 羁课程名称:实验名称:超声波探伤实验 专业:班号:姓名:学号: 蕿系别: 肅实验日期:2013年3月10日同组人姓名:教师评定成绩: 芃一、实验名称 蚃超声波探伤实验 莈二、实验目的 荿1.了解探伤仪的简单工作原理 蚄2.熟悉超声波探伤仪、探头和标准试块的功用 膁3.了解有关超声波探伤的国家标准 莁4.掌握超声波探伤的基本技能 葿三、主要实验仪器 肅CTS-22型超声波探伤仪试块探头直尺机油 袃四、实验原理

A 型脉冲反射式超声波探伤仪,仪器屏横坐标表示超声波在工件中的传播时 膀实验中广泛应用的是 间(或传播距离)纵坐标表示反射回波波高。根据光屏上缺陷波的位置和高度,可以确定缺陷的位置和大小。 A 型脉冲式超声波探伤仪的工作原理:电路接通后,同步电路产生同步脉冲信号,同时触发发射、扫描电路。发射电路被触发后产生高频脉冲作用于探头,通过探头的逆电压效应将电信号转换为声信号,发射超声波。超声波在遇到异质界面(缺陷或底面)反射回来呗探头吸收。通过探头的正电压效应将信号转换为电信号,并送至放大电路呗放大检波,然后加到荧光屏垂直偏转板上,形成重叠的缺陷波 F 和底波B。扫描电路被处罚后产生锯齿波,加到荧光屏水平偏转板上,形成一条扫描亮线,将缺陷波 F 和底波B按时间展开。其工作原理图如下图所示: 薈五、实验内容与步骤 蒆一.超生波探伤仪的使用、仪器性能的测定、仪器与直探头综合性能测定 莁实验要求: 1. 掌握仪器主要性能:水平线性、垂直线性和动态范围的测试方法; 罿 2. 掌握仪器和直探头主要综合性能:盲区、分辨力、灵敏度余量的测试方法。 蚈背景知识: 蚃1. 仪器的主要性能: 肃 A. 水平线性仪器荧光屏上时基线水平刻度值与实际声程成正比的程度。 蚈 B. 垂直线性仪器荧光屏上的波高与输入信号幅度成正比的程度。 螈 C. 动态范围指反射信号从垂直极限衰减到消失所需的衰减量。 肄 2. 仪器与探头的主要综合性能: 蒁 A. 盲区从探侧面到能发现缺陷的最小距离成为盲区,其内缺陷不能发现。 螁 B. 分辨力在荧光屏上区分距离不同的相邻两缺陷的能力。 袈 C. 灵敏度余量指仪器与探头组合后在一定范围内发现微小缺陷的能力。 蒅 D. 声束扩散角扩散角的大小取决于超声波的波长与探头晶片直径的大小。

超声光栅测液体中的声速 实验报告

实验设计说明书题目:利用超声光栅测液体中的声速 院部:理工科基础教学部 专业班级:物理学(创新实验班)1班 学生姓名:某某某 学号:41106XXX 实验日期: 2013年5月21日

超声光栅测液体中的声速 人耳能听到的声波,其频率在16Hz 到20kHz 范围内。超过20Hz 的机械波称为超声波。光通过受超声波扰动的介质时会发生衍射现象,这种现象称为声光效应。利用声光效应测量超声波在液体中传播速度是声光学领域具有代表性的实验。 一、实验目的 (1)学习声光学实验的设计思想及其基本的观测方法。 (2)测定超声波在液体中的传播速度。 (3)了解超声波的产生方法。 二、 仪器用具 分光计,超声光栅盒,高频振荡器,数字频率计,纳米灯。 三、 实验原理 将某些材料(如石英、铌酸锂或锆钛酸铅陶瓷等)的晶体沿一定方向切割成晶片,在其表面上加以交流电压,在交变电场作用下,晶片会产生与外加电压频率相同的机械振动,这种特性称为晶体的反压电效应。把具有反压电效应的晶片置于液体介质中,当晶片上加的交变电压频率等于晶片的固有频率时,晶片的振动会向周围介质传播出去,就得到了最强的超声波。 正文: 光声效应的发现无疑是物理学两大分支的又一次融合,利用超声光栅测量液体中的声速就是这一物理现象的应用。此次实验的仪器包括超声光栅池、超声仪、分光计、测微目镜以及光源。 由于声波是纵波,所以当超声波在液体(本实验用的是水)传播时,声波的振动会引起液体密度空间分布的周期性变化(如右图),进而导致液体的折射率亦呈周期性分布(如右图)。如果在某一时间t 0,液体密度的空间函数为: ()0s 02sin x t x π ρρρωλ??=+?- ? ?? ? ① 其中,0ρ是液体的静态密度,ρ?是密度的变化幅度,s ω是超声波的角频率,λ是超声波长,x 是超声波的传播方向,也是密度变化的空间方向;此时,折射率 的空间函数为:()0s 02sin n x n n t x πωλ? ?=+?-? ?? ?②,其中0n 为液体的静态折射率

