文档库 最新最全的文档下载
当前位置:文档库 › 粒子的波动性教案

粒子的波动性教案

粒子的波动性教案
粒子的波动性教案

粒子的波动性

(一)知识与技能

1.了解光既具有波动性,又具有粒子性。

2.知道实物粒子和光子一样具有波粒二象性。

3.知道德布罗意波的波长和粒子动量关系。

(二)过程与方法

1.了解物理真知形成的历史过程。

2.了解物理学研究的基础是实验事实以及实验对于物理研究的重要性。

3.知道某一物质在不同环境下所表现的不同规律特性。

(三)情感、态度与价值观

1.通过学生阅读和教师介绍讲解,使学生了解科学真知的得到并非一蹴而就,需要经过一个较长的历史发展过程,不断得到纠正与修正。

2.通过相关理论的实验验证,使学生逐步形成严谨求实的科学态度。

3.通过了解电子衍射实验,使学生了解创造条件来进行有关物理实验的方法。

★教学重点

实物粒子和光子一样具有波粒二象性,德布罗意波长和粒子动量关系。

★教学难点实物粒子的波动性的理解。

★教学方法学生阅读-讨论交流-教师讲解-归纳总结

★教学用具:

课件:PP演示文稿(科学家介绍,本节知识结构)。多媒体教学设备。

★课时安排 1 课时

★教学过程

(一)引入新课

提问:前面我们学习了有关光的一些特性和相应的事实表现,那么我们究竟怎样来认识光的本质和把握其特性呢?请同时举出相应的事实基础。

学生阅读课本、思考后回答:光是一种物质,它既具有粒子性,又具有波动性。在不同条件下表现出不同特性。(分别举出有关光的干涉衍射和光电效应等实验事实)。

点评:让学生阅读课本内容结合前面所学知识进行归纳总结,形成正确观点。

教师:原来我们不能片面地认识事物,能举出本学科或其他学科或生活中类似的事或物吗?

学生举例说明:例如哲学中对事物的辨正观点等。

点评:培养学生对事物或规律的全面把握,并与与其他学科进行横向渗透联系。

(二)进行新课

1、光的波粒二象性

教师:讲述光的波粒二象性。

在学生的辨析说明下进行归纳整理。

(1)我们所学的大量事实说明:光是一种波,同时也是一种粒子,光具有波粒二象性。 光的分立性和连续性是相对的,是不同条件下的表现,光子的行为服从统计规律。

(2)光子在空间各点出现的概率遵从波动规律,物理学中把光波叫做概率波。

点评:通过学生归纳总结形成结论,教师再进行讲解,学生容易接受。充分注重知识的学生自主形成过程。

2、光子的能量与频率以及动量与波长的关系。

hv =ε λ/h p =

让学生找到更多的关系公式:λ/h p ==c v hv //ελ=

提问:受此启发,人们想到:同样作为物质的实物粒子(如电子、原子、分子等)是否也具有波动性呢?

学生阅读课本“粒子的波动性”。

点评:让学生带着问题阅读,提高阅读的效率,培养学生从课文材料中提取有关信息的能力。

3、粒子的波动性

提问:谁大胆地将光的波粒二象性推广到实物粒子?只是因为他大胆吗?

学生回答:法国科学家德布罗意考虑到普朗克能量子和爱因斯坦光子理论的成功,大胆地把光的波粒二象性推广到实物粒子。

展示演示文稿资料:有关德布罗意。

点评:使学生了解对知识理论的推广和假设并不是一味 的凭空猜想,而是有一定的理论或事实基础。

(1)德布罗意波

实物粒子也具有波动性,这种波称之为物质波,也叫德布罗意波。

(2)物质波波长

p h =λ=γ

p E m v h = 提问:各物理量的意义?

学生回答:λ为德布罗意波长,h 为普朗克常量,p 为粒子动量。

点评:对物理原理公式的理解关键在于对各物理量意义的理解。

讲述:当时这一观点超出了人们的想象,不被人们所接受,历史上类似的事例我们还知道那些?

学生回答:伽利略的两个铁球同时落地等。

点评:使学生了解正确的知识理论往往并不是一提出就能被大家所接受的。

教师:让学生带着问题阅读课本有关内容,为什么德布罗意波观点很难通过实验验证?又是在怎样的条件下使实物粒子的波动性得到了验证?

4.物质波的实验验证

提问:粒子波动性难以得到验证的原因?

学生阅读教材后回答:宏观物体的波长比微观粒子的波长小得多,这在生活中很难找到能发生衍射的障碍物,所以我们并不认为它有波动性.作为微观粒子的电子,其德布罗意波波长为10-10m 数量级,找与之相匹配的障碍物也非易事.

点评:让学生知受实际条件的限制而使很多理论在开始都处于假设阶段,不易被人们接受。

例题:某电视显像管中电子的运动速度是4.0×107m/s ;质量为10g 的一颗子弹的运动速度是200m/s .分别计算它们的德布罗意波长.

引导学生分析,学生解答:根据公式p h /=λ计算得1.8×10-11m 和3.3×10-34m

点评:通过具体计算使学生对实物粒子的德布罗意波长有感性认识,进一步理解实物粒子波动性验证的困难。

说明:由计算结果知,通常生活中观察不到实物波动特性征的原因。

展示演示文稿资料:电子波动性的发现者———戴维森和小汤姆逊

(电子波动性的发现,使得德布罗意由于提出实物粒子具有波动性这一假设得以证实,并因此而获得1929年诺贝尔物理学奖.而戴维森和小汤姆逊由于发现了电子的波动性也同获1937年诺贝尔物理学奖)

学生阅读有关物理学历史资料,了解物理学有关知识的形成建立和发展的真是过程。 点评:应用物理学家的历史资料,不仅有真实感,增强了说服力,同时也能对学生进行发放教育,有利于培养学生的科学态度和科学精神,激发学生的探索精神。

教师:讲述电子衍射实验:1927年,两位美国物理学家使电子束投射到镍的晶体上,得到了电子束的衍射图案.从而证实了德布罗意的假设。

学生了解更具体的相关历史资料。

点评:增加真实感,使学生初步体会如何创造条件进行科学实验探索,体会其中的奇妙之处。

讲述:除了电子以外,后来还陆续证实了质子、中子以及原子、分子的波动性。

点评:引用更多实验事实来增强对理论的证明。

提问:衍射现象对高分辨率的显微镜有影响否?如何改进?

