文档库 最新最全的文档下载
当前位置:文档库 › FLUENT软件在油气储运工程领域的应用_金俊卿

FLUENT软件在油气储运工程领域的应用_金俊卿

FLUENT软件在油气储运工程领域的应用_金俊卿
FLUENT软件在油气储运工程领域的应用_金俊卿

0前言

油气储运工程是连接油气生产、加工、分配、销售诸

环节的纽带,主要包括油气田集输、长距离输送管道、储存与装卸及城市输配系统等。近年来,油气储运工程得到了高速发展,中国已经启动国家油气储备计划,正在更快更好地建设中国油气储运管网。随着油气储运行业的迅速发展,单纯使用理论和试验研究已不能满足发展的需要,必须采用相应的模型研究油气储运工程领域各个环节可能出现的问题,有针对性地采取措施,避免发生安全事故,减少资源浪费。在现代石油工业高性能、低造价、可操作性强的要求下,利用FLUENT 软件模拟相关流体问题,能够有针对性地采取措施,进行结构优化,推动油气储运行业的发展。

计算流体动力学(computational fluid dynamics ,CFD )是流体力学的一个分支,通过计算机模拟获得某种流体在特定条件下的相关信息,实现用计算机代替试验装置完成“计算试验”,为工程技术人员提供实际工况模拟仿真的操作平台。FLUENT 是通用CFD 软件包,用于模拟具有复杂外形的流体流动以及热传导,可实现对多种复杂物理条件下流场真实和全域的模拟。由于其成本低、周期短、计算精度高、与实际吻合度高的特点,在实验研

究和商业应用中具有重要的指导作用,故应用越来越广泛[1]。

1概述

计算流体动力学是近现代流体动力学的一个重要

分支,FLUENT 软件的设计基于“CFD 软件群”思想[2],可针对各种不同流动的特点,采用最佳的数值解法,准确模拟流动、传热和化学反应等物理现象。

FLUENT 软件主要用于模拟和分析复杂几何区域内的流体流动和传热现象,有灵活的网格特性,可以支持多种网格,凡与流体、热传递和化学反应等有关的工业均可使用。用户可以自由选择使用非结构化或者结构化网格来划分复杂的集合区域,也可以利用FLUENT 软件提供的网格自适应特性在求解过程中根据所获得的计算结果来优化网格。从用户需求角度出发,FLUENT 软件容易上手,针对各种复杂流动的物理现象,采用不同的离散格式和数值方法,在特定领域内使计算速度、稳定性和精度等达到最佳组合,高效地解决油气储运工程领域的复杂流动计算问题[3-4]。

FLUENT 软件同传统的CFD 计算方法相比,具有以下优点:

FLUENT 软件在油气储运工程领域的应用

金俊卿

郑云萍

西南石油大学石油工程学院,四川

成都610500

要:FLUENT 软件是用于模拟和分析复杂几何区域内的流体流动与传热现象的专用软件,

在油气储运领域应用广泛。介绍了FLUENT 软件的基本原理、方法及主要特点,对FLUENT 软件在油气储运工程领域的应用现状进行了分析与总结,具体有旋风分离器内部流场数值模拟、管道停输温降数值模拟、顺序输送混油数值模拟、天然气管道泄漏扩散数值模拟、LNG 技术方面数值模拟、油罐问题数值模拟等,分析了FLUENT 软件在油气储运工程领域应用中存在的问题,提出了FLUENT 软件在该领域今后的研究方向和发展趋势。

关键词:FLUENT 软件;油气储运;数值模拟

DOI :10.3969/j.issn.1006-5539.2013.02.008

收稿日期:2012-11-26

作者简介:金俊卿(1988-),男,河南开封人,硕士研究生,主要从事油气集输理论与处理技术研究。

第31卷第2期

油气储运

OIL AND GAS TRANSPORTATION AND STORAGE 27

天然气与石油

NATURAL GAS AND OIL

2013年4月

a)稳定性好。经大量实例验证,FLUENT软件的模拟结果同实验结果吻合度高。

b)运算精度高,具有二阶计算精度。

c)适用范围广。FLUENT软件提供了非耦合隐式算法、耦合显式算法和耦合隐式算法三种数值算法。含有先进的物理模型,可应用于湍流、多相流、热传导、燃烧、化学反应等几乎所有与流体相关的领域。

d)高效省时。FLUENT软件将不同领域的计算软件组合起来,采用统一的前后处理工具,节省了时间。

e)先进的动/变形网格技术。用户只需折定初始网格和运动壁面的边界条件,余下的网格变化完全由解算器自动生成。可用于非结构网格、变形较大问题以及物体运动规律事先不知道而完全流动所产生的力所决定的问题。

f)强大的网格支持能力。FLUENT软件支持界面不连续的网格、混合网格、动/变形网格以及滑动网格等。FLUENT软件还拥有多种基于解的网格自适应、动态自适应以及动网格与网格动态自适应相结合的技术[4]。

2应用现状

2.1旋风分离器内部流场数值模拟

利用FLUENT软件对旋风分离器内部流场进行数值模拟,将不同湍流模型、不同离散方式、不同内部结构(进口角度、进料管结构、圆筒段结构等)的数值模拟结果进行对比,确定出最合适的分离器内部流场,为分离器的进一步结构优化提供理论依据。

魏新利等人[5]采用FLUENT软件中的k-ε标准模型、RNG k-ε模型和RSM模型对旋风分离器内部流场进行了数值模拟,将模拟结果与实验结果比较得出最适合旋风分离器的数值解法:湍流模型采用各向异性的RSM模型,离散方式采用对流项的QUICK格式和压力梯度项的PRESTO格式。

郭广东等人[6]研究了三相旋流器结构参数和分离效率之间的关系,通过改变三相旋流器的内部结构,借助FLUENT软件研究内部流场的变化情况,确定出提高旋流器分离性能的方法。而张建等人[7]采用FLUENT软件对三种排尘口直径不同的旋风分离器以及长锥型旋风分离器中的气相流动规律进行数值模拟,结果表明,随着排尘口直径减小,分离性能有所提高。

2.2管道停输温降数值模拟

在管道运行过程中,停输是不可避免的。掌握其温降规律对确定安全停输时间、再启动方案和停输检修安排具有指导意义。此类散热问题可以采用数值解法(主要为有限元法和有限体积法),通过控制网格的划分,计算可得到较高精度的解。

张煜等人[8]分析了不同位置、不同初始温度、不同管径条件下的热油管道停输降温变化过程,通过FLUENT 软件模拟发现,温降过程分三阶段,第一阶段自然对流导致温降速度最快;第二阶段原油黏度增大,温降曲线平缓;第三阶段依赖导热传热,管内温降速率较快,模拟结果与实际情况相符。

王常斌等人[9]运用FLUENT软件在三维直角坐标系中建立了埋地热油管道的物理模型,对不同传热系数、不同流速以及非稳态环境的热油管道进行了数值模拟,得到热油管道轴向温度分布图,分析了管道总传热系数和流速对温度变化的影响。模拟结果较好地反映了埋地热油管道沿线温度下降的基本特征,为实际生产管理提供了科学依据,对指导油田的输油生产、管道安全性和节能降耗具有重要意义。

杜明俊等人[10]使用FLUENT软件研究多年冻土区埋地热油管道停输温降问题。针对多年冻土区埋地热油管道运行环境的特点,对不同季节管内原油的温降和土壤温度场进行了仿真分析,模拟了管道原油凝固过程,确定合理的停输时间。

2.3顺序输送混油数值模拟

成品油常采用顺序输送的运输方式,其中混油处理是研究顺序输送的难点之一[11]。由于影响混油浓度的因素很多,因此混油界面在管道内运动复杂,使常规混油量计算公式的应用具有一定局限性。数值模拟因具备对复杂流动传热边界条件进行分析、求解的能力,近年来已被用于解决顺序输送混油问题。

赵海燕[12]应用FLUENT软件模拟研究了顺序输送混油的问题。以质量输送方程为基础,使用壁面函数法处理固壁边界,综合分析了油品输送速度、输送次序、停输、盲支管以及90°弯管等各种工况对混油的影响,模拟结果和理论分析对比基本吻合,为进一步研究成品油顺序运输提供了理论依据和指导。

杜明俊等人[13]利用FLUENT软件模拟了冷热原油顺序输送过程中混油浓度情况。采用有限容积法建立了顺序输送混油数学模型,分析了不同输送顺序、不同温度、不同速度对混油浓度的影响,研究结果为工程设计与管理提供了理论指导。

