文档库 最新最全的文档下载
当前位置:文档库 › ASTM A395 高温承压铁素体球铁技术规范

ASTM A395 高温承压铁素体球铁技术规范

ASTM A395 高温承压铁素体球铁技术规范
ASTM A395 高温承压铁素体球铁技术规范

ASTM标号:A 395/A 395M-99

高温承压铁素体球铁技术规范标准

1.范围

1.1此技术规范适用于高温承压球铁铸件。在温度不超过450°F条件下,所有等级铸件都适合;在温

度超过450°F、不超过650°F条件下,只有60-40-18级铸件适合(注1)。

1.2 阀、法兰盘、管接头、泵以及其它管件通常由制造商或经销商预先生产,并作为原料供应。

1.3如有附加的铸件要求,可使用技术规范A 834 。

1.4以英寸-磅单位或公制单位作为数值表示的标准单位。在文字中,公制单位表示的数值被放在括弧

中。这两种单位系统表示的数值并不是精确的对等关系,因此每一系统应单独使用。两种单位系统结合使用的数值不符合此技术规范。

注1:除了上述规定外,对于球铁铸件可参考技术规范A 536 。

2.参考的文件

2.1 ASTM 标准:

A 247---铸铁中石墨金相结构的鉴定方法。

A 370---钢件的机械测试方法和定义。

A 536---球墨铸铁铸件技术规范。

A 732/A 732M---适用于铸件、熔模铸造件、一般用途的低碳合金钢、

以及高强度钴合金钢的技术规范。

A 834--- 一般工业用普通要求的铸铁技术规范。

E 8-----金属材料的拉力测试方法。

E 10----金属材料的布氏硬度测定方法。

E 186---厚壁〔2~41/2in.(51~114mm)〕铸钢件的参考X光照片。

E 280---厚壁〔41/2~12in.(114~305mm)〕铸钢件的参考X光照片。

E 446---壁厚在2in.(51mm)以下的铸钢件的参考X光照片。

E 689---球墨铸铁铸件的参考X光照片。

E 1806--决定钢铁化学成分的试样准则。

F 1476--密封管接头的性能要求。

F 1548--密封管接头配件的性能要求。

2.2 阀及接头工业的制造商标准协会标准:

SP25----阀、法兰盘以及管接头的标准标识体系。

3. 等级划分

3.1按此技术规范定制的铸件以机械性能要求为基础划分等级,如表1所示。(见表1下的注解)

表1(机械性能要求)

性能

等级

60-40-18

等级

65-45-15

抗拉强度,最小,psi 抗拉强度,最小,MPa 60000

415

65000

450

屈服强度,最小,psi 屈服强度,最小,MPa 40000

275

45000

310

延伸率在2英寸(或50mm)上,最小,% 18 15 布氏硬度,3000Kg载荷143~187 156~201 注:若在定单上未指定等级,将提供60-40-18级铸件。

4.定单资料

4.1按按此技术规范提供的材料定单应包括以下可行的内容:

4.1.1图纸、目录号或零件号。

4.1.1.1对于65-45-15级铸件,标明铸件关键区域的图纸(见7.2.2和7.3.2)。

4.1.2数量(重量或件数)。

4.1.3 ASTM标号及发行年份。

4.1.4等级(见表1),若在定单上未指定等级,制造商将提供60-40-18级铸件。

4.1.5热处理要求(见

5.2.1)。

4.1.6压力试验要求(见7.4.3)。

4.1.7取至铸件的试样(见11.1.1和12.1.1)。

4.1.8试样的尺寸(见11.2)。

4.1.9金相选择(见12.1.1)。

4.1.10检验地点(见16.1)。

4.1.11合格证要求(见17.1)。

4.1.12标识(见18.2)。

4.1.13附加要求(见1.4, 7.4.2,S1和S2)。

5.材料及生产

5.1铸造厂可以选择熔炼方法和球化准则。

5.2除了5.2.1规定的以外,所有60-40-18级铸件都应进行铁素体化热处理,以便本质上产生不含块

状碳化物的铁素体结构。

5.2.1当购买定单上标明时,如果60-40-18级铸件满足7.1和7.2.1的要求,可以在铸态供货。

5.2.2按5.2.1要求供货的铸件,根据制造商和采购方的协议,可以消除应力。

5.3如果65-45-15级铸件满足7.1、7.2.2和7.3.2的要求,在铸态或热处理状态供货均可。

6.化学要求

6.1铸件应满足以下化学成分要求(注2):

总碳量最小3.00%

硅最大2.50 %

磷最大0.08%

注2:硅的含量超过2.75%或磷的含量超过0.08%会降低材料的抗冲击能力。如果碳的含量低于3.00%,在冷却过程中会形成残余渗碳体,如果它们在热处理过程中不被去除,材料的抗冲击能力会降低。

6.1.1总碳量的化学分析应在冷模浇注的铅笔型试样,或从试样上切下的大约1/32英寸(0.8mm)厚的

薄片上进行。钻削是不可靠的,因为它可能导致石墨的损失。

6.1.2磷的含量在规定的最大值以下每减少0.01个百分点,硅的含量在规定的最大值以上将允许增加

0.08个百分点,但最大值不超过2.75%。

7.要求

7.1抗拉性能:

7.1.1试样代表的球铁应满足表1中的机械性能要求。

7.2硬度

7.2.1 60-40-18级铸件和试样的硬度应在表1中规定的极限范围内。

7.2.2 对于65-45-15级,试样和铸件图上标明的铸件关键区域硬度应在表1中规定的极限范围内。如

果65-45-15级铸件图纸上没有标明铸件关键区域,铸件所有区域的硬度都应在表1中规定的极限范围内。

7.3金相结构

7.3.1对于60-40-18级单铸试样或铸件的金相组织,应本质上产生不含块状碳化物的铁素体结构,并

且如试验方法A 247中图1或片Ⅰ所示,至少含有90%的Ⅰ型和Ⅱ型石墨。

7.3.2对于铸件图上标明的60-45-15级铸件关键区域的金相组织,应是最多45%的珠光体、不含块状

碳化物,并且如试验方法A 247中图1或片Ⅰ所示,至少含有90%的Ⅰ型和Ⅱ型石墨。

7.4压力试验要求

7.4.1每一60-40-18级保压铸件加工后,根据ANSI(美国国家标准化组织)标准、ASME(美国机械

工程师协会)锅炉和压力容器规范或其它有关的规范进行打压试验,应无泄漏现象。

7.4.2按此技术规范生产的65-45-15级铸件应能通过成品铸件要求的流体静压力试验。当附加要求S2

被确定时,此试验仅由铸件制造商进行。

7.4.3 按此技术规范而不是根据ANSI标准及ASME压力容器规范定购的60-40-18级铸件,和特殊用

途的铸件,在制造商和采购方协议条件下,应进行这样的压力试验。

7.4.4对于60-40-18级铸件,铸造厂发货前有可能没有能力进行流体静压力试验,或定购方希望铸件

加工完成后,再进行此试验。以粗加工状态被定购,由定购方进行最终加工的铸件,发货前应由制造商根据定购方同意的压力进行流体静压力试验。然而,在最终的流体静压力试验中,铸造厂负责决定铸件性能是否符合要求。

8.加工质量及光洁度

8.1铸件表面经目测不应有粘砂、结疤、裂纹以及热撕裂。任何其它表面不连续性都应符合定单中指

定的目测验收标准。

9.修补

9.1按现行的ANSI标准定购的阀、法兰盘、管接头、泵以及其它管件不得以堵塞、焊接、铜焊或填充

的方法修补。

9.2 9.1款以外,在流体静压力试验中泄漏的60-40-18级铸件,如果满足以下要求,可以进行修补。

9.2.1不允许焊接或铜焊。

9.2.2塞子的直径不超过标准的2英寸[ISO R2]管塞的直径。

9.2.3在可行的地方,塞子的尺寸应与ISO标准3/8塞子尺寸一致。另外,它们与修补处相应厚度方向

上应有完全的螺纹接合。就塞直径和相应的螺纹配合而言,因超大的壁厚锥形塞不适用的地方,可以使用其它类型的塞子,条件是可以得到完全的配合及有效的抗压密封。可能的情况下,塞子两端面应平整光滑,装配后与压力容器或压力零件壁内外轮廓过度良好。

