文档库 最新最全的文档下载
当前位置:文档库 › 苯胺生产——硝基苯废水处理工艺设计方案

苯胺生产——硝基苯废水处理工艺设计方案

苯胺生产——硝基苯废水处理工艺设计方案
苯胺生产——硝基苯废水处理工艺设计方案

目录

第一章处理工艺的文献综述 2

1.1含硝基苯废水对环境的危害 2

1.2处理硝基苯的技术方法现状 2

1.2.1 物理法 2

1.2.2 化学法 2

1.2.3 生物法 3

第二章工程设计资料与依据 4

2.1 废水水量 4

2.2 设计进水水质 4

2.3 设计出水水质 4

2.4 设计依据 5

2.5 设计原则与指导思想 5

第三章工艺流程的确定 5

3.1 废水的处理工艺流程 5

3.2 工艺流程说明 6

3.3 工艺各构筑物去除率说明7

第四章构筑物设计计算7

4.1 设计水量的确定7

4.2 调节池 7

4.3 微电解塔8

4.4 FENTON氧化池10

4.5 中和反应池11

4.6 沉淀池 12

4.7 生活污水格栅14

4.8 生活污水调节池16

4.9 生化处理系统17

4.10 二沉池19

4.11 污泥浓缩池20

第五章构筑物及设备一览表22

5.1 主要构筑物一览表22

5.2 主要设备一览表23

第六章管道水力计算及高程布置23

6.1 平面布置及管道的水力计算23

6.2 泵的水力计算及选型26

6.3 高程布置和计算28

第七章参考文献31

第一章处理工艺的文献综述

1.1含硝基苯废水对环境的危害

硝基苯,分子式为C5H6NO2,相对分子量为123,相对密度(水=1)1.20,熔点在5.7℃,沸点是210.9℃。硝基苯是淡黄色透明油状液体,有苦杏仁味,不溶于水,溶于乙醉、乙醚、苯等多数有机溶剂。用于溶剂,制造苯胺、染料等。环境中的硝基苯主要来自化工厂、染料厂的废水废气,尤其是苯胺染料厂排出的污水中含有大量硝基苯。

硝基苯在水中具有极高的稳定性,由于其密度大于水,进入水体后会沉入水底,长时间保持不变。又由于其在水中有一定的溶解度,所以造成的水体污染会持续相当长的时间。硝基苯类化合物化学性能稳定,苯环较难开环降解,常规的废水处理方法很难使之净化。因此,研究硝基苯类污染物的治理方法和技术十分必要。

1.2处理硝基苯的技术方法现状

1.2.1 物理法

对含高浓度硝基苯的工业废水,采用物理手段处理既可降低硝基苯的浓度,改善废水的可生化性,又可以回收部分硝基苯,实现资源利用最大化。主要的物理处理方法有:吸附法、萃取法和汽提法。

对于吸附法,硝基苯废水处理研究中颗粒状活性炭、炉渣、有机膨润土等都是应用较多的吸附剂。赵钰等[1]在用活性炭吸附法处理含芳香族硝基化合物的染料废水的工程试运行中,COD平均值由209mg/L下降至119mg/L。

对于萃取法,目前一般采用多级萃取法或萃取法与其他方法协同处理。林中祥等人[2]用N5O3—苯做萃取剂对硝基苯生产废水进行处理,萃取两次可使硝基苯含量达国家一级排放标准。

对于汽提法,用于处理高浓度硝基苯废水,工艺上较为可行。于桂珍等[3]利用汽提—吸附法处理硝基苯废水,实验表明,硝基苯的去除率可达90%以上,汽提后的废水经碳黑吸附,废水中硝基苯含量可降至10mg/L以下,效果较好

1.2.2 化学法

针对于处理硝基苯的化学法主要有电化学法和高级氧化法。电化学氧化的基本原理有两

种:一是直接电化学反应,指通过阳极氧化使污染物在电极上发生转化或燃烧,把有毒物质转变为无毒物质,或把非生物相容的有机物转化为生物相容的物质,例如芳香化合物的开环氧化等。二为间接电化学转化,指利用电极表面产生的强氧化性活性物种使污染物发生氧化还原转变。宋卫健等[4]以DSA类电极作为阳极,对模拟硝基苯废水进行的降解实验证明,在电流密度15mA/cm2条件下,CODcr的去除率可达到90%以上。也有樊红金等[5]对催化铁内电解法处理硝基苯废水降解动力学特性进行了研究。结果表明,降解过程符合准一级动力学规律。进水浓度、pH值和反应温度强烈影响硝基苯的降解速率。

高级氧化技术近年来的发展非常迅速,有臭氧氧化,Fenton试剂氧化,湿式氧化等。针对硝基苯废水,报道较为集中的是Fenton试剂氧化。Fenton氧化体系由过氧化氢和催化剂Fe2+构成。Fenton氧化法处理废水的原理是:在酸性溶液中,在Fe2+催化剂作用下,H2O2能产生活泼的.OH,从而引发和传播自由基链反应,加快有机物和还原性物质的氧化。余宗学[6]采用Fenton试剂对间硝基苯生产废水进行预处理,在最佳反应条件下,废水中硝基苯类化合物的转化率在89%以上,废水色度的去除率在80%以上,COD的去除率也在60%以上,同时,废水可生化性有了较大的提高

另外,利用微电解和Fenton试剂氧化的工程实例报道也很多,徐续等[7]利用微电解和Fenton试剂氧化后,将COD为5000mg/L的硝基苯废水处理达标,COD总去除率为97%;李欣等[8]利用微电解和Fenton试剂氧化处理硝基苯制药废水,当原水的pH值为2~3、H2O2投加量为500~600 mg/L时,调节预处理出水pH值至7~8并经沉淀处理后,对COD 和硝基苯类物质的总去除率分别可达47%和92%。后续混合废水经SBR工艺处理后出水水质能满足国家污水排放标准。

1.2.3 生物法

硝基苯类化合物被认为是生物难以降解的物质,但利用生物的变异性,近年来环境工作者筛选出了一些特异性菌种用于处理硝基苯废水。王竟等[9]在研究假单胞菌JX165对硝基苯的好氧降解时发现,在废水中细胞的质量浓度为9mg/L,pH为7,温度为30℃摇床转速为100r/min,反应时间为2h的条件下,在以硝基苯为惟一碳、氮源的培养基中硝基苯的去除率为98.5%。

第二章工程设计资料与依据

2.1 废水水量

根据生产工艺及相关资料,生产废水的排放量为150 m3/d,工作方式为24小时工作制,生活污水300m3/d排放。

2.2 设计进水水质

(1)生产废水:200 m3/d

(2)生活污水:490 m3/d

2.3 设计出水水质

出水水质达到《污水综合排放标准》(GB8978-1996)三级标准后后排入建设单位所在化工园区的污水处理厂进行进一步生化处理,具体排放要求如下:

(注:盐分接管标准≤8000 mg/L后排入业主所在化工园区的污水处理厂处理)

2.4 设计依据

建设方提供的水质水量及排放标准资料;

《污水综合排放标准》(GB8978-1996);

《室外排水设计规范》(GBJ14-87);

《给水排水设计手册(第二版)》;

类似工程的经验、工艺参数和试验结果。

2.5 设计原则与指导思想

采用先进合理的处理工艺,保证污水达到最好的处理效果;

工艺许可的条件下尽量减少投资和用地面积;

操作维护简单;

操作运行可靠,运行费用控制较低。

第三章工艺流程的确定

3.1 废水的处理工艺流程

根据文献调查的结果并且结合类似工程的设计、操作参数,考虑到该企业废水中含有大量的有机物,COD很高,可生化性极差,同时废水排放量不是很大,因此综合多种因素考虑,决定采取物化处理与生化处理相结合的处理工艺,以化学法为主,操作简单,自动化程度高,COD、有机物去除率高,结合厌氧—好氧技术,可以确保稳定达标排放。确定如下流程:工艺流程如图1所示

铸铁屑+活性炭粒

H O 溶液

图1 硝基苯废水处理工艺流程

污泥处置流程见图2

沉淀池二沉池

污泥脱水机

泥饼外运处置

图2

硝基苯废水处理工艺污泥的处理流程

3.2 工艺流程说明

由于该废水COD 、硝基苯的浓度很高,所以在处理工艺上采取的方法是以物理化学处理为核心,通过物化+生化的组合有效地去除了COD 及特征污染物硝基苯、甲苯,排水达到《污水综合排放标准》三级标准。现将流程说明如下:

含有硝基苯和甲苯的生产废水,在调节池中均质均量,以减缓对后续物化处理系统的冲击,在水质水量调节后,进入pH 调整池,将生产废水的pH 调整至3左右,以利于微电解操作。微电解塔利用铁炭构成的原电池进行微电解,有效的去除硝基苯和甲苯,随微电解塔出水中的大量Fe 2+在Fenton 氧化池中作为H2O2的催化剂,进一步去除硝基苯、甲苯及其微电解产物,Fenton 氧化是利用高级氧化技术有效的去除COD 和特征污染物的方法,效率高,操作成本低。