超声波测距实验报告

电子信息系统综合设计报告 超声波测距仪

目录 摘要 (3) 第一章绪论 (3) 1.1 设计要求 (3) 1.2 理论基础 (3) 1.3 系统概述 (4) 第二章方案论证 (4) 2.1 系统控制模块 (5) 2.2距离测量模块 (5) 2.3 温度测量模块 (5) 2.4 实时显示模块 (5) 2.5 蜂鸣报警模块 (6) 第三章硬件电路设计 (6) 3.1 超声波收发电路 (6) 3.2 温度测量电路 (7) 3.3 显示电路 (8) 3.4 蜂鸣器报警电路 (9) 第四章软件设计 (10) 第五章调试过程中遇到的问题及解决 (11) 5.1 画PCB及制作 (11) 5.2 焊接问题及解决 (11) 5.3 软件调试 (11) 实验总结 (13) 附件 (14) 元器件清单 (14) HC-SR04超声波测距模块说明书 (15) 电路原理图 (17) PCB图 (17) 程序 (18)

摘要 该系统是一个以单片机技术为核心,实现实时测量并显示距离的超声波测距系统。系统主要由超声波收发模块、温度补偿电路、LED显示电路、CPU处理电路、蜂鸣器报警电路等5部分组成。系统测量距离的原理是先通过单片机发出40KHz 方波串,然后检测超声波接收端是否接收到遇到障碍物反射的回波,同时测温装置检测环境温度。单片机利用收到回波所用的时间和温度补偿得到的声速计算出距离,显示当前距离与温度,按照不同阈值进行蜂鸣报警。由于超声波检测具有迅速、方便、计算简单、易于做到实时控制的特点,并且在测量精度方面能达到工业实用的要求,因此在生产生活中得到广泛的应用,例如超声波探伤、液位测量、汽车倒车雷达等。 关键词:超声波测距温度测量单片机 LED数码管显示蜂鸣报警 第一章绪论 1.1设计要求 设计一个超声波测距仪,实现以下功能: (1)测量距离要求不低于2米; (2)测量精度±1cm; (3)超限蜂鸣器或语音报警。 1.2理论基础 一、超声波传感器基础知识 超声波传感器是利用晶体的压电效应和电致伸缩效应,将机械能与电能相互转换,并利用波的特性,实现对各种参量的测量。 超声波的传播速度与介质的密度和弹性特性有关,与环境条件也有关: 在气体中,超声波的传播速度与气体种类、压力及温度有关,在空气中传播速度为C=331.5+0.607t/0C (m/s) 式中,t为环境温度,单位为0C. 二、压电式超声波发生器原理 压电式超声波发生器实际上是利用压电晶体的谐振来工作的。它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。 三、超声波测距原理 由于超声波指向性强,能量消耗缓慢,在空气中传播的距离较远,因而超声波

光栅衍射实验报告

字体大小:大| 中| 小2007-11-05 17:31 - 阅读:4857 - 评论:6 南昌大学实验报告 --- ---实验日期: 20071019 学号:+++++++ 姓名:++++++ 班级:++++++ 实验名称:光栅衍射 实验目的:1.进一步掌握调节和使用分光计的方法。 2.加深对分光计原理的理解。 3.用透射光栅测定光栅常数。 实验仪器:分光镜,平面透射光栅,低压汞灯(连镇流器) 实验原理: 光栅是由一组数目很多的相互平行、等宽、等间距的狭缝(或刻痕)构成的,是单缝的组合体,其示意图如图1所示。原制光栅是用金刚石刻刀在精制的平面光学玻璃上平行刻划而成。光栅上