9.2.4制造塞子的材料在各方面都要符合压力容器或压力零件材料技术规范。

9.2.5靠近钻孔的区域需经受X光照片检查,应满足X光照片参考 E 689 规定的3级验收标准要求,

并支持根据X光照片参考 E 689定义并可行的X光照片参考 E 446、E 186或 E 280 。

9.2.6相对于所用塞子的尺寸,任何修补截面厚度不应小于表2给定的尺寸。

9.2.7相对于所用塞子的尺寸,圆柱形或圆锥形修补截面的最小半径不应小于表3给定的尺寸。

9.2.8修补区最多可以含有3个填塞,相邻两个填塞间距不应小于表4列出的数值。其它有缺陷区域

也可用填塞法修补,条件是相邻两个修补区域填塞间最小间距不小于2倍的单个修补区域填塞间最小间距,具体数值被列于表4中。

9.3除了阀、法兰盘、管接头、泵以及其它管件以外的60-40-18级铸件表面缺陷也可用填塞法修补,

条件是填塞深度不大于铸件截面厚度的20% ,且填塞直径不大于它的长度。铸件的保压部分不应进行表面缺陷修补。塞子不必进行攻丝。9.2.1和9.2.4款的规定也适用。

表2—修补截面的最小厚度

铁填塞尺寸--英寸修补截面的最小厚度--英寸(mm)

1/ 811/

32(8)

1/ 47/

16(10)

3/ 81/

2(13)

1/ 221/

32(17)

3/ 43/

4(19)

1 13/16(21)11/47/8(23)11/215/16(24)

2 1(26)

表3—修补截面的最小半径

铁填塞尺寸--英寸 修补截面的最小厚度--英寸(mm )

1

/8

9/16(15) 1

/4

11/16(18) 3

/8

11/16(28) 1

/2

11/4(32) 3

/4

2(52) 1 21

/2(64) 11

/4

4(104) 11

/2

51/4(136) 2 81

/8(208)

A / B

基于80%有效性。

B

例如:假设修补需要3个填塞---1/8英寸,3/8英寸和11

/2英寸,则最小允许距离如下: 1

/8英寸和3/8英寸填塞间最小允许距离为25/8英寸(67mm ); 1

/8英寸和11/2英寸填塞间最小允许距离为91/2英寸(242 mm ); 3

/8英寸和11/2英寸填塞间最小允许距离为91/2英寸(242 mm )。

10.抽样

10.1一批应包括以下情况之一:

10.1.1单个批量熔炉一次加热的所有金属。

10.1.2来自一个浇包或一个铸模,但铁水出自两个以上批量熔炉的所有金属。

10.1.3来自一个连续溶化炉,在炉料、加工条件、化学性质变化前,在给定时间内(8小时或任何一 个较短时间)浇注的所有金属。 11.试样

11.1与它所代表的铸件属于同一批的单铸试样(抗拉试样由它加工而成)的尺寸和形状如图2、图3、 图4所示。所铸试样应标识以便知道它所代表的铸件。从Y 形块上移去试样的切断方法如图5所示。 11.1.1试样可在图纸上指定的或制造商与定购方协商的位置从铸件上切取。

11.1.2从铸件上切取的试棒应与图6所示一致。试棒直径如可能应是1

/2英寸(12.5 mm ),如有必要 可用直径小些的试棒。

11.2试样尺寸应在制造商与定购方共同协商下确定。如没有协议,制造商可自行选择。

11.3试样应在用合适的芯砂制成的模型中铸造。其最小壁厚对于1

/2英寸(12.5 mm )及1英寸(25 mm )

尺寸的为11

/2英寸(38mm );对于3英寸(75 mm )尺寸的为3英寸(75mm )。试样要在模型中冷却至 黑色时(大约900°F[480℃]或更低)才可取出。图2所示的“基尔试块”或 用图4所示的模型铸 出的修改后的“基尔试块”可取代图3所示的1英寸(25 mm )“Y 形试块”。

11.4按本标准生产熔模铸件时,生产者可将试样与铸件组成为同一个模型,或单独铸出但要与铸件生 产时有相同类型和尺寸的模型和相同的加热条件。试样要按照A732标准中图1所示尺寸制造或试验 方法及定义A370中图5、图6所示尺寸制造。

11.5制造商应为每次铁素体化退火提供足够数量的铸造试样。试样应与它们代表的铸件一同热处理, 不允许热处理前切开试样。

11.6来自图7所示试样或铸件或与铸件一起浇注的代表试样的试片应经过金相检查。试样应代表用球

化剂处理的金属。

公英制换算

英制(in.)1/2 1 1 1/2 2 1/2

公制(mm)12.7 25.4 38.1 63.5

注:基尔试块的长度应是6英寸(152mm)

图2 试样的基尔试块

12.试验和重做试验次数

12.1来自11款要求的试样(图5)的切片应做一次拉伸试验。

12.1.1铸件的合同或定单上未标明情况下,当使用单铸试样时,可以用金相检查代替拉伸试验。当选

择金相检查时,对于每天的熔炼和每次热处理要求至少做一次拉伸试验(见12.2)。

12.2如果任何拉伸试件表现出明显缺陷,可以用来自同一试样或代表同一金属和同一炉退火的另一试

样的试件进行试验。如果明显完好的试样不满足此技术规范,铸件应重新退火。如需要,可重做两次试验。如果每次试验都不满足此技术规范,则它们代表的铸件应报废。

13. 拉伸试样准备

13.1除了要求用1/2英寸(12.5mm)的“Y”形试块外,应使用图6所示的加工完的标准1/2英寸(12.5mm),

标距为2英寸(50mm)的圆形拉伸试样。在这种情况下,将使用图6所示的任一种圆形小尺寸试样---0.375或0.250英寸(9或6.5mm)。

14.试验方法

14.1应根据试验方法 E 1806进行化学分析。

14.2屈服强度根据试验方法 E 8 确定,使用下面方法之一:

14.2.1 0.2%偏移量方法。

14.2.2承载延伸法:屈服强度由产生延伸率的应力决定,此应力为产生0.375%偏移量(即在2in.[50mm]

标距下为0.0075in.[0.19mm])的载荷下的应力。

14.3试样和铸件代表的球铁硬度根据试验方法 E 10确定。

14.4每种石墨类型的百分比可以用手算法、半自动或自动图象分析法。所有石墨类型总计应是100% 。

15.记录

15.1化学成分、机械性能以及金相检查的记录,可行的情况下应被系统地建立和保存。

Y形块尺寸

尺寸对于厚度<1/2英寸

(13mm)的铸件

对于厚度≥1/2英寸(13mm),

且<11/2英寸(38mm)的铸件

对于厚度≥11/2英寸

(38mm)的铸件英寸mm 英寸mm 英寸mm

A

值1/

213 1 25 3 75

B 16/1140 21/1154 5 125

C 2 50 3 75 4 100

D 4 100 6 150 8 200

E 7 175 7 175 7 175

图3 试样的Y形试块

16.检验

16.1如合同或购买定单上未注明,制造商负责进行此技术规范要求的所有试验和检验。

16.2代表购买方的检验者在履行购买方合同时,可以随时介入与被定购材料的制造商有关的制造商工

厂的任何方面。制造商应提供给该检验者所有合理的方便条件,以使他确信材料是按照这些技术规范提供的。如未注明,所有试验和检验将在发货前在制造地或一被批准的独立实验室进行,并在不妨碍工厂工作的条件下进行。