在经过微电解和氧化后,废水中的COD 和特征污染物迅速下降,此时废水中依然含有大量的Fe 2+、Fe 3+离子,对其进行中和操作,可以产生大量的胶状絮体以进一步的去除废水的COD 。至此,生产废水的物理化学处理完成。

在完成生产废水的物化处理后,在调节池中接入生活废水进行稀释配水,进入生化系统。

生化系统采用厌氧—好氧处理工艺,可确保各项指标达到《污水综合排放标准》三级标准。

沉淀池的污泥和二沉池污泥排入污泥浓缩池,经浓缩减量后由压滤泵压入板框压滤机脱水,脱至含水率75%左右。污泥浓缩池上清液和压滤机滤液进入调节池再处理。处理系统产生的污泥必须由危险固体废弃物处置中心进行妥善处置。 3.3 工艺各构筑物去除率说明

根据文献报道,结合确定的工艺流程,可以对COD 和特征污染物的去除率进行确定。

第四章 构筑物设计计算

4.1 设计水量的确定

生物处理池之前,各构筑物按最大日最大时流量设计,已知该厂生产废水流量Q=200 m 3/d ,废水流量总变化系数K z =1.2,故最大设计流量为:

3max z Q K Q 1.2200240(m /d)=?=?=,按照工作8h 计算,3max 240

Q =

30/8

m h = 4.2 调节池 (1)设计说明

调节池设计计算的主要内容是确定调节池的容积,该容积应当考虑能够容纳水质变化一个周期所排放的全部水量。调节池采用机械搅拌方式使水质均衡,防止沉淀。 (2)设计计算

(1)池子总有效容积 设停留时间t=12h

t q V v m a x ?=

式中:max v q ——最大设计流量,/h m 3; t ——水力停留时间,h 。 33012

360()

V m =?=

(2)池子表面积

)m (h

V A 2

=

式中:A ——调节池池表面积,2m ; V ——调节池的有效容积,3

m ;

h ——调节池的有效水深,m 。调节池的有效水深2~2.5m ,现取h=2.5m 。则调

节池的面积为: 2360

144()2.5

A m =

= (3)调节池尺寸

根据池体表面积为144m 2,现选择池长为16m ,池宽为9m ,池深超高0.5m 。调节池尺寸为16×9×3(m)

(4)搅拌设备

在调节池中增加搅拌设备,以均衡水质,提高中和反应的效率。选用机械搅拌,在池的对角上设置两个潜水搅拌器。 4.3 微电解塔

微电解塔运行的最佳工艺条作为:pH 值为3,反应时间60min ,Fe:C (质量比)=5:1,铁屑粒径5~10目左右。 (1)微电解塔的有效容积 )m (t Q V 3?=

式中: Q ——设计流量,h /m 3;

t ——废水停留时间,h ,为了得到最佳的COD 去除率,本设计选用的反应时

间为60min 。

330130()

V m =?=

(2)单座微电解塔的有效容积

设2座微电解塔,串联使用,每座微电解塔为升流操作,每座微电解塔的有效容积 3130

15()2

V m =

= (3)微电解塔的直径

Φ=

式中: h ——微电解塔的有效水深,本设计选定为5m 。

1.952()

m Φ=≈;高径比为5/2=2.5 (4)微电解塔高度

承托层高0.15m ,填料层厚5m ,超高0.5m ,H=0.15+5+0.5=5.65。故微电解塔的尺寸为H ×Φ

为5.65×2m 。 (5)操作条件 升流速度v

2

4Q

v π=

Φ 式中:Q ——设计流量,h /m 3

Φ——微电解塔直径,m

2

430

10/2v m h π?=

=? (6)配水系统

配水干管系统:每个微电解池进水量 4.2L/s ,反冲洗强度为14L/(sm 2),反冲洗时间为

6min 。则干管的流量为22

14()43.96/2

t q fq L s π==??=,采用管径为200mm ,流速为4.18m/s 。

支管:干管的中心距离为0.7m ,总的支管数为22

5.760.7

?=≈,支管的进水量43.96

7.33/6

L s =,取支管直径为50mm ,管内流速为3.74m/s 。支管的长度为2m 和1.9m 孔眼布设:支管的孔眼数与微电解塔面积比K 为0.5%,孔眼总面积为

222

0.5%()0.01572F m π=??=,设孔眼的直径为10mm ,每个孔眼的面积为78.5mm 2,孔眼总

数为15700

20078.5

k F N s ==

=,每个支管上孔眼数为34,每根支管孔眼布置成两排,与垂线成45°向下交错排列。 孔眼间距为2

0.0634

m = 反冲洗系统:反冲洗水箱体积 1.5 1.5 3.14146395.6V fqt L ==???=;反冲洗水箱高

'6060146 2.522100021000

F q t H m F ????===???,反冲洗水箱水深3m 。

4.4 Fenton 氧化池

在微电解后利用Fenton 试剂进行氧化,以加强对甲苯、硝基苯这两个特征污染物的去除效果。由于微电解塔出水中含有大量的Fe 2+在此不必再次投加硫酸亚铁。对硝基苯的去除率可达85%,对COD 的去除率接近40%

1、氧化池尺寸设计 (1)氧化池的有效容积 )m (t Q V 3?=

式中: Q ——设计流量,h /m 3;

t ——废水停留时间,h ,为了得到最佳的COD 去除率,本设计选用的反应时

间为90min 。

3

30 1.545()

V m =?=,分两个氧化池,V 1=45/2=22.5m 3 (2)氧化池的面积 )m (h /V A 21=

式中: h ——微电解池的有效水深,本设计选定为2.5m 。

222.5/2.59(

)

A m == (3)氧化池尺寸

设氧化池长为4.5m ,宽为2m 。4.5×2×2.5(m ) 氧化池采用机械搅拌,使反应充分。 (4)氧化剂的选用

Fenton 试剂中,使用H 2O 2为氧化剂,根据文献报道值,投加30%H 2O 2的量为500mg/L ,水量为30m 3/h ,故此H 2O 2加入量为15kg/h ,由计量泵定量加入。

(5)双氧水计量泵计算

根据氧化剂的用量计算,可以确定计量泵的大小,双氧水的密度为1.14g/L 。则计量泵的

流量为33

15/13.2/1.1410/kg h

L h kg m =?,考虑计量泵的放大,选40%的格度,计算知计量泵的大小

为33L/h ,考虑设备选型的便利,因此选用40L/h 的计量泵。型号为JX-40/8。 4.5 中和反应池

在进行微电解+氧化后,生产废水中的特征污染物明显降低,COD cr 下降,此时,水中含有大量的Fe 2+和Fe 3+离子,加入Ca(OH)2后,产生大量的Fe(OH)2 和Fe(OH)3具有明显的混凝作用,可以进一步的去除COD ,同时调整将pH 调整到6~7以有利于后续的生化处理,氧化池出水pH 为5。中和药剂石灰乳。选用在线pH 计做为控制,型号为BYS01型,数量2台,一备一用。

(1)中和反应池有效容积 )m (t Q V 3?=

式中: Q ——设计流量,h /m 3;

t ——废水停留时间,h ,本设计选用的反应时间为1h 。 330130()

V m =?= (2)中和反应池的面积

2

/()

A V h m = 式中: h ——微电解池的有效水深,本设计选定为2m 。 230/2

15()

A m ==

(3)中和反应池尺寸

设中和反应池长为5m ,宽为3m ,池深超高0.5m 。中和反应池的尺寸为5×3×2.5(m )。中和反应池采用机械搅拌,使反应充分。

(4)中和药剂的投加

投加的Ca(OH)2主要用于和氧化反应出水中的Fe 3+反应,对于H +所致的pH 变化可以忽略,以生成大量的Fe(OH)3,起到混凝作用。根据微电解池出水pH 可以计算出水中的Fe 2+,。进水pH 为3,经过微电解池的处理,出水pH 提高至5,则,消耗H +的量为353(1010)301030/mol h ---??=,

3H +~Fe 3+,故Fe 3+为10mol ,Fe 3+~3OH -,故消耗OH -30mol ,折算成纯Ca(OH)2为15mol ,2()Ca OH 的投加量为1.11kg/h ,考虑Ca(OH)2的纯度在70~75%,因此投加的Ca(OH)2量为1.59kg/h 。

(5)投加方式的确定

将Ca(OH)2配成10%的乳液进行投加,则需要乳液的体积为331.59100.115.9/m h ?÷=,选用计量泵定量投加,泵的大小为315.90.439.75/m h ÷=,泵的流量为

3

39.75

17.75/2.2410

L h =?,考虑计量泵的放大,选40%的格度,计算知计量泵的大小为44.4L/h 。为了便于选型,选用63L/h 的计量泵。型号为JX —63/5 4.6 沉淀池

