文档库 最新最全的文档下载
当前位置:文档库 › 高等数学第一章公式

高等数学第一章公式

高等数学第一章公式
高等数学第一章公式

学公式

定理

(第六版上册)

第一章 函数与极限

第一节:初等函数

幂函数:a x y =(是常数)R a ∈ 指数函数:x a y =(a >0且)1≠a

对数函数:y=x a log (a>0且a ≠1,特别当a=e 时,记为y=lnx) 三角函数: 如y=x sin 等 反三角函数:如y=arctan x 等

第二节:数列的极限

收敛数列的性质:

定理1 (极限的唯一性)如果数列{x n }收敛,那么它的极限唯

一。

定理2 (收敛数列的有界性)如果数列{x n }收敛,那么数列{x n }

一定有界。

定理3 (收敛数列的保号性)如果,lim

a x n n =∞

→且

a>0(或a<0),那

么存在正整数N>0,当n>N 时,都有.n x >0(.n x <0)

定理 4 (收敛数列与其子数列的关系)如果数列{.n x }收敛于

a,那么它的任一子数列也收敛,且极限也是a.

第三节 函数的极限

函数极限的性质

定理1 (函数极限的唯一性) 如果)(lim

x f x

x →存在,那么这极

限唯一.

定理2 (函数极限的局部有界性)如果)(lim

x f x

x →=A 存在,

那么存在常数M>0和δ>0,使得当0<{0x x - }<δ时,有

)(x f M

≤.

定理 3 (函数极限的局部保号性)如果)(lim

x f x

x →=A ,且

A>0(或A<0),那么存在常数δ>0,使得

δ<-<00x x 时,有0)(>x f (或0)(

定理3′ 如果)0()(lim 0

≠=→A A x f x

x ,那么就存在着n x 的某一去心邻域),(00x U 当)(00

x U x ∈时,就有

2

)(0A x f >

.

推论 如果在0x 的某去心邻域内)0)x 0)(0≤≥(或(f x f ,而且

A x f x x =→)(lim 0

,那么)或(00≤≥A A

定理4 (函数极限与数列极限的关系) 如果极限)

(lim

x f x

x →存在,{n x }为函数)(x f 的定义域内任一收敛于0x 的数列,且满足:)(*0N n x x n ∈≠,那么相应的函数数列

)(n x f 必收敛,且).(lim )(lim 0

x f x f x x n →∞

→=

第四节 无穷小与无穷大

定理 1 在自变量的同义一变化过程0x x →)x (∞→或中,函数

)(x f 具有极限

A 的充分必要条件是,)(a A x f +=其中a

是无穷小。

定理 2 在自变量的同一变化过程中,如果)(x f 为无穷大,

)

(1

x f 为无穷小;如果)(x f 为无穷小,且)(x f ≠0,则)

(1

x f 为无穷大。

第五节 极限运算法则

定理1 有限个无穷小的和也是无穷小。 定理2 有界函数与无穷小的乘积是无穷小。 推论1 常数与无穷小的乘积是无穷小。 推论2 有限个无穷小的乘积也是无穷小。 定理3 如果,)(lim ,)(lim B x g A x f ==那么 (1)B A x g x f x g x f +=±=±)(lim )(lim )]()(lim[ (2)

B A x g x f x g x f ?=?=?)(lim )(lim )]()(lim[

若又有B 0≠,则B

A x g x f x g x f ==)

(lim )(lim )

()(lim .

