文档库 最新最全的文档下载
当前位置:文档库 › 同步电动机参数辨识方法

同步电动机参数辨识方法

同步电动机参数辨识方法
同步电动机参数辨识方法

同步电动机参数辨识方法(待续)同步电机辨识的参数主要有两类:1、等效电路参数(电阻、电感等)

2、时间常数与电抗(包括瞬变超瞬变参数)考虑问题:1、怎样选取适当的辨识信号和设计有效的辨识实验

2、怎样选取辨识模型(使用较多的是两回路的转子模型)

3、怎样证明辨识所得参数的有效性

经典辨识:通过作阶跃响应、频率响应、脉冲响应等试验,测得对象以时间或频率为变量的实验曲线。

最小二乘法:目前使用比较广泛。

基于进化的策略法,如神经网络、遗传算法、粒子群游优化算法等等。

一般采用方法:突然短路、甩负荷、直流衰减法、静止频率响应法等等。

(理想情况下辨识,以及考虑饱和、磁滞、集肤效应等非线性因素)

国内:

传统方法:●对突然短路电流曲线的包络线加减来得到短路电流的中期分量和非周分量——改进:基于小波变换的短路数据处理方法(缺点是:需要选取小波基)

●基于扩展Prony算法的超瞬态参数计算方法(缺点是在实际应用中存在阶数确定的难题)

(1)基于HHT的同步电机参数辨识(中国电机工程学报2006)

基于Hilbert变换和非线性变量优化(NLO)的基波分量辨识算法,实现了同步电机瞬态和超瞬态参数的精确辨识。

(2)基于小波变换和神经网络的同步电机参数辨识新方法(中国电机工程学报2007)

先利用小波变换对短路电流信号进行预处理,再通过改进的人工神经元模型对短路电流进行较为精确的信号分离,得到短路电流中的直流分量、基波分量和二次谐波分量,并且辨识出了电机参数值以及精度较高的时间参数。(小波变换对短路电流进行预处理,并辨识得到各个时间参数,用来设定神经元激发函数中时间常数的迭代值)(3)一种新颖的电机磁链辨识算法(中国电机工程学报2007)

是基于对电机磁链的估计,方法是针对电压模型中的积分环节进行改造:利用一个高通滤波器和1个坐标变换环节构成

(4)感应电机参数的离线辨识方法

直流实验辨识定子电阻,堵转实验辨识定、转子漏感、转子电阻,空载试验采用V/f控制方式,辨识定转子间的互感

(5)直流衰减静测法局部辨识同步电机参数研究

定子a相绕组轴线与转子d轴重合,a相绕组开路,励磁绕组短路。b、c相绕组通过电阻串接到直流电源上。试验时,使bc绕组突然对线短路,采集定子bc的相电流和励磁绕组电流

(6)还有一些比如最小二乘法、卡尔曼滤波辨识、扩展粒子群优化算法等等

(7)基于人工神经网络的同步电机在线参数辨识

能反映电机实际运行过程中受到的饱和、电机老化、电磁力等因素的影响。目前国内的研究还比较少。缺点是:必须有足够多的、足够精确的导师样本。

改善1:用不同的励磁电压和功率下进行多次仿真的结果作为导师样本来训练神经网络。

改善2:采用在线参数辨识的混合算法:先利用遗传算法在大范围内进行参数寻

优,然后以此值作为OEM(输出误差法)的初值进行迭代;用OEM求得的结果训练人工神经网络;通过成功训练的神经网络在线辨识改革中运行状态下的电机参数。

改善3:电机在各种典型运行模式下的检测数据经卡尔曼滤波、状态空间有限元等基于模型的辨识算法离线计算得到。

国外:

●SSFR: standstill frequency response(inject alternating currents to the stator windings

with the rotor at standstill(w=0))

Two tests one: field winding open another: field wingding short-circuited

Genetic Algorithm

●first: get the five time constants , then circuit parameters in terms of measurable time

constants

test: (a) sudden 3-phase short-circuit test

(b)stator decrement(consume) test with field on short-circuit

●multitime scale decomposition(最大似然估计,在线性参数辨识方面是成功的。) , the method is based on frequency responses

The machine is at a standstill and supplied by voltage preudorandon binary sequences Output:the currents in the windings

Off-line (能辨识出所有参数)

●first: extract the time constants by curve fitting(standstill frequency response tests,iterative techniques(迭代技术) match a set of time constants) then:identify the parameter by solving a set of nonlinear equations

●on-line identification based on an extended EMF model , standstill state and lowspeed range

●fft 处理电压电流波形得到磁链,然后利用磁链来辨识参数

There is a ieee standards about off-line tests

我的想法:

将SSFR及一些较为经典的辨识方法与人工神经网络等智能方法进行结合

目前存在问题:

(1)待辨识的参数模型(是否选用一个:转子回路模型)