17. 合格证

17.1购买方与供应方达成书面协议时,可根据材料的验收制作合格证。这包括制造商试验报告复本或带有试验结果复印件的供应商说明,表明材料已经根据此技术规范规定进行了抽样、试验和检验。每份如此提供的合格证应由供应商或制造商授权的代理人签字。

18.产品标识

18.1阀、法兰盘和管接头的铸件应根据阀、法兰盘和管接头的标准标识系统---SP-25进行标识。用于密封的机械结合件和接头应分别根据F1476或F1548进行标识。

18.2除了阀、法兰盘和管接头以外的铸件应根据制造商和购买方的协议进行标识。

18.3标识应位于不影响铸件使用的地方。

19. 关键字

19.1铸件;球铁;机械性能;压力保持;压力试验;抗拉强度;拉伸试验;屈服强度。

图4 Y形试块截面处置

图5 修改的基尔试块模具

注:标距及圆角应如图所示,但两端形状应与试验机的夹紧固定器匹配,以能承受轴向载荷。小截面从两端到中间应有一渐进的锥度,两端直径比中间大0.003~0.005.in.(0.08~0.13mm)。

注:如需要,小截面的长度可以增加以适合伸长测定器的要求。

图6 2in.(或50mm)标距的标准圆形拉伸试样及相对于1/2in.(12.7mm)标准圆形试样的小尺寸试样

奥氏体珠光体铁素体贝氏体马氏体

结构 奥氏体的面心立方点阵具有多个滑移系,使其容易塑性变形,牛产中利用上述性质进行钢的热变形。又因面心立方点阵是一种最密排的点阵结构,致密度高,所以奥氏体的比热容最小,奥氏体在与其他组织发生相互转变时,会产生体积变化,引起残余内应力和一系列的相变。密排六方、面心立方致密度0.74,体心致密度0.68, 性能 奥氏体的面心立方结构使其具有良好的塑性、低的屈服强度和硬度。 奥氏体中铁原子激活能大,扩散系数小,因此奥氏体钢的热强性好。 线膨胀系数大 导热性能差 奥氏体晶粒度 实际生产中习惯用晶粒度来表示奥氏体晶粒大小。奥氏体晶粒通常分为8级标准评 定,1级最粗,8级最纫,超过8级以上者称为超细晶粒。 晶粒度级别N与晶粒大小的关系为: 式中,n为放大100倍的视野中每平方英寸(6.45cm2)所含的平均奥氏体晶粒数目。奥氏体晶粒越细小爪就越大,N也就越大。 1.起始晶粒度:起始晶粒度是指在临界温度以上,奥氏体形成刚刚完成,其晶粒边界 刚刚相互接触时的品粒大小,取决于奥氏体的形核率N和长大速度G。 2.实际晶粒度:实际生产中,各式各样热处理工艺处理后得到的奥氏体晶粒大小。 3.本质晶粒度:钢在规定加热条件下奥氏体晶粒长大的倾向性。1-4级为本质细晶粒, 5-8为本质粗晶粒。 种类 颗粒状奥氏体:奥氏体的组织形态与原始组织、加热速度、加热转变的程度有关,一般由多边形等轴晶粒组成,这种形态也称为颗粒状,在晶粒内部经常可以看到相变孪品。 针状奥氏体:非平衡态时低碳钢以适当的速度加热到(a十r)两相区可得到针状奥氏体。 一般热处理手册上列出的实际临界点数据,多是在30-50度/小时的加热或冷却速度下测定的。 奥氏体等温形成动力学曲线 时间-温度-奥氏体化图,简称TTA图 奥氏体等温形成动力学油线指在一定温度下,奥氏体形成量与等温时间的关系曲线,常用金相法进行测定。将一纽厚度为1—2MM的薄片共析碳钢试样,在盐浴中迅速加热至AC1点以上某一指定温度,保温不同时间后在盐水中急冷至室温,然后制取金相试样进行观察。因加热转变所得的奥氏体在快冷时转变为马氏体,故根据观察到的马氏体量的多少即可了解奥氏体的形成数量。作出各温度下奥氏体形成量与保温时间的关系曲线,即得奥氏体等温形成动力学曲线。

关于奥氏体、马氏体、珠光体的分析

1奥氏体——碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格。晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处 2铁素体——碳与合金元素溶解在a-Fe中的固溶体。 亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。 3渗碳体——碳与铁形成的一种化合物。 在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。 4珠光体——铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。 珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。 5上贝氏体——过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。 过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od 铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。转变时先在晶界处形成上贝氏体,往晶内长大,不穿晶。 6下贝氏体——同上,但渗碳体在铁素体针内。 过冷奥氏体在350℃~Ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金钢的碳化物分散度比低碳低合金钢高,针叶比低碳低合金钢细。 7粒状贝氏体——大块状或条状的铁素体内分布着众多小岛的复相组织。 过冷奥氏体在贝氏体转变温度区的最上部的转变产物。刚形成时是由条状铁素体合并而成的块状铁素体和小岛状富碳奥氏体组成,富碳奥氏体在随后的冷却过程中,可能全部保留成为残余奥氏体;也可能部分或全部分解为铁素体和渗碳体的混合物(珠光体或贝氏体);最可能部分转变为马氏体,部分保留下来而形成两相混合物,称为M-A组织。 8回火马氏体——马氏体分解得到极细的过渡型碳化物与过饱和(含碳较低)的a-相混合组织它由马氏体在150~250℃时回火形成。 这种组织极易受腐蚀,光学显微镜下呈暗黑色针状组织(保持淬火马氏体位向),与下贝氏体很相似,只有在高倍电子显微镜下才能看到极细小的碳化物质点。 9回火屈氏体——碳化物和a-相的混合物。 它由马氏体在350~500℃时中温回火形成。其组织特征是铁素体基体内分布着极细小的粒状碳化物,针状形态已逐渐消失,但仍隐约可见,碳化物在光学显微镜下不能分辨,仅观察到暗黑的组织,在电镜下才能清晰分辨两相,可看出碳化物颗粒已明显长大。 10回火索氏体——以铁素体为基体,基体上分布着均匀碳化物颗粒。

奥氏体马氏体铁素体不锈钢区别

奥氏体马氏体铁素体不锈钢区别? 铁素体型不锈钢 它的内部显微组织为铁素体,其铬的质量分数在11.5%~32.0%范围内。随着铬含量的提高,其耐酸性能也提高,加入钼(Mo)后,则可提高耐酸腐蚀性和抗应力腐蚀的能力。这类不锈钢的国家标准牌号有00Cr12、1Cr17、00Cr17Mo、00Cr30Mo2等。 430是铁素体不锈钢。 铁素体不锈钢是含铬大于14%的低碳铬不锈钢,含铬大于27%的任何含碳量的铬不锈钢,以及在上述成分基础上再添加有钼、钛、铌、硅、铝、、钨、钒等元素的不锈钢,化学成分中形成铁素体的元素占绝对优势,基体组织为铁素。这类钢在淬火(固溶)状态下的组织为铁素体,退火及时效状态的组织中则可见到少量碳化物及金属间化合物。 属于这一类的有Crl7、Cr17Mo2Ti、Cr25,Cr25Mo3Ti、Cr28等。铁素体不锈钢因为含铬量高,耐腐蚀性能与抗氧化性能均比较好,但机械性能与工艺性能较差,多用于受力不大的耐酸结构及作抗氧化钢使用。 马氏体型不锈钢 它的显微组织为马氏体。这类钢中铬的质量分数为11.5%~18.0%,但碳的质量分数最高可达0.6%。碳含量的增高,提高了钢的强度和硬度。在这类钢中加入的少量镍可以促使生成马氏体,同时又能提高其耐蚀性。这类钢的焊接性较差。列入国家标准牌号的钢板有1Cr13、2 Cr13、3Cr13、1Cr17Ni2等。 410是马氏体不锈钢,其中碳最大含量为0.15%,锰最大含量1.00%,硅最大含量为1.00%,铬含量为11.50~13.50%。为通用型可热处理不锈钢,耐腐蚀,耐热,硬度可达42HRC或更高些。 奥氏体型不锈钢 其显微组织为奥氏体。它是在高铬不锈钢中添加适当的镍(镍的质量分数为8%~25%)而形成的,具有奥氏体组织的不锈钢。奥氏体型不锈钢以Cr18Ni19铁基合金为基础,在此基础上随着不同的用途,发展成图1-2所示的铬镍奥氏体不锈钢系列。 奥氏体、铁素体、马氏体不锈钢在用途上如何区分? 工业上应用的不锈钢按金相组织可分为三大类:铁素体不锈钢,马氏体不锈钢,奥氏体不锈钢。可以把这三类不锈钢的特点归纳(如下表),但需要说明的是马氏体不锈钢并不是都不可焊接,只是受某些条件的限制,如焊前应预热焊后应作高温回火等,而使焊接工艺比较复杂。实际生产中一些马氏体不锈钢如1Cr13,2Cr13以及2Cr13与45钢焊接还是比较多的。 马氏体不锈钢属于铬不锈钢。 由于含碳量高,碳化铬多,钢的耐蚀性能下降,虽可通过热处理的方法改善,但防腐性不高。马氏体不锈钢多用于制造力学性能要求较高,并有一定耐蚀性能要求的零件,如汽轮机叶片、喷嘴、阀座、量具、刃具等。 铁素体不锈钢也属于铬不锈钢。 含碳量小,抗大气、硝酸及盐水溶液的腐蚀能力强,有高温抗氧化性能好等特点。主要用于制作化工设备中的容器、管道。 奥氏体不锈钢属于铬镍不锈钢。