推论1 如果)(lim x f 存在,而c 为常数,则).(lim )](lim[x f c x cf = 推论2 如果)(lim x f 存在,而n 是正整数,则.)]([lim )](lim[n n x f x f = 定

4

}

{y }{n 和h x n ,如果

.lim

0)2,1(0)3(;

lim )2(;x 1,lim ,lim B

A

y x B n y B A y x B A y B y A x n n n n n n n n n n =≠=≠?=?±=±==∞

→时,且当))里面((那么

定理5 如.a ,)(lim ,)(lim ),()(b b x a x x x ≥==≥那么而ψ?ψ 定理6 (复合函数的极限运算法则)设函数)]([x g f y =

是由

函数)

与函数u f x g u (y )(=

=复合而成,)([x g f 在点0x 的某去心邻域内有定义,若,)(lim ,)(lim 0

00A u f u x g u

u x x ==→→且存在

)

,(x ,0000

0δδx U ∈>当时,有

.)(lim )]([lim ,)(0

0A u f x g f u x g u u x x ==≠→→则

第六节 极限存在准则 两个重要极限

准则1 如果数列}{z }{},{n 及n n y x 满足下列条件: (1)从某项起,即,0N n ∈?当0n n >时,有

,

n n n z x y ≤≤

(2).lim ,lim

a z a y n n n n ==∞

→∞

那么数列{n x }的极限存在,且.lim a x n n =∞

准则I ' 如果

(1) 当)()()(g )x )(,(00

x h x f x M r x U x ≤≤>∈时,或

(2)

,)(lim ,)(lim )

(0

)

(0

A x h A x g x x x x x x ==∞→∞→→→

那么)(lim )

(0

x f x x

x ∞→→存在,且等于A. 准则Ⅰ和准则I '称为夹逼准则。

准则 单调有界函数必有极限。

第七节 无穷小的比较

定理1

αβ与是等价无穷小的充分必要条件是 ).(αοαβ+=

定理2 设,~,~ββαα''且.lim lim lim αβαβαβ'

'=''存在,则

第九节 连续函数的运算与初等函数的连续性

定理1 设函数)(和x )(g x f 在点0x 连续,则他们的和(差)g f

±.

积)0)((0≠?x g g

f

g f 当及商都在点0x 连续。

定理2 如果函数)(x f y =

在区间x I 上单调增加(或单调减少)

且连续,那么它的反函数)

(1y f x -=

也在对应区间

}),({x y I x x f y y I ∈==上单调增加(或单调减少)且连

续。

定理 3 设函数)]([x g f y =

有函数)(x g u =与函数)(u f y =复合而

成,

.)(00

g f D x U ?若,)(lim 00

u x g x x =→而函数)(u f y =在0

u u =连续,则).()(lim )]([lim

00

u f u f x g f u

u x x ===→

定理4 设函数)]([x g f y =是由函数)(u g u =与函数)(u f y =复合

而成,.)(0g f D x U ?若函数)(x g u =在0x x =连续,且

00)(u x g =,而函数)(u f y =在0u u =连续,则复合函数

)]([x g f y =在0x x =也连续。

第十节闭区间上连续函数的性质

定理1 (有界性与最大值最小值定理) 在闭区间上连续的

函数在该区间上有界且一定能取得它的最大值和最小值。

定理2 (零点定理) 设函数)(x f 在闭区间],[b a 上连续,且)

(a f 与异)(b f 号(即0)()(

定理3 (介值定理) 设函数)(z f 在闭区间上],[b a 连续,且在

这区间的端点取不同的函数值A a f =)(及B b f =)(,那么,对于A 与B 之间的任一个数C ,在开区间内至少有一点ξ,使得C f =)(ξ)(b a <<ξ

推论 在闭区间上连续的函数必取得介于最大值M 与最

小值m 之间的任何值。

定理 4 (一致连续性定理) 如果函数)(x f 在闭区间],[b a 上

连续,那么它在该区间上一致连续。

第二章 导数与微分

第一节 导数的概念

高等数学常用公式大全

高数常用公式 平方立方: 22222222 332233223223332233222(1)()()(2)2()(3)2()(4)()()(5)()()(6)33()(7)33()(8)222(a b a b a b a ab b a b a ab b a b a b a b a ab b a b a b a ab b a a b ab b a b a a b ab b a b a b c ab bc ca -=+-++=+-+=-+=+-+-=-+++++=+-+-=-+++++= 21221)(9)()(),(2) n n n n n n a b c a b a b a a b ab b n ----++-=-++++≥ 三角函数公式大全 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π -a) 半角公式 sin( 2A )=2cos 1A - cos( 2A )=2cos 1A + tan( 2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan( 2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a -