(2)对同步机的基础知识需要进一步加深

(3)对SSFR及人工神经元等方法需要学习

(4)是否可以通过一部分简单实验(主要借鉴永磁同步机及异步电动机)来获得一部分参数,如定子电阻等

感应电动机参数离线辨识方法实验研究_王高林

中图分类号:T M346 文献标志码:A 文章编号:100126848(2009)0620004204 感应电动机参数离线辨识方法实验研究 王高林,商 振,于 泳,徐殿国 (哈尔滨工业大学,哈尔滨 150001) 摘 要:为进一步提高感应电机矢量调速系统的性能,介绍了一种改进的参数离线辨识方案。系统通过自动进行直流实验、单相交流实验和空载实验来辨识感应电机的参数。所提出的改进方案可以有效消除集肤效应和死区效应所产生的辨识误差。对方案进行了详细分析,介绍了具体实现过程;最后将这种参数辨识方法应用到11k W 感应电机矢量控制系统。实验结果验证了方案的有效性。 关键词:参数辨识;离线;感应电动机;集肤效应;死区效应;实验 Research on O ff 2li n e Param eter I den ti f i ca ti on for I nducti on M otor WANG Gao 2lin,SHANG Zhen,Y U Yong,XU D ian 2guo (Harbin I nstitute of Technol ogy,Harbin 150001,China ) Abstract:Pr oposed an i m p r oved inducti on mot or off 2line para meter identificati on sche me f or vect or con 2tr olled AC mot or drives . The inverter drives aut omatically perf or med the DC test,the single 2phase test, and the no 2l oad test t o calculate all the machine para meters during self 2comm issi oning peri od .The p r o 2 posed sche me can eli m inate the para meter identificati on err or due t o the skin and dead 2ti m e effects . I n 2 tr oduced the scheme p rinci p le and the i m p le ment method in detail .Experi m ental results de monstrated the feasibility of the para meter identificati on method in 11k W vect or contr olled inducti on mot or drive sys 2 te m. Key W ords:Para meter identificati on;Off 2line;I nducti on mot or;Skin effect;Dead 2ti m e effect;Ex 2peri m ent 收稿日期:2008209217 0 引 言 在感应电机矢量控制系统中,电机参数的准确性影响到磁链估计以及控制参数调节等重要环节,因此电机参数辨识对于高性能调速系统具有重要的意义 [1] 。对于高性能感应电机矢量控制型 变频器,产品要求具有参数离线自学习的功能,需要在电机运行之前对参数进行离线辨识。离线辨识获得的电机参数将有助于矢量控制调速系统的正常运行,同时也可以对参数在线辨识的收敛性起参考作用。实际应用中,通常需要辨识的电机等效电路参数包括定、转子电阻和漏感以及互感等参数,目前已经有很多文献对其进行了深入研究 [224] 。本文介绍一种只需要通过检测电流信号 无需其它附加电路的电机参数离线辨识方法。由于逆变器中死区时间、开关管开关延迟时间和管 压降的存在,使得加在绕组电压的参考值与实际值存在一定差别,如不对这些因素进行考虑,将会引起辨识误差,本文采取了有效措施对其进行消除。另外,在单相交流实验过程中,考虑了集肤效应对转子电阻辨识的影响。 1 等效模型 假设感应电机工作在励磁特性的线性区,其数学模型可以用矢量的方式来表示: u s =R s i s +(L m +L σs ) d i s d t +L m d i r d t 0=R r i r +L m d i s d t +(L m +L σr )d i r d t + j p ωr [L m i s +(L m +L σr )i r ](1) 式中,u s 为定子电压矢量;i s 和i r 分别为定、转子电流矢量;R s 和R r 分别为定、转子电阻;L σs 和 L σr 分别为定、转子漏电感;L m 为定转子互感;p 为电机极对数;j 为复数虚部单位。 ? 4?

极大似然参数辨识方法

2 极大似然参数辨识方法 极大似然参数估计方法是以观测值的出现概率为最大作为准则的,这是一种很普遍的参数估计方法,在系统辨识中有着广泛的应用。 2.1 极大似然原理 设有离散随机过程}{k V 与未知参数θ有关,假定已知概率分布密度)(θk V f 。如果我们得到n 个独立的观测值,21,V V …n V ,,则可得分布密度)(1θV f ,)(2θV f ,…,)(θn V f 。要求根据这些观测值来估计未知参数θ,估计的准则是观测值{}{k V }的出现概率为最大。为此,定义一个似然函数 ) ()()(),,,(2121θθθθn n V f V f V f V V V L = (2.1.1) 上式的右边是n 个概率密度函数的连乘,似然函数L 是θ的函数。如果L 达到极大值,}{k V 的出现概率为最大。因此,极大似然法的实质就是求出使L 达到极大值的θ的估值∧ θ。为了便于求∧ θ,对式(2.1.1)等号两边取对数,则把连乘变成连加,即 ∑== n i i V f L 1)(ln ln θ (2.1.2) 由于对数函数是单调递增函数,当L 取极大值时,lnL 也同时取极大值。求式(2.1.2)对θ的偏导数,令偏导数为0,可得 0ln =??θL (2.1.3) 解上式可得θ的极大似然估计ML ∧ θ。 2.2 系统参数的极大似然估计 设系统的差分方程为 )()()()()(1 1 k k u z b k y z a ξ+=-- (2.2.1) 式中 111()1...n n a z a z a z ---=+++ 1101()...n n b z b b z b z ---=+++ 因为)(k ξ是相关随机向量,故(2.2.1)可写成 )()()()()()(1 11k z c k u z b k y z a ε---+= (2.2.2) 式中 )()()(1 k k z c ξε=- (2.2.3) n n z c z c z c ---+++= 1 11 1)( (2.2.4) )(k ε是均值为0的高斯分布白噪声序列。多项式)(1-z a ,)(1-z b 和)(1-z c 中的系数n n c c b b a a ,,,,,10,1和序列)}({k ε的均方差σ都是未知参数。 设待估参数

实验6数据拟合及参数辨识方法(精)