在中和反应后,进行泥水分离,选用竖流式沉淀池 (1) 中心管过水断面面积 )m (nv Q

A 20

1=

式中:Q ——最大设计流量,s /m 3; v 0——中心管下降流速,s /m 。 n ——池淀池数。 2130/3600

0.083()0.1

A m =

= (2)中心管直径

3

0.325()d m =

=

(3)中心管喇叭口直径

1 1.350.44()

d d m == (4)反射板直径

211.30.572()d d m == (5)沉淀区有效断面面积 )m (nv

Q

A 22=

式中: v ——污水的上升流速,s /m ,一般采用0.5~1mm/s ,取0.6mm/s 。 2

23

30/360013.9()0.610

A m -=

=? (6)沉淀池总面积

21213.90.08313.98()A A A m =+=+= (7)沉淀池的直径

8

4.22()D m =

=

= 施工时为了方便,D 取4.0m 。 (8)沉淀区的高度 )m (vt 6.3h 2=

式中:t ——沉淀时间,一般采用1~2h ,本设计选1.5h 。 )m (3.35.1106.03600h 32=???=-

校验:2/ 4.22/3.3 1.283D h ==<,符合竖流式沉淀池的设计要求。 (9)中心管喇叭口到反射板的距离 )m (d nv Q

h 1

13π=

式中: v 1——污水由中心管与反射板之间缝隙的出流速度,m/s ,一般不大于0.02m/s 。

设计中取0.02m/s 。 330/3600

0.33()

0.023.140.4h m =

=?? (10)污泥斗的高度 )m (tg 2

r

2/D h 5α-=

式中: r ——污泥斗下部半径,m ,一般取0.3m ;

α——污泥斗倾角,一般大于60°,取60°。

)m (5.160tg 2

3

.02h 5=-=

(11)污泥斗容积 )m (4.7)3.03.022(5.13

)r Rr R (h 3V 3222251=+?+??π

=++π=

(12)沉淀池总高度

54321h h h h h H ++++=

式中: 1h ——沉淀池超高,m ,一般取0.3m 。

4h ——缓冲层高度,m ,有机械刮泥设备时,取0.3m 。 0.3 3.30.20.33 1.55

H m =++++= (13)沉渣量 设η=55%,P=96%

31001004000.5530

0.165/1000(100)100041000

ss C Q W m h P ηρ???=

==-??

4.7 生活污水格栅

为了阻挡生活废水中粗大的物体进入后续处理系统,有必要设置格栅对其进行处理。选择粗格栅。对于生活污水的最大流量Q max 可以根据生活污水的日变化系数K z 进行确定,Q max =1.4×490 m 3/d =686m 3/d=0.01m/s 。选用中格栅进行设计计算。

(1)栅条间隙数:

式中:n ——格栅间隙数;

Qmax ——最大设计流量,m 3/s ;

b ——栅条间隙,取20mm ; h ——栅前水深,取0.4m ;

v ——过栅流速,取0.4m/s ; α——格栅倾角,度;

60

2.913

0.4

n =

=≈

(2)栅槽宽度:

B=S(n -1)+bn 式中:B ——栅槽宽度,m ;

S ——格条宽度,取0.01m 。

B=0.01(31)0.0230.08m ?-+?=

(3)格栅栅前进水渠道减宽部分长度:

若进水渠宽B1=0.05m ,减宽部分展开角α1=20。,则此进水渠道内的流速

V 1=max Q B h ?=0.01

0.10.4?=0.25m/s

L 1=

1tan 20B B -。=0.080.05

tan 20-。= 0.08m (4)细格栅栅槽后与出水渠道连接处渐窄部分长度:

12L =

2L =0.082

=0.04m (5)过栅水头损失:设栅条断面为锐边矩形。

4

32

1h=k sin 2s v e g βα

?????? ???

式中:h ——粗格栅水头损失,m ;

β——系数,当栅条断面为矩形时取2.42; k ——系数,一般取k=3。

4

2

30.010.4

h=3 2.42sin 600.0229.8?????

? ????

。=0.061m (7)栅槽总高度:

H=h 0+h 1+h 2 =0.3+0.4+0.061=0.761m (8)栅槽总长度:

L=L 1+0.5+1

tan H α+0.8+1.0+L 2

式中:L ——栅槽总长度,

L 1——格栅距出水渠连接处减宽部分长度; L 2——细格栅距出水渠连接处减窄部分长度。 L=0.08+0.5+0.781

tan 60。

+0.80+1.0+0.04=2.87m (9)每日栅渣量:

国内硝基苯废水处理的研究进展

收稿日期:2007-01-12 作者简介:尹 军(1954~),男,吉林省吉林市人,教授,博士生导师.国内硝基苯废水处理的研究进展 尹 军 桑 磊 李 琳 (吉林建筑工程学院市政与环境工程学院,长春 130021) 摘要:硝基苯的高毒性,难降解性及其在环境中的积累性,使硝基苯废水的处理成为众多科研工作者关注的重点. 笔者从物理、化学及生物处理3个方面,对国内硝基苯废水处理的研究现状做了综述,介绍了3种新型硝基苯废水 的处理方法,并展望了此类废水处理方法的研究前景. 关键词:硝基苯废水处理;吸附;萃取;化学氧化;生物降解 中图分类号:X 703 文献标识码:A 文章编号:1009 1288(2007)04 0001 04 硝基苯在有机化学工业中是一种重要的化工原料,可用以合成染料、医药、农药、橡胶及塑料助剂、合成洗涤剂等,而其本身也常作为炸药、香料及医药产品.但其本身还是一种剧毒化学品,属于我国确定的58种优先控制的有毒化学品之一,它对人体的主要毒性是引起血红蛋白变性,长时间摄入低剂量的硝基苯,可导致神经衰弱、贫血及中毒性肝炎等疾病.我国地表水中硝基苯环境质量标准( , ,!类水域特定值)(GHZBI-1999)为0 017mg/L.硝基苯在水中具有极高地稳定性.由于其不溶于水且密度大于水,进入水体的硝基苯会沉入水底,长时间保持不变,所以,造成的水体污染会持续相当长的时间.我国每年硝基苯的产量超过80万t,随着化工工业的发展,对硝基苯的需求呈明显上升趋势.然而,目前大多数生产工艺较落后,产率不高,副反应复杂,尤其是排放的生产废水严重污染环境,对下游人畜饮用水水源造成了极大地威胁,已成为我国刻不容缓需要解决的问题. 1 物理处理方法 1 1 吸附法 吸附法就是通过吸附剂表面对硝基苯的吸附作用,将硝基苯从水中除去,然后,再通过解析回收硝基苯,吸附剂投入到新的吸附过程,这是硝基苯废水处理中最常用的一种方法.早在1928年,Roth M ilton 等人就已开始利用活性炭处理含有硝基苯的T NT 废水.张小璇等人利用活性炭吸附作为三级处理来处理含硝基化合物的染料废水的工程试运行中,进水COD 为200mg/L~250mg/L 时,出水COD 均小于50mg /L,达到国家一级排放标准[1] .虽然活性炭处理效果好,但是存在价格高、有二次污染等问题. 20世纪70年代以来,随着结构性能优良的大孔吸附树脂的国产化,大孔吸附树脂也作为吸附剂广泛应用于处理硝基芳香烃化合物.应用于硝基芳香烃废水的大孔树脂有CHA -101,NKA-2等.张全兴等人[2]用CHA-101树脂吸附处理高色度硝基苯胺废水,进水色度为1200倍左右,COD 为1000mg/L 左右时,色度及COD 的去除率均可达到90%以上. 除了以上两大类用于处理废水的吸附剂之外,徐中其等人[3]还采用活性炭纤维处理硝基苯废水.试验表明,该材料处理硝基苯废水吸附量大,可达214mg/g,是自重的21 4%,而且,吸附速度快.又通过再生试验证明,吸附量与解析量基本一致,而且发现活性炭纤维经过高温烘烤后,其炭微晶结构的重新蚀刻会使比表面积有一定程度的增大,进而增大了活性炭纤维的吸附能力.虽然活性炭、树脂和活性炭纤维的处理效果极佳,但它们有一个共同的缺点,那就是成本过高,因此,寻找高效、廉价的吸附材料就成为研究的热点. 膨润土是以蒙脱石为主要成份的粘土,具有吸收膨胀性,较大的比表面积,较强的吸附性能和离子交换 第24卷 第4期 2007年12月吉 林 建 筑 工 程 学 院 学 报Journal of Jilin Architectur al and Civil Engineer ing Institute Vol.24 No.4Dec 2007