铁素体奥氏体马氏体等归纳

1铁素体,奥氏体,马氏体是钢在不同温度下,或是不同处理使得存在形式,首先碳溶在铁中若含量极少,小于0.0218%,在较低温度时就会形成铁素体,碳含量增加的话就会存在铁素体和渗碳体,铁素体和渗碳体机械混合结构和成珠光体,将碳含量小于0.77%的铁加热到727摄氏度以上就会变成奥氏体,奥氏体与铁素体的不同是结构不一样,奥氏体是面形立方,铁素体是体心立方,将奥氏体以极快的速度冷却,它就不能变为低温下的铁素体和渗碳体混合结构,因为碳原子无法扩散,直接就切变成体心立方的马氏体,马氏体是碳过饱和溶于体心立方的铁中,之所以研究这些东西,在于这些结构的性质不同,如,铁素体有好的塑形,但是非常软,马氏体是很硬的,但塑形不怎么样,一般淬火得到的就是马氏体,2正火得到珠光体组织,淬火是将奥氏体变化为马氏体,回火是将马氏体变为铁素体。 加入锰和镍能将奥氏体临界转变温度降至室温以下,使钢在室温下保持奥氏体组织,即所谓奥氏体钢。 3铁素体,奥氏体都有很好的塑性,韧性,珠光体有较高的综合机械性能;莱氏体\渗碳体都是脆性的,硬度高,耐磨性好;索氏体较珠光体有更高的综合机械性能;马氏体分2种:低碳M有很高的强韧性,高碳M有更高的耐磨性;屈氏体较索氏体的层片间距更小,屈服强度更高,弹性更好. 4奥氏体——碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格。晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处铁素体——碳与合金元素溶解在a-Fe中的固溶体。 亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。 渗碳体——碳与铁形成的一种化合物。 在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。 珠光体——铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。 珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。 上贝氏体——过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。 过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。转变时先在晶界处形成上贝氏体,往晶内长大,不穿晶。 下贝氏体——同上,但渗碳体在铁素体针内。 过冷奥氏体在350℃~Ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金钢的碳化物分散度

铁素体和奥氏体的区别

铁素体和奥氏体的区别 铁素体是碳溶解在a-Fe中的间隙固溶体,常用符号F表示。 不锈钢中的“铁素体”,指的是碳溶解在a-Fe中的间隙固溶体,其溶碳能力很小,常温下仅能溶解为0.0008%的碳,在727℃时最大的溶碳能力为0.02%,它仍保持的体心立方晶格.常用符号F表示。 由于铁素体含碳量很低,其性能与纯铁相似,塑性、韧性很好,伸长率δ=45%~50%。强度、硬度较低,σb≈250MPa,而HBS=80。 所谓铁素体不锈钢.指的是在使用状态下以铁素体组织为主的不锈钢。它的含铬量在11%~30%,具有体心立方晶体结构,至于不锈钢含铁量 与它是否是铁素体不锈钢并无关系.铁素体不锈钢只取决于在使用状 态下,它是否以铁素体组织为主. 铁素体有磁性. 在使用状态下以铁素体组织为主的不锈钢。含铬量在11%~30%,具 有体心立方晶体结构。这类钢一般不含镍,有时还含有少量的Mo、Ti、Nb等到元素,这类钢具导热系数大,膨胀系数小、抗氧化性好、抗应力腐蚀优良等特点,多用于制造耐大气、水蒸气、水及氧化性酸腐蚀的零部件。 这类钢存在塑性差、焊后塑性和耐蚀性明显降低等缺点,因而限制了

它的应用。炉外精炼技术(AOD或VOD)的应用可使碳、氮等间隙元素大大降低,因此使这类钢获得广泛应用。 奥氏体是碳溶解在γ-Fe中的间隙固溶体,常用符号A表示。它仍保持γ-Fe的面心立方晶格。其溶碳能力较大,在727℃时溶碳为ωc =0.77%,1148℃时可溶碳2.11%。奥氏体是在大于727℃高温下才能稳定存在的组织。奥氏体塑性好,是绝大多数钢种在高温下进行压力加工时所要求的组织。 奥氏体是没有磁性的。 责任编辑: 参与评论 日本不锈钢牌号、组成、特点及用途二(铁素体) 中国不锈钢牌号、组成、特点及用途二(铁素体) 应用新材料破解“资源难” 推广应用铁素体前景广阔 澳门耀兴国际有限公司旗下企业江门市日新(日盈)不锈钢材料厂有限公司,联合日本JFE钢铁株式会社,在江门市举办JYH21CT应用技术交流会,推介无镍、无钼、高铬、高抗腐蚀性的新型不锈钢材料铁素体不锈钢。在镍资源严重短缺的时代,推广使用不含镍的铁素体不锈钢,是不锈钢制品企业破解'资源难问题的最佳选择。出.. 现代含铌铁素体不锈钢的开发与应用

马氏体奥氏体珠光体贝氏体的区别

马氏体奥氏体珠光体贝氏体 马氏体(martensite)是黑色金属材料的一种组织名称。马氏体(M)是碳溶于α-Fe的过饱和的固溶体,是奥氏体通过无扩散型相变转变成的亚稳定相。其比容大于奥氏体、珠光体等组织,这是产生淬火应力,导致变形开裂的主要原因。马氏体最初是在钢(中、高碳钢)中发现的:将钢加热到一定温度(形成奥氏体) 奥氏体(austenite)A、γ是晶体结构:面心立方(fcc)。是碳在γ-Fe中形成的间隙固溶体。奥氏体是一种塑性很好,强度较低的固溶体,具有一定韧性。不具有铁磁性。因此,分辨奥氏体不锈钢刀具(常见的18-8型不锈钢)的方法之一就是用磁铁来看刀具是否具有磁性。古代铁匠打铁时烧红的铁块即处于奥氏体状态。另外,奥氏体因为是面心立方,四面体间隙较大,可以容纳更多的碳。 珠光体pearlite 珠光体是奥氏体(奥氏体是碳溶解在γ-Fe中的间隙固溶体)发生共析转变所形成的铁素体与渗碳体的共析体。得名自其珍珠般(pearl-like)的光泽。其形态为铁素体薄层和渗碳体薄层交替重叠的层状复相物,也称片状珠光体。用符号P表示,含碳量为ωc=%。在珠光体中铁素体占88%,渗碳体占12%,由于铁素体的数量大大多于渗碳体,所以铁素体层片要比渗碳体厚得多.在球化退火条件下,珠光体中的渗碳休也可呈粒状,这样的珠光体称为粒状珠光体。珠光体的性能介于铁素体和渗碳体之间,强韧性较好.其抗拉强度为750 ~900MPa,180 ~280HBS,伸长率为20 ~25%,冲击功为24 ~32J.力学性能介于铁素体与渗碳体之间,强度较高,硬度适中,塑性和韧性较好。

