文档库 最新最全的文档下载
当前位置:文档库 › 基于FPCA的某型雷达视频采集预处理模块设计

基于FPCA的某型雷达视频采集预处理模块设计

基于FPCA的某型雷达视频采集预处理模块设计
基于FPCA的某型雷达视频采集预处理模块设计

视频采集卡故障原因分析

视频采集卡|安防采集卡|监控采集卡常见故障问题解答 1、采集卡的安装方式 很多朋友可能会说采集卡安装方式,不就将卡插进PCI槽,安装软件不就行了!如果是资深的技术人员可能都知道,早期有一部分采集卡(采用的是小波压缩的软卡)用的是 LG软件,这种卡就要先安装软件,然后关机在插上采集卡,采集卡会自动安驱动,自动就进入监控软件系统,而且只基于98系统,你如果先安装卡,无论如何也安装不成功。现今的采集卡安装就是常见的先插卡再安装软件和驱动。也有部分卡你如果安装软件不重新启动,也打不开! 2、采集卡和软件都安装好了就是不出图像 A:这个问题,常见的都是出在显卡上面:如,你用的集成显卡显存达不到,或者没有在 BIOS将显存调整好,或者没有安装DX9.0,都会出现这些问题! B:还有一些是NTSC/PAL制式问题出现黑屏。 C:线束出现问题,这个问题不长见,但也不能忽视,我就遇到几次线束本身有问题,出不 来图像。 D:还有一种情况:如你用的是8路卡,有一路就不出像,可能你的这一路的驱动安装出了 问题(主要指一芯一路的采集卡,如7130),检查一下“设备属性里”有没有“感叹号”或是“问号”。 E:如有带指示灯软压卡,你可以直接通过指示灯亮没亮可以找到为什么有一路不出图像的问题。有部分软件还可以随意切断某一路的视频信号输入。 F:驱动也正常,显卡也正常,采集卡和软件都正常,就是不出图像,那就在启动时你要看 采集卡驱动每一种地址号码,看是不是少一路。一般情况通过换个PCI插槽就可以解 决此类问题。 G:有部分山寨采集卡不支持PCI-E,128位的显卡,如果需到这个问题,要不就换AGP的显卡,要不就找一些杂牌的PCI-1的显卡(这些显卡实际并没有采用PCI-1技 术)。 H:用的显卡也没有问题,其他都正常,不出图像,这时你就要检查你的主板,首先观察一 下芯片组(常用“英特尔”、“威盛”),在选择品牌上尽量咨询厂家。

XX公司远程视频监控方案

XX燃气远程视频监控 设 计 方 案

书 设计单位: 设计人: 前言 本方案针对新澳燃气监控子系统的具体要求,我们特向用户推荐具有强大本地录像、检索和远程监控功能的,基于压缩格式的DS-7800系列硬盘录像机数字监控系统。产品采用稳定的嵌入式平台,用户界面友好。系统实时采集音视频信号(PAL制或NTSC制)压缩成标准的文件,并可在多个硬盘上实现循环录像。同时可存贮多个通道的音视频信号,并保证音视频的同步。支持各种网络传输介质,能在internet上做实时流畅传输,完全满足客户需求。 一、系统设计依据 1. GB50198-94(民用闭路监视电视系统工程技术规范)。 2. GA/T75-94(安全防范工程程序和要求)

3. GA/T70-94(安全防范工程费用概预算编制办法)。 4. GA/T74-94GA(安全防范系统通用图形符号) 5. GB50054-95(低压配电设计规范) 6. 中华人民共和国<<社会公共安全标准汇编1、2>> 7. 中华人民共和国<<国家电气工程施工规范汇编>> 8. GA/T27-1992<<中华人民共和国公安部行业标准>> 9. GA/T75-1994<<安全防范工程程序与要求>> 10. QB/T50198-1994<<民用闭路电视监控系统工程技术规范>> 11. QB/T9813-2000<<微型计算机通用规范>> 12. QB15207-1994<<视频入侵报警其标准汇编>> 13. 甲方的实际需求。 二、系统设计原则 本套监控系统的设计须严格按照甲方的要求且遵守以下原则: 先进性:本监控系统采用国际上技术先进、性能优良、工作稳定的监控设备,使整个系统的应用在相当长的一段时间内保持领先的水平。 可靠性:系统的可靠性原则应贯穿于系统设计、设备选型、软硬件配置到系统施工的全过程。只有可靠的系统,才能发挥有效的作用。 方便性:监控系统的操作应具有灵活简便,人机界面友好,易于掌握的特点,操作人员能够方便物进行使用及维护,使整个系统的功能得以最大实现。 扩展性:系统设计留有充分的余地,以便日后比较方便地进行系统扩充。为此,设备采用模块式结构,在需要时可随时补充。增加视频及其它控制模块,使系统具备灵活的扩展性。 三、集中监控系统需求分析: 随着网络通讯技术的发展,对监控管理系统提出了新的要求,集中监控的目标是充分利用现有的网络平台,在较小的投资下,实现监控系统的集中管理。完善原有的本地化安全防范手段,强化本地监控和远程管理中心两层安全防范机制,便于最大化的调动所有资源,处理突发事件,提高处警效率,规范下属网点日常工作。因此我们特向新澳燃气有限公司推荐

现代雷达信号处理技术及发展趋势..

