文档库 最新最全的文档下载
当前位置:文档库 › 数据挖掘关联规则的研究

数据挖掘关联规则的研究

数据挖掘关联规则的研究
数据挖掘关联规则的研究

关联规则挖掘算法的研究

Vol.29No.1 Jan.2013 赤峰学院学报(自然科学版)JournalofChifengUniversity(NaturalScienceEdition)第29卷第1期(下) 2013年1月关联规则挖掘算法的研究目前是数据挖掘领域的一个重要方向,其中,Apriori算法就是一个经典的挖掘关联规则算法.1993年,Agrawal等提出关联规则挖掘的相关概念,随后提出经典Apriori算法,它是一个采用两阶段挖掘思想的算法,且多次扫描事务数据库,直到寻找出给定数据集中数据项之间有趣的关联规则.1关联规则基本概念 1.1 关联规则 关联规则是形如A圯B的蕴含式,在关联规则中,有两 个重要的概念:支持度和置信度.支持度是对关联规则的重要性的衡量,置信度是对关联规则的准确度的衡量,一般情况下,用户根据实际挖掘需要,预先给定最小支持度和最小置信度,通常情况下,如果规则的置信度和支持度大于用户指定的最小置信度和支持度,那么这个规则就是一条有效规则.事实上,有效规则并不一定具有实用性,还要参照关联规则的其他指标. 定义1 设I={I1,I2,…,IM}是数据项的集合,D是全体事务 的集合,一个事务T有一个唯一的标识TID.如果项集A哿T,则称事务T支持项集A,也称事务T包含项集A. 定义2 关联规则是形如A圯B的蕴含式,其中A奂I,B奂I,且A∩B=Φ. 定义3 事务数据库D中有N条交易事务,关联规则 A圯B的支持度定义为: support(A圯B)=support(A∪B)×100%.定义4 置信度定义为: confidence(A圯B)=support(A∪B)×100%. 引理1 在数据库中若有一事务T其长度小于K+1,则 由K项频繁集生成K+1项频繁集时,事务T是没必要扫描的.1.2 Apriori算法的基本思想 Apriori算法是发现关联规则的经典算法.该算法分两个步骤发现关联规则:第一步通过迭代,找出事务数据库中的所有频繁项集,即支持度不低于最小支持度的项集;第二步利用频繁项集构造出满足用户最小可信度的规则.2 Apriori 算法的不足之处 Apriori算法最大的优点是算法思路比较简单,它以递归统计为基础,生成频繁项集,易于实现.Apriori算法虽然能够从海量数据中挖掘出关联规则,但是算法在执行速度和效率上有一定的局限性,表现如下:2.1 Apriori算法会产生大量的候选项集.该算法是由候选 集函数Apriori-Gen利用Lk-1项产生候选项集Ck,所产生的Ck由Ck Lk-1 项集组成.显然k越大产生的候选项集的数目就越多. 2.2I/O负载过大.Apriori算法需要多次扫描事务数据库, 需要很大的I/O负载.对每次k循环,候集Ck中的每个元素都必须扫描数据库1次来决定其是否加入Ck.例如,一个频繁大项目集包含12个项,那么就至少扫描事务数据库12遍.3 对Apriori 算法的改进 算法改进的思路 1.改变数据的存储结构,用二进制位存储各项目的事务集,矩阵的列代表频繁K-项集,矩阵的行代表事务,其中1表示该项目在某事务中出现,0表示该项目在某事务中没有出现. 2.生成频繁1-项集.首先扫描源数据库,生成矩阵.统计每列中包含1的数目,得到该项目的支持事务数,如果该项的支持事务数大于最小支持事务数,则该项是频繁项集,否则是非频繁项集.从矩阵中将该列删除,并根据引理1,在矩阵中删除第9行,得出频繁1-项集. 3.由频繁1-项集生成频繁2-项集.对频繁1-项集中的项两两连接得出候选2-项集,也就是对矩阵中第i列所代表的项集和第j列所代表的项集进行逻辑与操作.然后计 关联规则挖掘算法的研究 张 丽 (湖南文理学院 经济与管理学院,湖南 常德415000) 摘要:本文介绍了数据挖掘中的关联规则经典Ap r i or i 算法.针对Ap r i or i 算法在执行速度和效率上的缺点,提出了一种改进的Ap r i or i 算法. 关键词:Ap r i or i ;算法;关联规则中图分类号:TP311 文献标识码:A 文章编号:1673-260X(2013)01-0022-02 基金项目:湖南文理学院2010年度青年启动课题(QNQD1017) 22--

数据挖掘实验三报告

实验三:基于Weka 进行关联规则挖掘 实验步骤 1.利用Weka对数据集contact-lenses.arff进行Apriori关联规则挖掘。要求: 描述数据集;解释Apriori 算法及流程;解释Weka 中有关Apriori 的参数;解释输出结果 Apriori 算法: 1、发现频繁项集,过程为 (1)扫描 (2)计数 (3)比较 (4)产生频繁项集 (5)连接、剪枝,产生候选项集 (6)重复步骤(1)~(5)直到不能发现更大的频集 2、产生关联规则 (1)对于每个频繁项集L,产生L的所有非空子集; (2)对于L的每个非空子集S,如果 P(L)/P(S)≧min_conf(最小置信度阈值) 则输出规则“S=>L-S” Weka 中有关Apriori 的参数:

1. car 如果设为真,则会挖掘类关联规则而不是全局关联规则。 2. classindex 类属性索引。如果设置为-1,最后的属性被当做类属性。 3.delta 以此数值为迭代递减单位。不断减小支持度直至达到最小支持度或产生了满足数量要求的规则。 4. lowerBoundMinSupport 最小支持度下界。 5. metricType 度量类型。设置对规则进行排序的度量依据。可以是:置信度(类关联规则只能用置信度挖掘),提升度(lift),杠杆率(leverage),确信度(conviction)。 在Weka中设置了几个类似置信度(confidence)的度量来衡量规则的关联程度,它们分别是: a)Lift :P(A,B)/(P(A)P(B)) Lift=1时表示A和B独立。这个数越大(>1),越表明A和B存在于一个购物篮中不是偶然现象,有较强的关联度. b)Leverage :P(A,B)-P(A)P(B) Leverage=0时A和B独立,Leverage越大A和B的关系越密切

关联规则数据挖掘

关联规则数据挖掘 学习报告

目录 引言 2 案例 2 关联规则 3 (一)关联规则定义 (二)相关概念 (三)关联规则分类 数据 6 (一)小型数据 (二)大型数据 应用软件7 (一)WEKA (二)IBM SPSS Modeler 数据挖掘12 总结27

一、引言 数据库与互联网技术在日益发展壮大,人们每天可以获得的信息量呈指数级增长。如何从这浩如瀚海的数据中找出我们需要的数据显得尤为重要。数据挖掘又为资料探勘、数据采矿。它是数据库知识发现中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。 数据挖掘大致分为以下几类:分类(Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)。 二、案例 "尿布与啤酒"的故事。 在一家超市里,有一个有趣的现象:尿布和啤酒赫然摆在一起出售。但是这个奇怪的举措却使尿布和啤酒的销量双双增加了。这不是一个笑话,而是发生在美国沃尔玛连锁店超市的真实案例,并一直为商家所津津乐道。沃尔玛拥有世界上最大的数据仓库系统,为了能够准确了解顾客在其门店的购买习惯,沃尔玛对其顾客的购物行为进行购物篮分析,想知道顾客经常一起购买的商品有哪些。沃尔玛数据仓库里集中了其各门店的详细原始交易数据。在这些原始交易数据的基础上,沃尔玛利用数据挖掘方法对这些数据进行分析和挖掘。一个意外的发现是:"跟尿布一起购买最多的商品竟是啤酒!经过大量实际调查和分析,揭示了一个隐藏在"尿布与啤酒"背后的美国人的一种行为模式:在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,而他们中有30%~40%的人同时也为自己买一些啤酒。产生这一现象的原因是:美国的太太们常叮嘱她们的丈夫下班后为小孩买尿布,而丈夫们在买尿布后又随手带回了他们喜欢的啤酒。 按常规思维,尿布与啤酒风马牛不相及,若不是借助数据挖掘技术对大量交易数据进行挖掘分析,沃尔玛是不可能发现数据内在这一有价值的规律的。

最新数据挖掘考试题目——关联分析资料

数据挖掘考试题目——关联分析 一、10个选择 1.以下属于关联分析的是() A.CPU性能预测B.购物篮分析 C.自动判断鸢尾花类别D.股票趋势建模 2.维克托?迈尔-舍恩伯格在《大数据时代:生活、工作与思维的大变革》一书中,持续强调了一个观点:大数据时代的到来,使我们无法人为地去发现数据中的奥妙,与此同时,我们更应该注重数据中的相关关系,而不是因果关系。其中,数据之间的相关关系可以通过以下哪个算法直接挖掘() A.K-means B.Bayes Network C.C4.5 D.Apriori 3.置信度(confidence)是衡量兴趣度度量()的指标。 A.简洁性B.确定性 C.实用性D.新颖性 4.Apriori算法的加速过程依赖于以下哪个策略() A.抽样B.剪枝 C.缓冲D.并行 5.以下哪个会降低Apriori算法的挖掘效率() A.支持度阈值增大B.项数减少 C.事务数减少D.减小硬盘读写速率 6.Apriori算法使用到以下哪些东东() A.格结构、有向无环图B.二叉树、哈希树 C.格结构、哈希树D.多叉树、有向无环图 7.非频繁模式() A.其置信度小于阈值B.令人不感兴趣 C.包含负模式和负相关模式D.对异常数据项敏感 8.对频繁项集、频繁闭项集、极大频繁项集的关系描述正确的是()[注:分别以1、2、3代表之] A.3可以还原出无损的1 B.2可以还原出无损的1 C.3与2是完全等价的D.2与1是完全等价的 9.Hash tree在Apriori算法中所起的作用是() A.存储数据B.查找 C.加速查找D.剪枝 10.以下不属于数据挖掘软件的是() A.SPSS Modeler B.Weka C.Apache Spark D.Knime 二、10个填空 1.关联分析中表示关联关系的方法主要有:和。 2.关联规则的评价度量主要有:和。 3.关联规则挖掘的算法主要有:和。 4.购物篮分析中,数据是以的形式呈现。 5.一个项集满足最小支持度,我们称之为。 6.一个关联规则同时满足最小支持度和最小置信度,我们称之为。