学生阅读课本材料:显微镜的分辨本领。

点评:对所学知识进行拓展,加强对实际生产生活应用的联系。

(三)课堂小结

教师活动:本节课我们学习了光的本质,即光是一种物质,它既具有粒子性,又具有波动性。在不同条件下表现出不同特性。注意对光的本质的全面把握。学习了得到实验事实验证的实物粒子波动性,其对应的波称之为物质波,注意掌握物质波的计算公式。

点评:反思小节为学生提供本节内容的主要知识框架,有利于学生对所学知识的及时巩固和知识重点的把握。

(四)作业:

复习本节教材43页“问题与练习”中各题,预做回答。

点评:加深对课堂所学知识的理解和掌握,联系实际对所学内容进行应用。

★教学体会

本节课作为近代物理部分内容,比较抽象,学生没有生活经验和感观认识,也没有演示实验可以做,在课堂上注意以学生为主导,通过补充的一些史料,加深学生感受,让学生阅读思考后归纳得出结论,同样能收到好的效果。

(1)在有关事实和已知观点基础下,归纳光的本性,培养学生注意全面把握物理规律和全面把握物理规律的能力。

(2)课本材料和补充的史料让学生先行阅读,通过思考、辨析后归纳得出正确结论,比教师一人讲解更具有真实感和说服力。同时也培养了学生阅读材料提取有关信息的能力。

(3)对于难以理解的粒子的波动性,并且实际条件不允许进行实验验证,必须充分展示真实的历史资料,加强说服力。同时通过对历史上创造条件进行实验验证的方法学习,使学生初步体会如何创造条件进行科学实验探索,体会其中的奇妙之处,增强进行科学探索的兴趣。

光的波动性和粒子性

专题二光的波动性和粒子性 考情动态分析 该专题内容,以对光的本性的认识过程为线索,介绍了近代物理光学的一些初步理论,以及建立这些理论的实验基础和一些重要的物理现象.由于该部分知识和大学物理内容有千丝万缕的联系,且涉及较多物理学的研究方法,因此该部分知识是高考必考内容之一.难度适中.常见的题型是选择题,其中命题率最高的是光的干涉和光电效应,其次是波长、波速和频率.有时与几何光学中的折射现象、原子物理中的玻尔理论相结合,考查学生的分析综合能力.此外对光的偏振降低了要求,不必在知识的深度上去挖掘. 考点核心整合 1.光的波动性 光的干涉、衍射现象说明光具有波动性,光的偏振现象说明光波为横波,光的电磁说则揭示了光波的本质——光是电磁波. (1)光的干涉 ①光的干涉及条件 由频率相同(相差恒定)的两光源——相干光源发出的光在空间相遇,才会发生干涉,形成稳定的干涉图样.由于发光过程的量子特性,任何两个独立的光源发出的光都不可能发生干涉现象.只有采用特殊的“分光”方法——将一束光分为两束,才能获得相干光.如双缝干涉中通过双缝将一束光分为两束,薄膜干涉中通过薄膜两个表面的反射将一束光分为两束而形成相干光. ②双缝干涉 在双缝干涉中,若用单色光,则在屏上形成等间距的、明暗相间的干涉条纹,条纹间距 L Δx和光波的波长λ成正比,和屏到双缝的距离L成正比,和双缝间距d成反比,即Δx= d λ.若用白光做双缝干涉实验,除中央亮条纹为白色外,两侧为彩色条纹,它是不同波长的光干涉条纹的间距不同而形成的. ③薄膜干涉 在薄膜干涉中,薄膜的两个表面反射光的路程差(严格地说应为光程差)与膜的厚度有关,故同一级明条纹(或暗条纹)应出现在膜的厚度相同的地方.利用这一特点可以检测平面的平整度.另外适当调整薄膜厚度.可使反射光干涉相消,增强透射光,即得增透膜. (2)光的衍射 ①条件 光在传播过程中遇到障碍物时,偏离原来的直线传播路径,绕到障碍物后面继续传播的现象叫光的衍射.在任何情况下,光的衍射现象都是存在的,但发生明显的衍射现象的条件应是障碍物或孔的尺寸与光波的波长相差不多. ②特点 在单缝衍射现象中,若入射光为单色光,则中央为亮且宽的条纹,两侧为亮度逐渐衰减的明暗相间条纹;若入射光为白光,则除中央出现亮且宽的白色条纹外,两侧出现亮度逐渐衰减的彩色条纹. (3)光的偏振 在与光波传播方向垂直的平面内,光振动沿各个方向均匀分布的光称为自然光,光振动沿着特定方向的光即为偏振光. 自然光通过偏振片(起偏器)之后就成为偏振光.光以特定的入射角射到两种介质界面上时,反射光和折射光也都是偏振光. 偏振现象是横波特有的现象,所以光的偏振现象表明光波为横波.

人教版物理教材选修3-5 第十七章第2节《光的粒子性》名师教案

光的粒子性——光电效应 一、概述 本课题为普通高中物理选修(3-5)第五章波和粒子第一节,高三理科班课程,学时一课时。 学习光电效应现象及其解释理论——光电效应方程。 本课教材蕴含着十分丰富的教学内容:在知识方面,本课作为后牛顿物理两大支柱之――量子理论的入门,涉及到量子物理最基础的内容,也是经典物理学与量子物理学的重要衔接;同时本节还有着厚重的物理学科文化积淀,有物理学史、科学方法、辩证唯物主义思想、创新意识等人文精神教育的题材.教材在知识陈述上较为浅显直接,而关于这些知识的“背景”,则是相当丰满、承赋人文,为实施“科学的人文教育价值”提供了很大的空间. 二、核心素养 经历“探究光电效应的规律”过程,让学生获得探究活动的体验,体验探究自然界规律的艰辛与喜悦.陶冶崇尚科学、仰慕科学家,欣赏物理学的奇妙与和谐的情愫.学习科学家敢于坚持真理、勇于创新和实事求是的科学态度和科学精神,培养判断有关信息是否科学的意识. 三、教学目标 1. 了解光电效应研究史实.了解光子的概念,了解并识别光电效应现象. 2. 能表述光电效应现象的规律,会用光子说解释光电效应现象的规律. 3. 理解光电效应方程的各个物理量的含义及其对光电效应的解释. 四、学情分析 学生已经在3-5第二章学习过原子结构和氢原子光谱与能级结构,对原子微观结构有了一定的认识。知道原子的电离过程本质。高三理科班学生对原子的微观机理有一定的兴趣,但是,微观世界的抽象性会成为学生理解过程的主要障碍。急于求成、重视结论型陈述、轻视物理探究史实和逻辑推理是不少理科生学习原子物理相关理论的通病,这也是这一部分知识遗忘率高的原因。 五、教学过程 课前:登陆优教平台,发送预习任务。根据优教平台上学生反馈的预习情况,发现薄弱点,针对性教学。

(完整版)光的波粒二象性教案

光的波粒二象性 教案示例 一、教学目标 1.知识目标 (1)了解微粒说的基本观点及对光学现象的解释和所遇到的问题. (2)了解波动说的基本观点及对光学现象的解释和所遇到的问题. (3)了解事物的连续性与分立性是相对的,了解光既有波动性,又有粒子性. (4)了解光是一种概率波. 2.能力目标 培养学生对问题的分析和解决能力,初步建立光与实物粒子的波粒二象性以及用概率描述粒子运动的观念. 3.情感目标 理解人类对光的本性的认识和研究经历了一个十分漫长的过程,这一过程也是辩证发展的过程.根据事实建立学说,发展学说,或是决定学说的取舍,发现新的事实,再建立新的学说.人类就是这样通过光的行为,经过分析和研究,逐渐认识光的本性的. 二、重点、难点分析 1、这一章的内容,贯穿一条主线——人类对光的本性的认识的发展过程.结合各节内容,适当穿插物理学史材料是必要的.这种做法不但可使课堂教学主动活泼,内容丰富,还可以对学生进行唯物辩证思想教育.本节就课本内容,十分简单,学生学起来十分枯燥.课本所提到的内容,都是结论性的,加入一些史料不仅可能而且必要. 2、本节中学生初步接触量子化、二象性、概率波等概念,由于没有直接的生活经验,所以在教学中要重点让学生体会这些概念. 三、主要教学过程 光学现象是与人类的生产和日常生活密切相关的.人类在对光学现象、规律的研究的同时,也开始了对光本性的探究. 到了17世纪,人类对光的本性的认识逐渐形成了两种学说.