现代雷达信号处理技术及发展趋势 摘要:自二战以来,雷达就广泛应用于地对空、空中搜索、空中拦截、敌我识别等领域,后又发展了脉冲多普勒信号处理、结合计算机的自动火控系统、多目标探测与跟踪等新的雷达体制。随着科技的不断进步,雷达技术也在不断发展,现代雷达已经具备了多种功能,如反隐身、反干扰、反辐射、反低空突防等能力,尤其是在复杂的工作环境中提取目标信息的能力不断得到加强。例如,利用雷达系统中的信号处理技术对接收数据进行处理不仅可以实现高精度的目标定位与跟踪, 还能够在目标识别和目标成像、电子对抗、制导等功能方面进行拓展, 实现综合业务的一体化。 一、雷达的起源及应用 雷达,是英文Radar的音译,源于radio detection and ranging的缩写,意思为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。雷达是利用电磁波探测目标的电子设备。雷达发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。雷达最为一种重要的电磁传感器,在国防和国民经济中应用广泛,最大特点是全天时、全天候工作。雷达由天线、发射机、接收机、信号处理机、终端显示等部分组成。 雷达的出现,是由于二战期间当时英国和德国交战时,英国急需一种能探测空中金属物体的雷达(技术)能在反空袭战中帮助搜寻德国飞机。二战期间,雷达就已经出现了地对空、空对地(搜索)轰炸、空对空(截击)火控、敌我识别功能的雷达技术。二战以后,雷达发展了单脉冲角度跟踪、脉冲多普勒信号处理、合成孔径和脉冲压缩的高分辨率、结合敌我识别的组合系统、结合计算机的自动火控系统、地形回避和地形跟随、无源或有源的相位阵列、频率捷变、多目标探测与跟踪等新的雷达体制。后来随着微电子等各个领域科学进步,雷达技术的不断发展,其内涵和研究内容都在不断地拓展。雷达的探测手段已经由从前的只有雷达一种探测器发展到了红外光、紫外光、激光以及其他光学探测手段融合协作。

一种雷达通用信号处理系统的实现与应用

一种雷达通用信号处理系统的实现与应用 一种雷达通用信号处理系统的实现与应用 FPGA是一种现场可编程器件,设计灵活方便可以反复修改内部逻辑,适用于算法结构比较简单、处理速度较高的情况。DSP是一种基于指令集的处理器,适于大信息、复杂算法的信息处理场合。鉴于两种处理器件自身优势,FPGA+DSP信号处理架构,已成为信号处理系统的常用结构。但当前FPGA+DSP的信号处理平台或者是基于某些固定目的,实现某些固定功能,系统的移植性、通用性较差。或者仅仅简要介绍了平台的结构没有给出一些具体的实现。本文提出的基于FPGA+DSP通用信号处理平台具有两种处理器的优点,兼颐速度和灵活性,而且可以应用在不同雷达信号处理系统中,具有很强的通用性。本文举例说明该系统在连续波雷达和脉冲雷达中的典型应用。1系统资源概述1.1处理器介绍本系统FPGA选择Altera公司的EP2S60F1020。Stratix II FPGA采用TSMC的90nm 低k绝缘工艺技术。Stratix II FPGA支持高达1Gb·s-1的高速差分I/O信号,满足新兴接口包括LVDS,LNPECL和HyperTransport标准的高性能需求,支持各种单端I/O接口标准。EP2S60系列内部有48352个ALUT;具有2544192bit的RAM 块,其中M512RAM(512bit)329个,M4K RAM(4kbit)255个,M-RAM(512kbit)2个。具有嵌入式DSP块36个,等效18bit×18bit乘法器144个;具有加强型锁相环EPLL4个,

快速锁相环FPLL8个。这些锁相环具有高端功能包括时钟切换,PLL 重新配置,扩频时钟,频率综合,可编程相位偏移,可编程延迟偏移,外部反馈和可编程带宽等。本系统DSP选择ADI公司的ADSP TS201。它有高达600MHz的运行速度,1.6ns的指令周期;有24MB的片内DRAM;双运算模块,每个计算块包含1个ALU,一个乘法器,1个移位器,1个寄存器组和1个通信逻辑单元(CLU);双整数ALU,提供数据寻址和指针操作功能;集成I/O接口,包括14通道的DMA控制器,外部端口,4个链路口,SDRAM控制器,可编程标识引脚,2个定时器和定时器输出引脚等用于系统连接;IEEE1149.1兼容的JTAG端口用于在线仿真;通过共享总线可以无缝连接多达8个TigerSHARC DSP。1.2FPGA+DSP结构由于FPGA和DSP各自的自身优势,FPGA+DSP信号处理架构已成为信号处理系统的常用结构。一般情况下FPGA+DSP的拓扑结构会根据需要进行不同的连接,这就导致这种结构的专用性,缺乏灵活性。对于一个通用处理平台要考虑到各种不同的信号通路,因此大部分通用FPGA+DSP平台都采取各个处理器间均有通路的方式。这种拓扑结构灵活方便,可以满足各种不同的通路需求,这种结构的缺点就是硬件设计的复杂以及可能会有资源浪费。对于这种通用FPGA+DSP 结构,FPGA与各个DSP之间均有连接,不同之处便是DSP之间的拓扑结构。一般分两种,一是高速外部总线口耦合结构组成多DSP 系统,这种结构可以实现多DSP共享系统内的资源,系统内的个处理器可以共享RAM,SDRAM和主机等资源,还可共享其他处理器核

IP远程视频监控系统解决方案

IP远程视频监控系统解决方案 作为最近几年崛起的新产品,网络视频服务器已经成为第三代全数字化视频监控系统的核心产品并日益被工程商和用户所熟知。但是,在基于宽带ADSL网 络的应用中,如何低成本地实现在动态 IP地址环境下监控中心对监控前端的实时访问,仍是困扰诸多工程商和系统集成商的难题之一。本文将就此问题提出完 整的解决方案。 随着网络技术的快速发展,宽带的普及以及宽带使用成本的日趋低廉,利用网络作为传输媒介的远程视频监控也得到日益普及的应用。 目前,利用网络作为传输媒介的远程视频监控系统的核心技术产品可分为数字硬盘录像机和网络视频服务器两大类。数字硬盘录像机通常被行内人士称为第二代准数字化监控系统产品,主要以在本地局域网监控应用为主。在远程网络视频监控应用领域,以数字硬盘录像机为核心的监控系统由于无法实现多路全实时监控、集成性差等缺陷,正逐步被基于网络视频服务器的第三代全数字化监控系统所取代。 网络视频服务器能够充分满足客户对远程视频监控方面的需求,在技术性能 上体现了目前视频监控领域中数字化和网络化两大趋势,具有高可靠性、高集成 度的鲜明特点,可广泛应用于诸如对电力无人驻守变电站、电信机房、银行、道路交通、学校、海关、连锁营业场所的远程视频监控以及本地局域网络方式下的监控。原则上,在任何网络通达的地方(包括企业专网和以ADSL接入为代表的 INTERNE公网),通过网络视频服务器均可以实现远程同步的视频监控应用。 除了诸如电力、电信、银行等大企业的远程视频监控应用会考虑利用其自身的专线网络媒介外,中小规模企业多会采用 ADSL宽带网络作为传输媒介,尤其是那些视频数据采集网点较多而且较分散的应用环境情况。 、基于INTERNET公网的远程监控基本原理 以通过ADSL接入INTERNET公网为例。各监控前端网络视频服务器读取相连的