硝基苯废水处理工艺设计方案

目录

第一章处理工艺的文献综述 1.1含硝基苯废水对环境的危害 硝基苯,分子式为C5H6NO2,相对分子量为123,相对密度(水=1)1.20,熔点在5.7℃,沸点是210.9℃。硝基苯是淡黄色透明油状液体,有苦杏仁味,不溶于水,溶于乙醉、乙醚、苯等多数有机溶剂。用于溶剂,制造苯胺、染料等。环境中的硝基苯主要来自化工厂、染料厂的废水废气,尤其是苯胺染料厂排出的污水中含有大量硝基苯。 硝基苯在水中具有极高的稳定性,由于其密度大于水,进入水体后会沉入水底,长时间保持不变。又由于其在水中有一定的溶解度,所以造成的水体污染会持续相当长的时间。硝基苯类化合物化学性能稳定,苯环较难开环降解,常规的废水处理方法很难使之净化。因此,研究硝基苯类污染物的治理方法和技术十分必要。 1.2处理硝基苯的技术方法现状 1.2.1 物理法 对含高浓度硝基苯的工业废水,采用物理手段处理既可降低硝基苯的浓度,改善废水的可生化性,又可以回收部分硝基苯,实现资源利用最大化。主要的物理处理方法有:吸附法、萃取法和汽提法。 对于吸附法,硝基苯废水处理研究中颗粒状活性炭、炉渣、有机膨润土等都是应用较多的吸附剂。赵钰等[1]在用活性炭吸附法处理含芳香族硝基化合物的染料废水的工程试运行中,COD平均值由209mg/L下降至119mg/L。 对于萃取法,目前一般采用多级萃取法或萃取法与其他方法协同处理。林中祥等人[2]用N5O3—苯做萃取剂对硝基苯生产废水进行处理,萃取两次可使硝基苯含量达国家一级排放标准。 对于汽提法,用于处理高浓度硝基苯废水,工艺上较为可行。于桂珍等[3]利用汽提—吸附法处理硝基苯废水,实验表明,硝基苯的去除率可达90%以上,汽提后的废水经碳黑吸附,废水中硝基苯含量可降至10mg/L以下,效果较好 1.2.2 化学法 针对于处理硝基苯的化学法主要有电化学法和高级氧化法。电化学氧化的基本原理有两

苯胺的制备

苯胺的制备 一、实验目的 1、1、掌握硝基苯还原为苯胺的原理和实验室法。 2、2、巩固水蒸汽蒸馏和简单蒸馏的基本操作,熟悉萃取分离技能。 二、实验原理 苯胺的制取不可能用任何直接的方法将氨基(-NH2)导入苯环上。而是经过间接的方法来制取,芳香硝基化合物还原是制备芳胺的主要方法。实验室常用的方法,是在酸性溶液中用金属进行化学还原。常用锡-盐酸来还原简单的硝基化合物,也可以用铁-盐酸锡-盐酸法。 NO2 NH2 Sn/HCl 还原 三、实验仪器与药品 三颈烧瓶,回流冷凝管、恒压滴液漏斗、机械搅拌器,Y型管,温度计,分液装漏斗,水蒸气蒸馏装置,油浴加热;硝基苯、还原铁粉、冰醋酸、乙醚、氢氧化钠、精盐等。 四、实验步骤 a、a、安装反应装置,检查装置的气密性;【注意安装装置的先后顺序】 b、b、按实验前预习时自己拟定的方案进行加料,反应,跟踪反应; c、c、结束反应,进行反应后处理(水蒸汽蒸馏); d、d、萃取分液溜出液,用蒸馏方法纯化目标产物。 五、操作重点及注意事项 1、本实验是一个放热反应,当每次滴加硝基苯时均有一阵猛烈的反应发生,故要慢慢加入与充分搅拌。 2、硝基苯为黄色油状物,如果回流液中,黄色油状物消失,而转变成乳白色油珠,表示反应已完全。

3、反应完后,圆底烧瓶上粘附的黑褐色物质,用1:1盐酸水溶液温热除去。 4、在20℃时每100gH2O中可溶解3.4g苯胺加粗盐为盐析。 5、本实验用粒状NaOH,干燥,原因是CaCl2与苯胺形成的分子化合物。 6、反应物内的硝基苯与盐酸互不相溶,而这两种液体与固体铁粉接触机会很少,因此充分振摇反应物,是使还原作用顺利进行的操作关键。 六、思考题 1、1、根据什么原理,选择水蒸汽蒸馏把苯胺的反应混合物中分离出来。 2、2、如果最后制得的苯胺中混有硝基苯该怎样提纯? 3、3、反应物变黑时,即表明反应基本完成,欲检验,可吸入反应液滴入盐酸中摇振, 若完全溶解表示反应已完成,为什么?

硝基苯废水处理工艺设计方案

目录 第一章处理工艺的文献综述2 1.1含硝基苯废水对环境的危害2 1.2处理硝基苯的技术方法现状2 1.2.1 物理法2 1.2.2 化学法2 1.2.3 生物法3 第二章工程设计资料与依据4 2.1 废水水量4 2.2 设计进水水质4 2.3 设计出水水质4 2.4 设计依据5 2.5 设计原则与指导思想5 第三章工艺流程的确定5 3.1 废水的处理工艺流程5 3.2 工艺流程说明6 3.3 工艺各构筑物去除率说明7 第四章构筑物设计计算7 4.1 设计水量的确定7 4.2 调节池7 4.3 微电解塔8 4.4 FENTON氧化池 10 4.5 中和反应池11 4.6 沉淀池12 4.7 生活污水格栅14 4.8 生活污水调节池16 4.9 生化处理系统17 4.10 二沉池19 4.11 污泥浓缩池20 第五章构筑物及设备一览表22 5.1 主要构筑物一览表 22 5.2 主要设备一览表23 第六章管道水力计算及高程布置23 6.1 平面布置及管道的水力计算23 6.2 泵的水力计算及选型26 6.3 高程布置和计算28 第七章参考文献31

第一章处理工艺的文献综述1.1含硝基苯废水对环境的危害 硝基苯,分子式为C 5H 6 NO 2 ,相对分子量为123,相对密度(水=1)1.20,熔点在5.7℃,沸 点是210.9℃。硝基苯是淡黄色透明油状液体,有苦杏仁味,不溶于水,溶于乙醉、乙醚、苯等多数有机溶剂。用于溶剂,制造苯胺、染料等。环境中的硝基苯主要来自化工厂、染料厂的废水废气,尤其是苯胺染料厂排出的污水中含有大量硝基苯。 硝基苯在水中具有极高的稳定性,由于其密度大于水,进入水体后会沉入水底,长时间保持不变。又由于其在水中有一定的溶解度,所以造成的水体污染会持续相当长的时间。硝基苯类化合物化学性能稳定,苯环较难开环降解,常规的废水处理方法很难使之净化。因此,研究硝基苯类污染物的治理方法和技术十分必要。 1.2处理硝基苯的技术方法现状 1.2.1 物理法 对含高浓度硝基苯的工业废水,采用物理手段处理既可降低硝基苯的浓度,改善废水的可生化性,又可以回收部分硝基苯,实现资源利用最大化。主要的物理处理方法有:吸附法、萃取法和汽提法。 对于吸附法,硝基苯废水处理研究中颗粒状活性炭、炉渣、有机膨润土等都是应用较多的吸附剂。赵钰等[1]在用活性炭吸附法处理含芳香族硝基化合物的染料废水的工程试运行中,COD平均值由209mg/L下降至119mg/L。 对于萃取法,目前一般采用多级萃取法或萃取法与其他方法协同处理。林中祥等人[2]用 N 5O 3 —苯做萃取剂对硝基苯生产废水进行处理,萃取两次可使硝基苯含量达国家一级排放标 准。 对于汽提法,用于处理高浓度硝基苯废水,工艺上较为可行。于桂珍等[3]利用汽提—吸附法处理硝基苯废水,实验表明,硝基苯的去除率可达90%以上,汽提后的废水经碳黑吸附,废水中硝基苯含量可降至10mg/L以下,效果较好 1.2.2 化学法 针对于处理硝基苯的化学法主要有电化学法和高级氧化法。电化学氧化的基本原理有两

以硝基苯为原料合成对溴苯胺

2011级化学教育有机化学 综合性与设计性实验 题目:以硝基苯为原料合成对溴苯胺以硝基苯为原料合成对溴苯胺 (华南师范大学化学与环境学院) 摘要对溴苯胺是非常重要的有机化工原料,常被用作染料原料,如偶氮染料、喹啉染料等,医药及有机合成的中间体等。本实验合成过程以硝基苯为原料,经历制备苯胺、乙酰苯胺、对溴乙酰苯胺等中间体的过程,最终制得目标产物对溴苯胺。其合成过程经历硝化、还原、保护、溴代、去保护等多个步骤,可以制得纯度较高的对溴苯胺。同时,掌握了芳烃硝化、硝基的还原、氨基的保护与去保护、芳烃卤代等方法。通过实验可得,用此实验方法制备对溴苯胺,操作方法简单,可控性强。 关键词合成;对溴苯胺;硝基苯;苯胺;乙酰苯胺;对溴乙酰苯胺Abstract P-bromo-aniline is very important to the organic chemical raw materials, dyes were often used as raw materials, such as the azo dyes, kuilin dyes, medicine and synthetic organic intermediates, etc. The synthesis process of nitrobenzene in as raw material, through preparation aniline, acetyl aniline, bromine acetyl aniline intermediates such as to the process, finally made of bromine aniline target product.