的刻痕起着不透光的作用,两刻痕之间相当于透光狭缝。原制光栅价格昂贵,常用的是复制光栅和全息光栅。图1中的为刻痕的宽度, 为狭缝间宽度, 为相邻两狭缝上相应两点之间的距离,称为光栅常数。它是光栅基本常数之一。光栅常数的倒数为光栅密度,即光栅的单位长度上的条纹数,如某光栅密度为1000条/毫米,即每毫米上刻有1000条刻痕。 图1光栅片示意图图2光线斜入射时衍射光路图3光栅衍射光谱示意图图4载物台 当一束平行单色光垂直照射到光栅平面时,根据夫琅和费衍射理论,在各狭缝处将发生衍射,所有衍射之间又发生干涉,而这种干涉条纹是定域在无穷远处,为此在光栅后要加一个会聚透镜,在用分光计观察光栅衍射条纹时,望远镜的物镜起着会聚透镜的作用,相邻两缝对应的光程差为 (1) 出现明纹时需满足条件 (2) (2)式称为光栅方程,其中:为单色光波长;k为明纹级数。 由(2)式光栅方程,若波长已知,并能测出波长谱线对应的衍射角,则可以求出光栅常数d 。 在=0的方向上可观察到中央极强,称为零级谱线,其它谱线,则对称地分布在零级谱线的两侧,如图3所示。 如果光源中包含几种不同波长,则同一级谱线中对不同的波长有不同的衍射角,从而在不同的位置上形成谱线,称为光栅谱线。对于低压汞灯,它的每一级光谱中有4条谱线: 紫色1=435.8nm;绿色2=546.1nm;黄色两条3=577.0nm和4=579.1nm。 衍射光栅的基本特性可用分辨本领和色散率来表征。 角色散率D(简称色散率)是两条谱线偏向角之差Δ两者波长之差Δ之比:

光栅衍射实验报告

光栅衍射实验报告 字体大小:大|中|小2007-11-05 17:31 - 阅读:4857 - 评论:6 南昌大学实验报告 ------实验日期: 20071019 学号:+++++++ 姓名:++++++ 班级:++++++ 实验名称:光栅衍射 实验目的:1.进一步掌握调节和使用分光计的方法。 2. 加深对分光计原理的理解。 3. 用透射光栅测定光栅常数。 实验仪器:分光镜,平面透射光栅,低压汞灯(连镇流器) 实验原理: 光栅是由一组数目很多的相互平行、等宽、等间距的狭缝(或刻痕)构成的,是单缝的组合体,其

示意图如图1所示。原制光栅是用金刚石刻刀在精制的平面光学玻璃上平行刻划而成。光栅上

,常用的是复制光栅和 的刻痕起着不透光的作用,两刻痕之间相当于透光狭缝。原制光栅价格昂贵 全息光栅。图1中的为刻痕的宽度,为狭缝间宽度,为相邻两狭缝上相应两点之间的距离,称为光栅常数。它是光栅基本常数之一。光栅常数的倒数为光栅密度,即光栅的单位长度上的条纹 数,如某光栅密度为1000条/毫米,即每毫米上刻有1000条刻痕。 图1光栅片示意图图2光线斜入射时衍射光路 图3光栅衍射光谱示意图图4载物台 当一束平行单色光垂直照射到光栅平面时,根据夫琅和费衍射理论,在各狭缝处将发生衍射, 所有衍射之间又发生干涉,而这种干涉条纹是定域在无穷远处,为此在光栅后要加一个会聚透镜, 在用分光计观察光栅衍射条纹时,望远镜的物镜起着会聚透镜的作用,相邻两缝对应的光程差为 (1) 岀现明纹时需满足条件 (2) (2 )式称为光栅方程,其中:为单色光波长;k为明纹级数。 由(2 )式光栅方程,若波长已知,并能测岀波长谱线对应的衍射角,则可以求岀光栅常数 d。 在=0的方向上可观察到中央极强,称为零级谱线,其它谱线,则对称地分布在零级谱线的 两侧,如图3所示。 如果光源中包含几种不同波长,则同一级谱线中对不同的波长有不同的衍射角,从而在不同 的位置上形成谱线,称为光栅谱线。对于低压汞灯,它的每一级光谱中有4条谱线: 紫色1=435.8nm; 绿色2=546.1 nm; 黄色两条3=577.0nm 和4=579.1 nm 。 衍射光栅的基本特性可用分辨本领和色散率来表征。