铁素体(ferrite,缩写:FN,用F表示)即α-Fe和以它为基础的固溶体,具有体心立方点阵。亚共析成分的奥氏体通过先共析析出形成铁素体。在碳钢和低合金钢的热轧(正火)和退火组织中,铁素体是主要组成相;室温下的铁素体的机械性能和纯铁相近。铁素体的强度、硬度不高,但具有良好的塑性与韧性。 经过硝酸溶液侵蚀后,从颜色上观察区分金相组织形态. 铁素体是白色,珠光体是黑色,马氏体(M)是碳溶于α-Fe的过饱和的固溶体,在金相观察中为细长的板条状或针叶状。

纯铁,奥氏体,马氏体和铁素体

纯铁在室温时具有体心立方晶格,其晶格常数 a = 2 . 86A ,这种铁称为 a 一 Fe 。若温度升高到 912 ℃ ,纯铁的晶休结构会发生变化,由体心立方晶格转变为面心立方晶格,其晶格常数a =3 . 64 人,这种铁称为γ一 Fe 。当扭度继续升高到 1394 ℃ ,面心立方晶格又重新变为体心立方品格,其晶格常数 a =2 . 93 人,为与 912 ℃ 以下的。γ一 Fe 相区别,称它为e F -δ。若得度降低,则发生可逆转变。上述变化过程可表达如下: 这种随温度变化.固态金属由一种晶格转变为另一种晶格的现象,称为同素异晶转变. 铁素体 F 碳溶于a 一 Fe 铁中的固溶体,称为铁素体,用符号 F 衷示。它仍保待 a 铁的体心立方晶格,铁素体的性能与纯铁相似,即塑性、韧性较好,强度,硬度较低。 奥氏体 A 碳溶于γ一 Fe 铁中的固溶体,称为奥氏体,用符号 A 表示。它仍保持护铁的面心立方品格,其有良好的塑性和低的变形拢力,适合于锻造。 渗碳体 渗碳体是铁和碳的化合物,分子式为分子式为 C F 3e ,含碳量为6.69%。对铸铁有重要意义。 珠光体 P 由铁素体和渗碳体组成的机械混合物,称为珠光体.用符号 P 表示。珠光体的平均含碳爪为 0.77%。珠光体的性能介于硬的渗碳体和软的铁素体之间,硬度适中,强度较好,脆性不大。 莱氏体 L 在 727 ℃ 以上,莱氏体主要由奥氏休和渗碳体组成,称为莱氏体或高温莱氏体,用符号 L 表示.在 727 ℃ 以下,莱氏体主要由珠光体和渗碳体组成,称为变态莱氏体或低温莱氏体,用符号 L 益表示。莱氏体的平均含碳吸为 4.3 %。是一种婴硬而脆的组织。

奥氏体马氏体铁素体的区别

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 奥氏体/马氏体/铁素体 奥氏体(钢的组别:A1, A2, A3 A4, A5)(性能等级:50软,70冷加工,80高强度) 马氏体(钢的组别:C1,C2,C3) (性能等级:50软,70、110淬火并回火,80淬火并回火) 铁素体(钢的组别:F1) (性能等级:45软,60冷加工) 马氏体不锈钢属于铬不锈钢。由于含碳量高,碳化铬多,钢的耐蚀性能下降,虽可通过热处理的方法改善,但防腐性不高。马氏体不锈钢多用于制造力学性能要求较高,并有一定耐蚀性能要求的零件,如汽轮机叶片、喷嘴、阀座、量具、刃具等。 铁素体不锈钢也属于铬不锈钢。含碳量小,抗大气、硝酸及盐水溶液的腐蚀能力强,有高温抗氧化性能好等特点。主要用于制作化工设备中的容器、管道。 奥氏体不锈钢属于铬镍不锈钢。具有很高的耐蚀性,优良的塑性,良好的焊接性及低温韧性,不具有磁性,易加工硬化。主要用于在腐蚀介质中工作的零件、容器、管道、医疗器械以及抗磁环境中。 奥氏体 奥氏体是碳溶解在γ-Fe中的间隙固溶体,常用符号A表示。它仍保持γ-Fe的面心立方晶格。其溶碳能力较大,在727℃时溶碳为ωc= 0.77%,1148℃时可溶碳2.11%。奥氏体是在大于727℃高温下才能稳定存在的组织。奥氏体塑性好,是绝大多数钢种在高温下进行压力加工时所要求的组织。奥氏体是没有磁性的。 马氏体分级淬火 是将奥氏体化工件先浸入温度稍高或稍低于钢的马氏体点的液态介质(盐浴或碱浴)中,保持适当的时间,待钢件的内、外层都达到介质温度后取

出空冷,以获得马氏体组织的淬火工艺,也称分级淬火。分级淬火由于在分级温度停留到工件内外温度一致后空冷,所以能有效地减少相变应力和热应力,减少淬火变形和开裂倾向。分级淬火适用于对于变形要求高的合金钢和高合金钢工件,也可用于截面尺寸不大、形状复杂地碳素钢工件。 马氏体不锈钢 通过热处理可以调整其力学性能的不锈钢,通俗地说,是一类可硬化的不锈钢。典型牌号为Cr13型,如2Cr13 ,3Cr13 ,4Cr13等。粹火后硬度较高,不同回火温度具有不同强韧性组合,主要用于蒸汽轮机叶片、餐具、外科手术器械。根据化学成分的差异,马氏体不锈钢可分为马氏体铬钢和马氏体铬镍钢两类。根据组织和强化机理的不同,还可分为马氏体不锈钢、马氏体和半奥氏体(或半马氏体)沉淀硬化不锈钢以及马氏体时效不锈钢等。 马氏体就是以人命命名的: 对于学材料的人来说,“马氏体”的大名如雷贯耳,那么说到阿道夫·马滕斯又有几个人知道呢?其实马氏体的“马”指的就是他了。在铁碳组织中这样以人名命名的组织还有很多,今天我们就来说说这些名称和它们背后那些材料先贤的故事。 马氏体Martensite,如前所述命名自Adolf Martens (1850-1914)。这位被称作马登斯或马滕斯的先生是一位德国的冶金学家。他早年作为一名工程师从事铁路桥梁的建设工作,并接触到了正在兴起的材料检验方法。于是他用自制的显微镜(!)观察铁的金相组织,并在1878年发表了《铁的显微镜研究》,阐述金属断口形态以及其抛光和酸浸后的金相组织。(这个工作我们现在做的好像也蛮多的。)他观察到生铁在冷却和结晶过程中的组织排列很有规则(大概其中就有马氏体),并预言显微镜研究必将成为最有用的分析方法之一(有远见)。他还曾经担任了柏林皇家大学附属机械工艺研究所所长,也就是柏林皇家材料试验所("Staatliche Materialprüfungsamt")的前身,他在那里建立了第一流的金相试验室。1895年国际材料试验学会成立,他担任了副主席一职。直到现在,在德国依然有一个声望颇高的奖项以他的名字命名