多路视频数据实时采集系统设计与实现

多路视频数据实时采集系统设计与实现 常永亮王霖萱常馨蓉 ( 中国飞行试验研究院陕西西安 710089) ( 贵州省贵阳市花溪区贵州大学贵州省贵阳市 550025) ( 陕西省榆林市榆阳区榆林学院陕西省榆林市 719000) 摘要面对越来越多的实时视频采集、播放的应用,如何能更加方便的操控视频采集,保证流畅的播放效果,成为近几年实时媒体流的一个重要研究方向。本文介绍了视频数据的采集、记 录、编解码、多路视频数据间的切换,基于多网络协议组合下的多媒体流传输,动态切换四路视 频数据实时传输与播放,从而使远端操控、优质播放有了很大的提高。 关键词视频编解码、媒体流、RTP/RTCP协议、组播协议、TCP协议 0.引言 随着信息技术的不断发展,人们将计算机技术引入视频采集、视频处理领域,用计算机处理视频信息和网络传输数字视频数据在很多领域已有广泛的应用,飞机试飞中现如今也大量的应用。 针对目前分散在多处试飞现场视频传入监控大厅后监测设备多而分散的问题,提出了将多处试飞现场视频引入监控大厅后用一台高性能服务器管控,客户端通过网络请求服务器端检测关心的现场场景,达到集中管理优化监控的目的。 视频图像采集的方法较多,基本可分为2大类:数字信号采集和模拟信号采集。前者采用图像采集芯片组完成图像的采集、帧存储器地址生成以及图像数据的刷新;除了要对采集模式进行设定外,主处理器不参与采集过程,我们只要在相应的帧存储器地址取出采集到的视频数据即可得到相应的视频数据,这种方法,无论在功能、性能、可靠性、速度等各方面都得到了显著的提高,但成本高。后者采用通用视频采集卡实现图像的采集,并用软件进行实时编码,其特点是数据采集CPU占用率较高,对处理器的速度要求高,成本低、易于实现,能够满足某些图像采集系统的需要。此系统使用第二类视频采集方法。 如何将各处试飞现场视频信号通过VGA持续接收?传统方式是将模拟的VGA信号引到指定显示器显示,这样即浪费资源且多占空间。多路视频实时采集使用的是VisionRGB- PRO板卡(英国Datapath公司),此卡可同时实时采集两路视频数据,基本达到了本系统的要求,再用一台VGA矩阵切换器将前端数据源的四路视频数据进行人为切换采集,用H.264格式编解码,保存为H.264格式,通过RTP/RTCP 与组播协议将编码后视频流传输给请求客户端,而且可在客户端通过TCP协议选择关心的VGA采集通道。

教你如何识别视频采集卡

安防领域(视频采集卡),各种各样的DVR卡琳琅满目,让很多的工程商和消费者特别是刚入行者无从下手,您选购采集卡的目的不外乎就是能更方便的更有效的监看,您应该需要关注一下几个大区:是软压缩还是硬压缩好、什么样的卡画质最好、能否实现远程功能、备份方便么、售后服务怎么样等相关问题。下面我们就将各种DVR卡的优缺点经行区分和了解,以及选购采集卡的相关知识一一介绍一下。 一区:软压缩和硬压缩 现在只要你选购DVR卡,店主一般的都是问你是要那种类型的卡——软卡还是硬卡?这里我们就先来介绍一下软卡和硬卡的不同之处。 一、软压缩DVR 用软卡的DVR我们一般叫做软压缩DVR,其实就是视频采集卡,随卡配有监控软件,实现视频监视、录像、回放历史视频以及远程监控等功能,其硬件为一个或多个视频采集芯片(如:fusion878a , saa7130/7134, tw6802B/6805等)接收来自模拟摄像机的信号,转换为数字信号,然后直接或通过PCI桥芯片从PCI金手指进入主板,原始的数字视频信号,在内存里执行CPU指令运算,将视频压缩与处理,然后存储到硬盘。另外原始视频数据还直接发往显卡,通过显示器预览。 软卡的电路板很简单,板上没有压缩芯片与临时存储芯片,成本低,一般是硬压缩的1/3左右,所以价格是它最大的优势,另外从原理我们可以看到,软压缩DVR是有CPU进行压缩的,所以其压缩品质较好,录像清晰度高,在CPU资源充足的情况下,软压缩DVR无论在录像、还是网络以及其他功能丝毫不亚于硬压缩DVR。 二、硬压缩DVR 硬压缩DVR,也可称视频采集压缩卡,与软压缩原理基本一样,不同的是,模拟视频转换为数字信号后,并不直接通过PCI发到主板、显卡、内存,而是先由硬压缩DVR卡自带的DSP代替电脑CPU执行压缩算法指令,在DVR卡上的内存芯片压缩,然后再通过PCI金手指进入主板。所以硬压缩DVR电路板多了DSP或其他压缩芯片与内存芯片。所以硬压缩DVR的主要优势主要表现在大路数监控,比如32路以上全实时监控录像,软压缩难以实现,这个市场缺口就可以被硬压缩所占有。 三、总结 通过上面的原理,我们可以看出硬压缩的优势在于: 1、视频压缩通过自带DSP完成,无需占用电脑CPU资源; 2、在进入PCI总线之前先进行压缩,可以节省PCI总线带宽。但是由于目前CPU 性价比迅速增长,非常便宜的CPU就能轻松的压缩16路CIF视频,导致硬卡优势1正在逐步退化,另外随着主板上PCI-E的出现,硬压缩能节省PCI带宽的优势也在弱化并最终失去意义。而它的主要缺点就是在于卡上自带的DSP芯片使其成本非常高; 3、数字视频先在DVR卡上进行压缩,然后又要将压缩视频解压缩后交给显卡显示器预览显示,其实大家都不知道,这个过程会导致视频信号受损,图像品质会下降。 注意:市场上经常听说的半软半硬卡,这个根本不存在,也没有那样的说法,朋友们一定要注意,这个主要是在2002-2004年里,因为当时CPU处理性能有限,价格昂贵,软卡只能满足4-8路实时监控录像,而国内监控全实