大一高数公式

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 一些初等函数: 两个重要极限: 三角函数公式: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

高数公式大全(全)

高数公式大全 1.基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x += =+-=+=, , ,  一些初等函数: 两个重要极限: ? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππx x arthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x x x x x x x -+=-+±=++=+-==+= -=----11ln 21)1ln(1ln(:2 :2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e x x x x x x

高等数学一常用公式表

常用公式表(一) 1。乘法公式 ()()22212a b a ab b +=++ ()()2 2222a b a ab b -=-+ ()()()223a b a b a b -=+- ()()()33224a b a b a ab b +=+-+ ()()()33225a b a b a ab b -=-++ 2、指数公式: ()()0 110a a =≠ ()12p p a a -= ()3m n a = ()4m n m n a a a += ()5m m n m n n a a a a a -÷= = ()() 6n m m n a a = ()() 7n n n ab a b = ()8n n n a a b b ?? = ??? ()2 9a = (10a = () 1 111a a -= (1 2 12a = 3、指数与对数关系: (1)若N a b =,则 N b a log = (2)若N b =10 ,则N b lg = (3)若N e b =,则N b ln = 4、对数公式: (1) b a b a =log , ln b e b = (2)log 10,ln 10a == (3)N a aN =log ,ln N e N = ()ln 4log ln a N N a = (5)a b b e a ln = (6)N M MN ln ln ln += ()7ln ln ln M M N N =- (8) M n M n ln ln = ()1 9ln ln M n = 5、三角恒等式: (1)22sin cos 1α α+= (2)2 2 1tan sec αα += (3)221cot csc αα+= () sin 4tan cos αα α = () cos 5cot sin αα α = ()1 6cot tan α α = ()17csc sin α α = ()18sec cos αα = 6.倍角公式: (1)α ααcos sin 22sin = ()2 2tan 2tan 21tan αα α = - (3)α αααα2 2 2 2 sin 211cos 2sin cos 2cos -=-=-= 7.半角公式(降幂公式): ()2 1cos 1sin 22 α α -= ()2 1cos 2cos 2 2 α α += ()1cos sin 3tan 2 sin 1cos α ααα α -= = +

高数公式大全全

高数公式大全 1.基本积分表: 三角函数的有理式积分: 一些初等函数:两个重要极限: 三角函数公式: ·诱导公式: ? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππ

·和差角公式:·和差化积公式: 2 sin 2sin 2cos cos 2cos 2cos 2cos cos 2sin 2cos 2sin sin 2cos 2sin 2sin sin β αβαβαβ αβαβαβ αβαβαβ αβαβα-+=--+=+-+=--+=+α ββαβαβαβ αβαβ αβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±?= ±?±= ±=±±=±1 )(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμ

高等数学积分公式大全

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1.d x ax b +? = 1ln ax b C a ++ 2.()d ax b x μ+?=1 1() (1) ax b C a μμ++++(1μ≠-) 3.d x x ax b +?= 2 1(ln )ax b b ax b C a +-++ 4.2 d x x ax b +? = 22 311()2()ln 2ax b b ax b b ax b C a ??+-++++???? 5.d () x x ax b +? =1ln ax b C b x +-+ 6.2 d () x x ax b +? =2 1ln a ax b C bx b x +- ++ 7.2 d () x x ax b +? =2 1(ln )b ax b C a ax b ++ ++ 8.2 2 d () x x ax b +? = 2 3 1(2ln )b ax b b ax b C a ax b +-+- ++ 9.2 d () x x ax b +? = 2 11ln () ax b C b ax b b x +- ++ 的积分 10.x ? = C 11.x ?=2 2(3215ax b C a -+ 12.x x ?= 2 2 2 3 2(15128105a x abx b C a -+ 13.x ? = 2 2(23ax b C a -+