(一)光的微粒说 一般,人们都认为牛顿是微粒说的代表,牛顿于1675年曾提出:“光是一群难以想象的细微而迅速运动的大小不同的粒子”,这些粒子被发光体“一个接一个地发射出来”.用这样的观点,解释光的直进性、影的形成等现象是十分方便的. 在解释光的反射和折射现象时,同样十分简便.当光射到两种介质的界面时,要发生反射和折射.在解释反射现象时,只要假设光的微粒在与介质作用时,其相互作用,使微粒的速度的竖直分量方向变化,但大小不变;水平分量的大小和方向均不发生变化(因为在这一方向上没有相互作用),就可以准确地得出光在反射时,反射角等于入射角这一与实验事实吻合的结论. 说到折射,笛卡儿曾用类似的假设,成功地得出了入射角正弦与折射角正弦之比为一常数的结论.但当光从光疏介质射向光密介质时,发生的是近法线折射,即入射角大,折射角小.这时,必须假设光在光密介质的传播速度较光在光疏介质中的传播速度大才行. 一束光入射到两种介质界面时,既有反射,又有折射.何种情况发生反射,何种情况下又发生折射呢?微粒说在解释这一点时遇到了很大的困难.为此,牛顿提出了著名的“猝发理论”.他提出:“每一条光线在通过任何折射面时,便处于某种为时短暂的过渡性结构和状态之中.在光线的前进过程中,这种状态每隔相等的间隔(等时或等距)内就复发一次,并使光线在它每一次复发时,容易透过下一个折射面,而在它(相继)两次复发之间容易被这个面所反射”,“我将把任何一条光线返回到倾向于反射(的状态)称它为‘容易反射的猝发’,而把它返回到倾向于透射(的状态)称它为‘容易透射的猝发’,并且把每一次返回和下一次返回之间所经过的距离称它为‘猝发的间隔’”.如果说“猝发理论”还能解释反射和折射的话,那么,以微粒说解释两束光相遇后,为何仍能沿原方向传播这一常见的现象,微粒说则完全无能为力了. (二)光的波动说 关于光的本性,当时还存在另一种观点,即光的波动说.认为光是某种振动,以波的形式向四周围传播.其代表人物是荷兰物理学家惠更斯.他认为,光是由发光体的微小粒子的振动在弥漫于一切地方的“以太”介质中传播过程,而不是像微粒说所设想的像子弹和箭那样的运动.他指出:“假如注意到光线向各个方向以极高的速度传播,以及光线从不同的地点甚至是完全相反的地方发出时,光射线在传播中一条光线穿过另一条光线而相互毫不影响,就能完全明白这一点:当我们看到发光的物体时,决不可能是由于从它所发生的物质,像穿过空气的子弹和箭一样,通过物质迁移所引起的”.他把光比作在水面上投入石块时产生的同心圆状波纹.发光体中的每一个微粒把振动,通过“以太”这种介质向周围传播,发出一组组同心的球面波.波面上的每一点,又可以此点为中心,再向外传播子波.当然,这样的观点解释同时发生反射和折射,比微粒说的“猝发理论”方便得多,以水波为例,水波在传播时,反射与折射可以同时发生.一列水波在与另一列水波相遇时,可以毫无影响的相互通过.

光电效应教案

第二节光的粒子性 一、教学目标 1.应该掌握的知识方面. (1)光电效应现象具有哪些规律. (2)人们研究光电效应现象的目的性. (3)爱因斯坦的光子说对光电效应现象的解释. 2.培养学生分析实验现象,推理和判断的能力方面. (1)观察用紫外线灯照射锌板的实验,分析现象产生的原因. (2)观察光电效应演示仪的实验过程,掌握分析现象所得到的结论. 3.结合物理学发展史使学生了解到科学理论的建立过程,渗透科学研究方法的教育. 二、重点、难点分析 1.光电效应现象的基本规律、光子说的基本思想和做好光电效应的演示实验是本节课的重点. 2.难点是(1)对光的强度的理解,(2)发生光电效应时光电流的强度为什么跟光电子的最大初动能无关,只与入射光的强度成正比. 三、教具 锌板、验电器、紫外线灯、白炽灯、丝绸、玻璃棒、光电效应演示仪. 四、主要教学过程 (一)新课的引入 光的波动理论学说虽然取得了很大的成功,但并未达到十分完美的程度.光的有些现象波动说遇到了很大的困难,请观察光电效应现象. (二)教学过程的设计 1.演示实验. 将锌板与验电器用导线连接,用细砂纸打磨锌板表面.把丝绸摩擦过的玻璃棒放在锌板附近,用紫外线灯照射锌板. 边演示边提问:紫外线灯打开前后,验电器指针有什么变化?这一现象说明了什么问题?引导学生分析并得出结论:光线照射金属表面,金属失去了电子导致验电器指针张开一角度.明确指出光电效应是光照射金属表面,使物体发射电子的现象.照射的光可以是可见光,也可以是不可见光.发射出的电子叫光电子. 说明:这个实验如果按照课本上的装置进行效果很不理想,因为紫外线照射锌板飞出电子时锌板带正电,在锌板附近形成电场又将电子吸附回去.锌板电势升到很小的值就使逸出和返回的电子达到动态平衡,很难使验电器指针明显地张开. 2.进一步研究光电效应. 以上实验改用很强的白炽灯照射,却不能发生光电效应.向学生提出问题:光电效应的发生一定是有条件的,存在着一定规律.有什么规律呢?让我们进一步研究. 向学生介绍光电效应演示仪.在黑板上画一示意图,如图所示.S为抽成真空的光电管,C 是石英窗口,光线可通过它照射到金属板K上,金属板A和K组成一对电极与外部电路相连接.光源为白炽灯,在光源和石英窗口C之间插入不同颜色的滤光片可以改变入射光的频率,光源的亮度可以通过另一套装置调节.