超声实验实验报告

近代物理实验实验报告 超声实验 何昊东工物50 指导老师:王合英2017-3-9 【摘要】: 超声学是一门主要研究超声的产生方法和探测技术、超声在介质中的传播规律、 超声与物质的相互作用,包括在微观尺度的相互作用以及超声的众多应用的学科。本实验利用超声在介质中的传播规律测量了超声探头的延迟时间、横波在不同介质中传播的折射角和纵、横波在不同介质中的传播速度,并利用测量得到的传播速度求出了不同介质的弹性模量和泊松比。最后利用超声测距的原理模拟了超声水下勘测,了解了超声在水下勘测和医疗中的作用。 关键词: 超声水下勘测弹性模量 一、引言 超声的研究和发展与媒质中超声的产生和接收的研究密切相关。 自1883年人类首次制成超声气哨,这一类机械型超声换能器在不断改进后至今仍广泛地应用于流体媒质的超声应用当中。 20世纪初,随着电子学的发展人们发现了一些晶体材料的压电效应和磁致伸缩效应,1917年,法国人朗之万利用天然石英晶体制成了第一个夹心式超声换能器用来探查海底的潜艇。随着军事和国民经济各部门中超声应用的不断发展,又出现更大超声功率的磁致伸缩换能器,以及各种不同用途的电动型、电磁力型、静电型换能器等多种超声换能器。 随着材料科学的发展,机电耦合系数高、价格低廉、性能良好的压电陶瓷、人工压电单晶、压电半导体以及塑料压电薄膜等材料的出现使得产生和检测超声波的频率,由几十千赫提高到上千兆赫,波型也由单纯的纵波扩大为横波、扭转波、弯曲波、表面波等。超声学的一个发展方向便是不断的提高超声的频率,利用超高频超声声子来进行物质结构方面的等基础研究。 同时,近10年来随着计算机图像学的迅猛发展,超声由于其具有的对身体无创伤,机器技术门槛低,检查费用低廉等优势,超声诊断也随之发展起来,并被广泛地应用于工业机械探伤和医疗诊断方面。此外,超声洁牙器、超声洗碗机等产品也相继问世。超声技术已经

超声光栅测声速实验报告

西安理工大学实验报告 课程名称: 普通物理实验 专业班号: 应物091 组别: 2 姓名: 赵汝双 学号: 33 实验名称: 超声光栅测液体中的声速 实验目的 1. 了解超声光栅产生的原理。 2. 了解声波如何对光信号进行调制 3. 通过对液体(非电解质溶液)中的声速的测定,加深对其中声学和光学物理概 念的理解。 实验原理 1. 超声光栅 光波在介质中传播时被超声衍射的现象,称为超声致光衍射(亦称声光效应)。 超声波作为一种纵波在液体中传播时,超声波的声压使液体分子产生周期性变化,促使液体的折射率也相应的作周期性变化,形成疏密波。此时如有平行单色光沿垂直超声波方向通过这疏密相间的液体时,就会被衍射,这一作用,类似于光栅,所以叫超声光栅。 超声波传播时,如前进波被一个平面反射,会反向传播。在一定条件下前进波与反射波可以形成驻波。由于驻波小振幅可以达到单一行波的两倍,加剧了波源和和反射面之间的的疏密程度,某时刻,驻波的任一波节两边的质点都涌向这一点,使该节点附近形成密集区,而相邻波节处为质点稀疏处;半个周期后,这个节点附近的质点向两边散开形成稀疏区,而相邻波节处变为密集区。 在这些驻波中,稀疏区使液体的折射率减小,而压缩作用使液体折射率增加,在距离等于波长A的两点,液体的密度相同,折射率也相等,如图(1)所示。 成绩 实验日期:2011年4月7日 交报告日期:2011年4月14日 报告退发: (订正、重做) 教师审批签字:

图(1) 2.超声光栅册液体中的声速 如图2(a)所示,在透明介质中,有一束超声波沿方向传播,另一束平行光垂直于 超声波传播方向( 方向)入射到介质中,当光波从声束区中出射时,就会产生衍射现象。 图2 实际上由于声波是弹性纵波,它的存在会使介质(如纯水)密度在时间和空间上发生 周期性变化如图2(a),即 02(,)sin()s z t Z A π ρρρω=+?- (1-1) 式中:z 是沿声波传播方向的空间坐标,ρ是t 时刻z 处的介质密度,0ρ为没有超声波存在时的介质密度,s ω叫是超声波的角频率,A 是超声波波长,ρ?是密度变化的幅度。因此介质的折射率随之发生相应变化,即

光栅衍射实验报告

光栅衍射实验 系别 精仪系 班号 制33 姓名 李加华 学号 2003010541 做实验日期 2005年05月18日 教师评定____________ 一、0i =时,测定光栅常数和光波波长 光栅编号:___2____;?=仪___1’___;入射光方位10?=__7°6′__;20?=__187°2′__。 由衍射公式,入射角0i =时,有sin m d m ?λ=。 代入光谱级次m=2、绿光波长λ=546.1及测得的衍射角m ?=19°2′,求得光栅常数 ()2546.13349sin sin 192/60m m nm d nm λ??= ==+? cot cot 2m m m d d ?????==?=? ()4cot 192/601/60 5.962101802180ππ-????=+??=? ? ????? 445.96210 5.962103349 1.997d d nm nm --?=??=??= ()33492d nm =± 代入其它谱线对应的光波的衍射角,得 ()3349sin 2013/60sin 578.72 m nm d nm m ?λ?+?===黄1