实验6 数据拟合及参数辨识方法 一、实验目的及意义 [1] 了解最小二乘拟合的基本原理和方法; [2] 掌握用MATLAB作最小二乘多项式拟合和曲线拟合的方法; [3] 通过实例学习如何用拟合方法解决实际问题,注意与插值方法的区别。 [4] 了解各种参数辨识的原理和方法; [5] 通过范例展现由机理分析确定模型结构,拟合方法辨识参数,误差分析等求解实 际问题的过程; 通过该实验的学习,掌握几种基本的参数辨识方法,了解拟合的几种典型应用,观察不同方法得出的模型的准确程度,学习参数的误差分析,进一步了解数学建模过程。这对于学生深入理解数学概念,掌握数学的思维方法,熟悉处理大量的工程计算问题的方法具有十分重要的意义。 二、实验内容 1.用MATLAB中的函数作一元函数的多项式拟合与曲线拟合,作出误差图; 2.用MATLAB中的函数作二元函数的最小二乘拟合,作出误差图; 3.针对预测和确定参数的实际问题,建立数学模型,并求解。 三、实验步骤 1.开启软件平台——MATLAB,开启MATLAB编辑窗口; 2.根据各种数值解法步骤编写M文件 3.保存文件并运行; 4.观察运行结果(数值或图形); 5.根据观察到的结果写出实验报告,并浅谈学习心得体会。 四、实验要求与任务 根据实验内容和步骤,完成以下具体实验,要求写出实验报告(实验目的→问题→数学模型→算法与编程→计算结果→分析、检验和结论→心得体会) 应用实验 1.旧车价格预测 某年美国旧车价格的调查资料如下表,其中x i表示轿车的使用年数,y i表示相应的平均价格。试分析用什么形式的曲线来拟合上述的数据,并预测使用4.5年后轿车的平均价

模态参数识别方法的比较研究

模态参数识别方法的比较研究 发表时间:2017-09-07T14:07:39.937Z 来源:《防护工程》2017年第9期作者:安鹏强[导读] 本文将频域法、时域法和整体识别法识别模态参数的应用范围、存在的优缺点进行对比、分析和说明。 航天长征化学工程股份有限公司兰州分公司甘肃兰州 730050 摘要:本文将频域法、时域法和整体识别法识别模态参数的应用范围、存在的优缺点进行对比、分析和说明,对模态参数识别的研究方向具有指导意义。 关键词:模态参数识别;频域法;时域法;整体识别法 引言 多自由度线性振动系统的微分方程可以表达为[1]: [M]{x ?(t)}+[C]{x ?(t)}+[K]{x(t)}={f(t)} 通过将试验采集的系统输入与输出信号用于参数识别的方法中,进而对系统的模态质量、模态阻尼、模态刚度、模态固有频率及模态振型进行识别,这一过程称为结构的模态参数识别。本文将对模态参数识别的频域法、时域法及整体识别法三者的应用范围、存在的优缺点进行对比、分析和说明。 1频域法 模态参数识别的频域法是结合傅里叶变换理论[1]形成的,这种方法是从实测数据的频响函数曲线上对测试结构的模态参数进行估计。图解法[1]是最早的频域模态参数识别方法,随之,又陆续发展了导纳圆拟合法[2]、最小二乘迭代法[2]、有理式多项式法[2]等多种频域模态参数识别方法。 频域法的优点是直观、简便,噪声影响小,模态定阶问题易于解决。频域法识别模态参数的思路是首先借助实测频响函数曲线对模态参数进行粗略的估计,进而将初步观测的模态估计值作为一些频域识别法的最初输入值,通过反复的迭代获取最终的模态参数。频域识别方法对于实测频响函数的分布容易控制,其输人数据是主观人为的。频域中参数识别方法识别结果的精准度,取决于测试试验中获得的频响函数质量的好坏。判断实测频响函数的质量,就要看其曲线的光滑[2]和曲线的饱满程度[2],曲线越光滑越饱满的实测频响函数,用其进行参数识别时,识别精度越高。 2时域法 模态参数识别的时域法的研究与应用比频域法晚,时域法可以克服频域法的一些缺陷。时域模态参数识别的技术优点在于无需获得激励力即可进行参数的识别[3-7]。对于一些大型的工程结构如大坝、桥梁等,获取激励荷载不太容易,但容易测得他们在风、地脉动等环境激励下的响应数据,把这些响应数据用于时域中一些参数识别的方法上,即可对测试结构的模态参数进行识别。 时域法的优点不仅在于其无需激励设备、减少测试费用而且可以避免由信号截断而造成对识别精度的影响,并且可实现对大型工程结构的在线参数识别,真实地反映结构的动力特性。但是由于响应信号中含有大量的噪声,这会使得所识别的模态中含有虚假模态。目前,对于如何剔除噪声模态、优化识别过程中的一些参数问题、以及怎样更稳定、可靠地进行模态定阶等成为时域法研究中的重要课题。目前常用的判定模态真假的方法是稳定图方法[8],该方法的基本思想在于不同阶次的系统模型会对虚假模态的影响比较大,在稳定图中出现次数最多的模态可认为是系统的真实模态。 3整体识别法 结构模态参数识别的单输入单输出类型是针对单个响应点的数据进行相应的计算,从而得到该测点对应的模态频率、阻尼比和振型系数等动力参数,但是对于有多个测点的试验,若要用单输入单输出类型的识别方法对多自由度结构进行参数识别,则需要对各个测点单独计算来识别各个测点对应的模态参数,通过对各个测点分别计算处理,得到每一个测点数据所识别的模态参数,然后求取所有测点响应识别的算术平均值来作为整体结构最终的识别结果。理论上讲,用每个测点数据识别的结果应该是一样的,但实际测试实验中,因测试实验中测点布置位置的不同、测试中其他因素及识别方法上的不完善会使得各个测点的识别结果不同、识别精度不同及错误的识别结果等现象。因此,对于多测点的测试试验,用单输入单输出类型的识别方法进行参数识别不仅会因多次重复导致计算工作量复杂累赘而且识别结果的正确性及精度无法保证。 整体识别的方法避免了单输入单输出类型的一些不足之处。该方法通过将结构上的所有测点的实测数据同时进行识别计算,所识别得到的结果作为结构整体的模态参数,每阶模态的固有频率和阻尼比是唯一的,减小了随机误差,提高了识别进度,并且使得计算工作量大大减少。 4三种识别方法的比较分析 (1)频域内的模态参数识别方法方便、快捷,但在实际运用中人为的主观选择性对识别结果的影响较大; (2)基于环境激励的时域模态参数的识别方法具有测试试验的花费较少、测试相对安全,并且识别精度较高。因此,基于环境激励的时域模态参数的识别方法已成为科研工作者研究的热点问题。 (3)对于多测点的测试试验,用频域和时域的单输入单输出类型识别模态参数不仅会因多次重复导致计算工作量复杂累赘而且识别结果的正确性及精度无法保证。整体识别法将所有测点的数据同时进行处理计算,得到结构的整体识别结果。整体识别方法通过对所有测点数据同时进行识别计算,减小了随机误差,提高了识别进度,使得计算工作量大大减少。 (4)对比时域和频域识别方法对虚假模态的剔除,可以看出,频域中的剔除虚假模态主要依据模态频率在频幅曲线图上会出现峰值的原理,利用该峰值处的幅值角是否为0°或180°来剔除虚假模态;相对频域剔除虚假模态的方法来说,时域中的剔除虚假模态的方法有定量的精度判别指标。总体看来,时域识别方法无法判别是否已将系统的所有模态进行识别且对于阻尼比的确定还有待研究。参考文献 [1] 曹树谦,张德文,萧龙翔. 振动结构模态分析-理论、实验与应用[M]. 天津大学出版社,2001. [2] 王济,胡晓. Matlab在振动信号处理中的应用[M]. 水利水电出版社,2006.