浅谈光的粒子性

一、浅谈光的粒子性 序 人类的认识往往是在曲折中前进的,对光的认识也是如此。最初,人们对光的本质的认识有两种观点,一种认为光是一种波,而另一种观点认为光是一种粒子,即有光的粒子说和波动说两种说法并存。牛顿认为光是一种匀质硬性小球,这种观点能够较好地解释光的反射、折射及光的直线传播现象。但随着光的干涉、衍射现象的发现,使光的波动说又占了上风;而光电效应的发现,使光的粒子说又重新登上了历史的舞台。但麻烦随之而来,因为光的粒子说无法解释干涉、衍射现象,而光的波动说也无法解释光电效应。于是,有聪明人把波动性和粒子性这两种截然不同的特性揉在一起,创造出了所谓的光的波粒二象性,并且自以为对物质的认识又前进了一大步,这还不算,他们又进而推广认为一切物质都有波粒二象性,这恐怕也是没有办法的办法。就在人们为波粒二象性这种新提法而洋洋自得的时候,殊不知,却丧失了一次认识光子内部结构的极好机会。而此后,人们若要揭示光的本性,就要承受更大的压力,排除更多的干扰,做更多不必要的工作。本文将从光的干涉、衍射现象入手,全面揭示光的本性--粒子性…… 1、光的本性――粒子性 光的本性是什么?这个问题似乎无需讨论。物理学家会告诉你,光具有波粒二象性,是一种物质波;实际上一切物体都具有波动性,只不过宏观物质的物质波较短,更多时候其表现出粒子性而已。这样

的回答不禁使人想起一个幽默: 有人问:“地球为什么是圆的?” 答曰:“因为它在转” 又问:“地球为什么在转?” 答曰:“因为它是圆的” 光是什么?━━光是一种物质波。 光为什么是物质波?━━因为它有波粒二象性。 光为什么有波粒二象性呢?━━因为它是一种物质波。 我们痛心地发现,这个简单的近乎无聊的逻辑被人滥用到了令人吃惊的程度,在当今物理学中,似乎不谈物质波、相对论就显得落伍、水平不高什么的。那么,物质波是什么东西呢?恐怕只有极少数的聪明人才知道!我从来就认为光是一种粒子。这种观点可以解释光的直线传播、反射等等现象,但是光子说的确“无法解释光的干涉、衍射现象”。长久以来,我一直在思考如何解释这个问题,而光的干涉现象、衍射现象无疑是建立光子说的最大障碍。所以要想建立光子说,必须首先突破干涉现象、衍射现象的瓶颈。如何认识光的干涉现象、衍射现象呢?我们认为需要从两个方面入手,一方面是光子内部结构问题,另一方面是引力场的问题,这两方面要统筹考虑。。牛顿的光子说仅仅把光子看作一种简单的匀质硬性小球,这实际上是对光子的内部复杂结构认识不足,我们认为,光子并不是“匀质硬性小球”,它有极其复杂的内部结构,而光的干涉现象和衍射现象实际上是我们通过引力场认识光子内部结构的极好机会。

高中物理_光的粒子性教学设计学情分析教材分析课后反思

《光的粒子性》教学设计 [学习目标](一)知识与技能 1 .通过实验了解光电效应的实验规律。 2 .知道爱因斯坦光电效应方程以及意义。 3 .了解康普顿效应,了解光子的动量 (二)过程与方法 经历科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物理问题,验证物理规律。 (三)情感、态度与价值观 领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。 ★教学重点光电效应的实验规律 ★教学难点爱因斯坦光电效应方程以及意义 ★教学方法教师启发、引导,学生讨论、交流。 ★教学用具:投影片,多媒体辅助教学设备 一、光电效应现象

图1 [导学探究] 如图1所示,取一块锌板,用砂纸将其一面擦一遍,去掉表面的氧化层,连接在验电器上(弧光灯发射紫外线). (1)用弧光灯照射锌板,看到的现象为__________________________________________, 说明___________________________________________________________ _____________. (2)在弧光灯和锌板之间插入一块普通玻璃板,再用弧光灯照射,看到的现象为___________________________________________________________ _____________, ___________________________________________________________ _____________. (3)撤去弧光灯,换用白炽灯发出的强光照射锌板,并且照射较长时间,看到的现象为___________________________________________________________

光的粒子性 说课稿 教案

光的粒子性 ★新课标要求 (一)知识与技能 1.通过实验了解光电效应的实验规律。 2.知道爱因斯坦光电效应方程以及意义。 3.了解康普顿效应,了解光子的动量 (二)过程与方法 经历科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物理问题,验证物理规律。 (三)情感、态度与价值观 领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。 ★教学重点光电效应的实验规律 ★教学难点爱因斯坦光电效应方程以及意义 ★教学方法教师启发、引导,学生讨论、交流。 ★教学用具:投影片,多媒体辅助教学设备 ★课时安排 2 课时 ★教学过程 (一)引入新课 提问:回顾前面的学习,总结人类对光的本性的认识的发展过程?(多媒体投影,见课件。)学生回顾、思考,并回答。 教师倾听、点评。 光的干涉、衍射现象说明光是电磁波,光的偏振现象进一步说明光还是横波。19世纪60年代,麦克斯韦又从理论上确定了光的电磁波本质。然而,出人意料的是,正当人们以为光的波动理论似乎非常完美的时候,又发现了用波动说无法解释的新现象——光电效应现象。对这一现象及其他相关问题的研究,使得人们对光的又一本质性认识得到了发展。 (二)进行新课 1.光电效应 教师:实验演示。(课件辅助讲述) 用弧光灯照射擦得很亮的锌板,(注意用导线与 不带电的验电器相连),使验电器张角增大到约为 30度时,再用与丝绸磨擦过的玻璃棒去靠近锌板, 则验电器的指针张角会变大。 学生:认真观察实验。

教师提问:上述实验说明了什么? 学生:表明锌板在射线照射下失去电子而带正电。 概念:在光(包括不可见光)的照射下,从物体发射电子的现象叫做光电效应。发射出来的电子叫做光电子。 2.光电效应的实验规律 (1)光电效应实验 如图所示,光线经石英窗照在阴极上,便有电子逸出----光电 子。 光电子在电场作用下形成光电流。 概念:遏止电压 将换向开关反接,电场反向,则光电子离开阴极后将受反向 间加反向电压,光电子克服电场力作功,当电压 称遏止电压。根据动能 光电流与光强的关系饱和光电 对于每种金属材料,都相应的有一确定的截止频率νc 。 时,电子才能逸出金属表面;当入射 时,无论光强多大也无电子逸出金属表面。③ 光电效应是瞬时的。从光开光电效应解释中的疑难 经典理论认为,按照经典电磁理论,入射光的光强越大,光波的电场强度的振幅也越大,作用在金属中电子上的力也就越大,光电子逸出的能量也应该越大。也就是说,光电子的能量应该随着光强度的增加而增大,不应该与入射光的频率有关,更不应该有什么截止频率。 光电效应实验表明:饱和电流不仅与光强有关而且与频率有关,光电子初动能也与频率有关。只要频率高于极限频率,即使光强很弱也有光电流;频率低于极限频率时,无论光强再大也没有光电流。光电效应具有瞬时性。而经典认为光能量分布在波面上,吸收能量要时间,即需能量的积累过程。 为了解释光电效应,爱因斯坦在能量子假说的基础上提出光子理论,提出了光量子假设。 4.爱因斯坦的光量子假设(1)内容光不仅在发射和吸收时以能量为h ν的微粒形式出现,而且在空间传播时也是如此。也就是说,频率为ν 的光是由大量能量为 E =h ν的光子组成的粒子流,这些光子沿光的传播方向以光速 c 运动。 2c e v c eU