双相不锈钢、奥氏体、铁素体不锈钢之比较

双相不锈钢、奥氏体、铁素体不锈钢之比较 所谓双相不锈钢是在其固淬组织中铁素体相与奥氏体相各占一半,一般最少相的含量也许要达到30%。 由于两相组织的特点,通过正确控制化学成分和热处理工艺,使DSS兼有铁素体不锈钢和奥氏体不锈钢的优点。 与奥氏体不锈钢相比,双相不锈钢的优势如下: (1)屈服强度比普通奥氏体不锈钢高一倍多,且具有成型需要的足够的塑韧性。采用双相不锈钢制造储罐或压力容器的壁厚要比常用的奥氏体减少30-50%,有利于降低成本。 (2)具有优异的耐应力腐蚀破裂的能力,即使是含合金量最低的双相不锈钢也有比奥氏体不锈钢更高的耐应力腐蚀破裂的能力,尤其在含氯离子的环境中。应力腐蚀是普通奥氏体不锈钢难以解决的突出问题。 (3)在许多介质中应用最普遍的2205双相不锈钢的耐腐蚀性优于普通的316L奥氏体不锈钢,而超级双相不锈钢具有极高的耐腐蚀性,再一些介质中,如醋酸,甲酸等甚至可以取代高合金奥氏体不锈钢,乃至耐蚀合金。 (4)具有良好的耐局部腐蚀性能,与合金含量相当的奥氏体不锈钢相比,它的耐磨损腐蚀和疲劳腐蚀性能都优于奥氏体不锈钢。 (5)比奥氏体不锈钢的线膨胀系数低,和碳钢接近,适合与碳钢连接,具有重要的工程意义,如生产复合板或衬里等。 (6)不论在动载或静载条件下,比奥氏体不锈钢具有更高的能量吸收能力,这对结构件应付突发事故如冲撞,爆炸等,双相不锈钢优势明显,有实际应用价值。 与奥氏体不锈钢相比,双相不锈钢的弱势如下: (1)应用的普遍性与多面性不如奥氏体不锈钢,例如其使用温度必须控制在250摄氏度以下。 (2)其塑韧性较奥氏体不锈钢低,冷,热加工工艺和成型性能不如奥氏体不锈钢。 (3)存在中温脆性区,需要严格控制热处理和焊接的工艺制度,以避免有害相的出现,损害性能。 与铁素体不锈钢相比,双相不锈钢的优势如下: (1)综合力学性能比铁素体不锈钢好,尤其是塑韧性,不象铁素体不锈钢那样对脆性敏感。 (2)除耐应力腐蚀性能外,其他耐局部腐蚀性能都优于铁素体不锈钢。 (3)冷加工工艺性能和冷成型性能远优于铁素体不锈钢。

铁素体马氏体和奥氏体的区别

铁素体和奥氏体的区别 钢的组织和特性?铁是钢的基本组成元素。铁在固态有两种晶体结构,一是体心立方结构(存在于两个温度范围内,?912?℃?以上称?α? 铁,?1394?℃?以上称?δ?铁);另一是面心立方结构(存在 于?912?~?1394?℃?之间,称?γ?铁)。碳是钢中另一主要元素,对钢的组织和性能起重要作用,通常随着含碳量的增加,钢的强度增加、塑性下降。碳在钢中主要有两种存在形式,一是溶入铁中与铁形成固溶体(两种以上化学组分互相溶解而形成的均匀固相);另一是与铁形成铁碳化合物,称渗碳体(?Fe?3C?),其硬度高、脆性大。碳溶于?α?铁中形成的固溶体称铁素体;溶于?γ?铁中形成的固溶体称奥氏体,其最大溶解度为??%。钢在冷却过程中,过饱和的奥氏体将发生分解,形成铁素体和渗碳体。铁素体和渗碳体组成的呈片状相间排列的混合物称珠光体。一般碳素钢在室温下的金相组织由铁素体、珠光体和渗碳体组成? 铁素体是碳溶解在a-Fe中的间隙固溶体,常用符号F表示。 不锈钢中的“铁素体”,指的是碳溶解在a-Fe中的间隙固溶体,其溶碳能力很小,常温下仅能溶解为%的碳,在727℃时最大的溶碳能力为%, 它仍保持的体心立方晶格.常用符号F表示。

由于铁素体含碳量很低,其 c:\iknow\docshare\data\cur_work\&aid=6148&sid=&click=1&url=http:的是在使用状态下以铁素体组织为主的不锈钢。它的含铬量在11%~30%,具有体心立方晶体结构,至于不锈钢含铁量与它是否是铁素体不锈钢并无关系.铁素体不锈钢只取决于在使用状态下,它是否以铁素体组织为主. 铁素体有磁性. 在使用状态下以铁素体组织为主的不锈钢。含铬量在11%~30%,具有体心立方晶体结构。这类钢一般不含镍,有时还含有少量的Mo、Ti、Nb等到元素,这类钢具导热系数大,膨胀系数小、抗氧化性好、抗应力腐蚀优良等c:\iknow\docshare\data\cur_work\&aid=6025&sid=&click=1&url=http:727℃1148℃727℃是奥氏体不锈钢的三大元素之一(碳、铬、镍)。镍在奥氏体不锈钢中的作用是与碳紧密结合(不锈钢含碳量越大越容易生锈,为了使奥氏体不锈钢既具有强度又不容易生锈,就需要控制碳的含量,而镍正好弥补这一缺陷),增加其强度及硬度。因为镍抗磁性元素,所以奥氏体不锈钢是没有磁性的。因为铁素体不锈钢主要用于加工装饰方面,需具有良好的塑性与韧性,所以它只含极少量的镍元素,因而它是有磁性的。B. 因为马氏体和铁素体的内部电子都有规则的排列;决定磁性的关键因素是排列规则的电子有规律的运动.而镍正好破坏了电子间这种有规则的排列。 为什么不锈钢不生锈铬具有耐腐蚀性。奥氏体不锈钢、马氏体和铁素体不锈钢都含有12%——30%的铬元素,所以它们不生锈。

测试奥氏体不锈钢的铁素体含量

此款仪器可以测试奥氏体焊接金属或双联不锈钢的铁素体含量。 德国菲希尔FISCHER公司生产的经得起考验的 FERITSCOPE FMP30铁素体测试仪适合于需要一款独立的带全部测量数据存储,输出和打印功能的使用者。FERITSCOPE FMP30铁素体测试仪能存储多达100个应用程式中4,000个数据组中的20,000个测量数据。 FERITSCOPE FMP30铁素体测试仪配备有一个独特的和便于读取的液晶显示器,可选择多种语言,包括中文、英文、法文等等。大量显示的信息使得操作异常简便,包括单个测量读数,测量次数,应用程式号,组号,统计数据,Cp和Cpk,产品规格限制超出,日期,时间,以及显示操作模式和设置的图标和符号,2行文本各16个字母或可自由选择的符号以用于显示数据和操作员提示。FERITSCOPE FMP30铁素体测试仪具有打印柱状图,正态分布图表,以及Cp和Cpk指标的功能。自动的求平均功能降低了测量数据范围内的表面粗糙度影响。探头自动识别。应用程式特定的校准参数储存在测量探头中,因此仪器一旦连接了任何探头都能立即进行测量。 工作原理: FERITSCOPE FMP30 依据磁感应方法进行测量。线圈产生的磁场区域与工件内的磁性部件相互作用,磁场区域的变化第二个线圈内产生感生电压,该电压与铁素体含量成比例关系,然后评估该电压。所有的磁性部件,也就是说,除了delta铁素体,还包括其转化形式马

氏体都能被识别。采用磁感应方法测量铁素体含量有个特别的优势,sigma相即Fe-Cr沉积,由于铁素体含量过高和冷却条件不对而形成,被准确地识别为非铁素体。另一方面,在做金相切片试验时,要从铁素体组织中区别出sigma相是非常不容易的,这将导致铁素体含量的错误评估。 Fischer校准标准片套件(含证书) 校准标准片套件CAL-SS %Fe-WRC 0.3/10 (订货编号602-279)包括标准片:大约0.4, 2.5 and 10.5 %Fe (0.4, 2 and 9 FN) 校准标准片套件CAL-SS %Fe-WRC 1.5/30 (订货编号602-239)包括标准片:大约2.5, 10.5 and 30 %Fe (2, 9 and 33 FN) 校准标准片套件CAL-SS %Fe-WRC 10/80 (订货编号602-277)包括标准片:大约10.5, 30 and 80 %Fe (9, 33 and 110 FN) 应用范围: 化学和石油化工行业越来越多地使用双相钢,例如:图1和图2中的锅炉容器就是用高防腐性能的双相不锈钢制造的。如果焊缝处的铁素体含量过低,受到张力或发生振动时容易破裂。然而,在焊接双相钢时,由于焊接添加剂或热处理不当,焊缝处的铁素体含量非常容易超标。只有现场检测才能确保处理过程不会改变最佳的铁素体含量,防止机械性能或防腐蚀性能的下降。