2.4天然气管道泄漏扩散数值模拟

天然气在管道运行的过程中会受到内外因素的干扰,最终导致管道破裂而发生泄漏。天然气泄漏不但导致能源浪费,而且会形成中毒、燃烧爆炸危险区,当遇到火源或达到一定浓度就会发生燃烧或爆炸,造成经济损失。研究管输天然气泄漏扩散规律可迅速预测天然气泄漏后的扩散及危险范围,避免不必要的能源浪费和经济损失。

李自力等人[14]利用FLUENT软件对山地条件下天然气泄漏扩散进行了数值模拟,并编写UDF程序导入软

28

件对风速进行修正。考虑天然气向下喷射情况,给出了在不同风速条件下天然气向下喷射时的爆炸下限浓度和警戒浓度范围,将结果与气体向上喷射情况对比,得出孔口向下喷射时,气体积聚在近地面不易扩散,比孔口向上喷射时更危险。

胡夏琦[15]采用FLUENT软件模拟含H2S高压天然气管道泄漏情况,研究了含H2S的高压天然气管道泄漏时天然气的扩散规律。模拟结果表明,扩散时,安全空间随H2S浓度的增大而减小,说明含H2S天然气比只含甲烷的天然气更危险。

朱红钧等人[16]借助FLUENT软件对平坦地区含硫天然气集输管道的泄漏扩散进行了仿真研究,对比分析了泄漏率、压力和浓度在静风和有风条件下的分布规律及危险区大小,为管道的实际生产运行和紧急救援提供参考。

2.5LNG技术方面数值模拟

LNG作为一种清洁、高效的能源越来越受到各国的青睐[17]。为推动该领域的发展,很多研究者以数学模型为载体,利用FLUENT软件研究LNG泄漏、分层、翻滚和蒸发等问题,取得了一定的成果。

Gavelli F等人[18-19]借助FLUENT软件模拟LNG泄漏后周围复杂环境的情况,以Falcon系列测试为理论模型,准确地预测了LNG低温泄漏行为。

1980年在加利福尼亚的China Lake进行了LNG系列实验,黄琴等人[20]以实验数据为基础,运用FLUENT 软件对LNG泄漏扩散进行了模拟,将不同点的模拟结果同实验数据进行对比。结果表明,由于实验过程中风速和风向的影响,模拟结果与实验结果存在差异,但温度和浓度的变化趋势与实验值基本吻合。

乔国发[21]运用FLUENT软件对紊流态LNG分层和翻滚情况进行数值模拟计算,观察到LNG分层和翻滚的演变过程大致分为四个阶段。同时发现LNG翻滚现象产生的根本原因是LNG分层的存在,LNG分层产生翻滚的直接原因是热边界层的流动。对模拟结果进行了实验验证,二者基本吻合。

2.6油罐问题的数值模拟

随着石油化工行业的发展以及原油战略储备的要求,油罐已成为常用的石油储备设施。但作为一种大型压力容器,容易发生爆炸事故,造成严重的环境污染,后果往往是灾难性的[22]。很多研究者利用FLUENT软件研究油罐渗漏、罐内原油温降以及油罐的爆炸行为,为油罐的安全设计提供理论借鉴。

万春利等人[23]借助FLUENT软件模拟了大型浮顶罐内原油的温降情况,具体研究了自然冷却条件下油罐内温度和速度的变化机理,得到了分布云图。将模拟数据与实测数据对比,二者吻合度很高,相对误差<3%。

郑志伟等人[24]运用FLUENT软件的多孔介质模型模拟了立式油罐底部漏油渗流场的分布,研究了影响渗流场分布的相关原因,为油罐渗漏探测方法的研究及油品污染情况的评估提供了参考。

高建丰等人[25]借助FLUENT软件对油罐内油气混合物爆炸情况进行了数值仿真研究。在一个模拟油罐中进行模拟实验,建立数学模型,得到相应的模拟结果,将实验值和模拟值进行对比得到:油罐内油气混合物爆炸强度与罐内初始温度、油气体积分数等因素有关。

3存在的问题

FLUENT软件在油气储运工程领域的应用还存在不足之处。首先,FLUENT软件采用有限体积法,在计算过程中为了加快收敛速度,采取了交错网格,会降低计算精度。

其次,应用FLUENT软件进行数值模拟,实际上是一种离散近似的计算方法,计算结果与实际结果有一定偏差,结果不能提供任何形式的解析表达式,只能得到有限个离散点的数值解。

另外,FLUENT软件均配有各种湍流模型,包括方程模型、k-ε模型、RSM模型、LES模型等。但这些模型的使用不是通用的,是有一定条件的。例如:标准k-ε模型只适合完全湍流的流动过程模拟;RNG k-ε模型主要针对高雷诺数流动问题,对低雷诺数问题则要进行相应的设置;RSM模型也属于高雷诺数湍流计算模型,在固体壁面附近,由于分子黏性作用,湍流脉动受到阻尼,雷诺数很小,RSM模型不再适用。

4发展趋势

FLUENT软件在油气储运工程领域的应用已逐步展开,数值模拟同试验研究相比,有独特的优势:成本低,计算快捷、方便,能够获得完整数据,无实验仪器干扰,能提供各个状态的实验数据,可以部分替代恶劣工况和复杂边界条件下的常规实验和工业试验,具有一定的应用潜力。因此,FLUENT软件有很大的发展前景:a)油气储运工程领域是一个多学科综合性领域,对该领域的模拟需要涉及多方面工作,要求研究者除了具有储运专业知识外,还应具有扎实的数学功底和计算机应用知识,同时对流体力学理论也有深刻的认识。

b)综合应用数值模拟结果和实验研究结果,用数值模拟指导实验研究方向,用实验研究验证数值模拟,为实际工程提供更有力的设计依据。

c)充分利用FLUENT软件的自定义函数(UDF)功能,对FLUENT软件进行二次开发应用,这将为FLUENT

第31卷第2期

油气储运

OIL AND GAS TRANSPORTATION AND STORAGE

29

天然气与石油

NATURAL GAS AND OIL

2013年4月

软件提供一种更有效的使用方法,也为FLUENT软件的更广泛使用提供了新思路。

参考文献:

[1]马双忱,王梦璇,蔡晓彤,等.FLUENT在燃煤电厂大气污染控制领域的应用研究进展[J].电力科技与环保,2011,27(6):1-5.

Ma Shuangchen,Wang Mengxuan,Cai Xiaotong,et al.Appli-cation of FLUENT in Air Pollution Control of Coal-fired Power Plant[J].Electric Power Technology and Environmen-tal Protection,2011,27(6):1-5.

[2]何有世,袁寿其,王大承.计算流体力学(CFD)中的迭代法及其并行计算方法[J].中国安全科学学报,2002,12(3):42-46.

He Youshi,Yuan Shouqi,Wang Dacheng.Iterative Method of Computational Fluid Dynamics(CFD)and its Parallel Com-puting Method[J].China Safety Science Journal,2002,12(3):42-46.

[3]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2005.

Han Zhanzhong,Wang Jing,Lan Xiaoping.FLUENT Fluid Simulation Calculation Examples and Application[M].Bei-jing:Beijing Institute of Technology Press,2005.

[4]朱红钧,林元华,谢龙汉.FLUENT流体分析及仿真实用教程[M].北京:人民邮电出版社,2010.

Zhu Hongjun,Lin Yuanhua,Xie Longhan.FLUENT Fluid Analysis and Simulation and Practical Tutorial[M].Beijing:Peo-ple's Posts and Telecommunications Press,2010.

[5]魏新利,张海红,王定标.旋风分离器流场的数值计算方法研究[J].郑州大学学报,2005,26(1):57-60.

Wei Xinli,Zhang Haihong,Wang Dingbiao.Research on Numerical Calculation Methods of Flow Field in Cyclone Sep-arator[J].Journal of Zhengzhou University,2005,26(1):57-60.

[6]郭广东,邓松圣,张福伦.固-液-液三相分离水力旋流器结构优化研究[J].化工设备与管道,2010,47(3):19-28.

Guo Guangdong,Deng Songsheng,Zhang Fulun.Research on Solid-Liquid-Liquid Three-phase Separation Hydrocyclone Structure Optimization[J].Chemical Equipment and Pipeline,2010,47(3):19-28.

[7]张建,金有海.不同锥体结构旋风分离器的分离特性数值研究[J].石油化工设备,2007,36(6):33-36.

Zhang Jian,Jin Youhai.Numerical Study on Separation Char-acteristics of Cyclones with Different Cone Structures[J].