2019届高三物理二轮复习光的粒子性题型归纳

2019届高三物理二轮复习光的粒子性题型归纳 类型一、光的本性的认识 例1、关于光的本性,下列说法中正确的是() A、关于光的本性,牛顿提出微粒说,惠更斯提出波动说,爱因斯坦提出光子说,它们 都说明了光的本性 B、光具有波粒二象性是指:既可以把光看成宏观概念上的波,也可以看成微观概念上 的粒子 C、光的干涉、衍射现象说明光具有波动性,光电效应说明光具有粒子性 D、光的波粒二象性是将牛顿的波动说和惠更斯的粒子说真正有机地统一起来 【思路点拨】理解光的本性,波动性的特征及代表人物,粒子性的特征及代表人物。 【答案】C 【解析】光具有波粒二象性,这是现代物理学关于光的本性的认识,光的波粒二象性不同于牛顿提出的微粒说和惠更斯的波动说,是爱因斯坦的光子说和麦克斯韦的电磁说的统一。光的干涉、衍射现象说明光具有波动性,光电效应说明光具有粒子性,故ABD错误,C对。【总结升华】光既有波动性,又具有粒子性,即光具有波粒二象性,这就是光的本性。 举一反三 【变式1】根据爱因斯坦的“光子说”可知() A. “光子说”本质就是牛顿的“微粒说” B. 光的波长越大,光子的能量越小 C. 一束单色光的能量可以连续变化 D. 只有光子数很多时,光才具有粒子性 【答案】B 【解析】爱因斯坦的“光子说”与牛顿的“微粒说”本质不同,选项A错误。由 c E h λ =可 知选项B正确。一束单色光的能量不能是连续变化,只能是单个光子能量的整数倍,选项C 错误。光子不但具有波动性,而且具有粒子性,选项D错误。 【变式2】关于光的波粒二象性的说法中,正确的是() A. 有的光是波,有的光是粒子 B. 光子与电子是同样的一种粒子 C. 光的波长越长,其波动性就越显著;波长越短,其粒子性就越显著 D. 光子的数量越少波动性就越显著;光子的数量越多粒子性就越显著

光的粒子性 说课稿 教案

光的粒子性 【教学目标】 (一)知识与技能 1.通过实验了解光电效应的实验规律。 2.知道爱因斯坦光电效应方程以及意义。 3.了解康普顿效应,了解光子的动量 (二)过程与方法 经历科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物理问题,验证物理规律。 (三)情感、态度与价值观 领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦 【教学重难点】 1教学的重点及其教学的策略 重点:光电效应的实验规律。 教学策略:本可以实验引入,在引入阶段让学生充分讨论两个问题:一为什么在在紫外线的照射下自由电子会跑出来呢?二为什么用红光的照射锌板打不出电子?这样的引入激发了学生的兴趣,从而为学生总结光电效应规律建立了基础,在这里应注意引导学生联系实验去理解存在饱和电流、遏制电压、截止频率、效应的瞬时性,学会真切感受到经典理论的局限性和光电效应的神奇性。 2教学的难点及其教学的侧略 难点:爱因斯坦光电效应方程以及意义。 教学策略:同学们根据自己已有的知识对光电效应可能发生的现象进行猜测和分析,我们发现我们的推测与试验结果大相径庭,这时候引导学生看书,让同学找出光电效应的方程,并且老师带动学生去理解光电效应方程。 【教学器材】锌板,紫外灯,验电器。 【教学过程】 ◆新课导入 提问:回顾前面的学习,总结人类对光的本性的认识的发展过程?(多媒体投影,见课件。)学生回顾、思考,并回答。 教师倾听、点评。 光的干涉、衍射现象说明光是电磁波,光的偏振现象进一步说明光还是横波。19世纪60年代,麦克斯韦又从理论上确定了光的电磁波本质。然而,出人意料的是,正当人们以为光的波动理论似乎非常完美的时候,又发现了用波动说无法解释的新现象——光电效应现象。对这一现象及其他相关问题的研究,使得人们对光的又一本质性认识得到了发展。

高中物理《光的粒子性》优质课教案、教学设计

17.2 光的粒子性 学习目标: 1、知道光电效应及其实验规律,感受以实验为基础的科学研究方法 2、知道爱因斯坦光电效应方程及其意义,感受科学家在面对科学疑难时的创新精神 3、知道康普顿效应及其意义。 重点:爱因斯坦光电效应方程及其意义 难点:光电效应及其实验规律 一、问题导学: (一)光电效应及实验规律 1.在光(包括不可见光)的照射下,从物体发射的现象叫做光电效应。发射出来的电子叫做. 2.光电效应的实验规律 (1) 存在着电流 在一定的光照条件下,随着所加电压的增大,光电流趋于一个饱和值,入射光越强,饱和电流越大,即,单位时间内发射的光电子数目越多. (2) 存在着电压和频率. 只有施加反向电压且达到某一值时才会使光电流为零,这一电压称为遏止电压,遏止电压的存在说明光电子具有一定的。 光电子的能量只与入射光的有关,而与入射光的无关.刚好不能发生光电效应时,入射光的频率称为频率. (3) 光电效应具有 当入射光频率超过截止频率v c 时,无论光怎样微弱,产生光电流的时间不超过10-9s,光电效应几乎是瞬时的. 3. 逸出功:电子从金属中逸出所需做功的,不同金属的逸出功. (二)爱因斯坦的光电效应方程 1.光子说:光不仅在发射和吸收时能量是一份一份的,而且光本身就是由一个个不可分割的能量子组成的,这些能量子被称为,频率为v 的光的能量子为.