()3349sin 209/60576.82 nm nm λ?+? = =黄2 ()3349sin 155/60435.72 nm nm λ?+?==紫 λ λ?== 578.70.4752nm nm λ?==黄1 576.80.4720nm nm λ?= =黄2 435.70.4220nm nm λ?==紫()578.70.5nm λ=±黄1,()576.80.5nm λ=±黄2,()435.70.4nm λ=±紫 由测量值推算出来的结果与相应波长的精确值十分接近,但均有不同程度的偏小。由于实验中只有各个角度是测量值(给定的绿光波长与级数为准确值),而分光计刻度盘读数存在的误差为随机误差,观察时已将观察显微镜中心竖直刻线置于谱线中心——所以猜测系统误差来自于分光镜调节的过程。 二、150'i =?,测量波长较短的黄线的波长 光栅编号:___2____;光栅平面法线方位1n ?=__352°7′__;2n ?=__172°1′__。

超声波测距实验报告

目录 1、课题设计的目的和意义 (3) 2、课题要求 (3) 2.1、基本功能要求 (3) 2.2、提高要求 (4) 3、重要器件功能介绍 (4) 3.1、CX20106A红外线发射接收专用芯片 (4) 3.2、AT89C51系列单片机的功能特点 (5) 3.3、ISD1700优质语音录放电路 (6) 4、超声波测距原理 (8) 4.1、超声波测距原理图 (8) 4.2、超声波测距的基本原理 (9) 5、硬件系统设计 (10) 5.1、超声波发射单元 (10) 5.2、超声波接收单元 (11)

5.3、显示单元 (11) 5.4、语音单元 (12) 5.5、硬件设计中遇到的难题: (12) 6、系统软件设计 (14) 7、调试与分析 (15) 7.1调试 (15) 7.2误差分析 (15) 8、总结 (16) 9、附件 (17) 9.1、总电路 (17) 9.2、主要程序 (18) 10、参考文献 (22)

1课题设计的目的及意义 随着科学技术的快速发展,超声波在测距仪中的应用越来越广,但就目前技术水平而言,人们可以利用的测距技术还十分有限,因此,这是一个正在蓬勃发展而又有无限前景的技术及产业领域。展望未来,超声波测距作为一种新型的非常重要有用的工具在各方面都有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求。如声纳的发展趋势:研究具体的高定位精度的被动测距声纳,以满足军事和渔业等的发展需求,实现远程的被动探测和识别。毋庸置疑,未来的超声波测距仪将与自动化智能化接轨,与其他的测距仪集成和融合,形成多测距仪。 超声波测距在某些场合有着显著的优点,因为这种方法是利用计算超声波在被测物体和超声波探头之间的传输来测量距离的,因此它是一种非接触式的测量,所以他就能够在某些场合或环境比较恶劣的环境下使用。比如测有毒或者有腐蚀性化学物质的液面高度或者高速公路上快速行驶汽车之间的距离。 随着测距仪的技术进步,测距仪将从具有单纯判断功能发展到具有学习功能,最注重发展到具有创造力。在新的时代,测距仪将发挥更大的作用。 2课题要求 以单片机AT89C51为中心控制单元,配以超声波发射、接收装置,实现超声波发射及接收其遇到障碍物发生反射形成的回波信号,并根据超声波在介质中的传播速度及超声波从发射到接收到回波的时间,计算出发射点距障碍物的距离,设计出一套基于单片机的脉冲反射式超声波测距系统,利用单片机进行操作控制,用数码管作输出显示,设计发射、接收、检测、显示硬件电路和测距系统软件。

A类超声实验

实验四、A 类 超 声 实 验 一、实验目的: ⒈超声波产生和发射机理。 ⒉用A 类超声实验仪测量水中声速、水层厚度。 ⒊用A 类超声实验仪测量固体厚度及超声无损探伤。 二、实验装置与材料 A 类超声实验仪主机(FD-UDE-A 型)、数字示波器(DS5022ME )、有机玻璃水箱、金属反射板、探头、游标卡尺、样品架(可放12个样品:铝、铁、铜、有机玻璃、冕玻璃和带缺陷的铝柱)。 三、实验原理 ⒈超声波的产生与接收 产生超声波的方法有很多种,应用最普遍的是压电法。压电法采用压电式换能器(探头),它是应用某些晶体的压电效应制成的。所谓(正)压电效应是指压 电晶片相对的两个表面受到压力 或拉力其厚度发生变化时,晶片 两表面上出现等量异号电荷的现 象。在一定范围内,受力越大产 生的电荷越多,当晶片受到变化 的压力和拉力交替作用时,晶片 两表面之间产生同样规律的电压 变化;反之当晶体两表面之间加 上交变的电压时,晶体的厚度将视电场的方向而变化,这种现象称为逆压电效应。当对压电晶片施加频率大于20KHZ 的交变电压(由高频振荡器产生),那么在交变电场的作用下,压电晶片将发生同频率的压缩和拉伸形变,即产生超声振动,该振动在弹性媒质中传播产生超声波。超声波就是频率高于20KHZ 并不引起声感的弹性波。其主要特性:频率高、波长短、方向性强,并与其他波动一样。 ⒉超声波的反射 当超声波从一种介质进入另一种介质时,在介质的交界面上也发生反射现象。反射波的强度I r 与入射波的强度I j 之比,决定于两种煤质的阻抗差: 2 2121?? ? ??+-=E E E E Ij Ir …………………(1) 式中E1=ρ1C1, E2 =ρ2C2 分别表示第一媒质和第二媒质的声阻抗(ρ1、ρ2和C1、C2 表示两种不同媒质的密度和超声波在两种介质中的传播速度)。 根据(1)式可知,两种媒质的阻抗差愈大,超声波在其分界面上的反射就愈强烈。 ⒊超声波测厚度及声速