电容参数识别方法

电容参数识别方法 1、国外电容器耐压值通常用字母来表示基数,常见的代码和基数对应关系是: A:1.0;B:1.25;C:1.6;D:2.0;E:2.5;F:3.15;G4.0; H:5.0;J:6.3;K:8.0;Z:9.0; 2、字母前面的数表示10的幂,比如2A,即为1.0*10^2=100V,2C为1.6*10^2=160V等等。 3、耐压值后方的字母表示电容容量,单位为pF。 例如823表示容量为82*10^3=82000Pf ,224表示22*10^4=220000pf=0.22uF;最后的字母表示精度,比如J表示容量允许偏差为±5%等等。 4、典型的电容标识示例:2A823J 即82000Pf±5%,耐压100V。 涤纶电容- 标注方法 涤纶电容1、直标法:将电容器的主要参数(标称容量、额定电压、及允许偏差)直接标注在电容器上,如0.0047μf/275V,0.0047μf是容量,相当于4700Pf,275V应是耐压(不属优选数系列)。 2、文字符号法:采用数字或字母与数字混合的方法来标注电容器的主要参数。 3、数字标注法一般是用3位数字表示电容器的容量。其中前两位为有效值数字,第三位为倍乘数(即表示有效值后有多少个0)。如104,表示有效值是10,后面再加4个0,即100000Pf=0.1μf。 4、字母与数字混合标注法用2—4位数字表示有效值,用P、n、M、μ、G、m等字母表示有效数后面的量级。进口电容器在标注数值时不用小数点,而是将整数部分写在字母之前,将小数部分写在字母后面。如4P7表示4.7Pf,3m3表示3300μf等。 涤纶电容- 偏差标注 电容器的容量的允许偏差标注字母及含义: 字母含义 F ±1% G ±2% J ±5% K ±10% M ±20% N ±30% 如104K表示容量100000Pf=0.1μf,容量允许偏差为±10%。 涤纶电容又称聚酯电容,字母为“CL ”,容量一般是40P~4μ,电压是63~630V,主要用于 对稳定性和损耗要求不高的低频电路。

异步电动机参数自辨识

参数自辨识——现代逆变器结构下感应电动机系统的新特征 介绍 在实际应用中,磁场定向(field-oriented )现代交流调速系统的突出优点只有在自运行过程中准确得到所连接系统的信息才能够完全发挥。在实际系统中,当变频器和电机不是一起销售的时候,电机的参数是不能够预先知道的。因此,在试车过程中,必须有一些特别的测量和测试步骤。因为磁场定向矢量控制结构的复杂性,因此控制器参数设定将是一个需要时间而且特别受训练的人员才能够胜任。 为了简化这个过程,,在文章中给出来了参数自辨识(self-commissioning )——现代控制系统一种新特征。在参数自辨识过程中,系统自己得到电机参数并且同时设置控制器参数。这些过程都是在静止状态下完成的。随后,用一个测试来得到电机的转动惯量。 在现代直流控制系统中,这些特性已经可以得到[1],但是对交流调速系统,或者更复杂的系统,参数自辨识的过程完全是新的。 文章中描述了PWM 逆变器结构下异步电动机参数自辨识过程。 1、驱动装置结构 系统由整流部分、电压源型逆变器(VSI )和鼠笼电动机(M )组成。微处理器控制逆变器,执行磁场定向控制并控制操作面板。电机的两相电流R i 和S i 需要被测量。A/D 部分在综合测量原则下工作以使在选定周期里能够得到信号的准确平均值。中间回路的直流电压d U 和电机转速需要另外测量。 自辨识过程可以在所有电压等级和所有类型的PWM 逆变器(thyristor 、GTO 、transistor )上实施。实验是在15KW 电机上进行,逆变器的开关频率为500Hz 。 图1 驱动装置结构