Petrochemical Equipment,2007,36(6):33-36.

[8]张煜,朱红钧,陈小榆.热油管道停输温降过程的模拟研究[J].石油工业计算机应用,2009,16(2):98-102.

Zhang Yu,Zhu Hongjun,Chen Xiaoyu.Simulation Study on Temperature Drop Process in Hot Oil Pipeline Shutdown[J].

Petroleum Industry Computer Application,2009,16(2):98-102.[9]王常斌,徐洋,赵艳红.埋地热油管道沿程温降的数值模拟[J].管道技术与设备,2012,(1):15-17.

Wang Changbin,Xu Yang,Zhao Yangong.Numerical Simula-tion of Buried Hot Oil Pipeline Temperature Drop[J].Pipeline Technology and Equipment,2012,(1):15-17.

[10]杜明俊,马贵阳,陈笑寒.冻土区埋地热油管道停输温降数值模拟[J].天然气与石油,2010,28(4):54-57.

Du Mingjun,Ma Guiyang,Chen Xiaohan.Numerical Simu-lation of Temperature Drop in Buried Hot Oil Pipeline Shut-down in Permafrost Region[J].Natural Gas and Oil,2010,28(4):54-57.

[11]吕高稳,冯先强,张大鹏,等.浅谈原油顺序输送过程中混油量的计算[J].天然气与石油,2007,25(1):11-12.

Lv Gaowen,Feng Xianqiang,Zhang Dapeng,et al.Mixed Oil Quantity Calculation In Crude Oil Batch Transportation[J].

Natural Gas and Oil,2007,25(1):11-12.

[12]赵海燕.顺序输送混油的CFD模拟[D].大庆:大庆石油学院,2010.27-52.

Zhao Haiyan.CFD Simulation of Mixed Oil Batch Trans-portation[D].Daqing:Daqing Petroleum Institute,2010.27-

52.

[13]杜明俊,马贵阳,许丹.冷热原油顺序输送过程混油浓度的数值模拟[J].油气储运,2010,29(10):730-733.

Du Mingjun,Ma Guiyang,Xu Dan.Numerical Simulation of Mixed Oil Concentration in Cold and Hot Crude Oil Batch Pipelining[J].Oil and Gas Storage and Transportation,2010,29(10):730-733.

[14]李自力,李胜利,李长胜.天然气泄漏扩散的三维数值模拟[J].油气储运,2010,29(4):266-271.

Li Zili,Li Shengli,Li Changsheng.3D Numerical Simulation of Gas Leakage and Diffusion[J].Oil and Gas Storage and Transportation,2010,29(4):266-271.

[15]胡夏琦.含硫化氢高压天然气管道泄漏的数值模拟[D].

东营:中国石油大学(华东),2006.60-84.

Hu Xiaqi.Numerical Simulation of High Pressure Gas Pipeline Leakage Containing Hydrogen Sulfide[D].Dongying:China University of Petroleum(East China),2006.60-84.

[16]朱红钧,林元华,马成学.平坦地区含硫化氢集输管道的泄漏扩散模拟[J].西南石油大学学报(自然科学版),2009,31(6):156-160.

Zhu Hongjun,Lin Yuanhua,Ma Chengxue.Leakage and Diffusion Simulation of Oil and Gas Pipeline with Hydrogen Sulfide in Flat Terrain[J].Southwest Petroleum University (Natural Science Edition),2009,31(6):156-160.

(下转第39页)

30

油,2010,28(4):29-34.

Qian Bozhang,Zhu Jianfang.New Progress of Coalbed Methane Development and Utilization[J].Natural Gas and Oil,2010,28(4):29-34.

[3]李红艳,贾林祥.煤层气液化技术[J].中国煤层气,2006,3(3):32-33.

Li hongyan,Jia Linxiang.Coalbed Methane Liquefied Technol-ogy[J].China Coalbed Methane,2006,3(3):32-33.

[4]蒲亮,孙善秀,程向华,等.几种典型的煤层气液化流程计算及分析比较[J].化学工程,2008,36(2):54-58.

Pu Liang,Sun Shanxiu,Cheng Xianghua,et al.Several Typical Coalbed Methane Liquefaction Process Calculation and Exergy Analysis and Comparison[J].Chemical Engineering,2008,36(2):54-58.

[5]高婷,林文胜,顾安忠,等.利用吸附余压预冷的煤层气氮膨胀液化流程[J].天然气工业,2009,29(2):117-119.

Gao Ting,Lin Wensheng,Gu Anzhong,et al.Coalbed Methane Nitrogen Expansion Liquefying Process by Using Adsorption Pressure Precooling[J].Natural Gas Industry,2009,29(2):117-119.

[6]李士富,王曰燕,王勇.山西沁水煤层气液化HYSYS软

件计算模型[J].天然气与石油,2010,28(4):22-25.

Li Shifu,Wang Yueyan,Wang Yong.HYSYSSoftwareCalculation Model for Shanxi Qinshui Coalbed Methane Liqueaction[J].

Natural Gas and Oil,2010,28(4):22-25.

[7]王文军,杜建梅,蒋建志,等.煤层气氮膨胀制冷液化工艺参数优化计算[J].煤气与热力,2010,30(3):B09-B12.

Wang Wenjun,Du Jianmei,Jiang Jianzhi,et al.Optimization of Coalbed Methane Nitrogen Expansion Refrigeration Liquefac-tion Process Parameters[J].Journal of Gas and Heat,2010,30(3):B09-B12.

[8]李秋英,王莉,巨永林.含氧煤层气的液化及杂质分离[J].

天然气工业,2011,31(4):99-102.

Li Qiuying,Wang Li,Ju Yonglin.Liquefaction and Impurity Separation of Coalbed Methane with Oxygen[J].Journal of Natural Gas Industry,2011,31(4):99-102.

[9]王勇,张玉玺,白剑锋.LNG制冷HYSYS计算模型[J].

天然气与石油,2012,30(4):30-32.

Wang Yong,Zhang Yuxi,Bai Jianfeng.LNG Refrigeration HYSYS Computation Model[J].Natural Gas and Oil,2012,30(4):30-32.

第31卷第2期

油气加工

OIL AND GAS TREATING AND PROCESSING

(上接30页)

[17]钱伯章,朱建芳.世界液化天然气的现状及展望[J].天然气与石油,2008,26(4):34-38.

Qian Bozhang,Zhu Jianfang.Status and Outlook of the World Liquefied Natural Gas[J].Natural Gas and Oil,2008,26(4):34-38.

[18]Gavelli F,Bullisterb E,Kytomaa H.Application of CFD(Flu-ent)to LNG spills into geometrically complex environments [J].Journal of Hazardous Materials,2008,159(1):158-168.[19]Gavelli F,Chernovsky M K,Bullister E,et al.Modeling of LNG Spills into Trenches[J].Journal of Hazardous Materials,2010,180(1):332-339.

[20]黄琴,蒋军成.液化天然气泄漏扩散实验的CFD模拟验证[J].工业安全与环保,2008,34(1):21-23.

Huang Qin,Jiang Juncheng.LNG Leakage Diffusion Experi-ment of CFD Simulation[J].Journal of Industrial Safety and Environmental Protection,2008,34(1):21-23.

[21]乔国发.影响LNG储存容器蒸发率因素的研究[D].东营:中国石油大学(华东),2007.25-72.

Qiao Guofa.Research on Factors Influencing the LNG Stor-

age Container Rate of Evaporation[D].Dongying:China U-niversity of Petroleum(east China),2007.25-72.

[22]孙兆强,赵连河,郑贤斌,等.油罐火灾爆炸故障树分析[J].

天然气与石油,2004,22(1):27-30.

Sun Zhaojiang,Zhao Lianhe,Zheng Xianbin,et al.Tank Fire Explosion Fault Tree Analysis[J].Natural Gas and Oil,2004,22(1):27-30.

[23]万春利,赵志明.基于FLUENT的大型储油罐内原油非稳态传热的数值模拟[J].才智,2009,(29):77-78.

Wan Chunli,Zhao Zhiming.Numerical Simulation of Un-

steady Heat Transfer Inside the Large Storage Tanks of Crude oil Based on FLUENT[J].Journal of Intelligence,2009,(29):77-78.

[24]郑志伟,赵利军,成玉贯.基于Fluent模拟立式油罐罐底渗漏油品的渗流场分布[J].广东化工,2010,37(11):255-257.

Zheng Zhiwei,Zhao Lijun,Cheng Yuquan.Seepage Field Distribution of Leaking Oil in Simulated Vertical Oil Tank Bottom Based on the Fluent Software[J].Guangdong Chemi-cal Industry,2010,37(11):255-257.