光栅常数的实验报告

得分教师签名批改日期 一、实验设计方案 1、实验目的 1.1、了解光栅的分光特性; 1.2、掌握什么是光栅常数以及求光栅常数的基本原理与公式; 1.3、掌握一种测量光栅常数的方法。 2、实验原理 2.1、测量光栅常数 光栅是由许多等宽度a(透光部分)、等间距b(不透光部分)的平行缝组成 的一种分光元件。当波长为λ的单色光垂直照射在光栅面上时,则透过各狭缝的 光线因衍射将向各方向传播,经透镜会聚后相互干涉,并在透镜焦平面上形成一 系列间距不同的明条纹。根据夫琅和费衍射理论,衍射光谱中明条纹的位置由下 式决定: (a+b)sinφk=kλ(k=0,±1,±2,…)(2.1.1) 式中a+b=d称为光栅常数,k为光谱级数,φk为第k级谱线的衍射角。见图2.1.2, k=0对应于φ=0,称为中央明条纹,其它级数的谱线对称分布在零级谱线的两侧。 如果入射光不是单色光,则由式(2.1.1)可知,λ不同,φk也各不相同, 于是将复色光分解。而在中央k=0,φk=0处,各色光仍然重叠在一起,组成中 央明条纹。在中央明条纹两侧对称地分布k=1,2,…级光谱线,各级谱线都按波 长由小到大,依次排列成一组彩色谱线,如图2.1.2所示。 根据式(2.1.1),如能测出各种波长谱线的衍射角φk,则从已知波长λ的大 小,可以算出光栅常数d; 反之,已知光栅常数d, 则可以算出波长λ。本试 验则是已知波长λ求光 栅常数。 2.2、注意事项 2.2.1、光源必须垂直 入射光栅,否则会引起较 大的误差。 2.2.2、所有装置尽量 处于同一水平面上,这样 才能发生明显的衍射。 图2.1.2 光栅衍射谱

超声实验报告

实验名称:超声实验 摘要:本实验通过使用一台数字智能化的“超声波分析测试仪”,利用超声波的特性测量其纵波和横波在钢和铝中的波速,进而计算固体介质常用参数,并利用利用超声扫描成像进行水下模拟观测。 一、实验目的 1.了解超声波产生和发射的机理; 2.了解超声探头的结构及作用; 3.学习用超声法来测量固体介质常用参数的方法; 4.学习超声扫描成像技术的应用。 二、实验原理 1.超声波的发射和接收 超声波换能器是使其他形式的能量转换成超声能量(称发射换能器)或使超声能量转换成其他易于检测的能量(称接收换能器),其中应用最多的是声电、电声换能器:当一个电脉冲作用到探头上时,探头就发射超声脉冲,反之,当一个超声脉冲作用到探头上时,探头就产生一个电脉冲。有了探头,再配上电信号的产生和接收等装置,就构成了整套超声波检测系统。 产生超声波的方法有很多种,如热学法、力学法、静电法、电磁法、磁致伸缩法、激光法以及压电法等等,但应用得最普遍的方法是压电法。 1). 压电效应 某些介电体在机械压力的作用下会发生形变,使得介电体内正负电荷中心相对位移以致介电体两端表面出现符号相反的束缚电荷,其电荷密度与压力成正比,这种由“压力”产生“电”的现象称为正压电效应,如1(a )所示。 (a) (b) 图1 压电效应示意图 (a)正压电效应 (b)逆压电效应 反之,如果将具有压电效应的介电体置于外电场中,电场会使介质内部正负电荷中心位移,从而导致介电体产生形变,这种由“电”产生“机械形变”的现象称为逆压电效应,如图1(b )所示。逆压电效应只产生于介电体,形变与外电场呈线性关系,且随外电场反向而改变符号。 如果对具有压电效应的材料施加交变电压,那么它在交变电场的作用下将发生交替的压缩和拉伸形变,由此而产生了振动,并且振动的频率与所施加的交变电压的频率相同,若所施加的电频率在超声波频率范围内,则所产生的振动是超声频的振动,即超声波的产生。我们把这种振动耦合到弹性介质中去,那么在弹性介质中传播的波即为超声波,这利用的是逆