2、自辨识的过程 当逆变器连接到主回路和主电机上时,操作者可以启动参数自辨识程序。首先,系统通过交互界面模式要求操作者输入电机的额定电压、电流和频率。然后,系统调整各个测量通道的偏移量(offset ),系统测量A/D 转换模块和逆变器及电机控制所必须的其他部分的功能,故障(如缺中断信号)会被准确检测到。这样,可以避免更大的损坏并且简化维修。 电机电流的测量通道和和逆变器本身只有在电子管被触发并且有电流流过时才可能。在操作者给予授权之前,这个测试是不能进行的。 当第二阶段测试正确执行以后,电机的参数(定子和转子电阻、总漏感L σ、转子时间常数)被确定。参数测量程序在几秒钟内完成。 接着,控制参数将自动计算并且被设置。 在需要的情况下,参数自辨识程序可以在电机运行的情况下再进行测试,以确定驱动装置的机械参数。 所有的参数被保存在非易失性存储器中,以便它们在下次启动时候可以立即调用。 3、异步电动机的数学模型 经过常规的近似以后,方程(1)可以用来描述鼠笼电机的电磁特性。 12 2111121121222222221010100010m a a a m m m R R T i L i u R R i L i T u R T R T σβσββααββωωψψωψψω??--?????????????---?????????????????=+????????--??????????????????????-???? (1) 符号表 12,R R 定子电阻、*变换后转子电阻; 11,u u αβ 两相坐标系下的定子电压; 11,i i αβ 两相坐标系下的定子电流; 22,αβψψ *变换后的转子磁链; m ω 单极对数下的电角速度; L σ 总漏感; 2L *变换后的转子电抗; 222 L T R = 转子时间常数

系统辨识研究综述

系统辨识研究综述 摘要:本文综述了系统辨识的发展与研究内容,对现有的系统辨识方法进行了介绍并分析其不足,进一步引出了把神经网络、遗传算法、模糊逻辑、小波网络知识应用于系统辨识得到的一些新型辨识方法。并对基于T-S模型的模糊系统辨识进行了介绍。文章最后对系统辨识未来的发展方向进行了介绍 关键词:系统辨识;建模;神经网络;遗传算法;模糊逻辑;小波网络;T-S 模型 1.系统辨识的发展和基本概念 1.1系统辨识发展 现代控制论是控制工程新的理论基础。辨识、状态估计和控制理论是现代控制论三个相互渗透的领域。辨识和状态估计离不开控制理论的支持;控制理论的应用又几乎不能没有辨识和状态估计。 而现代控制论的实际应用不能脱离被控对象的动态特性,且所用的数学模型需要选择一种使用方便的描述形式。但很多情况下建立被控对象的数学模型并非易事,尤其是实际的物理或工程对象,它们的机理复杂且含有各种噪声,使建立数学模型更加困难。系统辨识就是应此需要而形成的一门学科。 系统辨识和系统参数估计是六十年代开始迅速发展起来的。1960年,在莫斯科召开的国际自动控制联合会(IFCA)学术会议上,只有很少几篇文章涉及系统辨识和系统参数估计问题。然而,在此后,人们对这一学科给予了很大的注意,有关系统辨识的理论和应用的讨论日益增多。七十年代以来,随着计算机的开发和普及,系统辨识得到了迅速发展,成为了一门非常活跃的学科。 1.2系统辨识基本概念的概述 系统辨识是建模的一种方法。不同的学科领域,对应着不同的数学模型,从某种意义上讲,不同学科的发展过程就是建立它的数学模型的过程。建立数学模型有两种方法:即解析法和系统辨识。 L. A. Zadeh于1962年给辨识提出了这样的定义:“辨识就是在输入和输出数据的基础上,从一组给定的模型类中,确定一个与所测系统等价的模型。”当然按照Zadeh的定义,寻找一个与实际过程完全等价的模型无疑是非常困难的。根据实用性观点,对模型的要求并非如此苛刻。1974年,P. E. ykhoff给出辨识的定义“辨识问题可以归结为用一个模型来表示客观系统(或将要构造的系统) 本质为: 特征的一种演算,并用这个模型把对客观系统的理解表示成有用的形式。而1978

各种模态分析方法总结与比较

各种模态分析方法总结与比较 一、模态分析 模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。 模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率围各阶主要模态的特性,就可能预言结构在此频段在外部或部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 二、各模态分析方法的总结

(一)单自由度法 一般来说,一个系统的动态响应是它的若干阶模态振型的叠加。但是如果假定在给定的频带只有一个模态是重要的,那么该模态的参数可以单独确定。以这个假定为根据的模态参数识别方法叫做单自由度(SDOF)法n1。在给定的频带围,结构的动态特性的时域表达表示近似为: ()[]}{}{T R R t r Q e t h r ψψλ= 2-1 而频域表示则近似为: ()[]}}{ {()[]2ωλωψψωLR UR j Q j h r t r r r -+-= 2-2 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算机存。 这种单自由度的假定只有当系统的各阶模态能够很好解耦时才是正确的。然而实际情况通常并不是这样的,所以就需要用包含若干模态的模型对测得的数据进行近似,同时识别这些参数的模态,就是所谓的多自由度(MDOF)法。 单自由度算法运算速度很快,几乎不需要什么计算和计算机存,因此在当前小型二通道或四通道傅立叶分析仪中,都把这种方法做成置选项。然而随着计算机的发展,存不断扩大,计算速度越来越快,在大多数实际应用中,单自由度方法已经让位给更加复杂的多自由度方法。 1、峰值检测 峰值检测是一种单自由度方法,它是频域中的模态模型为根据对系统极点进行局部估计(固有频率和阻尼)。峰值检测方法基于这样的事实:在固有频率附近,频响函数通过自己的极值,此时其实部为零(同相部分最