[25]高建丰,杜扬,蒋新生.模拟油罐油气混合物爆炸实验与数值仿真研究[J].后勤工程学院学报,2007,23(1):79-83.

Gao Jianfeng,Du Yang,Jiang Xinsheng.Simulation of Tank Mixture of Oil and Gas Explosion Experiment and Numerical Simulation Research[J].Journal of Logistics Engineering Col-lege,2007,23(1):79-83.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

39

SELECTED ABSTRACTS

SELECTED ABSTRACTS(BIMONTHLY)

Vol.31No.2Apr.2013

tracing

Rubber Comminution by Utilizing LNG Cold Energy

Cui Guobiao(Southwest Petroleum University Graduate School,Chengdu,Sichuan,610500,China)

Liu Yang,An Haiyan(PetroChina Pipeline Company Changqing Oil and Gas Branch,Yinchuan,Ningxia,750000,China)

Chen Jianxin(PetroChina West-East Pipeline Sales Company,Yulin,Shaanxi,718500,China)NGO,2013,31(2):24-26

ABSTRACT:Up to now,there are two kinds of rubber comminution processes:comminuting by direct cutting in nor-mal atmospheric temperature condition and cryogenic comminution and the latter includes liquid nitrogen refrigeration comminution method and air expansion refrigeration comminution https://www.wendangku.net/doc/ec16765689.html,pared with the former,the latter has ob-vious advantages in fine rubber powder production except for huge investment and production costs.The process of utiliz-ing LNG cold energy for waste rubber cryogenic comminution in satellite station is applied rarely in domestic LNG termi-nals and the technology is relatively scarce.In the technology,using air as a middle cold medium,cold flow generated in LNG vaporization is recovered to cool air and then the cooled air is sprayed to cool rubber powder.Simulation results show that this rubber comminution process has remarkable energy conservation effects and energy consumption of fine rubber powder per ton can be reduced by349.5kW·h.

KEYWORDS:LNG gasification station;Cold energy utilization;Rubber comminution;Hysys

Application of FLUENT Software in Oil and Gas Storage and Transportation Engineering Design

Jin Junqing,Zheng Yunping(Petroleum Engineering College of Southwest Petroleum University,Chengdu,Sichuan,610500,China)NGO,2013,31(2):27-30

ABSTRACT:FLUENT is a kind of software specialized for simulation and analysis on fluid flow and heat transfer phe-nomenon in a complex geometric area.Introduced are basic principle,application method and some main characteristics of the software,analyzed and summarized are practical application situations of the software in oil and gas storage and transportation engineering design and conducted are numerical simulations of inner flow field of cyclone separator,tem-perature drop during pipeline shutdown,batch transportation,natural gas pipeline leakage and LNG and oil storage tanks.Analyzed are some problems in actual application of FLUENT to oil and gas storage and transportation engineering design and predicted are future research direction and development tendency of the software.

KEYWORDS:FLUENT;Oil and gas storage and transportation;Numerical simulation

OIL AND GAS TREATING AND PROCESSING

Optimization of Parameters in Selexol Decarburization Process and Its Adaptability Research

Zhang Zhe(China Petroleum Planning&Engineering Institute,Beijing,100083,China)

Pi Yanhui,Chen Siding(State Key Laboratory of Southwest Petroleum University,Chengdu,Sichuan,610500,China)NGO,2013,31(2):31-35

ABSTRACT:For special natural gas reservoirs with high carbon and micro H2S,more and more attention has been paid to Selexol decarburization process due to less its corrosivity.Adopted is the software HYSYS2006to optimize absorber control parameters and flash regeneration conditions of the Selexol decarburization process and reflected further is adapt-ability of the process.Research results show that the lower of injection temperature the better when the absorption tower operating condition is the feed gas temperature at the tower inlet:-5to5℃and lean liquid injection rate is about750 m3/h but the temperature shall not be below-18℃in actual operation.The optimized pressures at3stages are2400,500,and50kPa respectively during flash regeneration.The Selexol decarburization process is be suitable for decarbur-ization treatment of lean gas with CO2content less than60%and C4+heavy hydrocarbon less than1%(α). KEYWORDS:Natural gas with high content of carbon;Selexol;Decarburization;Optimization;Applicability

Simulation and Comparison of Coalbed Methane Liquefaction Processes

Wang Zhaofeng(CPECC East-China Design Company,Qingdao,Shandong,266071,China)

Huang Shanwei(Hainan Minsheng Pipeline Gas Co.,Ltd.,Haikou,Hainan,570208,China)

Wang Botao(Dongying Construction Engineering Quality Supervision Station,Dongying,Shandong,257091,China)

油气储运安全技术总结

油气储运安全技术 第一章油气产品理化特性及储运事故类型?常见危险品及其标志 ?油气产品的危险特性 闪点、燃点、自燃点大小的判断 ?储运过程中的事故类型 国家标准《火灾分类》火灾分类方法 泄漏及其分类 第二章燃烧与爆炸基本理论?判断什么叫燃烧 ?燃烧条件 燃烧三角形,燃烧四面体 ?燃烧机理 链锁反应 ?灭火方法 ?爆炸分类 按爆炸传播速度 按能量释放的性质 ?化学爆炸的分类 爆炸极限及其影响因素 燃烧和爆炸的关系 第三章火灾及爆炸伤害分析?火灾热辐射伤害准则 ?爆炸伤害准则 ?常见的火灾类型 第四章油气泄露、扩散损失计算?液体泄漏 ?气体泄漏 ?两相流泄漏 两相流泄漏的影响因素分析 ?中等密度云扩散 高斯烟羽模型 高斯烟团模型 ?重气云扩散 盒子模型 平板模型 ?中等密度云扩散与重气云扩散的区别 ?中毒 毒物伤害概率模型 第五章完整性管理及管道腐蚀、泄漏检测?完整性管理定义 ?管线的状态检测技术 加水试压

外检测 内检测(漏磁检测和超声波检测的原理) ?管线泄漏定位技术 直接检漏方法和简介检漏方法 第六章油气储运安全动火及抢修技术?工业动火定义 ?置换的定义 ?动火制度 ?动火级别划分 ?动火审批程序 ?动火申请报告书的时效性 ?油气管线动火特点 ?油气管线动火作业方法 ?油气管线抢修程序 ?储罐动火清洗方法 ?油罐带油动火须满足的条件 第七章油气储运灭火实战技术 ?灭火作战计划及灭火指挥原则 ?灭火作战计划定义 ?制定的原则 ?包含的内容 ?灭火指挥的原则 ?储罐的沸溢和喷溅 ?沸溢和喷溅的条件 ?沸溢和喷溅的区别 ?沸溢和喷溅发生前的征兆 ?油罐火灾灭火的步骤 ?常见油罐火灾的灭火方法 第八章安全评价及事故预测基本方法?风险评价方法分类 ?几种常用风险评价方法 安全检查表 事故树分析 安全指数分析方法 道化学指数 蒙德指数 ?我国面临的石油安全形式 ?战略储备库及作用 我国的战略储备库计划(包括第一批建设的储备库地点) ?应对石油危机我们应该采取的举措

十款制作影视特效的优秀软件介绍

十款制作影视特效的优秀软件介绍 相信很多影视制作初学者在看到市场上那些琳琅满目的制作软件一定是头晕脑胀,不知道用哪种制作软件比较好,下面给大家介绍十款影视制作的软件,一起来看看吧。 1、RealFlow 是由西班牙Next Limit公司出品的流体动力学模拟软件。它是一款独立的模拟软件,可以计算真实世界中运动物体的运动,包括液体。RealFlow提供给艺术家们一系列精心设计的工具,如流体模拟(液体和气体)、网格生成器、带有约束的刚体动力学、弹性、控制流体行为的工作平台和波动、浮力(以前在RealWave 中具有浮力功能)。你可以将几何体或场景导入RealFlow来设置流体模拟。在模拟和调节完成后,将粒子或网格物体从RealFlow导出到其他主流3D软件中进行照明和渲染。 2、Houdini (电影特效魔术师) Side Effects Software的旗舰级产品,是创建高级视觉效果的有效工具,因为它有横跨公司的整个产品线的能力,Houdini Master为那些想让电脑动画更加精彩的动画制作家们提供了空前的能力和工作效率。 3、lightwave LightWave是一个具有悠久历史和众多成功案例的为数不多的重量级3D软件之一。由美国NewTek公司开发的LightWave3D是一款高性价比的三维动画制作