双相不锈钢与奥氏体以及铁素体不锈钢的比较

所谓双相不锈钢是在其固淬组织中铁素体相与奥氏体相各占一半,一般最少相的含量也许要达到30%。 由于两相组织的特点,通过正确控制化学成分和热处理工艺,使DSS兼有铁素体不锈钢和奥氏体不锈钢的优点。 与奥氏体不锈钢相比,双相不锈钢的优势如下: (1)屈服强度比普通奥氏体不锈钢高一倍多,且具有成型需要的足够的塑韧性。采用双相不锈钢制造储罐或压力容器的壁厚要比常用的奥氏体减少30-50%,有利于降低成本。 (2)具有优异的耐应力腐蚀破裂的能力,即使是含合金量最低的双相不锈钢也有比奥氏体不锈钢更高的耐应力腐蚀破裂的能力,尤其在含氯离子的环境中。应力腐蚀是普通奥氏体不锈钢难以解决的突出问题。(3)在许多介质中应用最普遍的2205双相不锈钢的耐腐蚀性优于普通的 316L奥氏体不锈钢,而超级双相不锈钢具有极高的耐腐蚀性,再一些介质中,如醋酸,甲酸等甚至可以取代高合金奥氏体不锈钢,乃至耐蚀合金。 (4)具有良好的耐局部腐蚀性能,与合金含量相当的奥氏体不锈钢相比,它的耐磨损腐蚀和疲劳腐蚀性能都优于奥氏体不锈钢。 (5)比奥氏体不锈钢的线膨胀系数低,和碳钢接近,适合与碳钢连接,具有重要的工程意义,如生产复合板或衬里等。 (6)不论在动载或静载条件下,比奥氏体不锈钢具有更高的能量吸收能力,这对结构件应付突发事故如冲撞,爆炸等,双相不锈钢优势明显,有实际应用价值。

与奥氏体不锈钢相比,双相不锈钢的弱势如下: (1)应用的普遍性与多面性不如奥氏体不锈钢,例如其使用温度必须控制在250摄氏度以下。 (2)其塑韧性较奥氏体不锈钢低,冷,热加工工艺和成型性能不如奥氏体不锈钢。 (3)存在中温脆性区,需要严格控制热处理和焊接的工艺制度,以避免有害相的出现,损害性能。 与铁素体不锈钢相比,双相不锈钢的优势如下: (1)综合力学性能比铁素体不锈钢好,尤其是塑韧性,不象铁素体不锈钢那样对脆性敏感。 (2)除耐应力腐蚀性能外,其他耐局部腐蚀性能都优于铁素体不锈钢。(3)冷加工工艺性能和冷成型性能远优于铁素体不锈钢。 (4)焊接性能也远优于铁素体不锈钢,一般焊前不需预热,焊后不需热处理。 (5)应用范围较铁素体不锈钢宽。 与铁素体不锈钢相比,双相不锈钢的弱势如下: 合金元素含量高,价格相对高,一般铁素体不含镍。 综上所述,可以概括地看出DSS的使用性能和工艺性能的概貌,它以其优越的力学与耐腐蚀综合性能赢得了使用者的青睐,已成为既节省重量又节省投资的优良的耐蚀工程材料。 为了大力降低生产成本,满足市场对不锈钢的需求,不少生产企业,一方面开发新的品种,不用镍或少用镍,同时一些国内企业开始用低品

奥氏体、马氏体、珠光体

奥氏体——碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格。晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处 铁素体——碳与合金元素溶解在a-Fe中的固溶体。 亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。 渗碳体——碳与铁形成的一种化合物。 在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。 珠光体——铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。 珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。 上贝氏体——过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。 过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od 铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。转变时先在晶界处形成上贝氏体,往晶内长大,不穿晶。 下贝氏体——同上,但渗碳体在铁素体针内。 过冷奥氏体在350℃~Ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金钢的碳化物分散度比低碳低合金钢高,针叶比低碳低合金钢细。 粒状贝氏体——大块状或条状的铁素体内分布着众多小岛的复相组织。 过冷奥氏体在贝氏体转变温度区的最上部的转变产物。刚形成时是由条状铁素体合并而成的块状铁素体和小岛状富碳奥氏体组成,富碳奥氏体在随后的冷却过程中,可能全部保留成为残余奥氏体;也可能部分或全部分解为铁素体和渗碳体的混合物(珠光体或贝氏体);最可能部分转变为马氏体,部分保留下来而形成两相混合物,称为M-A组织。 回火马氏体——马氏体分解得到极细的过渡型碳化物与过饱和(含碳较低)的a-相混合组织它由马氏体在150~250℃时回火形成。 这种组织极易受腐蚀,光学显微镜下呈暗黑色针状组织(保持淬火马氏体位向),与下贝氏体很相似,只有在高倍电子显微镜下才能看到极细小的碳化物质点。 回火屈氏体——碳化物和a-相的混合物。 它由马氏体在350~500℃时中温回火形成。其组织特征是铁素体基体内分布着极细小的粒状碳化物,针状形态已逐渐消失,但仍隐约可见,碳化物在光学显微镜下不能分辨,仅观察到暗黑的组织,在电镜下才能清晰分辨两相,可看出碳化物颗粒已明显长大。 回火索氏体——以铁素体为基体,基体上分布着均匀碳化物颗粒。

铁素体马氏体和奥氏体的区别

铁素体和奥氏体的区别 钢的组织和特性铁是钢的基本组成元素。铁在固态有两种晶体结构,一是体心立方结构(存在于两个温度范围内, 912 ℃以上称α铁, 1394 ℃以上称δ铁);另一是面心立方结构(存在于 912 ~ 1394 ℃之间,称γ铁)。碳是钢中另一主要元素,对钢的组织和性能起重要作用,通常随着含碳量的增加,钢的强度增加、塑性下降。碳在钢中主要有两种存在形式,一是溶入铁中与铁形成固溶体(两种以上化学组分互相溶解而形成的均匀固相);另一是与铁形成铁碳化合物,称渗碳体( Fe 3C ),其硬度高、脆性大。碳溶于α铁中形成的固溶体称铁素体;溶于γ铁中形成的固溶体称奥氏体,其最大溶解度为 2.11 %。钢在冷却过程中,过饱和的奥氏体将发生分解,形成铁素体和渗碳体。铁素体和渗碳体组成的呈片状相间排列的混合物称珠光体。一般碳素钢在室温下的金相组织由铁素体、珠光体和渗碳体组成 铁素体是碳溶解在a-Fe中的间隙固溶体,常用符号F表示。 不锈钢中的“铁素体”,指的是碳溶解在a-Fe中的间隙固溶体,其溶碳能力很小,常温下仅能溶解为0.0008%的碳,在727℃时最大的溶碳能力为0.02%,它仍保持的体心立方晶格.常用符号F表示。 由于铁素体含碳量很低,其性能与纯铁相似,塑性、韧性很好,伸长率δ=45%~50%。强度、硬度较低,σb≈250MPa,而HBS=80。 所谓铁素体不锈钢.指的是在使用状态下以铁素体组织为主的不锈钢。它的含铬量在 11%~30%,具有体心立方晶体结构,至于不锈钢含铁量与它是否是铁素体不锈钢并无关系.铁素体不锈钢只取决于在使用状态下,它是否以铁素体组织为主. 铁素体有磁性. 在使用状态下以铁素体组织为主的不锈钢。含铬量在11%~30%,具有体心立方晶体结构。这类钢一般不含镍,有时还含有少量的Mo、Ti、Nb等到元素,这类钢具导热系数大,膨胀系数小、抗氧化性好、抗应力腐蚀优良等特点,多用于制造耐大气、水蒸气、水及氧化性酸腐蚀的零部件。 这类钢存在塑性差、焊后塑性和耐蚀性明显降低等缺点,因而限制了它的应用。炉外精炼技术(AOD或VOD)的应用可使碳、氮等间隙元素大大降低,因此使这类钢获得广泛应用。 奥氏体是碳溶解在γ-Fe中的间隙固溶体,常用符号A表示。它仍保持γ-Fe的面心立方晶格。其溶碳能力较大,在727℃时溶碳为ωc=0.77%,1148℃时可溶碳2.11%。奥氏体是在大于727℃高温下才能稳定存在的组织。奥氏体塑性好,是绝大多数钢种在高温下进行压力加工时所要求的组织。 奥氏体是没有磁性的。