旅游景区远程视频监控系统

旅游景区远程视频监控系统解决方案

旅游景区网上视音频直播系统研究与实现 随着社会的发展和人民生活水平的提高,我国旅游业已经越来越大众化,旅游人数与日俱增,游客面对如此之多的景区,如何选择满意的景区;以及景区面对如此之多的旅客,又如何能把握商机吸引更多游客?旅游者的需求越来越个性化、多样化,而旅游企业也需要有越来越完善的对外宣传方式来提高了旅游景区的国际知名度,提高对游客服务质量,增加与游客的互动性。近几年来网络媒体的快速发展为景区宣传提供了媒介,而网上音视频直播直观、实时、互动等特点得到了国际知名景区的青睐,在旅游景区中采用网上直播系统,世界各地的游客可以在家中对景区的各种景点风光、会议现场、庆祝活动实时观看,提高游客来现场游览的兴趣。本文结合浙江省科技计划重大项目(2004C13034)“旅游景区网络化综合管理与服务平台研究及应用示范”,以组建第三代旅游网站、增加景区与旅客信息互动、扩大景区对外宣传力度以及提高景区国际知名度为目的,利用计算机领域的流媒体、人工智能、移动Agent、对等网络等理论和技术进行了相关的研究与工程实现工作,其具体工作如下: (1)对该领域的国内外研究现状进行了分析,总结网上音视频直播系统目前存在的技术难题和问题,并阐述本文研究的背景、意义和主要内容。 (2)对网上直播系统进行需求分析,设计了旅游景区网上直播系统的硬件构架和软件构架。硬件设计包括系统硬件总体框架设计以及硬件设备的选取。软件设计实现以下4个功能:音视频采集、数据压缩、流媒体服务和客户端播放。 (3)由于网上直播系统的客户端并发数多并可能处于不同的ISP运营网络下,而音/视频是大流量数据,对网络带宽要求高,音视频直播网的结构直接影响整个系统效率。本课题根据需求分析,研究了基于树形结构流媒体应用层的组网模式,将移动Agent理论引入到流媒体应用层组播网的实现中,以P2P协议作为直播网传输方式,提出了一种基于移动Agent的自组织直播网,使得组播网拓扑结构能够根据网络变化自动重建,流媒体服务的服务内容和格式可以在不需要用户人为参与的情况下动态增加和减少,还能根据一个区域内多个用户的实际情况进行综合优化每个转发节点的负荷。 (4)设计开发了旅游景区历史上大型活动等视音频资料的IPTV网上点播系统,景区多媒体信息点播系统采用VOD方式运行,最后并给出了流媒体服务端和客户端的实现。 景区在线平台(实时视频)解决方案-在线景区 景区风光或城市形象作为旅游产品具有非实体性、无转移性、不规范性、无贮存性、强敏感性的特点。良好的景区风光或城市形象营销策略能为景区或城市吸引更多的游客,带来巨大的商机,推动景区或城市的健康持续发展,因此其营销的重要性是毋庸置疑的,但其当前的营销理念还有些落后陈旧,终端营销模式主要还是依托于比较传统的手段和方法,尚未做到与时俱进。 营销理念落后,内容陈旧

交通视频采集系统

交通视频采集系统 第一章建设背景 1.1 视频监控系统现状 1.1.1交通应急指挥中心系统职能 威海市交通运输局作为威海市重要的政府主管部门,主要负责:全市公路、水路和地方铁路交通行业管理和运输组织管理,协调道路、水路运输与其它运输方式的衔接;组织实施上级下达的重点物资运输、紧急客货运输和军事运输。作为市交通运输局下属事业单位,威海市交通应急指挥与信息服务中心将负责本次视频采集系统的建设,必将进一步改善城市整体交通环境,提高城市交通管理水平、提升城市形象和品味。 1.1.2 视频在应急指挥中的作用 威海市交通应急视频监控系统通过视频监控布局,可实时反馈监控区域的图像信息,有利于在执法工作中提高现场即时办公效率,提高事件处理的真实性、准确性、实时性及宏观调配能力。 威海市交通应急指挥与信息服务中心的视频采集系统主要负责通过统一视频监控系统对全市二级以上客运站、客运站周边违章行为高发区域、站外广场等客流密集地进行管理。工作人员可通过图像采集来了解各站点的实时状况,实时传输的图像要保证清晰度高、连贯性高,不能出现拖尾、马赛克等情况,保证交通各职能部门的管理员在第一时间掌握实时的、清晰的高品质视频图像。系统一方面要做到事件即时处理,另一方面也要为交通管理职能部门保留数据信息,这就要求在图像实时采集的同时,根据具体需求进行录像存储。 1.2 视频监控系统存在的问题 部署分散,监控系统资源共享性差。交通、公安、交警、公