关联规则挖掘的过程

关联规则挖掘的过程 关联规则挖掘过程主要包含两个阶段:第一阶段必须先从资料集合中找出所有的高频项目组(Frequentitemsets),第二阶段再由这些高频项目组中产生关联规则(Association Rules)。 关联规则挖掘的第一阶段必须从原始资料集合中,找出所有高频项目组(Large Itemsets)。高频的意思是指某一项目组出现的频率相对于所有记录而言,必须达到某一水平。一项目组出现的频率称为支持度(Support),以一个包含A与B两个项目的2-itemset为例,我们可以经由公式(1)求得包含{A,B}项目组的支持度,若支持度大于等于所设定的最小支持度(Minimum Support)门槛值时,则{A,B}称为高频项目组。一个满足最小支持度的k-itemset,则称为高频k-项目组(Frequent k-itemset),一般表示为Large k或Frequent k。算法并从Large k的项目组中再产生Large k+1,直到无法再找到更长的高频项目组为止。 关联规则挖掘的第二阶段是要产生关联规则(Association Rules)。从高频项目组产生关联规则,是利用前一步骤的高频k-项目组来产生规则,在最小信赖度(Minimum Confidence)的条件门槛下,若一规则所求得的信赖度满足最小信赖度,称此规则为关联规则。例如:经由高频k-项目组{A,B}所产生的规则AB,其信赖度可经由公式(2)求得,若信赖度大于等于最小信赖度,则称AB为关联规则。 就沃尔马案例而言,使用关联规则挖掘技术,对交易资料库中的纪录进行资料挖掘,首先必须要设定最小支持度与最小信赖度两个门槛值,在此假设最小支持度min_support=5% 且最小信赖度min_confidence=70%。因此符合此该超市需求的关联规则将必须同时满足以上两个条件。若经过挖掘过程所找到的关联规则「尿布,啤酒」,满足下列条件,将可接受「尿布,啤酒」的关联规则。用公式可以描述Support(尿布,啤酒)>=5%且Confidence(尿布,啤酒)>=70%。其中,Support(尿布,啤酒)>=5%于此应用范例中的意义为:在所有的交易纪录资料中,至少有5%的交易呈现尿布与啤酒这两项商品被同时购买的交易行为。Confidence(尿布,啤酒)>=70%于此应用范例中的意义为:在所有包含尿布的交易纪录资料中,至少有70%的交易会同时购买啤酒。因此,今后若有某消费者出现购买尿布的行为,超市将可推荐该消费者同时购买啤酒。这个商品推荐的行为则是根据「尿布,啤酒」关联规则,因为就该超市过去的交易纪录而言,支持了“大部份购买尿布的交易,会同时购买啤酒”的消费行为。 关联规则挖掘通常比较适用与记录中的指标取离散值的情况。如果原始数据库中的指标值是取连续的数据,则在关联规则挖掘之前应该进行适当的数据离散化(实际上就是将某个区间的值对应于某个值),数据的离散化是数据挖掘前的重要环节,离散化的过程是否合理将直接影响关联规则的挖掘结果。

数据挖掘关联规则实验报告

实验七关联规则 1. 实验目标 ?使用SSAS进行关联规则挖掘实验 2. 实验要求 (1)按“实验内容”完成操作,并记录实验步骤; (2)回答“问题讨论”中的思考题,并写出本次实验的心得体会; (3)完成实验报告。 3. 实验内容 生成市场篮方案。Adventure Works 的市场部希望改进公司的网站以促进越区销售。在更新网站之前,需要根据客户的在线购物篮中已有的其他产品创建一个可预测客户购买需求的数据挖掘模型。这些预测还有助于市场部将可能被集中购买的项统一放置在网站的一个位置上。通过实验,创建关联规则模型,可预测可能出现在购物篮中的其他项或客户想要放入购物篮的项。 4. 实验步骤 (1) 创建市场篮挖掘模型结构 1.在Business Intelligence Development Studio 的解决方案资源管理器中,右键单击“挖掘 结构”,再选择“新建挖掘结构”。 此时,系统将打开数据挖掘向导。 2.在“欢迎使用数据挖掘向导”页上,单击“下一步”。 3.在“选择定义方法”页上,确保已选中“从现有关系数据库或数据仓库”,再单击“下一步”。 4.在“选择数据挖掘技术”页的“您要使用何种数据挖掘技术”下,选中“Microsoft 关联规 则”,再单击“下一步”。 “选择数据源视图”页随即显示。默认情况下,“可用数据源视图”下的Adventure Works DW 为选中状态。 5.单击“下一步”。