2020年光栅衍射实验报告范文

实验时间2019 年 月 日签到序号 【进入实验室后填写】 福州大学 【实验七】 光栅的衍射 (206 实验室) 学学院 班班级 学学号 姓姓名 实验前必须完成【实验预习部分】 登录下载预习资料 携带学生证提前 10 分钟进实验室 实验预习部分【实验目的】 】 【实验仪器】( 名称、规格或型号) 【实验原理】(文字叙述、主要公式、衍射的原理图)实验预习部分【实验步骤和注意事项】 】 实验预习部分

一、 巩固分光计的结构(P 197 ,图25-10 ) 载物台 6 7 25 望远镜11 12 15 16 17 平行光管2 27 调节分光计,要求达到(验调节步骤参阅实验25 ) ⑴⑴望远镜聚焦于无穷远,且其光轴与仪器转轴垂直。 ⑵⑵平行光管产生平行光,且其光轴与望远镜光轴同轴等高,狭缝为宽度在望远镜视场中约为1 mm (狭缝宽度不当应由教师调节) 二、光栅位置的调节 1 、光栅平面与平行光管轴线垂直 ①①转动望远镜使竖直叉丝对准 。 ,然后固定望远镜位置。 ②放置光栅时光栅面要垂直

。 ③③调节 螺丝直到望远镜中看到光栅面反射回来的绿色十字叉丝像与 重合。 2 、光栅上狭缝与仪器转轴平行。 松开望远镜止动螺钉,向左(或向右)转动望远镜,观察各谱线,调节被螺丝使各谱线都被分划板视场中央的水平叉丝平分。 3 、反复调节直到1 和2 两个要求同时满足! 数据记录与处理【一】测定光栅常数 测出第一级绿光谱线的衍射角 绿=541 nm k=1 置望远镜位置 T 1 置望远镜位置 T 2 1 1 2 2 2 1 2 1 1- -41 1′= rad) (弧度) 10sin 绿 kd

超声光栅实验及数据处理

超声光栅实验 1.了解超声致光衍射的原理。 2.利用声光效应测量声波在液体中的传播速度。 【实验原理】 光波在液体介质中传播时被超声波衍射的现象,称为超声致光衍射(亦称声光效应),这种现象是光波与介质中声波相互作用的结果。超声波调制了液体的密度,使原来均匀透明的液体,变成折射率周期变化的“超声光栅”,当光束穿过时,就会产生衍射现象,由此可以准确测量声波在液体中的传播速度。并且,由于激光技术和超声技术的发展,使声光效应得到了广泛的应用。如制成声光调制器和偏转器,可以快速而有效地控制激光束的频率、强度和方向,它在激光技术、光信号处理和集成通讯技术等方面有着非常重要的应用。 压电陶瓷片(PZT)在高频信号源(频率约10MHz)所产生的的交变电场的作用下,发生周期性的压缩和伸长振动,其在液体中的传播就形成超声波,当一束平面超声波在液体中传播时,其声压使液体分子作周期性变化,液体的局部就会产生周期性的膨胀与压缩,这使得液体的密度在波传播方向上形成周期性分布,促使液体的折射率也做同样分布,形成了所谓疏密波,这种疏密波所形成的密度分布层次结构,就是超声场的图象,此时若有平行光沿垂直于超声波传播方向通过液体时,平行光会被衍射。以上超声场在液体中形成的密度分布层次结构是以行波运动的,为了使实验条件易实现,衍射现象易于稳定观察,实验中是在有限尺寸液槽内形成稳定驻波条件下进行观察,由于驻波振幅可以达到行波振幅的两 倍,这样就加剧了液体疏密变化的程度。驻波形 成以后,某一时刻t,驻波某一节点两边的质点 涌向该节点,使该节点附近成为质点密集区,在 半个周期以后,t+T/2,这个节点两边的质点又 向左右扩散,使该波节附近成为质点稀疏区,而 相邻的两波节附近成为质点密集区。 图1 为在t和t+T/2(T为超声振动周期) 两时刻振幅y、液体疏密分布和折射率n的变化 分析。由图1可见,超声光栅的性质是,在某一 时刻t,相邻两个密集区域的距离为λ,为液体 中传播的行波的波长,而在半个周期以后, t+T/2。所有这样区域的位置整个 漂移了一个距离Λ/2,而在其它时刻,波的现象图1 则完全消失,液体的密度处于均匀状态。超声场形成的层次结构消失,在视觉上是观察不到的,当光线通过超声场时,观察驻波场