14 .2 x ? = 222 3 2(34815a x abx b C a -+ 15 .? (0) (0) C b C b ?+>?的积分 22.2 d x ax b +? =(0) (0) C b C b ? +>? ? ?+< 23.2 d x x ax b +? = 2 1 ln 2ax b C a ++

大学高数常用公式大全

高等数学公式 导数公式: 基本积分表: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '

三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x += =+-=+=, , ,  一些初等函数: 两个重要极限: ? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππx x arshx e e e e chx shx thx e e chx e e shx x x x x x x x x ++=+-==+= -= ----1ln(:2 :2:22) 双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e x x x x x x

高等数学积分公式大全

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1.d x ax b +?=1ln ax b C a ++ 2.()d ax b x μ+?=11()(1) ax b C a μμ++++(1μ≠-) 3.d x x ax b +?=21(ln )ax b b ax b C a +-++ 4.2d x x ax b +?=22311()2()ln 2ax b b ax b b ax b C a ??+-++++???? 5.d ()x x ax b +?=1ln ax b C b x +-+ 6.2d () x x ax b +?=21ln a ax b C bx b x +-++ 7.2d ()x x ax b +?=21(ln )b ax b C a ax b ++++ 8.22d ()x x ax b +?=2 31(2ln )b ax b b ax b C a ax b +-+-++ 9.2d () x x ax b +?=211ln ()ax b C b ax b b x +-++ 的积分 10.x C 11.x ?=22(3215ax b C a - 12.x x ?=22232(15128105a x abx b C a -+ 13.x =22(23ax b C a - 14. 2x =22232(34815a x abx b C a -+

15 . =(0)(0)C b C b ?+>< 16 . 2a b - 17 .x =b 18 .x =2a x -+? (三)含有22x a ±的积分 19.22d x x a +?=1arctan x C a a + 20.22d ()n x x a +?=2221222123d 2(1)()2(1)()n n x n x n a x a n a x a ---+-+-+? 21.22d x x a -?=1ln 2x a C a x a -++ (四)含有2(0)ax b a +>的积分 22.2d x ax b +? =(0)(0)C b C b ?+>+< 23.2d x x ax b +?=21ln 2ax b C a ++ 24.22d x x ax b +?=2d x b x a a ax b -+? 25.2d ()x x ax b +?=2 21ln 2x C b ax b ++ 26.22d ()x x ax b +?=21d a x bx b ax b --+?

高等数学-第一章-1-5-作业答案

第49页 习题1-5 1 计算下列极限 (1)225 lim 3 x x x →+- 将2x =代入到25 3x x +-中,由于解析式有意义,因此 222525 lim 9323x x x →++==--- (2 )2231 x x x -+ 将x =223 1 x x -+中,解析式有意义,因此 ()22 2 233 01 1 x x x --= =++ (3)22121 lim 1 x x x x →-+- 将1x =代入到解析式中,分子为0,分母为0,因此该极限为 型,因式分解,可得 ()()()()()2 221111121 0lim lim lim 011112 x x x x x x x x x x x →→→---+====-+-+ (4)322042lim 32x x x x x x →-++ 将0x =代入到解析式中,分子为0,分母为0. 因此该极限为 型,因式分解,可得 ()()()() 22322000421421421lim lim lim 3232322x x x x x x x x x x x x x x x x →→→-+-+-+===+++ (5)()2 2 lim h x h x h →+- 将0h =代入到解析式中,分子为0,分母为0. 因此该极限为 型,因式分解,可得 ()()()2 2 2lim lim lim 22h h h x h x x h h x h x h h →→→+-+==+=