6.在“指定表类型”页上,选中vAssocSeqOrders表旁的“事例”复选框,选中 vAssocSeqLineItems表旁边的“嵌套”复选框,再单击“下一步”(注意先在视图中建立两 个表之间的关联)。 7.在“指定定型数据”页上,依次清除CustomerKey旁边的“键”复选框和LineNumber旁 边的“键”和“输入”复选框。 8.选中Model列旁边的“键”和“可预测”复选框。然后,系统也将自动选中“输入”复选框。 9.单击“下一步”。 10.在“指定列的内容和数据类型”页上,单击“下一步”。 11.在“完成向导”页的“挖掘结构名称”中,键入Association。 12.在“挖掘模型名称”中,键入Association,再单击“完成”。 (2) 调整关联模型的参数和处理关联模型 在处理上一个任务中与“关联”挖掘结构一起创建的初始挖掘模型之前,必须更改以下两个参数的默认值:Support和Probability。Support定义规则被视为有效前必须存在的事例百分比。Probability定义关联被视为有效前必须存在的可能性。 调整关联模型的参数步骤如下: 1.打开数据挖掘设计器的“挖掘模型”选项卡。 2.右键单击设计器网格中的“关联”列,然后选择“设置算法参数”。 系统将打开“算法参数”对话框。 3.在“算法参数”对话框的“值”列中,设置以下参数: MINIMUM_PROBABILITY = MINIMUM_SUPPORT = 4.单击“确定”。 处理关联模型步骤如下: 1.在Business Intelligence Development Studio 的“挖掘模型”菜单上,选择“处理挖掘结构和 所有模型”。 系统将打开“处理挖掘结构- 关联”对话框。 2.单击“运行”。 系统将打开“处理进度”对话框,以显示有关模型处理的信息。模型处理可能需要一些时间,具体时间取决于您的计算机。 3.处理完成之后,在“处理进度”和“处理挖掘结构- 关联”对话框中,单击“关闭”。

数据挖掘实验报告-关联规则挖掘

数据挖掘实验报告(二)关联规则挖掘 姓名:李圣杰 班级:计算机1304 学号:1311610602

一、实验目的 1. 1.掌握关联规则挖掘的Apriori算法; 2.将Apriori算法用具体的编程语言实现。 二、实验设备 PC一台,dev-c++5.11 三、实验内容 根据下列的Apriori算法进行编程:

四、实验步骤 1.编制程序。 2.调试程序。可采用下面的数据库D作为原始数据调试程序,得到的候选1项集、2项集、3项集分别为C1、C2、C3,得到的频繁1项集、2项集、3项集分别为L1、L2、L3。

代码 #include #include #define D 4 //事务的个数 #define MinSupCount 2 //最小事务支持度数 void main() { char a[4][5]={ {'A','C','D'}, {'B','C','E'}, {'A','B','C','E'}, {'B','E'} }; char b[20],d[100],t,b2[100][10],b21[100 ][10]; int i,j,k,x=0,flag=1,c[20]={0},x1=0,i1 =0,j1,counter=0,c1[100]={0},flag1= 1,j2,u=0,c2[100]={0},n[20],v=1; int count[100],temp; for(i=0;i=MinSupCount) { d[x1]=b[k]; count[x1]=c[k]; x1++; } } //对选出的项集中的元素进行排序 for(i=0;i

关联规则挖掘英文PPT

INFO411/911 Laboratory exercises on Association Rule Mining Overview: Association rule mining can help uncover relationships between seemingly unrelated data in a transactional database. In data mining, association rules are useful in discovering consequences of commonly observed patterns within a set of transactions. What you need: 1.R software package (already installed on the lab computers) 2.The file "laboratory_week5.zip" on Moodle. Preparation: 1.Work in a group of size two to three (minimum size of a group is two. But no more than three students are to work together). Penalties apply if a group exeeds these limits. 2.Boot computer into Windows mode. 3.Download laboratory_week5.zip then save to an arbitrary folder, say "C:\Users\yourname\Desktop" 4.Uncompress laboratory_week 5.zip into this folder 5.Start "R" 6.Change the working directory by entering: setwd("C:/Users/yourname/Desktop") (Note that R expects forward slashes rather than backwars slashes as used by Windows.) Your task: Your are to submit a PDF document which contains your answers of the questions in this laboratory exercise. One document is to be submitted by each group. The header of the document must list the name and student number of all students in the group. Clearly indicate which question you have answered. The following link provides a documentation of the association rule module in R (called arules). The link can help you develop a better understanding of the usage and parameters of the association rule package in R: https://www.wendangku.net/doc/e116582306.html,/web/packages/arules/arules.pdf Work through the following step and answer given questions: Step1: Familiarize yourself with the arules package in R. Start R and type: library(arules) to load the package. We shall start from the analysis of a small file sample1.csv that contains some transactional data. To load data into R enter: sample1.transactions <- read.transactions("sample1.csv", sep=",") To get information about the total number of transactions in a file sample1.csv enter: sample1.transactions To get a summary of data set sample1.csv enter: summary(sample1.transactions) The data set is described as sparse matrix that consists of 10 rows and five columns. The density of