光栅衍射实验实验报告

工物系 核11 敏 2011011693 实验台号19 光栅衍射实验 一、 实验目的 (1) 进一步熟悉分光计的调整与使用; (2) 学习利用衍射光栅测定光波波长及光栅常数的原理和方法; (3) 加深理解光栅衍射公式及其成立条件; 二、 实验原理 2.1测定光栅常数和光波波长 如右图所示,有一束平行光与光栅的法线成i 角,入射到光栅上产生衍射;出射光夹角为?。从B 点引两条垂线到入射光和出射光。如果在F 处产生了一个明条纹,其光程差AD CA +必等于波长λ的整数倍,即 ()sin sin d i m ?λ ±= (1) m 为衍射光谱的级次, 3,2,1,0±±±.由这个方程,知道了λ?,,,i d 中的三个 量,可以推出另外一个。 若光线为正入射,0=i ,则上式变为 λ ?m d m =sin (2) 其中 m ?为第m 级谱线的衍射角。 据此,可用分光计测出衍射角m ?,已知波长求光栅常数或已知光栅常数求 波长。 2.2用最小偏向角法测定光波波长 如右图。入射光线与m 级衍射光线位于光栅法线同侧,

(1)式中应取加号,即。以为偏向角,则由三 角形公式得 (3) 易得,当时,?最小,记为 ,则(2.2.1)变为 ,3,2,1,0,2 sin 2±±±==m m d λδ (4) 由此可见,如果已知光栅常数d ,只要测出最小偏向角,就可以根据(4) 算出波长。 三、 实验仪器 3.1分光计 在本实验中,分光计的调节应该满足:望远镜适合于观察平行光,平行光管发出平行光,并且二者的光轴都垂直于分光计主轴。 3.2光栅 调节光栅时,调节小平台使光栅刻痕平行于分光计主轴。放置光栅时应该使光栅平面垂直于小平台的两个调水平螺钉的连线。 3.3水银灯 1.水银灯波长如下表 颜色 紫 绿 黄 红 波长/nm 404.7 491.6 577.0 607.3 407.8 546.1 579.1 612.3 410.8 623.4 433.9 690.7

声速的测定实验报告.doc

声速的测定实验报告 1、实验目的 (1)学会用驻波法和相位法测量声波在空气中传播速度。 (2)进一步掌握示波器、低频信号发生器的使用方法。 (3)学会用逐差法处理数据。 2、实验仪器 超声声速测定仪、低频信号发生器DF1027B 、示波器ST16B 。 3、实验原理 3.1 实验原理 声速V 、频率f 和波长λ之间的关系式为λf V =。如果能用实验方法测量声波的频率f 和波长λ,即可求得声速V 。常用的测量声速的方法有以下两种。 3.2 实验方法 3.2.1 驻波共振法(简称驻波法) S 1发出的超声波和S 2反射的超声波在它们之间的区域内相干涉而形成驻波。当波源的 频率和驻波系统的固有频率相等时,此驻波的振幅才达到最大值,此时的频率为共振频率。 驻波系统的固有频率不仅与系统的固有性质有关,还取决于边界条件,在声速实验中, S 1、S 2即为两边界,且必定是波节,其间可以有任意个波节,所以驻波的共振条件为: 3,2,1,2 ==n n L λ (1) 即当S 1和S 2之间的距离L 等于声波半波长的整数倍时,驻波系统处于共振状态,驻波振幅最大。在示波器上得到的信号幅度最大。当L 不满足(1)式时,驻波系统偏离共振状态,驻波振幅随之减小。 移动S 2,可以连续地改变L 的大小。由式(1)可知,任意两个相邻共振状态之间,即 S 2所移过的距离为: () 22 2 11λ λ λ = ? -+=-=?+n n L L L n n (2) 可见,示波器上信号幅度每一次周期性变化,相当于L 改变了2λ。此距离2λ 可由超声声速测定仪上的游标卡尺测得,频率可由低频信号发生器上的频率计读得,根据f V ?=λ,就 可求出声速。 3.2.2 两个相互垂直谐振动的合成法(简称相位法) 在示波器荧光屏上就出现两个相互垂直的同频率的谐振动的合成图形——称为李沙如图形。其轨迹方程为: ()()φφφφ122122122 122-=-- ???? ??+???? ??Sin Cos A A XY A Y A X (5) 在一般情况下,此李沙如图形为椭圆。当相位差 12=-=?φφφ时,由(5)式,得 x A A y 12=,即轨迹为一条处在于第一和第三象限的直线[参见图16—2(a)]。

相关文档
相关文档 最新文档