我的收获 我的疑问 2.光电效应方程 (1) 表达式 . (2) 物理意义:金属中电子吸收一个光子获得的能量是 ,这些能量一部分用于克服金属的逸出功 ,剩下的表现为逸出后电子的最大初动能 . (三)康普顿效应和光子的动量 1.光的散射:光在介质中与物质微粒的相互作用,使光的传播方向 的现象。 2. 康普顿效应:在光的散射中,除了与入射波长 0 的成分外,还有波长大于0 的成分,这个现 象称为 。康普顿的学生,中国留学生 测试了多种物质对 X 射线的散射,证实了康普顿 效应的普遍性。 3. 康普顿效应的意义:康普顿效应表明光子除了具有 之外,还具有 ,深入揭示了光的性的一面. 4. 光子的动量: . 二、合作探究 例 1.对光电效应做出合理解释的物理学家是( ) A.爱因斯坦 B.玻尔 C.查德威克 D.德布罗意 例 2. 在光电效应实验中,飞飞同学用同一光电管在不同实验条件下得到了三条光电流与电压之间的关系曲线(甲光、乙光、丙光),如下图所示.则可判断出 ( ) A .甲光的频率大于乙光的频率 B .乙光的波长大于丙光的波长 C .乙光对应的截止频率大于丙光的截止频率

科学家同时观察到光的粒子性与波动性

科学家同时观察到光的粒子性与波动性(图) 上面的想象图演示的是单光子穿过干涉仪时的情景,干涉仪的输出端装有量子分光镜。图中远处可以看到正弦振荡的波形,表示的是单光子干涉,是一种波动现象。而在图片近处,观察不到振荡,说明只表现出粒子的特性。在两种极端之间,单光子的行为连续不断地从波的形式向粒子形式转变,图中显示了这两种状态 的重叠。 受艺术家毛里茨·科内利斯·埃舍尔作品的启发绘制的艺术图,显示了光在粒子态和波形态之间的连续变 化。

受艺术家毛里茨·科内利斯·埃舍尔作品的启发绘制的艺术图,显示了光在粒子态和波形态之间的连续变 化。 阿尔贝托·佩鲁佐(左)和彼得·夏伯特(右),研究论文的并列第一作者。 实验中用以检测波粒二象性的量子光子芯片。单光子通过光纤进入环路,在输出端被极其敏感的探测器检测到。

新浪科技讯北京时间11月8日消息,长久以来,人们都知道光既可以表现出粒子的形式,也可以呈现波动的特征,这取决于光子实验测定时的方法。但就在不久之前,光还从未同时表现出这两种状态。 关于光是粒子还是波的争论由来已久,甚至可以追溯到科学最初萌芽的时候。艾萨克·牛顿提出了光的粒子理论,而詹姆斯·克拉克·麦克斯韦的电磁学理论认为光是一种波。到了1905年,争论出现了戏剧性的变化。爱因斯坦提出光是由称为“光子”的粒子组成,借此解释了光电效应。他也因此获得了诺贝尔物理学奖。光电效应的发现对物理学影响深远,并为后来量子力学的发展作出了重大贡献。 量子力学在对微小粒子,如原子和光子的行为预测上,具有惊人的准确性。然而,这些预测非常违反直觉。比如,量子理论认为类似光子的粒子可以同时在不同的地方出现,甚至是同时在无穷多的地方出现,就像波的行为一样。这种被称为“波粒二象性”的概念,也适用于所有的亚原子粒子,如电子、夸克甚至希格斯玻色子等。波粒二象性是量子力学理论系统的基础,诺贝尔奖获得者理查德·费曼将其称为“量子力学中一个真正的奥秘”。 刊于《科学》杂志上的两组独立研究,利用不同的方法对光从波形态向粒子态的转变进行了测定,以揭示光的本质面貌。两组研究都来源于理论物理学家约翰·惠勒于上个世纪80年代进行

讲义 - 光的波动性和粒子性

龙文教育学科教师辅导讲义 教师:______ 学生:______ 时间:_____年_____月____日____段 1929年,德布罗意因对实物粒子波动性的揭示而获得诺贝尔物理学奖.在授奖仪式上,瑞典物理学家卡尔·乌辛把德布罗意介绍给全体与会者,并发表了如下的讲话: “有一首每个瑞典人都很熟悉的诗是这样开头的:‘我的生活——就是波’.诗人也可以这样来表达他的思想:‘我——就是波’.他最好这样表达,这样,他的诗句也将包含着对物质性质最深刻认识的先觉.从现在起,这样的认识已是我们都能接受的了……” 3年高考平台 一、选择题 1.研究光电效应规律的实验装置如图16-1所示,以频率为ν的光照射光电管阴极K 时,有光电子产生.由于光电管K 、A 间加的是反向电压,光电子从阴极K 发射后将向阳极A 作减速运动.光电流i 由图中电流计G 测出,反向电压U 由电压表V 测出.当电流计的示数恰好为零时,电压表的示数称为反向截止电压U 0.在下列表示光电效应实验规律的图像中,错误的是( ) 图16-1 图16-2 答案:B 2.现有a 、b 、c 三束单色光,其波长关系为λa >λb >λc .用b 光束照射某种金属时,恰能发生光电效应.若分别用a 光束和c 光束照射该金属,则可以断定( ) A.a 光束照射时,不能发生光电效应 B.c 光束照射时,不能发生光电效应 C.a 光束照射时,释放出的光电子数目最多 D.c 光束照射时,释放出的光电子的最大初动能最小 答案:A 二、非选择题 3.(1)人们发现光电效应具有瞬时性和对各种金属都存在极限频率的规律.请问谁提出了何种学说很好地解释了上述规律?已知锌的逸出功为3.34 eV ,用某单色紫外线照射锌板时,逸出光电子的最大速度为106 m/s ,求该紫外线的波长λ(电子质量m e =9.11×10-31 kg ,普朗克常量h=6.63×10-34 J ·s,1 eV=1.60×10-19 J ). (2)风力发电是一种环保的电能获取方式.图16-3为某风力发电站外观图.设计每台风力发电机的功率为40 kW.实验测得风的动能转化为电能的效率约为20%,空气的密度是1.29 kg/m 3,当地水平风速约为10 m/s ,问风力发电机的叶片长度约为多少才能满足设计要求?

粒子的波动性 说课稿 教案

粒子的波动性 【教学目标】 (一)知识与能力 1.了解光既具有波动性,又具有粒子性。 2.知道实物粒子和光子一样具有波粒二象性。 3.知道德布罗意波的波长和粒子动量关系。 (二)过程与方法 1.了解物理真知形成的历史过程。 2.了解物理学研究的基础是实验事实以及实验对于物理研究的重要性。 3.知道某一物质在不同环境下所表现的不同规律特性。 (三)情感、态度与价值观 1.通过学生阅读和教师介绍讲解,使学生了解科学真知的得到并非一蹴而就,需要经过一个较长的历史发展过程,不断得到纠正与修正。 2.通过相关理论的实验验证,使学生逐步形成严谨求实的科学态度。 3.通过了解电子衍射实验,使学生了解创造条件来进行有关物理实验的方法。 【教学重重点】 实物粒子和光子一样具有波粒二象性,德布罗意波长和粒子动量关系。 【教学重难点】 实物粒子的波动性的理解。 【教学方法】 学生阅读-讨论交流-教师讲解-归纳总结 【教学器材】 课件:PP演示文稿(科学家介绍,本节知识结构)。多媒体教学设备。 【课时安排】 1 课时 【教学过程】 ◆新课导入 光一直被认为是最小的物质,虽然它是个最特殊的物质,但可以说探索光的本性也就等于探索物质的本性。历史上,整个物理学正是围绕着物质究竟是波还是粒子而展开的。 从光的直线传播、反射定律看,光很象是一种弹性良好的粒子流(用惯性、动量守恒解释)。而且,从光的折射方面考察,它和粒子之间似乎也有某种共性(譬如,网球往水中的折射,也会满足一个入射角和折射角的正弦之比为恒量的规律),因此,十七世纪,人们提出光是实物粒子流(粒子足够小、弹性足够好),持这种观点的代表是牛顿。 但是,光在传播时,也有一些用微粒说不能解释的现象,如衍射、干涉、偏振等。这些都是波动的典型特征。于是,十七世纪中叶,就已经出现了光是一种波的学说,坚持波动说