数据挖掘中关联规则挖掘的应用研究

数据挖掘中关联规则挖掘的应用研究 吴海玲,王志坚,许峰 河海大学计算机及信息工程学院,江苏南京(210098) 摘 要:本文首先介绍关联规则的基本原理,并简单概括其挖掘任务,然后说明关联规则的经典挖掘算法Apriori 算法,通过一个实例分析进一步明确关联规则在CRM 中的应用,最后展望了关联规则挖掘的研究方向。 关键词:数据挖掘,关联规则,Apriori 算法,CRM 引言 关联规则是表示数据库中一组对象之间的某种关联关系的规则,关联规则挖掘的主要对象是交易(Transaction)数据库。这种数据库的一个主要应用是零售业,比如超级市场的销售管理。条形码技术的发展使得数据的收集变得更容易、更完整,从而可以存储大量的交易资料。关联规则就是辨别这些交易项目之间是否存在某种关系。例如:关联规则可以表示“购买了商品A 和B 的顾客中有80%的人又购买了商品C 和D”。这种关联规则提供的信息可以用作商品目录设计、商场货架的布置、生产安排、具有针对性的市场营销等。 [1] 1 关联规则的基本原理 设I={i 1,i 2,……,i m }是项的集合,设任务相关的数据D 是数据库事务的集合,其中每个事务T 是项的集合,使得T I 。每一个事务有一个标识符,称作T ID 。设X 是一个项集,事务T 包含X 当且仅当X T 。关联规则是形如X Y 的蕴涵式,其中X I ,Y ?I ,并且X ∩Y =?。规则X Y 在事务集D 中成立,具有支持度s ,其中s 是D 中事务包含X ∪Y (即X 和Y 二者)的百分比,它是概率P (X ∪Y )。规则X Y 在事务集中具有可信度c ,如果D 中包含X 的事务同时也包含Y 的百分比c 。这是条件概率P (X Y ∣)。即是 ??????support(X ?Y)= P (X Y ∪) confidence(X ?Y)= P (X Y ∣) 同时满足最小支持度(minsup)和最小可信度阈值(minconf )的规则称作强规则[1]。 项的集合称为项集(itemset )。包含k 个项的项集成为k -项集,例如集合{computer, software }是一个2—项集。项集的出现频率是包含项集的事务数,简称为项集的频率。项集满足最小支持度minsup ,如果项集的出现频率大于或者等于minsup 与D 中事务总数的乘积。如果项集满足最小支持度,则称它为频繁项集(frequent itemset) [2]。 2 关联规则的发现任务 关联规则挖掘的问题就是要找出这样的一些规则,它们的支持度或可信度分别大于指定的最小支持度minsup 和最小可信度minconf 。因此,该问题可以分解成如下两个子问题[3]: 1.产生所有支持度大于或等于指定最小支持度的项集,这些项目集称为频繁项目集(frequent itemsets ),而其他的项目集则成为非频繁项目集(non-frequent itemsets ) 2.由频繁项集产生强关联规则。根据定义,这些规则必须满足最小支持度和最小可信度。 关联规则挖掘的问题的主要特征是数据量巨大,因此算法的效率很关键。目前研究的重点在第一步,即发现频繁项目集,因此第二步相对来说是很容易的。

数据挖掘关联规则分析报告

关联规则分析报告 2009年7月8日 目录 一前言 (1) 二数据预处理 (1) 三前7710条真实数据分析 (2) 1商品按小类分析 (2) 2商品按中类分析 (4) 3商品按大类分析 (4) 4分析比较 (5) 四后44904条随机数据分析 (5) 1商品按小类分析 (5) 2商品按中类分析 (7) 3商品按大类分析 (8) 4分析比较 (8) 五52614条混合数据分析 (8) 1商品按小类分析 (8) 2商品按中类分析 (11) 3商品按大类分析 (11) 4分析比较 (12) 六总结 (12)

一前言 使用关联规则挖掘算法分析购物清单时,会产生不止“啤酒→尿布”的单一关联规则,而将出现涉及多种商品的“纵横交错”的多条关联规则。针对这一实际问题,本文利用学生日常购物记录数据进行关联分析,通过概念分层从不同粒度上分析商品之间的关联性,从而找到商品之间的关联规则,实现优化超市货物摆放次序的目的。 二数据预处理 1)在SQL server 2000 查询分析器里执行下面的SQL语句 declare @sql varchar(8000) set @sql = 'select zid ,xh' select @sql = @sql + ' , max(case goodsid when ''' + goodsid + ''' then goodsid end) [' + 'n'+ goodsid + ']' from (select distinct goodsid from rcxfjl) as a set @sql = @sql + ' into table_a from rcxfjl group by zid,xh' exec(@sql) 2)在PB里将有购买记录的列改为”yes” for i=1 to dw_1.rowcount() for li_index=1 to long(dw_1.object.datawindow.column.count) if integer(dw_1.getitemstring(i,dw_1.describe('#' + string(li_index) + ".name")))>0 then dw_1.setitem(i,dw_1.describe('#' + string(li_index) + ".name"),"yes") end if next next 3)将处理好的数据直接导出到Excel中 4)将Excel表中的空格替换成”?”(在weka中?表示缺省值)