(6)211lim 2x x x →∞ ??- + ??? 由于lim 22x →∞ =,1lim 0x x →∞??- = ???,22lim 0x x →∞?? = ??? 因此由极限四则运算法则可知 221112lim 2lim 2lim lim 2002x x x x x x x x →∞ →∞→∞→∞?????? - +=+-+=++= ? ? ??????? (7)221 lim 21 x x x x →∞--- 当x →∞时,分子→∞,分母→∞,因此该极限为∞ ∞ 型,分子分母同时除以x 的最高次项,也就是2 x ,再利用极限四则运算法则,可知: 2 2 2 2221 1 1lim1lim 1101lim lim 1111 212002 2lim 2lim lim x x x x x x x x x x x x x x x x →∞→∞→∞→∞→∞→∞→∞- ---====-------- (8)242lim 31 x x x x x →∞+-+ 当x →∞时,分子→∞,分母→∞,因此该极限为∞ ∞ 型,分子分母同时除以x 的最高次项,也就是4 x ,再利用极限四则运算法则,可知: 2 2323422424 1111lim lim 00lim lim 0113131100 13lim1lim lim x x x x x x x x x x x x x x x x x x x →∞→∞→∞→∞→∞→∞→∞++++====-+-+-+-+ (9)22468 lim 54 x x x x x →-+-+ 4x =代入到解析式中,分子为0,分母为0. 因此该极限为 型,因式分解,可得 ()()()()2244424682422 lim lim lim 54141413 x x x x x x x x x x x x x →→→---+--====-+---- (10)211lim 12x x x →∞ ???? + - ???????

高等数学公式(一元

高等数学公式篇

·平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边, ·三角函数恒等变形公式 ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) ·辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

高等数学积分公式大全

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1. d x ax b +?=1 ln ax b C a ++ 2.()d ax b x μ +? = 11 ()(1) ax b C a μμ++++(1μ≠-) 3. d x x ax b +?=21 (ln )ax b b ax b C a +-++ 4.2d x x ax b +? =22311()2()ln 2ax b b ax b b ax b C a ?? +-++++???? 5. d ()x x ax b +?=1ln ax b C b x +-+ 6. 2 d () x x ax b +? =21ln a ax b C bx b x +-++ 7. 2 d ()x x ax b +?=21(ln )b ax b C a ax b ++++ 8.22 d ()x x ax b +?=2 31(2ln )b ax b b ax b C a ax b +-+-++

9. 2 d () x x ax b +? =211ln ()ax b C b ax b b x +-++ 的积分 10 . x ? C + 11 .x ? =2 2 (3215ax b C a - 12 .x x ? =2223 2(15128105a x abx b C a -++ 13 . x ? =22 (23ax b C a - 14 . 2x ? =222 3 2(34815a x abx b C a -++ 15 .? (0) (0) C b C b ?+>< 16 . ? =2a bx b -- 17 . x ? =b ?18. 2d x x ? =2a + (三)含有2 2 x a ±的积分 19. 22d x x a +?=1arctan x C a a +

大一高等数学公式(精华整理的)

高等数学公式 1导数公式: 2基本积分表: 3三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

高数公式大全

大学数学公式 常用导数公式: 常用积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1 )(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

大学高数公式大全

高 等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 一些初等函数: 两个重要极限: 三角函数公式: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππ

高等数学常用积分公式查询表

导数公式: 基本积分表: 1.d x ax b +?=1ln ax b C a ++ 2.()d ax b x μ+?=11()(1) ax b C a μμ++++(1μ≠-) 3.d x x ax b +?=21(ln )ax b b ax b C a +-++ 5.d ()x x ax b +?=1ln ax b C b x +-+ 6.2d ()x x ax b +?=21ln a ax b C bx b x +-++ 10 .x C 19.22d x x a +?=1arctan x C a a + 21.22d x x a -?=1ln 2x a C a x a -++ 23.2d x x ax b +?=21ln 2ax b C a ++ 24.2 2d x x ax b +?=2d x b x a a ax b -+? a x x a a a x x x x x x x x x x a x x ln 1)(log ln )(cot csc )(csc tan sec )(sec csc )(cot sec )(tan 22='='?-='?='-='='222211)cot (11)(arctan 11)(arccos 11)(arcsin x x arc x x x x x x +-='+='--='-='