路、港航等相关部门的各类监控设备部署较为分散,由于之前缺乏实现信息互联互通的技术手段,加之跨域查阅视频的审批手续繁冗,视频信息共享性差,不能对应急事件即时处理、即时响应。 覆盖面广,但仍存在监控的“死角”。在汽车客运站、码头、机场、旅游集散地、景区景点等违章行为高发地、其他人员密集地仍存在诸多应急指挥监控死角,存在打击黑车黑导、即时处理应急事件的隐患,需增加相应监控点位,以确保应急事件的即时指挥与处理。 1.3 视频监控系统升级建设的必要性 1.3.1信息共享缺乏可信验证技术支持 通过最新的高清识别及可信验证技术,较好地解决部署分散,信息共享性差问题,盘活视频监控系统的存量资产,发挥投资建设的应有效应。本次视频采集系统将通过与公安、交警、公路、港航等相关部门协调,计划接入920路视频资源,主要包括市区主要路段、重点路口、治超点、主要道路、高速公路等,进一步提高各系统视频监控资源在交通应急指挥中心中的作用。 1.3.2 监控死角需自建视频设备扫除 为进一步扫除安全隐患,规交通运营秩序,威海市交通应急指挥中心将增加部分自建视频,解决监控死角问题,进一步提升“文明城市”形象的含金量。威海市交通应急指挥中心计划新增视频80路,主要分布在全市二级以上汽车客运站,包括威海站、荣成站、文登站、乳山站、石岛站以及威海北站汽车站,监控点位包括安检、进站口、出站口、站外广场、车站周边等违章行为高发地、其他人员密集地。本次主要建设容有:社会监控的接入、新建前端设备、立杆(含基础施工、路面开挖恢复等)、借杆、防雷地网施工、取电工程等,根据技术功能要求来进行整体综合

视频采集卡接口的分类

视频采集卡接口的分类 视频采集卡常见输入输出接口介绍 现在的高清电视机和高清电视节目已近是人们高清娱乐的主要内容之一了,随着视频清晰度的不断上升,先后诞生了不少视频接口,可以说视频接口是实现高清的基础,不管是早期的还是最新的接口,现在很多视频接口还在继续使用,通过各种信号转换器/视频采集卡,AV,S-VIDEO转VGA AV,S-VIDEO转HDMI,色差转VGA,色差转HDMI等等,图像提升几倍,效果更好。常见的视频采集卡输入输出接口还是很值得我们去了解的。想看到清晰度高质量好的视频,视频信号的采集、传输、处理等视频技术固然很重要,但是数码产品的视频输入输出接口一样值得去考虑。说到各种接口、各种转接头又有谁能如数家珍呢? 通常我们也称之为RCA接口或者复合AV接口,一般复合AV线的输出或输入都采用与音响相同的梅花形RCA端子,用红色和白色分别表示左右声道,视频信号用黄色端子。复合信号传输方便、设备结构简单、成本低。 AV接口(RCARCA)可以算是TV的改进型接口,外观方面有了很大不同。分为了3条线,分别为:音频接口(红色与白色线,组成左右声道)和视频接口(黄色)。由三个独立的RCA插头(又叫梅花接口、RCA 接口)组成的,其中的V接口连接混合视频信号,为黄色插口;L接口连接左声道声音信号,为白色插口;R 接口连接右声道声音信号,为红色插口。 参考图示:AV接口/复合视频(CVBS)接口/RCA接口 复合视频(Composite)通常采用黄色的RCA(莲花插座)接头。“复合”含义是同一信道中传输亮度和色度信号的模拟信号,但电视机如果不能很好的分离这两种信号,就会出现虚影。音频接口和视频接口成对使用,通常都是白色的音频接口和黄色的视频接口,采用RCA(莲花头)进行连接,使用时只需要将带莲花头的标准AV 线缆与相应接口连接起来即可。 AV接口实现了音频和视频的分离传输,这就避免了因为音/视频混合干扰而导致的图像质量下降,但由于AV 接口传输的仍然是一种亮度/色度(Y/C)混合的视频信号,需要对其进行亮/ 色分离和色度解码才能成像,在先混合,再分离处理过程中必然会造成信号的丢失或失真,色度信号和亮度信号也会有很大的机会相互干扰。由于亮度/色度(Y/C)混合的视频信号处理方式所固有的技术缺陷,AV视频接口的应用就有了极大的限制。 DVI(Digital Visual Interface)接口 说白了,是在AV接口的基础上采用数字信号显示视频信号。DVI(Digital Visual Interface)接口与VGA 都是电脑中最常用的接口,与VGA不同的是,DVI可以传输数字信号,不用再进过数模转换,所以画面质量非常高。 参考图示:DVI(Digital Visual Interface)接口

雷达数字信号处理解决方案

雷达数字信号处理解决方案 1.背景 数字信号处理是现代通信、雷达和电子对抗设备的重要组成部分。在实际应用中,利用数字信号处理技术对接收数据进行处理,不仅可以实现高精准的目标定位和目标跟踪,还能够将目标识别、目标成像、精确制导、电子对抗等功能进行拓展,实现多种业务的一体化集成。 在现代雷达系统中,随着有源相控阵和数字波束形成(DBF)技术的广泛应用,接收前端存在大量的数据需要并行处理,并需要保证高性能和低延迟的特点。雷达日益复杂的应用环境,让雷达系统具备自适应于探测目标和环境的能力,数字信号处理部分也需要使用多种更加复杂的算法,并且可以做到算法模块化,以及通过软件配置功能模块的参数,实现软件定义的功能。更大的数据处理带宽能够使雷达获得更高的分辨率,更高的工作频率使得雷达可以小型化,能够在更小的平台上安装,这样对于硬件平台实现也有低功耗的要求。 在电子对抗设备中,可以在最短的时间内对多个威胁目标进行快速分析和响应,同样需要数字信号处理的相关算法具备高实时,高动态范围和自适应的特点。如何在宽频噪声的环境中寻找到目标的特征数据,如何在宽带范围内制造虚假目标实现全覆盖,数字信号的处理性能是至关重要的设计因素。 加速云的SC-OPS和SC-VPX产品,针对5G通信和雷达的数字信号处理的要求,结合Intel最新14nm 工艺的Stratix10 FPGA系列,提供了一套完整的硬件和软件相结合的解决方案。SC-OPS产品作为单独的硬件加速卡,通过PCIe插卡的方式实现与主机的通信功能,还可以通过多卡级联的方式实现数字信号的分布式处理方案。SC-VPX产品是由FPGA业务单板、主控板和机箱组成的VPX系统。借助于FPGA可编程的特性,加速云提供了高性能数学加速库FBLAS和FFT的RTL级IP,具有高性能和算法参数可配置的特点实现了多重信号分类(MUSIC)和自适应数字波束形成(ADBF)的核心算法,提高了5G通信和雷达在对抗干扰方面的性能。为了方便客户使用高层语言开发,加速云提供基于FPGA完整的OpenCL异构开发环境,快速实现用户自定义的信号处理加速方案。 图1. 加速云SC-OPS和SC-VPX产品