硝基苯废水处理工艺设计方案 34【精编版】

硝基苯废水处理工艺设计方案34【精编版】

目录 第一章处理工艺的文献综述 (2) 1.1含硝基苯废水对环境的危害 (2) 1.2处理硝基苯的技术方法现状 (3) 1.2.1 物理法 (3) 1.2.2 化学法 (3) 1.2.3 生物法 (4) 第二章工程设计资料与依据 (5) 2.1废水水量 (5) 2.2设计进水水质 (5) 2.3设计出水水质 (5) 2.4设计依据 (6) 2.5设计原则与指导思想 (6) 第三章工艺流程的确定 (6) 3.1废水的处理工艺流程 (6) 3.2工艺流程说明 (7) 3.3工艺各构筑物去除率说明 (8) 第四章构筑物设计计算 (9) 4.1设计水量的确定 (9)

4.2调节池 (9) 4.3微电解塔 (10) 4.4FENTON氧化池 (12) 4.5中和反应池 (13) 4.6沉淀池 (14) 4.7生活污水格栅 (16) 4.8生活污水调节池 (18) 4.9生化处理系统 (19) 4.10二沉池 (21) 4.11污泥浓缩池 (22) 第五章构筑物及设备一览表 (25) 5.1主要构筑物一览表 (25) 5.2主要设备一览表 (25) 第六章管道水力计算及高程布置 (26) 6.1平面布置及管道的水力计算 (26) 6.2泵的水力计算及选型 (29) 6.3高程布置和计算 (31) 第七章参考文献 (34)

第一章处理工艺的文献综述 1.1含硝基苯废水对环境的危害 硝基苯,分子式为C5H6NO2,相对分子量为123,相对密度(水=1)1.20,熔点在5.7℃,沸点是210.9℃。硝基苯是淡黄色透明油状液体,有苦杏仁味,不溶于水,溶于乙醉、乙醚、苯等多数有机溶剂。用于溶剂,制造苯胺、染料等。环境中的硝基苯主要来自化工厂、染料厂的废水废气,尤其是苯胺染料厂排出的污水中含有大量硝基苯。 硝基苯在水中具有极高的稳定性,由于其密度大于水,进入水体后会沉入水底,长时间保持不变。又由于其在水中有一定的溶解度,所以造成的水体污染会持续相当长的时间。硝基苯类化合物化学性能稳定,苯环较难开环降解,常规的废水处理方法很难使之净化。因此,研究硝基苯类污染物的治理方法和技术十分必要。 1.2处理硝基苯的技术方法现状 1.2.1 物理法 对含高浓度硝基苯的工业废水,采用物理手段处理既可降低硝基苯的浓度,改善废水的可生化性,又可以回收部分硝基苯,实现资源利用最大化。主要的物理处理方法有:吸附法、萃取法和汽提法。 对于吸附法,硝基苯废水处理研究中颗粒状活性炭、炉渣、有机膨润土等都是应用较多的吸附剂。赵钰等[1]在用活性炭吸附法处理含芳香族硝基化合物的染料废水的工程试运行中,COD平均值由209mg/L下降至119mg/L。

苯硝化生产硝基苯工艺过程与防范对策

苯硝化生产硝基苯工艺过程与防范对策 摘要 本文对硝基苯的生产工艺进行了简要阐述,分析了生产工艺危险性,并列举案例分析,最后针对硝基苯的安全生产,提出了安全预防措施,这对硝基苯的生产能长期、稳定、安全运行具有重要意义。 关键词:硝基苯工艺危险性预防措施 引言 硝基苯是一种重要的化工原料和中间体,用于生产苯胺、联苯胺、二硝基苯等多种医药和染料行业,也可用作于农药、炸药及橡胶硫化促进剂的原料,其中主要用途是制取苯胺和聚氨酯泡沫塑料,目前,90%以上的硝基苯用于生产苯胺[1-3]。工业上硝基苯生产工艺过程主要包括苯硝化反应、硝基苯洗涤、硝基苯精馏等单元过程,生产过程中使用了大量易燃易爆、有毒有害、强腐蚀、强氧化的化学危险品。由于苯硝化反应中副反应生成的杂质(主要是硝基酚盐类)爆炸危险性很高,而且极易积累在精馏塔釜等受热部位,监测和处理不及时就容易发生爆炸,使其生产过程中安全事故具有突发性、灾害性的特点。因此对苯硝化生产硝基苯工艺过程进行危险性定量分析及对爆炸事故的安全研究,并提出具体的预防措施意义重大。 1 硝基苯生产工艺 1.1硝基苯简介 硝基苯,有机化合物,又名密斑油、苦杏仁油,无色或微黄色具有苦杏仁味的油状液体[4]。化学式为C6H5NO2,难溶于水,密度比水大,相对密度1.205,熔点6℃,沸点210~211℃,闪点为87.8℃,爆炸下限为1.8%(93.3℃)。易溶于乙醇、乙醚、苯和油。遇明火、高热会燃烧、爆炸。与硝酸反应剧烈。低毒,半数致死量(大鼠,经口640mg/kg),硝基苯由苯经硝酸和硫酸混合硝化而得。实验室制硝基苯由于溶有硝酸分解产生的二氧化氮而有颜色,除杂方式:加氢氧化钠溶液,分液。 1.2硝基苯的应用 硝基苯是重要的基本有机化工原料,用于生产染料、香料、炸药等有机合成工业,经催化加氢或铁粉还原可得苯胺,这是硝基苯的最主要用途,由苯胺进而生产各种有机

实验室废水处理设计方案

实验室废水处理设计方案 1.项目背景 1.1项目概况 中国科学院广州生物医药与健康研究院实验楼每天产生的 废水包括清洗污水、实验过程产生的污水等;由于该实验楼所排 出的废水COD、BOD、SS及大肠杆菌类的细菌等水质指标都超出 了广东省水污染物排放限值中的一级排放标准,为了保护其周围 的水体环境,受该研究院的委托,华南环境科学研究所环境工程 研究设计中心承担了该废水处理工程方案设计工作。 1.2编制目的、依据、原则和范围 1.2.1编制目的 对废水处理站工艺单体进行详细优化设计,并提出主要设备材料表,据此编制投资估算。 1.2.2编制依据 1.参考同类型的实验楼废水水质水量资料; 2.废水处理后的出水指标按《广东省水污染物排放限值》(DB44/26-2001)中一级标准执行; 3.工程设计执行《室外排水设计规范》(GBJ14-87); 4.《给水排水工程结构设计规范》(GBJ69-84); 5.《给水排水构筑物施工及验收规范》(GBJ141-90); 6.本中心多年来从事同类型废水治理工程的设计与施工的成功

经验。 1.2.3编制原则 1.生产建设总体规划的指导下,通过废水综合治理工程的建设达到保护环境、保护水资源、保持企业可持续发展的目的。 2.采取近远期结合的方针,充分发挥建设项目的社会效益、环境效益和经济效益。 3.选择先进、技术经济合理的处理工艺技术,为工程方案的尽早实施,为废水处理厂的建设和运行创造良好的条件。 4.采用高效节能,简便易行的处理工艺,降低工程投资和运行费用。 5.设备选型做到合理、可靠、先进。 6.按现行有关规定进行投资估算和经济分析。 1.2.4编制范围 本设计编制范围为废水处理站内全部建、构筑物及配套工程。 1.对废水处理站处理工艺进行优化组合和经济技术比较;确定经济、可行、合理的工艺技术方案。 2.对推荐方案进行工艺、建筑、结构、电气、机械和自控等分析评价,提出处理站定员、节能等方面说明。 2.工程目标 2.1工程范围 本工程的范围为废水处理站内工程系统。

硝基苯废水处理

硝基氯苯废水的治理 化工部给排水设计技术中心站武迎生 摘要本文论述了硝基氯苯废水的排污机制,提出了适宜的治理流程。研究结,该处理流程方法简单,效果好,从废水中可回收一定量的化工原料。 关键词硝基氯苯冷却结晶生物活性炭 硝基氯苯包括二硝基氯苯、邻硝基氯苯、对硝基氯苯、间硝基氯苯,是重要的化工原料,广泛应用于农药、染料等行业。近年来我国硝基氯苯工业发展很快,尤其是邻、对硝基氯苯产量迅速增加,是世界上产量最大的国家之一。但是在硝基氯苯生产过程中要排出一定量废水,废水中含有硝基氯苯、硝基酚、氯苯、硫酸、硝酸等,以硝基氯苯量最大。硝基氯苯是毒性较大的有害物质,国家对其制定了严格的排放标准,为5mg/l。目前国内硝基氯苯生产企业能达到这个排放标准的很少。本文结合某厂的实例就硝基氯苯废水治理方法的选择,适宜的治理工艺流程进行了探研。 1、硝基氯苯废水的排污机制、水质水量某化工厂硝基氯苯车间共有二个主要工段:2,4-二硝基氯苯工段、邻、对硝基氯苯工段。各工段的生产工艺、排污机制、水质水量分述如下。 1.1 2,4—二硝基氯苯工段2,4—二硝基氯苯(以下简称二硝)是硝基氯苯车间的主要工段,年产二硝六千吨,占硝基氯苯总产量的三分之二。二硝的生产是以氯苯为原料,采用硝酸和硫酸的混酸为硝化剂,其中硫酸主要起脱水作用。硝化第一步用低值酸进行,硝化完毕后,静置分层,排去沉在下部的剩余硫酸,再加入高值酸进行第二步硝化,硝化后得到二硝粗产品。二硝比重比硝化后剩余的酸轻,浮在硝化罐的上部,将下部的酸排至贮酸罐,而后送至脱硝工段。由于分层不清及物料夹带,有部分酸残留在二硝中,为了使产品符合质量要求,需用清水和碱液洗涤二硝粗产品。洗涤水水温65℃,洗涤后水从缸上部虹吸排出,再进行下一遍洗涤,碱洗是用5~7%的Na2CO3液洗涤,其目的是和硝化反应的副产物硝基酚作用,生成硝基酚钠,溶于水而被除去。水洗一般进行4~6遍,碱洗一般为一遍。水洗和碱洗时物料和水的体积比为1∶1左右。物料被洗至刚果红试纸不变色后转至结晶工段,然后装入铁桶内作为成品出售 。二硝生产工艺流程简图见图1。 从工艺流程可以看出,二硝工段的污染源主要为水洗和碱洗的洗涤水,二硝工段的日产为30吨,体积20m3。以水洗加碱洗34遍水洗水分析测定,水中含有较高浓度的有机物等污染物。分析结果见表1。