奥氏体不锈钢和马氏体不锈钢有什么区别

奥氏体不锈钢和马氏体不锈钢有什么区别? 主要是磁性,奥氏体不带磁性,马氏体带磁性。 奥氏体 奥氏体是碳溶解在γ-Fe中的间隙固溶体,常用符号A表示。它仍保持γ-Fe的面心立方晶格。其溶碳能力较大,在727℃时溶碳为ωc=0.77%,1148℃时可溶碳2.11%。奥氏体是在大于727℃高温下才能稳定存在的组织。奥氏体塑性好,是绝大多数钢种在高温下进行压力加工时所要求的组织。奥氏体是没有磁性的。 马氏体分级淬火 是将奥氏体化工件先浸入温度稍高或稍低于钢的马氏体点的液态介质(盐浴或碱浴)中,保持适当的时间,待钢件的内、外层都达到介质温度后取出空冷,以获得马氏体组织的淬火工艺,也称分级淬火。分级淬火由于在分级温度停留到工件内外温度一致后空冷,所以能有效地减少相变应力和热应力,减少淬火变形和开裂倾向。分级淬火适用于对于变形要求高的合金钢和高合金钢工件,也可用于截面尺寸不大、形状复杂地碳素钢工件。 马氏体不锈钢 通过热处理可以调整其力学性能的不锈钢,通俗地说,是一类可硬化的不锈钢。典型牌号为Cr13型,如2Cr13 ,3Cr13 ,4Cr13等。粹火后硬度较高,不同回火温度具有不同强韧性组合,主要用于蒸汽轮机叶片、餐具、外科手术器械。根据化学成分的差异,马氏体不锈钢可分为马氏体铬钢和马氏体铬镍钢两类。根据组织和强化机理的不同,还可分为马氏体不锈钢、马氏体和半奥氏体(或半马氏体)沉淀硬化不锈钢以及马氏体时效不锈钢等。 马氏体就是以人命命名的: 对于学材料的人来说,“马氏体”的大名如雷贯耳,那么说到阿道夫·马滕斯又有几个人知道呢?其实马氏体的“马”指的就是他了。在铁碳组织中这样以人名命名的组织还有很多,今天我们就来说说这些名称和它们背后那些材料先贤的故事。 马氏体Martensite,如前所述命名自Adolf Martens (1850-1914)。这位被称作马登斯或马滕斯的先生是一位德国的冶金学家。他早年作为一名工程师从事铁路桥梁的建设工作,并接触到了正在兴起的材料检验方法。于是他用自制的显微镜(!)观察铁的金相组织,并在1878年发表了《铁的显微镜研究》,阐述金属断口形态以及其抛光和酸浸后的金相组织。(这个工作我们现在做的好像也蛮多的。)他观察到生铁在冷却和结晶过程中的组织排列很有规则(大概其中就有马氏体),并预言显微镜研究必将成为最有用的分析方法之一(有远见)。他还曾经担任了柏林皇家大学附属机械工艺研究所所长,也就是柏林皇家材料试验所("Staatliche Materialprüfungsamt")的前身,他在那里建立了第一流的金相试验室。1895年国际材料试验学会成立,他担任了副主席一职。直到现在,在德国依然有一个声望颇高的奖项以他的名字命名。 马氏体不锈钢是一类可以通过热处理(淬火、回火)对其性能进行调整的不锈钢,通俗地讲,是一类可硬化的不锈钢。这种特性决定了这类钢必须具备两个基本条件:一是在平衡相图中必须有奥氏体相区存在,在该区域温度范围内进行长时间加热,使碳化物固溶到钢中之后,进行淬火形成马氏体,也就是化学成分必须控制在γ或γ+α相区,二是要使合金形成耐腐蚀和氧化的钝化膜,铬含量必须在10.5%以上。按合金元素的差别,可分为马氏

奥氏体马氏体铁素体双相不锈钢的区别简介

不锈钢简介: 不锈钢通俗地说,不锈钢就是不容易生锈的钢,实际上一部分不锈钢,既有不锈性,又有耐酸性(耐蚀性)。不锈钢的不锈性和耐蚀性是由于其表面上富铬氧化膜(钝化膜)的形成。这种不锈性和耐蚀性是相对的。试验表明,钢在大气、水等弱介质中和硝酸等氧化性介质中,其耐蚀性随钢中铬含水量的增加而提高,当铬含量达到一定的百分比时,钢的耐蚀性发生突变,即从易生锈到不易生锈,从不耐蚀到耐腐蚀。不锈钢的分类方法很多。按室温下的组织结构分类,有马氏体型、奥氏体型、铁素体和双相不锈钢;按主要化学成分分类,基本上可分为铬不锈钢和铬镍不锈钢两大系统;按用途分则有耐硝酸不锈钢、耐硫酸不锈钢、耐海水不锈钢等等,按耐蚀类型分可分为耐点蚀不锈钢、耐应力腐蚀不锈钢、耐晶间腐蚀不锈钢等;按功能特点分类又可分为无磁不锈钢、易切削不锈钢、低温不锈钢、高强度不锈钢等等。由于不锈钢材具有优异的耐蚀性、成型性、相容性以及在很宽温度范围内的强韧性等系列特点,所以在重工业、轻工业、生活用品行业以及建筑装饰等行业中获取得广泛的应用。 不锈钢牌号分组 200 系列—铬-镍-锰奥氏体不锈钢 300 系列—铬-镍奥氏体不锈钢 型号301—延展性好,用于成型产品。也可通过机械加工使其迅速硬化。焊接性好。抗磨性和疲劳强度优于304不锈钢。 型号302—耐腐蚀性同304,由于含碳相对要高因而强度更好。 型号303—通过添加少量的硫、磷使其较304更易切削加工。 型号304—通用型号;即18/8不锈钢。GB牌号为0Cr18Ni9。 型号309—较之304有更好的耐温性。 型号316—继304之後,第二个得到最广泛应用的钢种,主要用于食品工业和外科手术器材,添加钼元素使其获得一种抗腐蚀的特殊结构。由于较之304其具有更好的抗氯化物腐蚀能力因而也作“船用钢”来使用。SS316则通常用于核燃料回收装置。18/10级不锈钢通常也符合这个应用级别。[1] 型号321—除了因为添加了钛元素降低了材料焊缝锈蚀的风险之外其他性能类似304。 400 系列—铁素体和马氏体不锈钢 型号408—耐热性好,弱抗腐蚀性,11%的Cr,8%的Ni。 型号409—最廉价的型号(英美),通常用作汽车排气管,属铁素体不锈钢(铬钢)。 型号410—马氏体(高强度铬钢),耐磨性好,抗腐蚀性较差。 型号416—添加了硫改善了材料的加工性能。 型号420—“刃具级”马氏体钢,类似布氏高铬钢这种最早的不锈钢。也用于外科手术刀具,可以做的非常光亮。 型号430—铁素体不锈钢,装饰用,例如用于汽车饰品。良好的成型性,但耐温性和抗腐蚀性要差。

相关文档
相关文档 最新文档