关联规则挖掘综述

关联规则挖掘综述 摘要:近年来国内外学者对关联规则进行了大量的研究。为了更好地了解关联规则的挖掘技术,对研究现状有更深入的了解,首先本文对数据挖掘技术进行了介绍,接着介绍了关联数据挖掘的基本原理,最后对经典的挖掘算法进行分类介绍。 关键词:数据挖掘;关联规则;算法;综述 1.引言 数据挖掘是从海量的数据里寻找有价值的信息和数据。数据挖掘中常用的算法[1]有:关联规则分析法(解决事件之间的关联问题)、决策树分类法(对数据和信息进行归纳和分类)、遗传算法(基于生物进化论及分子遗传学理论提出的)、神经网络算法(模拟人的神经元功能)等。 数据挖掘最早使用的方法是关联分析,主要应用于零售业。其中最有名的是售货篮分析,帮助售货商制定销售策略。随着信息时代的到来,数据挖掘在金融[2]、医疗[3]、通信[4]等方面得到了广泛的应用。 2.关联规则基本原理 设项的集合I = { I1 ,I2 ,...,Im },数据库事务的集合为D,我们用|D|表示事务数据库所有事务的个数,其中用T

表示每个事务,使得T I。我们用TID作为每个事务的唯一标识符。用X表示一个项集,满足X T,那么交易T包含X。根据上述相关描述,给出关联规则的相关定义。 2.1项集支持度 用X表示数据库事务D中的项集,项集X的支持度表示项集X在D中事务数所占的比例,用概率P(X)表示,那么Support(X)=P(X)=COUNT(X)/|D| (1) 2.2关联规则置信度 X Y关联规则的置信度是数据库事务D中包含X Y的事务数与包含X的事务数之比,表示方法如下: confidence(X Y)= support(X Y)/support(X)= P(Y|X)(2) 3.关联规则算法 3.1经典的Apriori挖掘算法 大多数关联规则的算法是将关联规则挖掘任务分为两个子任务完成。一是频繁项集的产生,频繁项集的目的是找到大于等于给定的最小支持度阈值的所有项集,这些项集我们称之为频繁项集。二是规则的产生,即从频繁项集中找到置信度比较高的规则,我们称之为强规则。Apriori挖掘算法是众多挖掘关联规则中比较经典的算法,它采用布尔关联规则,是一种宽度优先算法。 3.2Apriori算法优化

聚类分析、数据挖掘、关联规则这几个概念的关系

聚类分析和关联规则属于数据挖掘这个大概念中的两类挖掘问题, 聚类分析是无监督的发现数据间的聚簇效应。 关联规则是从统计上发现数据间的潜在联系。 细分就是 聚类分析与关联规则是数据挖掘中的核心技术; 从统计学的观点看,聚类分析是通过数据建模简化数据的一种方法。传统的统计聚类分析方法包括系统聚类法、分解法、加入法、动态聚类法、有序样品聚类、有重叠聚类和模糊聚类等。采用k-均值、k-中心点等算法的聚类分析工具已被加入到许多著名的统计分析软件包中,如SPSS、SAS等。 从机器学习的角度讲,簇相当于隐藏模式。聚类是搜索簇的无监督学习过程。与分类不同,无监督学习不依赖预先定义的类或带类标记的训练实例,需要由聚类学习算法自动确定标记,而分类学习的实例或数据对象有类别标记。聚类是观察式学习,而不是示例式的学习。 聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。聚类分析所使用方法的不同,常常会得到不同的结论。不同研究者对于同一组数据进行聚类分析,所得到的聚类数未必一致。 从实际应用的角度看,聚类分析是数据挖掘的主要任务之一。而且聚类能够作为一个独立的工具获得数据的分布状况,观察每一簇数据的特征,集中对特定的聚簇集合作进一步地分析。聚类分析还可以作为其他算法(如分类和定性归纳算法)的预处理步骤。 关联规则挖掘过程主要包含两个阶段:第一阶段必须先从资料集合中找出所有的高频项目组(FrequentItemsets),第二阶段再由这些高频项目组中产生关联规则(AssociationRules)。 关联规则挖掘的第一阶段必须从原始资料集合中,找出所有高频项目组(LargeItemsets)。高频的意思是指某一项目组出现的频率相对于所有记录而言,必须达到某一水平。 关联规则挖掘的第二阶段是要产生关联规则(AssociationRules)。从高频项目组产生关联规则,是利用前一步骤的高频k-项目组来产生规则,在最小信赖度(MinimumConfidence)的条件门槛下,若一规则所求得的信赖度满足最小信赖度,称此规则为关联规则。