第3节 粒子的波动性(教师版)

第3节粒子的波动性

一、光的波粒二象性 1.波粒二象性:光既具有波动性,又具有粒子性. 2.光子的能量和动量:光子的能量ε和动量p 可分别表示为:ε=hν,p =h λ.能量ε和动 量p 是描述物质粒子性的重要物理量;波长λ和频率ν是描述物质波动性的典型物理量.普朗克常量h 架起了粒子性与波动性之间的桥梁. 二、粒子的波动性及物质波的实验验证 1.粒子的波动性 (1)德布罗意波:每一个运动的粒子都与一个对应的波相联系,这种与实物粒子相联系的波称为德布罗意波,也叫物质波. (2)物质波的波长、频率关系式: 波长:λ=h p ,频率:ν=ε h . 2.物质波的实验验证 (1)实验探究思路:干涉、衍射是波特有的现象,如果实物粒子具有波动性,则在一定条件下,也应该发生干涉或衍射现象. (2)实验验证:1927年戴维孙和汤姆孙分别利用晶体做了电子束衍射实验,得到了电子的衍射图样,证实了电子的波动性. (3)说明 ①人们陆续证实了质子、中子以及原子、分子的波动性,对于这些粒子,德布罗意给出的ν=εh 和λ=h p 关系同样正确. ②宏观物体的质量比微观粒子的质量大得多,运动时的动量很大,对应的德布罗意波的波长很小,根本无法观察到它的波动性. 判一判 (1)光的干涉、洐射、偏振现象说明光具有波动性.( ) (2)光子数量越大,其粒子性越明显.( ) (3)光具有粒子性,但光子又不同于宏观观念的粒子.( ) (4)湖面上的水波就是物质波.( ) (5)电子的衍射现象证实了实物粒子具有波动性.( ) 提示:(1)√ (2)× (3)√ (4)× (5)√

做一做 (多选)对光的认识,下列说法中正确的是( ) A .个别光子的行为表现为粒子性,大量光子的行为表现为波动性 B .光的波动性是光子本身的一种属性,不是光子之间的相互作用引起的 C .光表现出波动性时,就不具有粒子性了;光表现出粒子性时,就不具有波动性了 D .光的波粒二象性应理解为:在某种场合下光的波动性表现明显,在另外某种场合下,光的粒子性表现明显 提示:选ABD.个别光子的行为表现为粒子性,大量光子的行为表现为波动性;光与物质相互作用,表现为粒子性,光的传播表现为波动性;光的波动性与粒子性都是光的本质属性,因为波动性表现为粒子分布概率,光的粒子性表现明显时仍具有波动性,因为大量粒子的个别行为呈现出波动规律,故正确选项有A 、B 、 D. 对光的波粒二象性的理解 (多选)下列有关光的波粒二象性的说法中,正确的是 ( ) A .有的光是波,有的光是粒子 B .光子与电子是同样的一种粒子 C .光的波长越长,其波动性越显著;波长越短,其粒子性越显著 D .康普顿效应表明光具有粒子性

光的粒子性知识点总结

光的粒子性 说明:相比10年,新考试说明中删去了康普顿效应 【知识要点】 1.光电效应 概念:在光(包括不可见光)的照射下,从物体发射 的 现象叫做光电效应。 2.光电效应的实验规律 (1)存在遏止电压 如图所示,光线经石英窗照在阴极上,便有电子逸出----光电子。 光电子在电场作用下形成光电流。 概念:遏止电压 将换向开关反接,电场反向,则光电子离开阴极后将受反向电场阻碍 作用。 当 K 、A 间加反向电压,光电子克服电场力作功,当电压达到某一 值 U c 时,光电流恰为0。 U c 称遏止电压。根据动能定理,有 实验表明,无论光的强弱如何,遏止电压都是一样的。光的频率改变时,遏止电压也会改变,这表明光电子的能量只与入射光的频率有关,而与入射光的强弱无关。 (2) 光电流与光强的关系:饱和光电流强度与入射光强度成正比。 (3) 截止频率νc ----极限频率 对于每种金属材料,都相应的有一确定的截止频率νc 。 当入射光频率ν>νc 时,电子才能逸出金属表面;当入射光频率ν <ν c 时,无论光强多大也无电子逸出金属表面。 (4)光电效应是瞬时的。从光开始照射到光电子逸出所需时间<10-9s 。3. 光电效应解释中的疑难 经典理论无法解释光电效应的实验结果。经典理论认为,按 照经典电磁理论,入射光的光强越大,光波的电场强度的振幅也 越大,作用在金属中电子上的力也就越大,光电子逸出的能量也 应该越大。也就是说,光电子的能量应该随着光强度的增加而增 大,不应该与入射光的频率有关,更不应该有什么截止频率。 光电效应实验表明:饱和电流不仅与光强有关而且与频率有 22 1c e v m c eU

172《科学的转折:光的粒子性》教案(新人教版选修3-5).docx

物理:17.2《科学的转折:光的粒子性》教案 三维教学目标 1、知识与技能 (1)通过实验了解光电效应的实验规律。 (2)知道爱因斯坦光电效应方程以及意义。 (3)了解康普顿效应,了解光子的动量 2、过程与方法:经历科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物理问题,验证物理规律。 3、情感、态度与价值观:领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。 教学重点:光电效应的实验规律 教学难点:爱因斯坦光电效应方程以及意义 教学方法:教师启发、引导,学生讨论、交流。 教学用具:投影片,多媒体辅助教学设备 教学过程: 第一节科学的转折:光的粒子性 (一)引入新课 回顾前面的学习,总结人类对光的本性的认识的发展过程? (多媒体投影,见课件。)光的干涉、衍射现象说明光是电磁波,光的偏振现象进一步说明光还是横波。19世纪60年代,麦克斯韦又从理论上确定了光的电磁波本质。然而,出人意料的是,正当人们以为光的波动理论似乎非常完美的时候,又发现了用波动说无法解释的新现象一光电效应现象。对这一现象及其他相关问题的研究,使得人们对光的又一本质性认识得到了发展。 (二)进行新课 1、光电效应 实验演示1:(课件辅助讲述)用弧光灯照射擦得很亮的锌板,(注意用导线与不带电的验电器相连),使验电器张角增大到约为30度时,再用与丝绸磨擦过的玻璃棒去靠近锌板,则验电器的指针张角会变大。上述实验说明了什么?(表明锌板在射线照射下失去电子而带正