年生产12000吨二硝基苯工艺设计书

年产12000吨二硝基苯工艺设计书 1.1设计的目的,意义及要求 设计的目的及意义 化工课程设计是高等工业学校各专业教学计划的重要组成部分,是学生在毕业前进行的、全面运用所学的专业知识的综合训练,是培养学生综合素质和解决工程实际问题能力的一个重要的实践性教学环节。该过程是学生在校期间所学知识、理论及各种能力的综合应用与升华,是创新潜能得到激发的过程,是对各专业教学目标、教学过程、教学管理和教学效果的全面检验。 化工课程设计教学环节的教学目的是对学生从事科学研究的基本训练,是在教师指导下,通过毕业论文的教学过程,培养学生探求未知、探求真理的科学精神,以及优良的科学品质与科学素养,培养学生开展科学研究的方法。使学生了解本学科的发展动态和最新科学技术,检验学生综合运用基础理论、基本知识和基本技能,解决科学与技术领域有关问题的能力,检验科研基本训练的实际效果。 工程设计是工程师工作实践中最富创造性的容。设计能力不同于理论分析能力、表达能力和动手能力,它是一种如何将思维形式的知识转化为客观上尚未存在而可以实现的物质实体的创造能力,即不仅是认识客观、表现客观而且是创造客观的能力。因此设计能力的培养对工科学生尤为重要。 具体来讲化工课程设计有如下目的、意义: (1)通过课程设计的训练,使学生进一步巩固加深所学的基础理论、基本技能和专业知识,使之系统化、综合化。 (2)在课程设计中着重培养学生独立工作、独立思考并运用已学的知识解决实际工程技术问题的能力,结合课题的需要更应注意培养学生独立的获取新知识的能力。 (3)通过化工课程设计加强对学生计算、绘图、实验方法、数据处理、编辑设计文件、使用规化手册等最基本的工作实践能力的培养。 (4)通过化工课程设计的训练,使学生树立起具有符合国情和生产实际的正确的设计思 想和观点;树立起严谨、负责、实事、刻苦钻研、勇于探索并具有创新意识及与

硝基苯废水处理工艺设计方案

目录第一章处理工艺的文献综述2 1.1含硝基苯废水对环境的危害2 1.2处理硝基苯的技术方法现状3 1.2.1 物理法3 1.2.2 化学法3 1.2.3 生物法4 第二章工程设计资料与依据5 2.1 废水水量5 2.2 设计进水水质5 2.3 设计出水水质5 2.4 设计依据6 2.5 设计原则与指导思想6 第三章工艺流程的确定6 3.1 废水的处理工艺流程6 3.2 工艺流程说明7 3.3 工艺各构筑物去除率说明8 第四章构筑物设计计算9 4.1 设计水量的确定9 4.2 调节池9 4.3 微电解塔10

4.4 FENTON氧化池12 4.5 中和反应池13 4.6 沉淀池14 4.7 生活污水格栅16 4.8 生活污水调节池17 4.9 生化处理系统18 4.10 二沉池19 4.11 污泥浓缩池20 第五章构筑物及设备一览表21 5.1 主要构筑物一览表21 5.2 主要设备一览表22 第六章管道水力计算及高程布置23 6.1 平面布置及管道的水力计算23 6.2 泵的水力计算及选型26 6.3 高程布置和计算28 第七章参考文献31 第一章处理工艺的文献综述 1.1含硝基苯废水对环境的危害 硝基苯,分子式为C5H6NO2,相对分子量为123,相对密度(水=1)1.20,熔点在5.7℃,沸点是210.9℃。硝基苯是淡黄色透明油状液体,有苦杏仁味,不溶于水,溶于乙醉、乙醚、苯等多数有机溶剂。用于溶剂,制造苯胺、染料等。环境中的硝基苯主要来自化工厂、染料厂的废水废气,尤其是苯胺染料厂排出的污水中含有大量硝基苯。

硝基苯在水中具有极高的稳定性,由于其密度大于水,进入水体后会沉入水底,长时间保持不变。又由于其在水中有一定的溶解度,所以造成的水体污染会持续相当长的时间。硝基苯类化合物化学性能稳定,苯环较难开环降解,常规的废水处理方法很难使之净化。因此,研究硝基苯类污染物的治理方法和技术十分必要。 1.2处理硝基苯的技术方法现状 1.2.1物理法 对含高浓度硝基苯的工业废水,采用物理手段处理既可降低硝基苯的浓度,改善废水的可生化性,又可以回收部分硝基苯,实现资源利用最大化。主要的物理处理方法有:吸附法、萃取法和汽提法。 对于吸附法,硝基苯废水处理研究中颗粒状活性炭、炉渣、有机膨润土等都是应用较多的吸附剂。赵钰等[1]在用活性炭吸附法处理含芳香族硝基化合物的染料废水的工程试运行中,COD平均值由209mg/L下降至119mg/L。 对于萃取法,目前一般采用多级萃取法或萃取法与其他方法协同处理。林中祥等人[2]用N5O3—苯做萃取剂对硝基苯生产废水进行处理,萃取两次可使硝基苯含量达国家一级排放规范。 对于汽提法,用于处理高浓度硝基苯废水,工艺上较为可行。于桂珍等[3]利用汽提—吸附法处理硝基苯废水,实验表明,硝基苯的去除率可达90%以上,汽提后的废水经碳黑吸附,废水中硝基苯含量可降至10mg/L以下,效果较好 1.2.2化学法 针对于处理硝基苯的化学法主要有电化学法和高级氧化法。电化学氧化的基本原理有两种:一是直接电化学反应,指通过阳极氧化使污染物在电极上发生转化或燃烧,把有毒物质转变为无毒物质,或把非生物相容的有机物转化为生物相容的物质,例如芳香化合物的开环氧化等。二为间接电化学转化,指利用电极表面产生的强氧化性活性物种使污染物发生氧化还原转变。宋卫健等[4]以DSA类电极作为阳极,对模拟硝基苯废水进行的降解实验证明,在电流密度15mA/cm2条件下,CODcr的去除率可达到90%以上。也有樊红金等[5]对催化铁内电解法处理硝基苯废水降解动力学特性进行了研究。结果表明,降解过程符合准一级动力学规律。进水浓度、pH值和反应温度强烈影响硝基苯的降解速率。 高级氧化技术近年来的发展非常迅速,有臭氧氧化,Fenton试剂氧化,湿式氧化等。针

苯胺的制备

化学与环境学院 有机化学实验报告实验名称苯胺的制备 【实验目的】 1、掌握硝基苯还原为苯胺的实验方法和原理;

2、巩固水蒸气蒸馏和简单蒸馏的基本操作。 【实验原理】(包括反应机理) (一)芳胺的制取不可能用任何直接的方法将氨基(—NH2)导入芳环上,而是经过间接的方法来制备。将硝基苯还原就是制取苯的一种重要方法。实验室常用的还原剂有铁—盐酸、铁—醋酸、锡—盐酸、锌—盐酸等。用锡—盐酸作还原剂时,作用较快,产率较高,不需用电动搅拌,但锡价格较贵,同时盐酸、碱用量较多。 锡—盐酸法:反应可能经过下列过程: 2C6H5NO2+3Sn+14HCl→(C6H5NH3)+ 2SnCl-2 6 +4H2O (C6H5NH3)+ 2SnCl-2 6 +8NaOH→2C6H5NH2+Na2SnO3+5H2O+6NaCl 铁—醋酸法: 4C6H5NO2+9Fe+4H2O?→ ?+H4C6H5NH2+3Fe3O4 苯胺有毒,操作应避免与皮肤接触或吸入其毒气!若不慎触及皮肤时,应先用水冲洗,再用肥皂及温水洗涤。 (二)水蒸气蒸馏(Steam Distillation)也是分离和提纯有机化合物的常用方法,但被提纯物质必须具备以下条件: (1)不溶或难溶于水; (2)与水一起沸腾时不发生化学变化; (3)在100℃左右该物质蒸气压至少在10mmHg(1.33kPa)以上。水蒸气蒸馏常用于以下几种情况:

(1)在常压下蒸馏易发生分解的高沸点有机物。 (2)含有较多固体的混合物,而用一般蒸馏、萃取或过滤等方法又难以分离。 (3)混合物中含有大量树脂状的物质或不挥发性杂质,采用蒸馏、萃取等方法也难以分离。 在难溶或不溶于水的有机物中通入水蒸气或与水一起共热,使有机物随水蒸气一起蒸馏出来,这种操作称为水蒸气蒸馏。 【主要试剂及物理性质】 【仪器装置】 1、主要仪器:

化工废水处理方法详解

化工废水处理方法 化工废水:是指化工厂生产产品过程中所生产的废水,如生产乙烯、聚乙烯、橡胶、聚酯、甲醇、乙二醇、油品罐区、空分空压站等装置的含油废水,经过生化处理后,一般可达到国家二级排放标准,现由于水资源的短缺,需将达到排放标准的水再经过进一步深度处理后,达到工业补水的要求并回用。化工厂作为用水大户,年新鲜水用量一般为几百万立方米,水的重复利用率低,同时外排污水几百万立方米,不仅浪费大量水资源,也造成环境污染,并且水资源的短缺已对这些工业用水大户的生产造成威胁。为保持企业的可持续发展及减少水资源的浪费,降低生产成本,提高企业经济效益和社会效益。需对化工废水进行深度处理(三级处理),作为循环水的补水或动力脱盐水的补水,实现污水回用。 由于水中杂质主要为悬浮颗粒和细毛纤维,利用机械过滤原理,采用微孔过滤技术将杂质去除。由PLC或时间继电器控制过滤器设备工作状况,实现自动反冲洗、自动运行,提升水泵提供过滤器所需水头,出水直接引入生产系统。 化工废水主要特征分析: 1、化工废水成分复杂,反应原料常为溶剂类物质或环状结构的化合物,增加了废水的处理难度;

2、该废水中含有大量污染物物质,主要是由于原料反应不完全和原料或生产中使用大量溶剂造成的。 3、有毒有害物质多,精细化工废水中有许多有机污染物对微生物是有毒有害的,如卤素化合物、硝基化合物、具有杀菌作用的分散剂或表面活性剂等; 4、生物难降解物质多,B比C低,可生化性差; 废水性质:化工产品生产过程中产生的废水表现为:排放量大、毒性大、有机物浓度高、含盐量高、色度高、难降解化合物含量高、治理难度大,但同时废水中也含有许多可利用的资源,而膜技术作为高新技术在化工领域的生产加工、节能降耗和清洁生产等方面发挥着重要。 化工废水预处理物化工艺推荐: 一、催化微电解处理技术 【技术背景】 有机废水特别是高盐高浓度有机废水处理,一直是国内众多环保工作者及管理部门关注的难题。随着我国化学工业的快速发展,各种新型的化工产品被应用到各行各业,特别是医药、化工、电镀、印染等重污染工业中,在提高产品质量、品质的同时也带了日益严重的环境污染问题,主要表现在:废水中有机污染物浓度高、结构稳定、生化性

硝基苯催化加氢制苯胺的安全技术分析

硝基苯催化加氢制苯胺的安全技术分析 苯胺是重要的有机化工中间体,广泛地应用于橡胶助剂、染料、感光化学品、医药、农药、炸药及聚氨酯等行业。由于市场需求较大,近几年改建、扩建及新建一批苯胺生产装置。但在苯胺及配套装置生产过程中使用大量易燃易爆、有毒有害的危险化学品,加之生产工艺条件苛刻,装置及控制技术要求严格,使其生产过程事故具有突发性、灾害性的特点。因此,有必要对苯胺的安全生产问题进行认真剖析并提出具体的对策。 1 苯胺生产工艺流程简介 以目前国内先进的35000t/a硝基苯催化加氢制苯胺生产装置为例。苯胺生产中的原料氢与系统中的循环氢混合经氢压机增压至0.2MPa后,与来自流化床顶的高温混合气在热交换器中进行热交换,被预热到约180oC进入硝基苯汽化器,硝基苯经预热后在汽化器中汽化,与过量的氢气合并过热至180oC~200oC,进入流化床反应器,与催化剂接触。硝基苯被还原,生成苯胺和水并放出大量热,利用流化床反应器中的余热锅炉中的软水汽化产生蒸气带走反应热来控制反应温度在250oC~270℃。反应后的混合气与催化剂分离,进热交换器与混合氢进行热交换,用水冷却,粗苯胺及水被冷凝,与过量的氢分离,过量氢循环使用,粗苯胺与饱和苯胺水进入连续分离器,粗苯胺进入脱水塔脱水,然后进精馏塔精馏得到成品苯胺。苯胺水进共沸塔回收苯胺,废水中含苯胺≤500 mg/L,去污水车间进行二级生化处理。 2 苯胺生产中的主要危险介质分析 苯胺生产中的危险介质主要是硝基苯、氢气和苯胺。 2.1 硝基苯 硝基苯的分子式为C6H5NO2,相对分子质量为123.11,淡黄色透明油状液体,有苦杏仁味,能溶于苯、乙醇及乙醚,难溶于水。有毒,多量吸人蒸气或经皮肤吸收都会引起中毒,在车间空气中的最高容许浓度为5mg/m3。 常用的理化数据:相对密度1.205(25℃),熔点5.7℃,沸点210.9℃,闪点87.8℃(闭杯),爆炸下限1.8%(93.3℃),自燃点482℃,蒸气密度4.25 g/L。 危险特性:有毒,遇火种、高热能引起燃烧爆炸,与硝酸反应强烈。 储运注意事项:储存于通风阴凉的仓间内,远离火种、热源,避免日光曝晒并且与氧化剂、硝酸分开存放;搬运时轻装轻卸,防止破漏,引起中毒;误触皮肤立即用肥皂水洗涤。 2.2 氢气 氢气为无色无臭气体,极微溶于水、乙醇、乙醚,无毒、无腐蚀性,极易燃烧,燃烧时发出青色火焰,并发生爆鸣,燃烧温度可达2 000℃,氢氧混合燃烧火焰温度为2 100℃~2 500℃,与氟、氯等能起猛烈的化学反应。 理化常数:密度0.089 9g/L,熔点-259.18℃,沸点-252.8℃,自燃点400℃,爆炸极限4.1%~74.2%,最易引爆体积分数24%,产生大量爆炸压力的体积分数32.3%,最大爆炸压力0.73 MPa,最小引燃能量0.019 mJ,临界温度-239℃,临界压力1.307MPa。 危险特性:与空气混合能成为爆炸性混合物,遇火星、高热能引起燃烧爆炸。在室内使用或储存氢气,当有漏气时,氢气上升滞留屋顶,不易自然排出,遇到火星时会引起爆炸。 储运注意事项:氢气应用耐高压的钢瓶盛装;储存于阴凉通风的仓间内,仓温不宜超过30℃,远离火种、热源,切忌阳光直射;应与氧气、压缩空气、氧化剂、氟、氯等分仓间存放,严禁混储、混运。 2.3 苯胺

硝基苯废水处理方案.

硝基苯废水处理工艺设计方案 目录 第一章处理工艺的文献综述 (3) 1.1含硝基苯废水对环境的危害 (3) 1.2处理硝基苯的技术方法现状 (3) 1.2.1 物理法 (3) 1.2.2 化学法 (4) 1.2.3 生物法 (4) 第二章工程设计资料与依据 (5) 2.1 废水水量 (5) 2.2 设计进水水质 (5) 2.3 设计出水水质 (5) 2.4 设计依据 (6) 2.5 设计原则与指导思想 (6) 第三章工艺流程的确定 (6) 3.1 废水的处理工艺流程 (6) 3.2 工艺流程说明 (7) 3.3 工艺各构筑物去除率说明 (8) 第四章构筑物设计计算 (9) 4.1 设计水量的确定 ...................................... 9 南京工业大学环境学院 - 1 - 硝基苯废水处理工艺设计方案 4.2 调节池 (9) 4.3 微电解塔 (10) 4.4 FENTON氧化池 (12) 4.5 中和反应池 (13) 4.6 沉淀池 (14) 4.7 生活污水格栅 (16) 4.8 生活污水调节池 (18) 4.9 生化处理系统 (19) 4.10 二沉池 (21) 4.11 污泥浓缩池 (22) 第五章构筑物及设备一览表 (25) 5.1 主要构筑物一览表 (25) 5.2 主要设备一览表 (25) 第六章管道水力计算及高程布置 (26)