多通道视频采集卡技术方案说明

PCI 多路视频采集卡 快速使用手册 创欣威视电子(深圳)有限公司 2011-8-30

PCI视频卡主控系统使用说明 一系统特点 1.支持8路实时视频 2.支持8路Half-D1实时视频浏览 3.支持8路实时视频H264压缩,分辨率CIF 4.实时视频浏览使用DirectDraw 5.硬件兼容性,支持大部分的主板和显卡 6.软件兼容性,支持Windows 2000、Windows XP、Windows 7 7.支持本地录像查找回放 8.支持本地抓拍图像文件查找回放 9.支持实时图像压缩录像 10.支持N/P转换 11.支持视频图像亮度、色度、对比度、饱和度的调整 12.支持OSD名称 13.支持定时录像 14.支持多分屏显示 15.支持云台控制 16.支持通道PIP 17.支持画面浏览的镜像 18.支持画面浏览的上下颠倒 19.支持画面暂停 20.提供网络服务 21.支持录像回放控制 22.支持用户管理功能 23.支持锁定(注销)/解锁(登录) 24.支持实时图像抓拍 二主机系统要求 1.最低配置要求 CPU 双核3.0GHz 内存2G DDR3 显卡集成或独立,支持DirectDraw 显示器分辨率:1280*1024 2.软件要求 Windows2000 WindowsXP Windows7

三系统安装 1.硬件安装 1) 将PCI采集卡插在电脑主机的PCI插槽并固定 2)将连接线插入PCI采集卡的接口 3)连接对应的视频线 2.软件安装 1)PCI采集卡驱动安装 ⑴在“我的电脑”上点右键,在弹出菜单中选择“属性”,弹出如下窗口: (2) 选择“硬件”选项,如下图:

测速雷达数字信号处理系统的设计

西安工程大学学报 Journal of Xi’an Polytechnic University  第22卷第3期(总91期)2008年6月Vol.22,No.3(Sum.No.91) 文章编号:16712850X(2008)0320329204 测速雷达数字信号处理系统的设计 张雪侠1,党幼云1,杨 进2 (1.西安工程大学电子信息学院,陕西西安710048;2.西安展意信息科技有限公司,陕西西安710075) 摘要:采用PCI29812数据采集卡和XC2S200FP GA芯片共同完成测速雷达系统的信号处理,即高速A/D转换模块和频谱的分析,并利用VB语言实现速度时间曲线的拟合问题和终端界面的显示,完成友好的人机交互功能. 关键词:测速雷达;信号处理系统;PCI29812采集卡;界面显示 中图分类号:TN911.25 文献标识码:A 0 引 言 传统的测试速度技术,如靶圈测试、天幕靶测试等方法因测试过程繁琐,精度较差,已不能满足实时战地测试的需要[1].连续波雷达回波的多普勒频移测量方法,具有测速精度高,无速度模糊[2],并且可以得到单值无模糊的频率值[3]的特点,单对于测速来说,是最理想的方法.对于雷达后端信号处理部分,根据实际要求的不同,存在有不同的处理方法[427].目前,实际应用中存在多种车载雷达测速仪,它主要是测量出运动目标的即时速度并进行记录与显示,因而对于终端信号处理相对比较简单.本文设计的测速雷达数字信号处理系统不仅能完成弹丸速度的实时测量、记录与显示,更重要的是通过弹丸速度的连续测定,进而获取弹丸初速值.弹丸初速值的确定对于计算弹道的相关参数,分析弹丸的形状及大小具有重要的意义. 1 测速雷达系统组成 1.1 基本原理 连续波测速雷达系统的理论基础是多普勒效应[4]在电磁波领域中的应用.其基本原理是雷达中的波震荡器震荡出一系列的波,通过天线向着飞行中的弹丸发射电磁波,同时接收弹丸的反射回波,由于弹丸在运动,所以反射波和接收波之间存在有频率差,即发生了频率的变化,就是所谓的频移现象.这一频率差和弹丸的运动速度成正比例关系.其数学表达式为多普勒频差f d=2V t/λ,式中λ为信号波长,V t为运动目标的即时速度;λ=c/f0,c为光速,为常量,由于雷达发射的频率f0已知,可求出λ,那么只要再求出多普勒信号的频率差值f d,即可求得弹丸的即时速度V t.由于得到的是连续的f d的值,即对应多个V t值,因此可得出弹丸飞行轨迹上的多点瞬时速度值,即弹丸速度变化曲线,再根据此曲线按最小二乘法进行拟合,推算出弹丸的初速V o值. 1.2 整体结构 测速雷达由信号采集机和信号处理机组成,其中信号采集机包括高频组件、喇叭天线、前置放大器、红外启动器;信号处理机包括数字信号处理器和终端显示界面. 信号采集机部分完成了雷达发射机和部分接收机的功能.8mm波振荡器产生连续的8mm电磁波,通 收稿日期:2008204211 通讯作者:党幼云(19622),女,陕西省澄城县人,西安工程大学教授.E2mail:xk_dyy@https://www.wendangku.net/doc/e916497855.html,