系统辨识综述

系统辨识方法综述 摘要 在自然和社会科学的许多领域中,系统的设计、系统的定量分析、系统综合及系统控制,以及对未来行为的预测,都需要知道系统的动态特性。在研究一个控制系统过程中,建立系统的模型十分必要。因此,系统辨识在控制系统的研究中起到了至关重要的作用。本文论述了用于系统辨识的多种方法,重点论证了经典系统辨识方法中运用最广泛的的最小二乘法及其优缺点,引出了将遗传算法、模糊逻辑、多层递阶等知识应用于系统辨识得到的一些现代系统辨识方法,最后总结了系统辨识今后的发展方向。 关键字:系统辨识;最小二乘法;遗传算法;模糊逻辑;多层递阶 Abstract In many fields of natural and social science, the design of the system, the quantitative analysis of the system, the synthesis of the system and the control of the system, as well as the prediction of the future behavior, all need to know the dynamic characteristics of the system. It is very necessary to establish a system model in the process of studying a control system. Therefore, system identification plays an important role in the research of control system. This paper discusses several methods for system identification, the key argument is that the classical system identification methods using the least squares method and its advantages and disadvantages, and leads to the genetic algorithm, fuzzy logic, multi hierarchical knowledge application in system identification of some modern system identification method. Finally, the paper summarizes the system identification in the future direction of development. Keywords:System identification; least square method; genetic algorithm; fuzzy logic; multi hierarchy 第一章系统辨识概述 系统辨识是研究建立系统数学模型的理论和方法。系统辨识是建模的一种方法,不同的学科领域,对应着不同的数学模型。从某种意义上来说,不同学科的发展过程就是建立他的数学模型的过程。辨识问题可以归结为用一个模型来表示客观系统(或将要构造的系统)本质牲征的一种演算,并用这个模型把对客观系统的理解表示成有用的形式。当然也可以有另外的描述,辨识有三个要素:数据,模型类和准则。辨识就是按照一个准则在一组模型类中

电阻参数的识别方法直标法

1.电阻参数的识别方法直标法.文字符号法.色标法.数码表示法。 2 色标法:用不同颜色的色环表示电阻的主要参数。这种方法在小型电阻上用 的较多。常用四色标法和五色标法两种。 四色标法规定: 第一、二环是有效数值,第三环是乘数,第四环是允许偏差。 五色标法规定:第一、二、三环是有效数值,第四环是乘数,第五环是允许 偏差。 读色环的顺序规定为:更靠近电阻器引线的色环为第一环,离电阻器引线远一些的色环为偏差环。若两端色环距离电阻体两端引线等距离,则可借助电阻的标称值系列及色环符号规定的特点来判断。 色环标记: 黑、棕、红、橙、黄、绿、蓝、紫、灰、白(0-9),金(0.1),银(0.01) 数码表示法:用三位数码表示电容容量。从左到右第一、二位为有效数值,第三位为乘数(即零的个数),单位为pF。偏差用文字符号表示。 22二极管的作用:稳压、整流、检波、开关、光电转换等.特点:单向导电性。 30、场效应管特点:电压控制型器件;单极性晶体管;输入电阻高;热稳定性好;噪声低;成本低;易于集成。 电子产品生产工艺复习题 1、选用导线时要考虑的因素有哪些?答:电气因素、导线因素、装配工艺因素。 2、绝缘材料的分类。答:按其形态可分为:液体和固体;按其化学性质可分为:无机材料、有机材料、混合材料。 3、常见的电烙铁有哪些?答:外热式、内热式、恒温。 4、常用的防止螺钉松动的方法有哪三种?答:(1)加装垫圈(2)使用双螺母(3)使用防松漆 5、电子产品的检测方法有哪些?答:(1)观察法(2)电阻法(3)电压法(4)替代法 6、电子产品的检验项目有哪些?(146)答:(1)性能(2)可靠性(3)安全性(4)适应性(5)经济性(6)时间性 7、根据电子产品的特点,工艺文件通常分为(工艺管理)文件和(工艺规程)文件两大类。(152) 8、阻值和允许误差在电阻器上常用的表示方法有哪些?(5) 答:(1)直接标识法(2)文字符号法(3)色环标识法(4)数码标识法 9、焊料按其组成成份,可分为哪些?(52)答:锡铅焊料、银焊料、铜焊料。 10、形成良好粘接的要素是什么?(57)答:(1)选择适宜的粘剂(2)处理好粘结表面(3)选择正确的固化方法 11、导线端头绝缘层的剥离方法有哪些?答:(1)刃截法:设备简单但有可能损伤导线;(2)热截法:剥头质量好,不会损伤导线。 12、印制电路板按结构分类有哪些?答:(1)单面印制电路板;(2)双面印制电路板;(3)多层印制电路板;(4)软印制电路板;(5)平面印制电路板。13、集成电路的安装要点有哪些?答:(1)防静电(2)找方位(3)匀施力 14、手工SMT的技术关键有哪些?(126)答:(1)涂布黏合剂和焊膏(2)贴片(3)焊接 15、样机调试工作的调试要点有哪些?答:(1)电源第一;a:空调初载 b:

模态分析与参数识别

模态分析方法在发动机曲轴上的应用研究 xx (xx大学 xxxxxxxx学院 , 山西太原 030051) 摘要:综述模态分析在研究结构动力特性中的应用,介绍模态分析的两大方法:数值模态分析与试验模态分析。并着重介绍目前的研究热点一一工作模态分析。通过发动机曲轴的模态分析这一具体的实例,综述了运行模态分析国内外研究现状,指出了其关键技术、存在问题以及研究发展方向。 关键词:模态分析数值模态试验模态工作模态 Abstract :Sums up methods of model analysis applied on the research of configuration dynamic;al characteristio. It introduces two methods of model analysis: numerical value model analysis and experimentation model analysis. Then it stresses the hotspot-working model analysis.Some key techniques, unsolved problems and research directions of OMA were also discussed. Key words:Model analysis Numerical value model analysis Experimentation model analysis Working model analysis 1、引言 1.1模态分析的基本概念 物体按照某一阶固有频率振动时,物体上各个点偏离平衡位置的位移是满足一定的比例关系的,可以用一个向量表示,这个就称之为模态。模态这个概念一般是在振动领域所用,你可以初步的理解为振动状态,我们都知道每个物体都具有自己的固有频率,在外力的激励作用下,物体会表现出不同的振动特性。 一阶模态是外力的激励频率与物体固有频率相等的时候出现的,此时物体的振动形态叫做一阶振型或主振型;二阶模态是外力的激励频率是物体固有频率的两倍时候出现,此时的振动外形叫做二阶振型,以依次类推。

环境振动下模态参数识别方法综述

环境振动下模态参数识别方法综述 摘要:模态分析是研究结构动力特性的一种近代方法,是系统识别方法在工程振动领域中的应用。环境振动是一种天然的激励方式,环境振动下结构模态参数识别就是直接利用自然环境激励,仅根据系统的响应进行模态参数识别的方法。与传统模态识别方法相比,具有显著的优点。本文主要是做了环境振动下模态识别方法的一个综述报告。 关键词:环境振动模态识别综述 Abstract: The modal analysis is the study of structural dynamic characteristics of a modern method that is vibration system identification methods in engineering applications in the field. Ambient vibration is a natural way of incentives, under ambient vibration modal parameter identification is the direct use of the natural environment, incentives, based only on the response of the system for modal parameter identification method. With the traditional modal identification methods, has significant advantages. This paper is a summary report of the environmental vibration modal identification method. Keywords: Ambient vibration ;modal parameters ;Review 随着我国交通运输事业的发展,各种形式的大、中型桥梁不断涌现,由于大型桥梁结构具有结构尺大、造型复杂、不易人工激励、容易受到环境影响、自振频率较低等特点,传统模态参数识别技术在应用上的局限性越来越突出。传统的振动试验采用重振动器或落锤激励桥梁,需要投入大量人力和试验设备,激励成本增高,难度大,而且对于桥梁这样的大型复杂结构,激励(输入)往往很难测得,也不适合长期监测的实验模态分析。 环境振动是指振幅很小的环境地面运动。系由天然的和(或)人为的原因所造成,例如风、海浪、交通干扰或机械振动等,受激结构的振幅较小,但响应涵盖频率丰富。系统或者结构的模态参数包括:模态频率、模态阻尼、模态振型等。模态参数识别是系统识别的一部分,通过模态参数的识别可以了解系统或结构的动力学特性,这些动力特性可以作为结构有限元模型修正、故障诊断、结构实时监测的评定标准和基础。环境振动下的模态参数识别就是利用自然环境激励,根据结构的动力响应来进行模态参数识别的方法。 1 环境振动下模态参数识别的优点 传统的模态识别方法利用结构的输入和输出信号识别结构的模态参数。对于工作中的大型结构,无论是对其实施外部激励还是测试外部激励都十分困难。而环境振动方法仅仅利用被测试的输出数据识别结构的时间序列分析法模态参数。用环境振动对结构进行模态参数识别,具有明显的优点:

系统辨识综述

系统辨识课程综述 作者姓名:王瑶 专业名称:控制工程 班级:研硕15-8班

系统辨识课程综述 摘要 系统辨识是研究建立系统数学模型的理论与方法。虽然数学建模有很长的研究历史,但是形成系统辨识学科的历史才几十年在这短斩的几十年里,系统辨识得到了充足的发展,一些新的辨识方法相继问世,其理论与应用成果覆盖了自然科学和社会科学的各个领域。而人工神经网络的系统辨识方法的应用也越来越多,遍及各个领域。本文简单介绍了系统辨识的基本原理,系统辨识的一些经典方法以及现代的系统辨识方法,其中着重介绍了基于神经网络的系统辨识方法:首先对神经网络系统便是方法与经典辨识法进行对比,显示出其优越性,然后再通过对改进后的算法具体加以说明,最后展望了神经网络系统辨识法的发展方向。 关键字:系统辨识;神经网络;辨识方法 0引言 辨识、状态估计和控制理论是现代控制理论三个相互渗透的领域。辨识和状态估计离不开控制理论的支持,控制理论的应用又几乎不能没有辨识和状态估计技术。随着控制过程复杂性的提高,控制理论的应用日益广泛,但其实际应用不能脱离被控对象的数学模型。然而在大多数情况下,被控对象的数学模型是不知道的,或者在正常运行期间模型的参数可能发生变化,因此利用控制理论去解决实际问题时,首先需要建立被控对象的数学模型。所以说系统辨识是自动化控制的一门基础学科。 图1.1系统辨识、控制理论与状态估计三者之间的关系 随着社会的进步 ,越来越多的实际系统变成了具有不确定性的复杂系统 ,经典的系统辨识方法在这些系统中应用 ,体现出以下的不足 : (1) 在某些动态系统中 ,系统的输入常常无法保证 ,但是最小二乘法的系统辨