6.1 平面布置及管道的水力计算 (26) 6.2 泵的水力计算及选型 (28) 6.3 高程布置和计算 (31) 第七章参考文献 (34) 南京工业大学环境学院 - 2 - 硝基苯废水处理工艺设计方案 第一章处理工艺的文献综述 1.1含硝基苯废水对环境的危害 硝基苯,分子式为C5H6NO2,相对分子量为123,相对密度(水=1)1.20,熔点在5.7℃,沸点是210.9℃。硝基苯是淡黄色透明油状液体,有苦杏仁味,不溶于水,溶于乙醉、乙醚、苯等多数有机溶剂。用于溶剂,制造苯胺、染料等。环境中的硝基苯主要来自化工厂、染料厂的废水废气,尤其是苯胺染料厂排出的污水中含有大量硝基苯。 硝基苯在水中具有极高的稳定性,由于其密度大于水,进入水体后会沉入水底,长时间保持不变。又由于其在水中有一定的溶解度,所以造成的水体污染会持续相当长的时间。硝基苯类化合物化学性能稳定,苯环较难开环降解,常规的废水处理方法很难使之净化。因此,研究硝基苯类污染物的治理方法和技术十分必要。 1.2处理硝基苯的技术方法现状 1.2.1 物理法 对含高浓度硝基苯的工业废水,采用物理手段处理既可降低硝基苯的浓度,改善废水的可生化性,又可以回收部分硝基苯,实现资源利用最大化。主要的物理处理方法有:吸附法、萃取法和汽提法。 对于吸附法,硝基苯废水处理研究中颗粒状活性炭、炉渣、有机膨润土等都是应用较多的吸附剂。赵钰等[1]在用活性炭吸附法处理含芳香族硝基化合物的染料废水的工程试运行中,COD平均值由209mg/L下降至119mg/L。 对于萃取法,目前一般采用多级萃取法或萃取法与其他方法协同处理。林中祥等人[2]用N5O3—苯做萃取剂对硝基苯生产废水进行处理,萃取两次可使硝基苯含量达国家一级排放标准。 对于汽提法,用于处理高浓度硝基苯废水,工艺上较为可行。于桂珍等[3]利用汽提—吸附法处理硝基苯废水,实验表明,硝基苯的去除率可达90%以上,汽提后的废水经碳黑吸附,废水中硝基苯含量可降至10mg/L以下,效果较好南京工业大学环境学院 - 3 - 硝基苯废水处理工艺设计方案 1.2.2 化学法

年产12000吨二硝基苯工艺设计研究

xxxxxx大学 化工课程设计 学院: xxxxxxxxxxxxxx学院 专业:化学工程与工艺年级: 题目:年产12000吨二硝基苯工艺设计研究 学生姓名:学号: 指导教师:职称: 2013年12月30日

本发明涉及一种混二硝基苯的生产工艺。所说的混二硝基苯包括邻二硝基苯、间二硝基苯和对二硝基苯三种同分异构体。其特征是以硝基苯为原料,经混酸(硝酸-硫酸的混合物)连续硝化生产混二硝基苯。该工艺过程主要操作参数是:反应温度控制在50~100℃,但控制在80~90℃硝化反应效果更好;硝酸与硝基苯的投料比例控制在1.01~1.06∶1;废酸浓度控制在80~90%;反应停留时间控制在0.5~4小时。由于本发明是连续硝化生产混二硝基苯工艺,使得本发明有以下几个优点:1)设备的生产能力大;2)生产过程易于控制,生产稳定,产品的质量高;3)改善了工作环境,有利于操作工人的身体健康,有利于环境保护;4)降低了劳动强度,降低了生产成本。

1 前言 1.1设计的目的,意义及要求 设计的目的及意义 化工课程设计是高等工业学校各专业教学计划的重要组成部分,是学生在毕业前进行的、全面运用所学的专业知识的综合训练,是培养学生综合素质和解决工程实际问题能力的一个重要的实践性教学环节。该过程是学生在校期间所学知识、理论及各种能力的综合应用与升华,是创新潜能得到激发的过程,是对各专业教学目标、教学过程、教学管理和教学效果的全面检验。 化工课程设计教学环节的教学目的是对学生从事科学研究的基本训练,是在教师指导下,通过毕业论文的教学过程,培养学生探求未知、探求真理的科学精神,以及优良的科学品质与科学素养,培养学生开展科学研究的方法。使学生了解本学科的发展动态和最新科学技术,检验学生综合运用基础理论、基本知识和基本技能,解决科学与技术领域有关问题的能力,检验科研基本训练的实际效果。 工程设计是工程师工作实践中最富创造性的内容。设计能力不同于理论分析能力、表达能力和动手能力,它是一种如何将思维形式的知识转化为客观上尚未存在而可以实现的物质实体的创造能力,即不仅是认识客观、表现客观而且是创造客观的能力。因此设计能力的培养对工科学生尤为重要。 具体来讲化工课程设计有如下目的、意义: (1)通过课程设计的训练,使学生进一步巩固加深所学的基础理论、基本技能和专业知识,使之系统化、综合化。 (2)在课程设计中着重培养学生独立工作、独立思考并运用已学的知识解决实际工程技术问题的能力,结合课题的需要更应注意培养学生独立的获取新知识的能力。 (3)通过化工课程设计加强对学生计算、绘图、实验方法、数据处理、编辑设计文件、使用规范化手册等最基本的工作实践能力的培养。 (4)通过化工课程设计的训练,使学生树立起具有符合国情和生产实际的正确的设计思 想和观点;树立起严谨、负责、实事求是、刻苦钻研、勇于探索并具有创新意识及与他人合作的工作作风。

硝基苯废水处理方案

目录 第一章处理工艺的文献综述 (3) 1.1含硝基苯废水对环境的危害 (3) 1.2处理硝基苯的技术方法现状 (3) 1.2.1 物理法 (3) 1.2.2 化学法 (4) 1.2.3 生物法 (4) 第二章工程设计资料与依据 (5) 2.1废水水量 (5) 2.2设计进水水质 (5) 2.3设计出水水质 (5) 2.4设计依据 (6) 2.5设计原则与指导思想 (6) 第三章工艺流程的确定 (6) 3.1废水的处理工艺流程 (6) 3.2工艺流程说明 (7) 3.3工艺各构筑物去除率说明 (8) 第四章构筑物设计计算 (9) 4.1设计水量的确定 (9)

4.2调节池 (9) 4.3微电解塔 (10) 4.4FENTON氧化池 (12) 4.5中和反应池 (13) 4.6沉淀池 (14) 4.7生活污水格栅 (16) 4.8生活污水调节池 (18) 4.9生化处理系统 (19) 4.10二沉池 (21) 4.11污泥浓缩池 (22) 第五章构筑物及设备一览表 (25) 5.1主要构筑物一览表 (25) 5.2主要设备一览表 (25) 第六章管道水力计算及高程布置 (26) 6.1平面布置及管道的水力计算 (26) 6.2泵的水力计算及选型 (28) 6.3高程布置和计算 (31) 第七章参考文献 (34)

第一章处理工艺的文献综述 1.1含硝基苯废水对环境的危害 硝基苯,分子式为C5H6NO2,相对分子量为123,相对密度(水=1)1.20,熔点在5.7℃,沸点是210.9℃。硝基苯是淡黄色透明油状液体,有苦杏仁味,不溶于水,溶于乙醉、乙醚、苯等多数有机溶剂。用于溶剂,制造苯胺、染料等。环境中的硝基苯主要来自化工厂、染料厂的废水废气,尤其是苯胺染料厂排出的污水中含有大量硝基苯。 硝基苯在水中具有极高的稳定性,由于其密度大于水,进入水体后会沉入水底,长时间保持不变。又由于其在水中有一定的溶解度,所以造成的水体污染会持续相当长的时间。硝基苯类化合物化学性能稳定,苯环较难开环降解,常规的废水处理方法很难使之净化。因此,研究硝基苯类污染物的治理方法和技术十分必要。 1.2处理硝基苯的技术方法现状 1.2.1 物理法 对含高浓度硝基苯的工业废水,采用物理手段处理既可降低硝基苯的浓度,改善废水的可生化性,又可以回收部分硝基苯,实现资源利用最大化。主要的物理处理方法有:吸附法、萃取法和汽提法。 对于吸附法,硝基苯废水处理研究中颗粒状活性炭、炉渣、有机膨润土等都是应用较多的吸附剂。赵钰等[1]在用活性炭吸附法处理含芳香族硝基化合物的染料废水的工程试运行中,COD平均值由209mg/L下降至119mg/L。 对于萃取法,目前一般采用多级萃取法或萃取法与其他方法协同处理。林中祥等人[2]用N5O3—苯做萃取剂对硝基苯生产废水进行处理,萃取两次可使硝基苯含量达国家一级排放标准。 对于汽提法,用于处理高浓度硝基苯废水,工艺上较为可行。于桂珍等[3]利用汽提—吸附法处理硝基苯废水,实验表明,硝基苯的去除率可达90%以上,汽提后的废水经碳黑吸附,废水中硝基苯含量可降至10mg/L以下,效果较好

相关文档
相关文档 最新文档