视频采集系统功能手册

关于建筑工地DS-9000视频采集系统操作介绍

(一)建筑工地监控主要操作功能介绍: 本地监控: a.1/4/6/8/9/16画面预览,预览通道顺序可调 b.预览分组切换、手动切换、或自动轮巡预览,自动轮巡周期可 设置 c.预览电子放大 d.屏蔽指定的预览通道 e.视频移动侦测、视频丢失检测、视频遮档检测、视频输入异常 检测 f.视频隐私遮盖 g.云台控制、预置点、巡航、轨迹设置、3D跟踪控制 录像与回放设置: a.录像触发:手动、定时、报警、移动侦测报等 b.按事件(报警输入、移动侦测、智能报警)查询录像文件 c.按通道号、录像类型、文件类型、起止时间等条件进行录像资 料的检索和回放 d.录像文件倒放、暂停、快放、慢放、前跳、后跳鼠标拖动定位 e.同步回放 资料备份: https://www.wendangku.net/doc/e916497855.html,B 、eSATA盘进行备份 b.按文件进行批量备份 c.回放时进行剪辑备份 d.报警与异常管理: e.统一管理设备与IP通道的视频遮挡报警、视频移动侦测、视 频丢失报警 f.各种报警可触发弹出报警画面、声音警告等 g.系统运行异常时自恢复 其它功能: a.三级权限用户管理,管理员可创建多个操作用户并设定其权限,

权限可细化到通道 权限说明 “本地配置” 本地查看日志:查看系统的日志、系统信息。 本地参数设置:设置参数、恢复默认参数、导入/导出参数。 本地通道管理:可以“启用”/“禁用”模拟通道,增加/删除IP通道。 本地高级管理:可以进行硬盘管理(初始化、设置硬盘属性)、升级系统程序、清除IO报警输出。 本地关机/重启:可以进行重启/关机操作。 “远程配置” 远程查看日志:远程查看记录在硬盘录像机上的日志。 远程参数设置:远程设置参数、恢复默认参数、导入/导出参数。 远程通道管理:远程“启用”/“禁用“模拟通道,增加/删除IP通道。 远程控制串口:建立透明通道,发送/接收RS232/RS485端口的数据。 远程控制本地输出:可以发送远程按键。 语音对讲:可发起对硬盘录像机的语音对讲。 远程请求报警上传、报警输出:远程可以布防(即要求将报警/异常状态发送给远程客户端)和控制设备报警输出。 远程高级管理:远程进行硬盘管理(初始化、设置硬盘属性)、升级系统程序、清除IO报警输出。 远程关机/重启:远程进行重启/关机操作。 “通道配置” 远程预览:远程预览各通道的现场画面,此权限细化到每一个通道。 本地手动录像:本地手动启动/停止录像,此权限细化到每一个通道。 远程手动录像:远程手动启动/停止录像,此权限细化到每一个通道。 本地回放:本地回放硬盘录像机上记录的录像文件,此权限细化到每一个通道。 远程回放:远程回放、下载硬盘录像机上记录的录像文件,此权限细化到每一个通道。 本地云台控制:本地控制云台,此权限细化到每一个通道。 远程云台控制:远程控制云台,此权限细化到每一个通道。 本地备份:本地备份硬盘录像机上记录的录像文件,此权限细化到每一个通道。具有本地备份权限的通道一定具有本地回放权限。 b.完备的操作、报警、异常及信息日志记录和检索 客户端应用网络功能: a.分级用户管理(二级),管理员可创建多个操作用户并设定其 权限,权限可细化到通道 权限说明: 1)网络预览——权限可细化到通道 2)云镜控制——权限可细化到通道 3)视频调节——权限可细化到通道

视频采集卡分类综述

视频采集卡分类综述 视频采集卡是将模拟摄像机、录像机、LD视盘机、电视机输出的视频信号等输出的视频数据或者视频音频的混合数据输入电脑,并转换成电脑可辨别的数字数据,存储在电脑中,成为可编辑处理的视频数据文件。 按照其用途可分为广播级视频采集卡,专业级视频采集卡,民用级视频采集卡,它们档次的高低主要是采集图像的质量不同。广播级视频采集卡特点是采集的图象分辨率高,视频信噪比高,缺点是视频文件所需硬盘空间大。每分钟数据量至少要消耗200M B,一般连接BetaCam摄/录像机,所以它多用于录制电视台所制作的节目。 专业级视频采集卡的档次比广播级的性能稍微低一些,分辨率两者是相同的,但压缩比稍微大一些,其最小的压缩比一般在6:1以内,输入输出接口为AV复合端子与S端子,此类产品适用于广告公司和多媒体公司制作节目及多媒体软件应用。民用级视频采集卡的动态分辨率一般较低,绝大多数不具有视频输出功能。 一、简单地把DV带或是录像带转录成VCD、DVD 如果家庭用户只是想把DV带或是录像带转录成VCD、DVD,对视频质量要求不是很高那用质量比较好的电视卡或1394卡就可以实现,1394卡只是个传输卡,就是把视频信号通过1394接口无损地传输到电脑硬盘,电视卡主要的功能是看电视录电视,但也都带有模拟信号采集功能,看电视效果的好坏主要取决于高频头,而录电视以及视频采集效果的好坏就取决于用什么芯片! 低端的电视卡一般用的是TCL高频头或是特丽芬根高频头及特纳的高频头,芯片一般采用878芯片或是其它一些杂牌的芯片,其效果一般但是价格便宜,如果只是想看看电视却又不想花太多钱大家可以买这类卡!下面向大家介绍两款这样的产品:

卫星传输远程视频监控系统方案

卫星传输远程视频监控系统方案 1.概述 所属矿山分别搭建iPSTAR双向站,在公司总部建立监控中心,通过北京iPSTAR关口站,基于卫星网络和互联网络构建视频监控网络。 网络拓扑结构为星型网,以关口站为中心辐射全国,远端站到关口站是卫星一跳。 系统拓扑图如下: 2.部署方案 远端站 双向远端站搭建在煤矿现场需要进行远程监控的地点,主要设备包括: iPSTAR双向天线 iPSTAR室外单元(包括功率放大器、低噪声变频放大器、L波段电缆等) iPSTAR室内单元(iPSTAR终端,具备一个Ethernet接口) HUB(将iPSTAR的Ethernet接口从一个扩展至多个) 视频服务器(将视频数据转换成编码,以IP格式封装转发给iPSTAR室内单元) 摄像机、镜头、云台、云台解码器等 可根需要据配置音响和麦克一套,用来与中心站语音交流 视频服务器具体参数参见《产品展示》--“IP网络视频产品”。 典型配置如下图: 监控中心 中心站搭建在煤炭公司,主要设备包括: 计算机服务器1台(高端配置计算机也可以) 交换机 软件防火墙 也可以上监视大屏,可以考虑根据投资情况考虑 3.实现功能 电子地图 系统支持电子地图访问,以空间数据库为基础,将应用数据与地图有机结合,提供强大的空间分析和查询功能,丰富的表达方式直观地显示结果。 分层结构管理

本系统采用多级用户管理和分级授权访问的机制。用户分成两类,一类是系统管理员,拥有系统级权限,可以添加、删除和修改用户,进行用户的分配和管理,可以对系统进行安装、配置和检查,保障整个系统的正常运行;另一类是操作用户,在操作用户中设置权限,用户根据权限执行相应的监控范围。 现场的实时视频监控和采集 通过配置高质量的紅外线摄像机,对监控点的监控达到在正常光照条件或夜间光照条件较差甚至是0照度的情况下仍能进行高质量的视频采集以及音频的实时采集。 对关键区域进行24小时全天候监控,现场画面实时显示在本地和监控中心的屏幕上。 发生报警后,联动前端镜头对报警区域进行实时监视。 监视区域内图像的动态变化,检测监视区域内的物体运动。 监控信息的存储和备份 前端摄像的音视频信号经过模数转换,编码压缩,传送到监控中心的中心管理服务器,经视频解码器解码后,给硬盘录像机,录制的文件方式保存在硬盘中,支持长时间连续不间断的录制和存储。 报警信息的采集和联动管理 可以管理报警器的输入节点。当前端有报警发生时,在监控中心,系统会以声音方式通知值班人员,并在监控软件上弹出报警摄像机画面。系统具有同时处理多任务能力,对于多个地方的同时报警情况也可以及时处理。 全方位云台及周边设备的与控制 远程监控系统可对摄像机镜头进行光圈、焦距、景深距离的控制操作,不仅对云台可做全方位控制,而且可以对模拟量、开关量进行实时准确的探测,并做出相应的反应。 现场指挥 挥可以利用监控终端与现场进行实时双向语音对讲,将现场图像转发到指定的分控点,以实现共同分析、决策的实战需求。 设备在线管理 对编码器、转发服务器等关键设备提供注册、检测的管理能力,凭借系统强大的网络管理能力,系统能直观、方便地检测设备和线路的工作状态。

雷达系统中的信号处理技术

雷达系统中的信号处理技术 摘要本文介绍了雷达系统及雷达系统信号处理的主要内容,着重介绍与分析了雷达系统信号处理的正交采样、脉冲压缩、MTD和恒虚警检测几种现代雷达技术,雷达系统通过脉冲压缩解决解决雷达作用距离和距离分辨力之间的矛盾,通过MTD来探测动目标,通过恒虚警(CFAR)来实现整个系统对目标的检测。 关键词雷达系统正交采样脉冲压缩MTD 恒虚警检测 1雷达系统概述 雷达是Radar(Radio Detection And Ranging)的音译词,意为“无线电检测和测距”,即利用无线电波来检测目标并测定目标的位置,这也是雷达设备在最初阶段的功能。雷达的任务就是测量目标的距离、方位和仰角,还包括目标的速度,以及从目标回波中获取更多有关目标的信息。典型的雷达系统如图1,它主要由雷达发射机、天线、雷达接收机、收发转换开关、信号处理机、数据处理机、终端显示等设备组成。 图1雷达系统框图

随着现代电子技术的不断发展,特别是数字信号处理技术、超大规模集成数字电路技术、计算机技术和通信技术的告诉发展,现代雷达信号处理技术正在向着算法更先进、更快速、处理容量更大和算法硬件化方向飞速发展,可以对目标回波与各种干扰、噪声的混叠信号进行有效的加工处理,最大程度低剔除无用信号,而且在一定的条件下,保证以最大发现概率发现目标和提取目标的有用信息。 雷达发射机产生符合要求的雷达波形,然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由雷达接收机接收,然后对雷达回波信号依次进行信号处理、数据处理,就可以获知目标的相关信息。 雷达信号处理的流程如下: 图 2 雷达信号处理流程 2雷达信号处理的主要内容 雷达信号处理是雷达系统的主要组成部分。信号处理消除不需要的杂波,通过所需要的目标信号,并提取目标信息。内容包括雷达信号处理的几个主要部分:正交采样、脉冲压缩、MTD和恒虚警检测。 正交采样是信号处理的第一步,担负着为后续处理提供高质量数据的任务。采样的速率和精度是需要考虑的首要问题,采样系统引起的失真应当被限定在后续信号处理任务所要求的误差范围内,直接中频数字正交采样是当代雷达的主要技术之一。脉冲压缩技术在现代雷达系统中得到了广泛的应用。脉冲压缩雷达既能保持窄脉冲雷达的高距离分辨力,又能获得脉冲雷达的高检测力,并且抗干扰能力强。现在,脉冲压缩雷达使用的波形正在从单一的线性调频发展到时间、频率、编码混合调制,在尽可能不增加整机复杂度的条件下实现雷达性能的提升。杂波抑制是雷达需要具备的重要功能之一。动目标指示与检测是通过回波多普勒频移的不同来区分动目标和固定目标,通过设计合理的滤波器(组),就可以把目标号和杂波分开。

相关文档
相关文档 最新文档