软件,它的功能非常强大,是业界为数不多的几款重量级三维动画软件之一。LightWave3D从有趣的AMIGA开始,发展到今天的8.5版本,已经成为一款功能非常强大的三维动画软件,支持Windows98/NT/2000/Me,MACOS9/Xp。 4、Combustion 是一种三维视频特效软件,基于PC或苹果平台的Combustion软件是为视觉特效创建而设计的一整套尖端工具,包含矢量绘画、粒子、视频效果处理、轨迹动画以及3D效果合成等五大工具模块。软件提供了大量强大且独特的工具,包括动态图片、三维合成、颜色矫正、图像稳定、矢量绘制和旋转文字特效短格式编辑、表现、flash输出等功能;另外还提供了运动图形和合成艺术新的创建能力,交互性界面的改进;增强了其绘画工具与3ds max软件中的交互操作功能;可以通过cleaner编码记录软件使其与flint、flame、inferno、fire和smoke同时工作。 5、Softimage 公司曾经是加拿大Avid公司旗下的子公司。SOFTIMAGE 3D曾经是专业动画设计师的重要工具。用SOFTIMAGE 3D创建和制作的作品占据了娱乐业和影视业的主要市场,《泰坦尼克号》、《失落的世界》、《第五元素》等电影中的很多镜头都是由SOFTIMAGES 3D制作完成的,创造了惊人的视觉效果。 6、DFusion DFusion是一个高端的、用于影视后期、独立的图象处理的特效的合成平

FLUENT中文全教程1-250

FLUENT 教程 赵玉新 I、目录 第一章、开始 第二章、操作界面 第三章、文件的读写 第四章、单位系统 第五章、读入和操作网格 第六章、边界条件 第七章、物理特性 第八章、基本物理模型 第九章、湍流模型 第十章、辐射模型 第十一章、化学输运与反应流 第十二章、污染形成模型 第十三章、相变模拟 第十四章、多相流模型 第十五章、动坐标系下的流动 第十六章、解算器的使用 第十七章、网格适应 第十八章、数据显示与报告界面的产生 第十九章、图形与可视化 第二十章、Alphanumeric Reporting 第二十一章、流场函数定义 第二十二章、并行处理 第二十三章、自定义函数 第二十四章、参考向导 第二十五章、索引(Bibliography) 第二十六章、命令索引 II、如何使用该教程 概述 本教程主要介绍了FLUENT 的使用,其中附带了相关的算例,从而能够使每一位使用 者在学习的同时积累相关的经验。本教程大致分以下四个部分:第一部分包括介绍信息、用户界面信息、文件输入输出、单位系统、网格、边界条件以及物理特性。第二和第三部分包含物理模型,解以及网格适应的信息。第四部分包括界面的生成、后处理、图形报告、并行处理、自定义函数以及FLUENT 所使用的流场函数与变量的定义。 下面是各章的简略概括 第一部分: z开始使用:本章描述了FLUENT 的计算能力以及它与其它程序的接口。介绍了如何对具体的应用选择适当的解形式,并且概述了问题解决的大致步骤。在本章中,我们给出

了一个可以在你自己计算机上运行的简单的算例。 z使用界面:本章描述了用户界面、文本界面以及在线帮助的使用方法。同时也提供了远程处理与批处理的一些方法。(请参考关于特定的文本界面命令的在线帮助) z读写文件:本章描述了FLUENT 可以读写的文件以及硬拷贝文件。 z单位系统:本章描述了如何使用FLUENT 所提供的标准与自定义单位系统。 z读和操纵网格:本章描述了各种各样的计算网格来源,并解释了如何获取关于网格的诊断信息,以及通过尺度化(scale)、分区(partition)等方法对网格的修改。本章还描述了非一致(nonconformal)网格的使用. z边界条件:本章描述了FLUENT 所提供的各种类型边界条件,如何使用它们,如何定义它们and how to define boundary profiles and volumetric sources. z物理特性:本章描述了如何定义流体的物理特性与方程。FLUENT 采用这些信息来处理你的输入信息。 第二部分: z基本物理模型:本章描述了FLUENT 计算流体流动和热传导所使用的物理模型(包括自然对流、周期流、热传导、swirling、旋转流、可压流、无粘流以及时间相关流)。以及在使用这些模型时你需要输入的数据,本章也包含了自定义标量的信息。 z湍流模型:本章描述了FLUENT 的湍流模型以及使用条件。 z辐射模型:本章描述了FLUENT 的热辐射模型以及使用条件。 z化学组分输运和反应流:本章描述了化学组分输运和反应流的模型及其使用方法。本章详细的叙述了prePDF 的使用方法。 z污染形成模型:本章描述了NOx 和烟尘的形成的模型,以及这些模型的使用方法。 第三部分: z相变模拟:本章描述了FLUENT 的相变模型及其使用方法。 z离散相变模型:本章描述了FLUENT 的离散相变模型及其使用方法。 z多相流模型:本章描述了FLUENT 的多相流模型及其使用方法。 z Flows in Moving Zones(移动坐标系下的流动):本章描述了FLUENT 中单一旋转坐标系,多重移动坐标系,以及滑动网格的使用方法。 z Solver 的使用:本章描述了如何使用FLUENT 的解法器(solver)。 z网格适应:本章描述了explains the solution-adaptive mesh refinement feature in FLUENT and how to use it 第四部分: z显示和报告数据界面的创建:本章描述了explains how to create surfaces in the domain on which you can examine FLUENT solution data z图形和可视化:本章描述了检验FLUENT 解的图形工具 z Alphanumeric Reporting:本章描述了如何获取流动、力、表面积分以及其它解的数据。 z流场函数的定义:本章描述了如何定义FLUENT 面板内出现的变量选择下拉菜单中的流动变量,并且告诉我们如何创建自己的自定义流场函数。 z并行处理:本章描述了FLUENT 的并行处理特点以及使用方法 z自定义函数:本章描述了如何通过用户定义边界条件,物理性质函数来形成自己的FLUENT 软件。 如何使用该手册 z根据你对CFD 以及FLUENT 公司的熟悉,你可以通过各种途径使用该手册 对于初学者,建议如下:

油气储运火灾危险性及预防

编号:SM-ZD-90552 油气储运火灾危险性及预 防 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

油气储运火灾危险性及预防 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员 之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整 体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅 读内容。 随着石化行业可持续发展战略的制定实施,油气储运在石化行业中占据了越来越重要的地位,油气储运已分布到全国各个地区。但是油气储运是一个很复杂的过程,由于石油及天然气的主要成分是烃类碳氢化合物,具有易燃、易爆、易聚集静电、易中毒等特性,而油气储运过程中是在特定的条件下进行,特别是输油管道,加热加压是管道运输的特点,故具有极大的火灾及爆炸危险性。一旦发生事故,可能造成巨大的经济损失和人员伤亡,并带来恶劣的社会影响。因此,剖析油气储运存在的火灾危险性因素,制定相应的预防措施,控制火灾爆炸事故的发生,为安全生产创造一个良好的环境。 一、油气储运的火灾危险性分析 1设备故障带来的危害 设备故障与日常检修及介质特性有直接关系。油气储运设备设计的不合理、工艺缺陷、管线的腐蚀、操作压力的波

fluent 软件介绍

百科名片 Fluent是目前国际上比较流行的商用CFD软件包,在美国的市场占有率为60%,凡是和流体、热传递和化学反应等有关的工业均可使用。它具有丰富的物理模型、先进的数值方法和强大的前后处理功能,在航空航天、汽车设计、石油天然气和涡轮机设计等方面都有着广泛的应用。 简介 Fluent算例 CFD商业软件FLUENT,是通用CFD软件包,用来模拟从不可压缩到高度可压缩范围内的复杂流动。由于采用了多种求解方法和多重网格加速收敛技术,因而FLUENT能达到最佳的收敛速度和求解精度。灵活的非结构化网格和基于解的自适应网格技术及成熟的物理模型,使FLUENT在转换与湍流、传热与相变、化学反应与燃烧、多相流、旋转机械、动/变形网格、噪声、材料加工、燃料电池等方面有广泛应用。 基本特点 FLUENT软件具有以下特点: FLUENT软件采用基于完全非结构化网格的有限体积法,而且具有基于网格节点和网格单元的梯度算法; 定常/非定常流动模拟,而且新增快速非定常模拟功能; Fluent 前处理网格划分 FLUENT软件中的动/变形网格技术主要解决边界运动的问题,用户只需指定初始网格和运动壁面的边界条件,余下的网格变化完全由解算器自动生成。网格变形方式有三种:弹簧压缩式、动态铺层式以及局部网格重生式。其局部网格重生式是FLUENT所独有的,而