电) 概念:在光(包括不可见光)的照射下,从物体发射电子的现象叫做光电效应。发射出来的电 子叫做光电子。 2,光电效应的实验规律 (1)光电效应实验 如图所示,光线经石英窗照在阴极上,便有电子逸出一一光电子。光电子在电场作用下形成光电流。 概念:遏止电压,将换向开关反接,电场反向,则光电子离开阴极后将受反向电场阻碍作用。当K、A间加反向电压,光电子克服电场力作功,当电压达到某一值Uc时,光电流恰为0。Uc称遏止电压。 根据动能定理,有:丄叫匕2 =eu (2)光电效应实验规律2 ①光电流与光强的关系:饱和光电流强度与入射光强度成正比。 ②截止频率V。——极限频率,对于每种金属材料,都相应的有一确定的截止频率V。,当入射光频率V>v°时,电子才能逸出金属表面;当入射光频率V〈V。时,无论光强多大也无电子逸出金属表面。 ③光电效应是瞬时的。从光开始照射到光电子逸出所需时间〈102。 :光电效应伏安特性曲线

波粒二象性(教案)

波粒二象性 波粒二象性?????? ???????????光的波粒二象性?????????????光的粒子性???????????光电效应?????????现象:光现象――→转化电现象本质:电子――→吸收光子光电子规律?????①极限频率②遏止电压③光电流强度 结论?????①光具有粒子性——光子②光具有波粒二象性能量量子假说光子说:光子能量ε=hν光电效应方程:hν=12m v 2max +W 0康普顿效应?????光子的动量:p =h λ理论解释光的波动性? ????光的双缝干涉光波是概率波粒子的波粒二象性?????德布罗意假说?????内容:λ=h p 实验验证:电子衍射物质波是概率波电子云不确定性关系:Δx Δp ≥h 4π 【知识点一】光电效应的规律和爱因斯坦光电效应方程 1.光电效应的规律 (1)极限频率ν0是能使金属发生光电效应的最低频率,这也是判断能否发生光电效应的依据。若ν≤ν0,无论多强的光照射时,都不能发生光电效应。 (2)最大初动能E k ,与入射光的频率和金属的逸出功有关,与光强无关。 (3)饱和光电流与光的强度有关,光强正比于单位时间内照射到金属表面单位面积上的光子数。 2.光电子的最大初动能 光电子的最大初动能跟入射光的能量hν、金属逸出功W 0的关系为光电效应方程,表达式为12m v 2max =hν0-W 0,反映了光电效应现象中的能量转化和守恒定律。

【知识点二】光的波粒二象性、物质波 (1)光的干涉、衍射、偏振说明光具有波动性,光电效应现象、康普顿效应则证明光具有粒子性,因此,光具有波粒二象性,对于光子这样的微观粒子只有从波粒二象性出发,才能统一说明光的各种行为。 (2)在光的干涉现象中,若曝光时间不长,在底片上只出现一些不规则的点,这些点表示光子的运动跟宏观的质点不同。但曝光时间足够长时,底片上出现了有规律的干涉条纹。可见,光的波动性是大量光子表现出来的现象。 (3)在干涉条纹中,光强大的地方,光子到达的机会多,或者说光子出现的概率大。光强小的地方,光子到达的概率小。 (4)大量光子产生的效果显示出光的波动性,少数光子产生的效果显示出粒子性,且随着光的频率的增大,波动性越来越不显著,而粒子性却越来越显著。 (5)要综合理解各种频率的电磁波,就必须综合地运用波动和粒子两种观点。从发现光的波粒二象性起,才使人们认识到微观世界具有特殊的规律。 后来人们观察到电子的衍射图像,这些说明一些物质微粒也像光子一样具有波粒二象性。 (6)任何一个运动着的物体,小到电子、质子,大到行星、太阳都有一种波和它对应,波长λ=h/p,人们把这种波叫作物质波。 物质波和光波一样,也属于概率波,概率波的实质是指粒子在空间分布的概率是受波动规律支配的。 [例1](上海高考)在光电效应的实验结果中,与光的波动理论不矛盾的是() A.光电效应是瞬时发生的 B.所有金属都存在极限频率 C.光电流随着入射光增强而变大 D.入射光频率越大,光电子最大初动能越大 [解析]光具有波粒二象性,既具有波动性又具有粒子性,光电效应证实了光的粒子性。因为光子的能量是一份一份的,不能积累,所以光电效应具有瞬时性,这与光的波动性矛盾,A项错误;同理,因为光子的能量不能积累,所以只有当光子的频率大于金属的极限频率时,才会发生光电效应,B项错误;光强增大时,光子数量增多,所以光电流会增大,这与波动性无关,C项正确;一个光电子只能吸收一个光子,所以入射光的频率增大,光电子吸收的能量变大,所以最大初动能变大,D项错误。 [答案] C

光的粒子性 说课稿 教案 教学设计

光的粒子性 课题光的粒子性第课时计划上课日期: 教学目标1.通过实验了解光电效应的实验规律。2.知道爱因斯坦光电效应方程以及意义。3.了解康普顿效应,了解光子的动量 教学重难点 光电效应的实验规律、爱因斯坦光电效应方程以及意义 教学流程\内容\板书 关键点拨 加工润色(一)引入新课 提问:回顾前面的学习,总结人类对光的本性的认识 的发展过程?(多媒体投影,见课件。) 学生回顾、思考,并回答。 教师倾听、点评。 光的干涉、衍射现象说明光是电磁波,光的偏振现象 进一步说明光还是横波。19世纪60年代,麦克斯韦又从理论上确定了光的电磁波本质。然而, 出人意料的是,正当人们以为光的波动理论似乎非常完美的时候,又发现了用波动说无法解释 的新现象——光电效应现象。对这一现象及其他相关问题的研究,使得人们对光的又一本质性 认识得到了发展。 (二)进行新课 1.光电效应 教师:实验演示。(课件辅助讲述) 用弧光灯照射擦得很亮的锌板,(注意用导线与不带电的验电器 相连),使验电器张角增大到约为30度时,再用与丝绸磨擦过的玻 璃棒去靠近锌板,则验电器的指针张角会变大。 学生:认真观察实验。 教师提问:上述实验说明了什么? 学生:表明锌板在射线照射下失去电子而带正电。

(2)爱因斯坦光电效应方程在光电效应中金属中的电子吸收 了光子的能量,一部分消耗在电子逸出功W 0,另一部分变为光电 子逸出后的动能 E k 。由能量守恒可得出: W 0为电子逸出金属表面所需做的功,称为逸出功W k 为光电子 的最大初动能。(3)爱因斯坦对光电效应的解释: ①光强大,光子数多,释放的光电子也多,所以光电流也大。 ②电子只要吸收一个光子就可以从金属表面逸出,所以不需时间的累积。 ③从方程可以看出光电子初动能和照射光的频率成线性关系 ④从光电效应方程中,当初动能为零时,可得极限频率:h W c 0=ν 爱因斯坦光子假说圆满解释了光电效应,但当时并未被物理学家们广泛承认,因为它完全违背了光的波动理论。 W E h k +=ν

相关文档
相关文档 最新文档