31. 1arsh x C a +=ln(x C + 32. =C + 33. x =C 34. x =C + 35.2 x =2ln(2a x C -++ 39. x 2 ln(2a x C +++ 43.x a C + 44.2d x x ?=ln(x C +++ 47. x =C 53.x 2 ln 2 a x C 57.x =arccos a a C x + 59. arcsin x C a + 61. x =C

高等数学常用公式汇总————

高数常用公式 平方立方: 22222222 332233223223332233222(1)()()(2)2()(3)2()(4)()()(5)()()(6)33()(7)33()(8)222(a b a b a b a ab b a b a ab b a b a b a b a ab b a b a b a ab b a a b ab b a b a a b ab b a b a b c ab bc ca -=+-++=+-+=-+=+-+-=-+++++=+-+-=-+++++= 21221)(9)()(),(2) n n n n n n a b c a b a b a a b ab b n ----++-=-++ ++≥ 倒数关系:sinx ·csc x=1 tanx ·cot x=1 cosx ·sec x=1 商的关系:tanx=sinx/cosx cotx=cosx/sinx 平方关系:sin^2(x)+cos^2(x)=1 tan^2(x)+1=sec^2(x) cot^2(x)+1=csc^2(x) 倍角公式: sin(2α)=2sinα·cosα cos(2α)=cos^2(α)-si n^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] 降幂公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα 两角和差: sin(α±β)=sinα·cosβ±cosα·sinβ

(完整版)大学高数公式大全

精心整理 高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 一些初等函数:两个重要极限: 三角函数公式: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 = '='?-='?='-='=' 22 1 11 )(arccos 11 )(arcsin x x x x -- ='-= '? ?+±+=±+=C a x x a x dx C shx chxdx )ln(222 2C a x arctg a x a dx ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=++-=++=+=+-=?????1csc ln csc sec ln sec sin ln cos ln 22?????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 2 2)ln(221 cos sin 22 2222 2222222 22222 2 22 2 ππ

βαβααβαctg tg ±±±±((cos(sin(

·半角公式: ·正弦定理: R C c B b A a 2sin sin sin ===·余弦定理: C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -= -= 2 arccos 2 arcsin π π 高阶导数公式——莱布尼兹(Leibniz )公式: 中值定理与导数应用: 曲率: 定积分的近似计算: 定积分应用相关公式: 30 21),,(z y x F M z y x =?? ? ??=曲面在点空间曲线方向 曲线积分: 曲面积分: 高斯公式:

高数公式大全

高等数学公式汇总 第一章 一元函数的极限与连续 1、一些初等函数公式: sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1 cot()cot cot ()()sh sh ch ch sh ch ch ch sh sh αβαβαβαβαβαβ αβ αβαβαβαββα αβαβαβαβαβαβ ±=±±=±±= ??±= ±±=±±=±m m m 和差角公式: sin sin 2sin cos 22sin sin 2cos sin 22cos cos 2cos cos 22cos cos 2sin sin 22 αβ αβ αβαβαβ αβαβαβ αβαβαβ αβ+-+=+--=+-+=+--=和差化积公式: 1 sin cos [sin()sin()] 21 cos sin [sin()sin()]21 cos cos [cos()cos()] 21 sin sin [cos()cos()] 2 αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=+--积化和差公式: 2222222 222sin 22sin cos cos 22cos 1 12sin cos sin 2tan tan 21tan cot 1 cot 22cot 22212 21sh sh ch ch sh ch ch sh αααααααααααααα αααααααα ==-=-=-= --= ==+= =-=+ 倍角公式:22222222sin cos 1;tan 1sec ;cot 1csc ;1 sin 2 cos 2 1cos sin tan 2 sin 1cos 1cos sin cot 2 sin 1cos x x x x ch x sh x ααααααα ααααα αα +=+=+=-===-===++=== -半角公式:

高等数学公式大全几乎包含了所有

高等数学公式大全 1、导数公式: 2、基本积分表: 3、三角函数的有理式积分: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

【精品】高等数学上册公式整合

高等数学公式 导数公式: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

相关文档