且用途广泛,可用于非结构网格、变形较大问题以及物体运动规律事先不知道而完全由流动所产生的力所决定的问题; FLUENT软件具有强大的网格支持能力,支持界面不连续的网格、混合网格、动/变形网格以及滑动网格等。值得强调的是,FLUENT软件还拥有多种基于解的网格的自适应、动态自适应技术以及动网格与网格动态自适应相结合的技术; FLUENT软件包含三种算法:非耦合隐式算法、耦合显式算法、耦合隐式算法,是商用软件中最多的; FLUENT软件包含丰富而先进的物理模型,使得用户能够精确地模拟无粘流、层流、湍流。湍流模型包含Spalart-Allmaras模型、k-ω模型组、k-ε模型组、雷诺应力模型(RSM)组、大涡模拟模型(LES)组以及最新的分离涡模拟(DES)和V2F模型等。另外用户还可以定制或添加自己的湍流模型; 适用于牛顿流体、非牛顿流体; 含有强制/自然/混合对流的热传导,固体/流体的热传导、辐射; 化学组份的混合/反应; 自由表面流模型,欧拉多相流模型,混合多相流模型,颗粒相模型,空穴两相流模型,湿蒸汽模型; 融化溶化/凝固;蒸发/冷凝相变模型; 离散相的拉格朗日跟踪计算; 非均质渗透性、惯性阻抗、固体热传导,多孔介质模型(考虑多孔介质压力突变); 风扇,散热器,以热交换器为对象的集中参数模型; 惯性或非惯性坐标系,复数基准坐标系及滑移网格; 动静翼相互作用模型化后的接续界面; 基于精细流场解算的预测流体噪声的声学模型; 质量、动量、热、化学组份的体积源项; 丰富的物性参数的数据库; 磁流体模块主要模拟电磁场和导电流体之间的相互作用问题; 连续纤维模块主要模拟纤维和气体流动之间的动量、质量以及热的交换问题; 高效率的并行计算功能,提供多种自动/手动分区算法;内置MPI并行机制大幅度提高并行效率。另外,FLUENT特有动态负载平衡功能,确保全局高效并行计算; FLUENT软件提供了友好的用户界面,并为用户提供了二次开发接口(UDF); FLUENT软件采用C/C++语言编写,从而大大提高了对计算机内存的利用率。 在CFD软件中,Fluent软件是目前国内外使用最多、最流行的商业软件之一。Fluent 的软件设计基于"CFD计算机软件群的概念",针对每一种流动的物理问题的特点,采用适合于它的数值解法在计算速度、稳定性和精度等各方面达到最佳。由于囊括了Fluent Dynamical International比利时PolyFlow和Fluent Dynamical International(FDI)的全部技术力量(前者是公认的在黏弹性和聚合物流动模拟方面占领先地位的公司,后者是基于有限元方法CFD软件方面领先的公司),因此Fluent具有以上软件的许优点 软件简介

浅谈如何解决油气储运安全问题

浅谈如何解决油气储运安全问题 发表时间:2019-09-29T11:13:28.687Z 来源:《城镇建设》2019年14期作者:代振宇李新仁 [导读] 笔者作为油气储运行业的工作者,通过不断的实践,通过分析自己的工作经验,现将自己的工作心得与大家进行分享。 山东晟原石化科技有限公司 摘要:国家要发展必然需要做好能源储备。就当前的国家发展前景而言,油气资源是国家发展中人们日常生活中的必备资源。在笔者看来,它是人类社会发展进入工业革命之后的资源核心。通过观察油气资源的应用情况,我们不难发现其中最突出的就是油气储运安全问题。如何保证油气资源安全储备,低耗、环保、高效,一直困扰着相关的工作人员。而当前我国已经进入迅速发展时期,油气资源在其中发挥的价值更大,而通过观察人们的日常生活,我们可以发现,人们对其的依赖性越来越强,这些问题必须在当下进行解决。笔者作为油气储运行业的工作者,通过不断的实践,通过分析自己的工作经验,现将自己的工作心得与大家进行分享。 关键词:解决;油气;储运;安全问题 随着国家发展的速度越来越快,我们可以发现,国力之间的竞争往往体现在能源竞争上、人才竞争上。而观察社会发展中的能源需求,观察推动国家发展的资源储备,我们可以发现油气资源所体现的价值越来越大,虽然各种新的资源已经应运而生,但是就当前而言,油气资源的地位仍然无法取代。当前国家社会人群对于我国的油气储备情况越来越关心。那么在资源的收集,管理过程中最主要的问题是什么呢?在笔者看来,就是安全问题。如何低耗,高效,环保的应用储备油气资源,这一问题已经摆在我们面前。那如何解决这一问题呢?下面笔者将结合自己的工作心得对此进行分析。 一、问题分析 (一)需求量越来越大 经济的发展,为人们的生活实现优化提供了保障。而为了提升人们的生活质量,各种资源被大量的开发,与之相应的产业链条衍生的越来越丰富。观察当前的油气资源储备,我们可以发现,其储运过程中带来的最大问题之一,就是需求量越来越大。这就需要我们的工作越来越细致,越来越科学化,提升技术含量,保证安全管理措施科学到位。当前油气储运过程中,主要是通过管道运输方式,输送到需求单位。运输网络覆盖面积越来越大,也必然会给我们的工作在量和质上都提出极高的要求。 (二)分布不均衡 这也是油气储运工作中带来安全问题的主因之一。通过观察,我们可以发现,产出地和主要使用地距离较远。我国地大物博,油气的主要产出地大多数在我国的西部,而油气的使用地,则主要在我国的东部。横跨东西的产出地和使用地之间,造成了供给和需求极不平衡。我们如何保障能源的供给安全性和可靠性,成为了我们油气储运工作者必须积极面对的问题。在解决这一问题的过程中,必然会遇到许多的阻碍与困扰,必然需要投入极大的人力和物力,必然需要配有相关的人才来提升我们的安全技术含量,借助现代的科学化技术。 (三)容易出现安全事故 在油气安全储运过程中,我们遇到的最大问题,人们最关注的问题,就是安全事故问题。尤其储运过程中,我们可以发现,其中蕴含的物质成分非常容易引发静电聚焦,爆炸,燃烧等现象。而由其引发的往往又是大型火灾核爆炸等危险事故。当事故出现时随之带来的就是人员伤亡,以及人们的财产安全。这就要求在进行管道建设过程中,安全系统建设过程中,关注到每一个环节,做好相关的测试,提升管理人员的工作能力。将防老化、防洪、抗腐蚀、风险评估等等工作落到实处。 二、解决方法分析 (一)加强检测与日常工作管理 防患于未然是笔者对油气储运安全工作提出的最根本的建议。在笔者看来,作为相关的工作者要具备预设能力。在问题发生之前,就进行有效的调控,可以避免安全问题的产生,或者可以把问题的损害降到最小。笔者建议,在日常的工作中,我们要做好防静电工作,避免造成放电,引起爆炸。我们还有做好防爆防漏工作,避免出现机械摩擦火花或电器火爆,引发爆炸火灾。在相关设计方面,也要加大管理力度。避免设计出现问题,造成机械振动,引发设备疲劳。当然,其中最关键的是加强对工作人员的管理,促使安全工作人员,一定要严守操作规范。基于此,要严格进行专业化选拔、专业化培训。技术不达标,不过关,不能上岗,一定要做到技术娴熟操作无差漏。还有提升工作人员的急救能力,在问题出现时,能够找到最科学,最安全的解决方法。 (二)加强施工建设管理 这是保证油气储运安全的前提,在这一方面笔者建议,我们要对工程的各个环节都进行科学化的管理和监督。从基础建设开始,做好严格的审查,保证建设能够做到安全投用并且能够在一段时间内发挥出实效。在施工过程中,也需要严格的管理,确保管道安装过程零损伤。如要求监督管道在运输过程中是否有损失,在拆卸过程中装卸要细致,耐心。在焊接过程中更要保证质量,焊接的口径要符合要求,且完美地贴合在一起毫无缝隙。也就是说,一定要促使管道安装,能够达到承压标准。在建设工程结束之后,不要马上投入应用,应该进行严格的验收,为管道安全提供保证。 (三)加强设备保养 在油气储运工程中,人力,物力的投入是巨大的。但是,相关的设备能否在具体的应用过程中发挥实效,在笔者看来,除了前期的建设要有保障,后期的管理更为重要。尤其是总与重大事故相关联的油气安全储运过程中,更需要加大设备的保养力度。作为工作者,笔者认为,设备在使用过程中出现老化,出现故障都是正常现象。但是,能否避免问题发生则是由于主观原因决定。笔者建议,在日常的工作中,要设定定期检测,定期维修的管理制度。还有培养,相关人员的知识储备,让他们既能进行相关的操作,还要能在操作过程中有预见性的发现相关问题。在发现问题之后及时处理,绝不能出現带病作业这一问题。如每个月所有设备的振动情况都必须进行一次检测,要严格按照标准进行核实,对于检测结果要及时查找问题,分析问题,并制定相关的解决方案。对于油气储运管要经常检查,发现问题及时修复,同时还要设计相关的安全标志。改善工作环境,营造安全大氛围。促使每一个工作人员都能养成相应的安全意识。在这种环境中,我们才能保证安全建设,安全使用,促使事故零发生。 综上所述,随着社会的发展,人们的生活水平逐渐提高,对于资源的应用越来越丰富。油气资源是其中最主要的资源。从国家发展而言,油气资源也是核心资源。在油气运输过程中,安全问题是最突出的问题。为了保证国家建设,保证人民的生活水平能够不断优化。自