在线辨识永磁同步电动机参数

永磁同步电机参数在线辨识:模型参考与EKF 的比较 摘要:本文基于模型参考在线辨识的方法,对永磁同步电机进行参数辨识。运用李雅普诺夫第二方法和奇异扰动理论对增广系统的全局稳定性进行了分析。结果表明,该方法应用的解耦控制技术,改善了系统的收敛性和稳定性. 把这种方法与扩展卡尔曼滤波(EKF)的在线识别方法比较,结果表明,尽管基于扩展卡尔曼滤波(EKF)的在线辨识法在实现的复杂性上相对于所提出的方法更简单,但是该方法与所提出的方法相比不能给出更好的结果. 仿真结果以及对隐极式永磁同步电机实验的分析,证实了所提出方法的有效性。 永磁同步机因为他们的高效率和良好的可控性成功的应用于不同的领域。永磁同步机的控制主要是通过高性能的矢量控制实现的。控制变量如(速度,位置,或转矩),主要的困难在于控制转矩,这说明了控制定子电流的必要性。在矢量控制中,如果想实现这一点,定子电流和电压矢量需在d-q 坐标系下进行分析研究。为了控制定子电流,必须先控制其直轴电感(d)和正交电感(q)。永磁同步电机在d-q 坐标下的电气模型是一个两输入-两输出系统,如下: f q d e e ψ==,0 f K =ω Ω是反电动势矢量d-q 分量;q d q d i i v v ,,,是d-q 轴电压和电流,Ω=P ω是转子电角速度,Ω是转子机械角速度,P 是极对数量。系统的输入是q d v v ,,输出是q d i i ,。根据适当的控制律控制这些电流,是定子电压通过电压源逆变器得到应用。逆变器通常根据一个恒定增益v G 来建模。我们可以得到qr v q dr v d v G v v G v ==,,qr dr v v ,是电流调节器的输出。他们用于调节d-q 坐标系的电流。隐极永磁同步电机,d 轴基准电流通常固定为零,电机转矩和转度由q 轴基准电流控制。d q s f L L R ,,,ψ是参考模型的参数。电机时间常数是 s q q s d d R L R L /,/==ττ。 事实上,这些参数是不准确的,他们会慢慢的发生变化。这些变化可能是由于一个故障或一个变化的操作点[2]。他们有时对控制系统是致命的并可能损坏驱动器。在这些情况下,一个在线辨识算法是必要的。该算法对电机参数进行辨识,用于控制算法或检测故障中。

模态参数识别频域法

振动模态分析理论与应用 模态参数识别频域法 当系统阻尼为比例阻尼或小阻尼时,阻尼矩阵经模态坐标变换后可以对角化,模态参数为实数,频响函数可按实模态展开。若在p 点激励,在l 点测量,则频响函数可表示为对于粘性阻尼有 ∑ 1 2 ωω ξ2ωω1 )ω(N i i i i lp lp j D H =+= 对于结构阻尼有 ∑ 1 2ωω 1 )ω(N i i i lp lp jg D H =+= 以上两式即为实模态参数识别的基本公式 6.1 实模态识别图解法 6.1.1 共振法 这是一种经典的模态分析方法,其基本思想是:当激励频率在系统某阶固有频率r ω附近时, 该阶模态导纳便起主导作用,其余各阶模态导纳的影响可忽略不计。即 )ω(≈)ω(lpr lp H H 此时,整个系统等效于一个单自由度系统。利用幅频特性和相频特性,便可确定系统的模态参数(参看图6-1)。 在待测结构上选择l 个测试点,求其中某点P 对所有各点的位移导纳。点数l 一般应等于或大于拟选的模态数N (自由度数)。则p 点对任意点l 的位移导纳可作如下处理: 当激振频率在r 阶固有频率附近时有 () () 2 22 2∞ 1 2 ωωξ4ωω1≈ ωω ξ2ωω1 )ω(∑ ++==r r i r lp i i i i i lp lp j D j D H 因此,测得的幅频曲线)ω(lp H 的第r 个峰值位置(共振频率点),便可近似确定r 阶固有频率r ω。由r ω两侧半功率带宽,可以确定r 阶模态阻尼比)ω2/Δω(ξr r =。由r ω处位移

有 ()r r lp r lp D H ξ2)ω(= 所以 ()()r lp r r lp H D ωξ2= 由因为 ()r pr lr r lp k D φ φ= 故在令pr φ的值等于1(振型中各元素具有确定的比例,其绝对值可认为地指定,不妨取第r 阶振型第p 个元素pr φ的值等于1)时,由原点导纳曲线的峰值可得r 阶模态刚度为 ) ω(ξ21 r pp r r H k = 此外,当r ωω=时,l 个导纳的幅值分别为 r r pr r r p k H ξ2φφ|)ω(|11= r r pr r r p k H ξ2φφ|)ω(|22= r r pr lr r lp k H ξ2φφ|)ω(|= 写成矩阵形式 = lr r r r r pr r lp r p r p k H H H φφφξ2φ| )ω(|| )ω(||)ω(|2121 因此,第r 阶振型为 {}±±±==| )ω(||)ω(|| )ω(|φφ φφ2121r lp r p r p lr r r r H H H 为表示振型的几何形状,上试中各导纳幅值应考虑其相位,可用正负号表示同相或反相,对 于实模态,其振型向量的各分量都是实数,且只有大小和正负之差。因此,系统作固有振动时,各坐标点同时达到极值,同时通过平衡位置。用共振法确定模态参数,方法简单直观。但由于忽略了相邻模态的影响,识别出的模态精度不高,特别是识别振型和阻尼时,可能引起较大的误差。另外当各阶模态耦合较密时可能识别不出单个模态。因此这种方法一般只用于对模态的初步分析。 6.1.2分量分析法 分量分析法的思想是利用导纳的实频和虚频特性识别出系统的模态参数。其优点是能考虑其余模态的影响。

相关文档
相关文档 最新文档