浅谈关联规则挖掘技术的研究与应用

浅谈关联规则挖掘技术的研究与应用 【摘要】数据挖掘技术是日前广泛研究的数据库技术,关联规则是表示数据库中一组对象之间某种关联关系的规则。本文简要介绍了关联规则挖掘的相关理论和概念、Apriori算法,最后介绍了关联规则数据挖掘的应用情况。 【关键词】关联规则数据挖掘Apriori算法应用 随着数据库技术的快速发展,全球范围内的数据存储量急骤上升,面对这一挑战,数据挖掘技术应运而生, 关联规则挖掘在数据挖掘中是一个重要的课题,最近几年已被业界所广泛研究。关联规则的目标是发现数据集中所有的频繁模式,关联规则挖掘发现大量数据中项集之间有趣的关联或相关联系。 一、关联规则的定义 关联规则挖掘的一个典型例子是购物篮分析。关联规则研究有助于发现交易数据库中不同商品(项)之间的联系,找出顾客购买行为模式,如购买了某一商品对购买其他商品的影响。分析结果可以应用于商品货架布局、货存安排以及根据购买模式对用户进行分类。 二、关联规则挖掘的过程 关联规则挖掘过程主要包含两个阶段:关联规则挖掘的第一阶段必须从原始资料集合中,找出所有高频项目组(Large Itemsets)。高频的意思是指某一项目组出现的频率相对于所有记录而言,必须达到某一水平。关联规则挖掘的第二阶段是要产生关联规则(Association Rules)。根据定义,这些规则必须满足最小支持度和最小可信度。 三、关联规则分类 1.基于规则中处理的变量的类别,关联规则可以分为布尔型和数值型。布尔型关联规则处理的值都是离散的、种类化的,它显示了这些变量之间的关系;而数值型关联规则可以和多维关联或多层关联规则结合起来,对数值型字段进行处理,将其进行动态的分割,或者直接对原始的数据进行处理。 2.基于规则中数据的抽象层次,可以分为单层关联规则和多层关联规则。在单层的关联规则中,所有的变量都没有考虑到现实的数据是具有多个不同的层次的;而在多层的关联规则中,对数据的多层性已经进行了充分的考虑。 3.基于规则中涉及到的数据的维数,关联规则可以分为单维的和多维的。在单维的关联规则中,我们只涉及到数据的一个维;而在多维的关联规则中,要处理的数据将会涉及多个维。

数据分析与挖掘实验报告

数据分析与挖掘实验报告

《数据挖掘》实验报告 目录 1.关联规则的基本概念和方法 (1) 1.1数据挖掘 (1) 1.1.1数据挖掘的概念 (1) 1.1.2数据挖掘的方法与技术 (2) 1.2关联规则 (5) 1.2.1关联规则的概念 (5) 1.2.2关联规则的实现——Apriori算法 (7) 2.用Matlab实现关联规则 (12) 2.1Matlab概述 (12) 2.2基于Matlab的Apriori算法 (13) 3.用java实现关联规则 (19) 3.1java界面描述 (19) 3.2java关键代码描述 (23) 4、实验总结 (29) 4.1实验的不足和改进 (29) 4.2实验心得 (30)

1.关联规则的基本概念和方法 1.1数据挖掘 1.1.1数据挖掘的概念 计算机技术和通信技术的迅猛发展将人类社会带入到了信息时代。在最近十几年里,数据库中存储的数据急剧增大。数据挖掘就是信息技术自然进化的结果。数据挖掘可以从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的,人们事先不知道的但又是潜在有用的信息和知识的过程。 许多人将数据挖掘视为另一个流行词汇数据中的知识发现(KDD)的同义词,而另一些人只是把数据挖掘视为知识发现过程的一个基本步骤。知识发现过程如下: ·数据清理(消除噪声和删除不一致的数据)·数据集成(多种数据源可以组合在一起)·数据转换(从数据库中提取和分析任务相关的数据) ·数据变换(从汇总或聚集操作,把数据变换和统一成适合挖掘的形式) ·数据挖掘(基本步骤,使用智能方法提取数

据模式) ·模式评估(根据某种兴趣度度量,识别代表知识的真正有趣的模式) ·知识表示(使用可视化和知识表示技术,向用户提供挖掘的知识)。 1.1.2数据挖掘的方法与技术 数据挖掘吸纳了诸如数据库和数据仓库技术、统计学、机器学习、高性能计算、模式识别、神经网络、数据可视化、信息检索、图像和信号处理以及空间数据分析技术的集成等许多应用领域的大量技术。数据挖掘主要包括以下方法。神经网络方法:神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。典型的神经网络模型主要分3大类:以感知机、bp反向传播模型、函数型网络为代表的,用于分类、预测和模式识别的前馈式神经网络模型;以hopfield 的离散模型和连续模型为代表的,分别用于联想记忆和优化计算的反馈式神经网络模型;以art 模型、koholon模型为代表的,用于聚类的自组