fluent使用基本步骤

fluent使用基本步骤 步骤一:网格 1.读入网格(*.msh) File →Read →Case 读入网格后,在窗口显示进程 2.检查网格 Grid →Check Fluent对网格进行多种检查,并显示结果。注意最小容积,确保最小容积值为正。 3.显示网格 Display →Grid ①以默认格式显示网格 能够用鼠标右键检查边界区域、数量、名称、类型将在窗口显示,本操作关 于同样类型的多个区域情形专门有用,以便快速区别它们。 4.网格显示操作 Display →Views (a)在Mirror Planes面板下,axis (b)点击Apply,将显示整个网格 (c)点击Auto scale, 自动调整比例,并放在视窗中间 (d)点击Camera,调整目标物体位置 (e)用鼠标左键拖动指标钟,使目标位置为正 (f)点击Apply,并关闭Camera Parameters 和Views窗口 步骤二:模型 1. 定义瞬时、轴对称模型

Define →models→Solver (a)保留默认的,Segregated解法设置,该项设置,在多相运算时使用。 (b)在Space面板下,选择Axisymmetric (c)在Time面板下,选择Unsteady 2. 采纳欧拉多相模型 Define→Models→Multiphase (a) 选择Eulerian作为模型 (b)假如两相速度差较大,则需解滑移速度方程 (c)假如Body force比粘性力和对流力大得多,则需选择implicit body force 通过考虑压力梯度和体力,加快收敛 (d)保留设置不变

FLUENT软件介绍文稿

FLUENT软件介绍文稿 第十一小组

第一章 Fluent软件介绍 FLUENT软件是目前市场上最流行的CFD软件,它在美国的市场占有率达到60%。FLUENT在中国也是得到最广泛使用的CFD软件。它用数值方法模拟一个流场包括网格划分、选择计算方法、选择物理模型、设定边界条件、设定材料属性和对计算结果进行后处理几大部分。 1.1fluent软件基本情况 1.1.1 fluent软件网格划分技术 在使用商用CFD软件的工作中,网格划分需要的时间长,其能力的高低是决定了工作效率。FLUENT软件采用非结构网格与适应性网格相结合的方式进行网格划分。与结构化网格和分块结构网格相比,非结构网格划分便于处理复杂外形的网格划分,而适应性网格则便于计算流场参数变化剧烈、梯度很大的流动,同时这种划分方式也便于网格的细化或粗化,使得网格划分更加灵活、简便。它可以划分二维的三角形和四边形网格,三维的四面体网格、六面体网格、金字塔型网格、楔型网格以及由上述网格类型构成的混合型网格。

1.1.2fluent软件基本组成

Mixsim 针对搅拌混合问题的专用CFD软件 Icepak 专用的热控分析CFD软件 1.1.3 fluent适用领域 (1)任意复杂外形的二维/三维流动 (2)可压、不可压流 (3)定常、非定常流 (4)无粘流、层流和湍流 (5)顿、非牛顿流体流动 (6)对流传热包括自然对流和强迫对流 (7)热传导和对流传热相耦合的传热计算 (8)辐射传热计算 (9)惯性、静止、坐标、非惯性旋转坐标下中流场计算(10)多层次移动参考系问题 (11)化学组元混合与反应计算 (12)源项体积任意变化的计算 (13)颗粒、水滴和气泡等弥散相的轨迹计算 (14)多孔介质流动计算 (15)用一维模型计算风扇和换热器的性能。 (16)两相流 (17)复杂表面问题中带自由面流动的计算 1.1.4系统要求 硬件要求

石油天然气油气储运安全技术

编订:__________________ 审核:__________________ 单位:__________________ 石油天然气油气储运安全 技术 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-2108-18 石油天然气油气储运安全技术 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行 具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或 活动达到预期的水平。下载后就可自由编辑。 一、管道线路 1.管道线路的布置及水工保护 输油气管道路由的选择,应结合沿线城市、村镇、工矿企业、交通、电力、水利等建设的现状与规划,以及沿线地区的地形、地貌、地质、水文、气象、地震等自然条件,并考虑到施工和日后管道管理维护的方便,确定线路合理走向。输油气管道不得通过城市水源地、飞机场、军事设施、车站、码头。因条件限制无法避开时,应采取必要的保护措施并经国家有关部门批准。输油气管道管理单位应设专人定期对管道进行巡线检查.及时处理输油气管道沿线的异常情况。 埋地输油气管道与地面建(构)筑物的最小间距应符合GB 50251和GB 50253规定。 埋地输油气管道与高压输电线平行或交叉敷设时,

工程使用有限元软件大全

ANSYS产品: Ansys v9.0 +SP1 Ansys WorkBench Suite v9.0+SP1(Ansys协同仿真环境) Ansys 9.0 Ansys 9.0 for Linux Ansys WorkBench Suite 9.0(Ansys协同仿真环境) Ansys Heal 8.1(Ansys Automatic Geometry Healing模块,必须先安装Ansys8.1) Ansys ParaMesh 3.0(网格处理软件包) Ansys EMAX 8.0(ANSYS公司专为电子工业而发展的高频电磁分析软件;针对电子工程师在进行RF/微波被动组件与电路的设计、电磁场干扰与协调性(EMI/EMC)天线设计与对象识别;需要先安装Ansys8.0) Ansys AI Enviroment 2.0(机械工程新一代的通用前后处理工具) Ansys AI Nastran 1.0 Ansys UIDL Visual Builder AutoCAD图形转化为Ansys工具 Ansys Workbench 8.0 分析培训教材及实例 2004 Ansys 8.2 机械设计高级应用实例 1CD Ansys Conference 2004-ISO 1CD Ansys LS-Dyna 分析指南(简体中文,Ansys公司的正版培训教程扫描书,96.7MB) Ansys 耦合场分析指南(简体中文,Ansys公司的正版培训教程扫描书) Ansys LS-Dyna Exercise 6CD Ansys 7.0 Training Guides 1CD Ansys 5.7.Professional.Excercise.CD 1CD Ansys 5.7简体中文教程 Ansys Theory 1CD Ansys 混凝土结构计算论文集 Ansys 工程计算应用教程(简体中文) Ansys 工程应用实例解析 1CD 显示动力学与Ansys LS-Dyna中文培训教程 Ansys 2004 中国用户论文集 1CD CFX v5.7.1 for windows-ISO 1CD(大型商业CFD软件) CFX v5.7.1 for linux-ISO 1CD CFX v5.7.1 SP2 update only for windows(升级文件) CFX v4.4-ISO 1CD CFX Rif v1.4.1-ISO 1CD(用于燃烧工艺的建模,是建立稳态flamelet库:可用于CFX-TASCflow2.12或CFX-5分析紊流燃烧的理想工具,CFX-RIF可自动创建先期整合式flamelet库) CFX BladeGen plus v4.1.10(交互式涡轮机械叶片设计工具) CFX TASCflow 2.12.2.NT 1CD(旋转机械气动、水动力学分析和设计,必须先安装Exceed 3D 7.1)

油气储运安全(通用版)