数据挖掘算法之关联规则

数据挖掘算法之-关联规则挖掘(Association Rule) (2009-09-20 21:59:23) 转载 标签: 分类:DM dm 在数据挖掘的知识模式中,关联规则模式是比较重要的一种。关联规则的概念由Agrawal、Imielinski、Swami 提出,是数据中一种简单但很实用的规则。关联规则模式属于描述型模式,发现关联规则的算法属于无监督学习的方法。 一、关联规则的定义和属性 考察一些涉及许多物品的事务:事务1 中出现了物品甲,事务2 中出现了物品乙,事务3 中则同时出现了物品甲和乙。那么,物品甲和乙在事务中的出现相互之间是否有规律可循呢?在数据库的知识发现中,关联规则就是描述这种在一个事务中物品之间同时出现的规律的知识模式。更确切的说,关联规则通过量化的数字描述物品甲的出现对物品乙的出现有多大的影响。 现实中,这样的例子很多。例如超级市场利用前端收款机收集存储了大量的售货数据,这些数据是一条条的购买事务记录,每条记录存储了事务处理时间,顾客购买的物品、物品的数量及金额等。这些数据中常常隐含形式如下的关联规则:在购买铁锤的顾客当中,有70 %的人同时购买了铁钉。这些关联规则很有价值,商场管理人员可以根据这些关联规则更好地规划商场,如把铁锤和铁钉这样的商品摆放在一起,能够促进销售。 有些数据不像售货数据那样很容易就能看出一个事务是许多物品的集合,但稍微转换一下思考角度,仍然可以像售货数据一样处理。比如人寿保险,一份保单就是一个事务。保险公司在接受保险前,往往需要记录投保人详尽的信息,有时还要到医院做身体检查。保单上记录有投保人的年龄、性别、健康状况、工作单位、工作地址、工资水平等。这些投保人的个人信息就可以看作事务中的物品。通过分析这些数据,可以得到类似以下这样的关联规则:年龄在40 岁以上,工作在A 区的投保人当中,有45 %的人曾经向保险公司索赔过。在这条规则中,

关联规则挖掘基本概念和算法--张令杰10121084

研究生课程论文 关联规则挖掘基本概念和算法 课程名称:数据仓库与数据挖掘 学院:交通运输 专业:交通运输规划与管理 年级:硕1003班 姓名:张令杰 学号:10121084 指导教师:徐维祥

摘要 (Ⅰ) 一、引言 (1) 二、关联规则的基本描述 (1) 三、经典频繁项集挖掘的Apriori算法 (3) 四、提高Apriori算法的效率 (6) 五、由频繁项集产生关联规则 (8) 六、总结 (9) 参考文献 (9)

目前,数据挖掘已经成为一个研究热点。关联规则数据挖掘是数据挖掘的一个主要研究内容,关联规则是数据中存在的一类重要的可被发现的知识。其核心问题是如何提高挖掘算法的效率。本文介绍了经典的关联规则挖掘算法Apriori并分析了其优缺点。针对该算法的局限性,结合Apriori性质,本文对Apriori中连接的步骤进行了改进。通过该方法,可以有效地减少连接步产生的大量无用项集并减少判断项集子集是否是频繁项集的次数。 关键词:Apriori算法;关联规则;频繁项集;候选集

一、 引言 关联规则挖掘发现大量数据中项集之间有趣的关联或相关联系。如果两项或多项属性之间存在关联,那么其中一项的属性就可以依据其他属性值进行预测。它在数据挖掘中是一个重要的课题,最近几年已被业界所广泛研究。 关联规则挖掘的一个典型例子是购物篮分析[1] 。关联规则研究有助于发现交易数据库中不同商品(项)之间的联系,找出顾客购买行为模式,如购买了某一商品对购买其他商品的影响。分析结果可以应用于商品货架布局、货存安排以及根据购买模式对用户进行分类。 最著名的关联规则发现方法是R. Agrawal 提出的Apriori 算法。关联规则挖掘问题可以分为两个子问题:第一步是找出事务数据库中所有大于等于用户指定的最小支持度的数据项集;第二步是利用频繁项集生成所需要的关联规则,根据用户设定的最小置信度进行取舍,最后得到强关联规则。识别或发现所有频繁项目集市关联规则发现算法的核心。 二、关联规则的基本描述 定义1. 项与项集 数据库中不可分割的最小单位信息,称为项目,用符号i 表示。项的集合称为项集。设集合{}k i i i I ,,,21 =是项集,I 中项目的个数为k ,则集合I 称为k -项集。例如,集合{啤 酒,尿布,牛奶}是一个3-项集。 定义2. 事务 设{}k i i i I ,,,21 =是由数据库中所有项目构成的集合,一次处理所含项目的集合用T 表示,{}n t t t T ,,,21 =。每一个i t 包含的的项集都是I 子集。 例如,如果顾客在商场里同一次购买多种商品,这些购物信息在数据库中有一个唯一的标识,用以表示这些商品是同一顾客同一次购买的。我们称该用户的本次购物活动对应一个数据库事务。 定义3. 项集的频数(支持度计数) 包括项集的事务数称为项集的频数(支持度计数)。 定义4. 关联规则 关联规则是形如Y X ?的蕴含式,其中X ,Y 分别是I 的真子集,并且φ=?Y X 。 X 称为规则的前提,Y 称为规则的结果。关联规则反映X 中的项目出现时,Y 中的项目也 跟着出现的规律

相关文档
相关文档 最新文档