油气储运安全(通用版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0356

油气储运安全(通用版) 指石油和天然气从地下开采到地面以后,经过预加工处理、储存和输送到消费地。石油的运输方式有四种:铁路油罐车运输、公路油罐车运输、水路油轮运输和管道运输。铁路油罐车运输适用于中小批量的原油中长距离运输。在油田开发初期,原油产量尚未达到规模时作为输油管道的建设之前的过渡期,铁路油罐车应用普遍;长距离输油管道的转油站也常设有原油装车栈桥,用火车罐车将石油运往消费地。公路罐车具有运输灵活性大,适用于无水路可通和不靠近铁路的地区,在我国主要用于短途运输。水路运输具有成本低、运输量大的优点,可分为远洋运输、沿海运输、内河运输、湖泊运输。沿海运输指几个临近海区间或本海区内的运输。内河运输一般为国内运输。水路运输的主要运输工具是油轮和油驳,万吨以上的油轮一般用于海运原油,如我国大连新港、秦皇岛油港、黄岛

油港等都能够停靠万吨级巨轮。万吨以下的(多以3000t以下)油轮、油驳是江河内的常用运油工具。管道运输有两类:一类是油田内的油气集输管道、炼油厂内部的输油管道,这些属于企业内部的输油管道;另一类是用于输送原油、产品油或天然气的长距离输油(气)管道。 长距离输油(气)管道?一般把管径大于150mm,输送距离大于100km的管道称为长距离管道。输油管道又可分为原油管道、成品油管道和液化气(包括液化天然气“LNG”和液化石油气“LPG”)管道。目前国内长距离输送原油管道干线最大直径为720mm,总长度1.7×104km。 长距离输送原油管道由输油干线和输油站(库)组成。干线部分包括管道本身,沿线阀室,穿跨越江河、铁路、公路、山谷的设施;输油站(库)包括管道的起点站(首站)、沿途设置的泵站、加热站和管道的终点站(末站)。为了保证安全运行,沿管道建有专用的微波通讯系统,进行统一的生产调度指挥。长距离输原油管道概况见下图。

学习fluent (流体常识及软件计算参数设置)

luent中一些问题----(目录) 1 如何入门 2 CFD计算中涉及到的流体及流动的基本概念和术语 2.1 理想流体(Ideal Fluid)和粘性流体(Viscous Fluid) 2.2 牛顿流体(Newtonian Fluid)和非牛顿流体(non-Newtonian Fluid) 2.3 可压缩流体(Compressible Fluid)和不可压缩流体(Incompressible Fluid) 2.4 层流(Laminar Flow)和湍流(Turbulent Flow) 2.5 定常流动(Steady Flow)和非定常流动(Unsteady Flow) 2.6 亚音速流动(Subsonic)与超音速流动(Supersonic) 2.7 热传导(Heat Transfer)及扩散(Diffusion) 3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不 同? 3.1 离散化的目的 3.2 计算区域的离散及通常使用的网格 3.3 控制方程的离散及其方法 3.4 各种离散化方法的区别 4 常见离散格式的性能的对比(稳定性、精度和经济性) 5 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么? 6 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难? 6.1 可压缩Euler及Navier-Stokes方程数值解 6.2 不可压缩Navier-Stokes方程求解 7 什么叫边界条件?有何物理意义?它与初始条件有什么关系? 8 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别? 9 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解? 10 在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节? 11 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢? 12 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理? b、计算域内的内部边界如何处理(2D)? 13 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪些? 14 20 何为流体区域(fluid zone)和固体区域(solid zone)?为什么要使用区域的概念?FLUENT是怎样使用区域的? 15 21 如何监视FLUENT的计算结果?如何判断计算是否收敛?在FLUENT中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收

FLUENT软件简介

FLUENT软件包简介 FLUENT通用CFD软件包,用来模拟从不可压缩到高度可压缩范围内的复杂流动。由于采用了多种求解方法和多重网格加速收敛技术,因而FLUENT能达到最佳的收敛速度和求解精度。灵活的非结构化网格和基于解的自适应网格技术及成熟的物理模型,使FLUENT在转捩与湍流、传热与相变、化学反应与燃烧、多相流、旋转机械、动/变形网格、噪声、材料加工、燃料电池等方面有广泛应用。 FLUENT软件具有以下特点: ☆FLUENT软件采用基于完全非结构化网格的有限体积法,而且具有基于网格节点和网格单元的梯度算法; ☆定常/非定常流动模拟,而且新增快速非定常模拟功能; ☆FLUENT软件中的动/变形网格技术主要解决边界运动的问题,用户只需指定初始网格和运动壁面的边界条件,余下的网格变化完全由解算器自动生成。网格变形方式有三种:弹簧压缩式、动态铺层式以及局部网格重生式。其局部网格重生式是FLUENT所独有的,而且用途广泛,可用于非结构网格、变形较大问题以及物体运动规律事先不知道而完全由流动所产生的力所决定的问题; ☆FLUENT软件具有强大的网格支持能力,支持界面不连续的网格、混合网格、动/变形网格以及滑动网格等。值得强调的是,FLUENT软件还拥有多种基于解的网格的自适应、动态自适应技术以及动网格与网格动态自适应相结合的技术;☆FLUENT软件包含三种算法:非耦合隐式算法、耦合显式算法、耦合隐式算法,是商用软件中最多的; ☆FLUENT软件包含丰富而先进的物理模型,使得用户能够精确地模拟无粘流、层流、湍流。湍流模型包含Spalart-Allmaras模型、k-ω模型组、k-ε模型组、雷诺应力模型(RSM)组、大涡模拟模型(LES)组以及最新的分离涡模拟(DES)和V2F模型等。另外用户还可以定制或添加自己的湍流模型; ☆适用于牛顿流体、非牛顿流体; ☆含有强制/自然/混合对流的热传导,固体/流体的热传导、辐射; ☆化学组份的混合/反应; ☆自由表面流模型,欧拉多相流模型,混合多相流模型,颗粒相模型,空穴两相流模型,湿蒸汽模型; ☆融化溶化/凝固;蒸发/冷凝相变模型; ☆离散相的拉格朗日跟踪计算; ☆非均质渗透性、惯性阻抗、固体热传导,多孔介质模型(考虑多孔介质压力突变); ☆风扇,散热器,以热交换器为对象的集中参数模型; ☆惯性或非惯性坐标系,复数基准坐标系及滑移网格; ☆动静翼相互作用模型化后的接续界面; ☆基于精细流场解算的预测流体噪声的声学模型;

油气储运安全技术的探讨 张德武

油气储运安全技术的探讨张德武 发表时间:2019-04-26T16:05:30.233Z 来源:《基层建设》2019年第3期作者:张德武[导读] 摘要:随着社会经济的不断发展,油气集输行业得到了推进,但在这一过程中存在一定的安全问题,本文通过天然气轻烃存在浪费现象、地面管道老化问题严重、管道铺设不合理,三个方面对存在的安全问题进行了分析,对合理应用风险评估技术、完善天然气轻烃回收技术、提高地面管道保护力度、设计油气管道铺设方式、提升工作人员的安全意识,五个方面对提升安全技术的策略进行整理。 辽河油田建设有限公司辽宁盘锦 124010摘要:随着社会经济的不断发展,油气集输行业得到了推进,但在这一过程中存在一定的安全问题,本文通过天然气轻烃存在浪费现象、地面管道老化问题严重、管道铺设不合理,三个方面对存在的安全问题进行了分析,对合理应用风险评估技术、完善天然气轻烃回收技术、提高地面管道保护力度、设计油气管道铺设方式、提升工作人员的安全意识,五个方面对提升安全技术的策略进行整理。 关键词:油气储运;安全技术;管道老化前言: 随着我国社会经济的快速发展,国内石油天然气产业也在不断地发展和进步,企业的生产能力和规模都在不断地提升和扩大。在石油天然气生产中,油气储运工程具有十分重要的地位。在工业产业当中,油气储运行业是重要的组成部分,油气自动化运输和储存也随着先进技术的进一步应用而进一步提高。同时,在低碳经济的背景下,油气储运行业要继续健康发展,还需要抓住当前良好的发展机遇,以占有激烈市场当中的一席之地。对目前油气储运系统在生产当中利用高的技术进行优化,提高油气储运系统的节能性变的越来越重要。 1提升油气储运安全技术的意义 1.1提高储运安全性 由于油气的生产、储运等方面对经济发展情况有一定的影响,提升油气储运安全技术具有提高储运安全性的意义,具体可以通过以下两个方面来了解,第一,由于油气具有易燃、易爆的特点,在储运的过程中一旦与火源接触,会发生爆炸事故,对工作人员的安全有一定的影响,但应用安全储运技术时,能够避免其与火源接触,进一步提高储运的安全性。第二,油气一旦发生泄露问题,对生态环境有一定的影响,但应用安全储运技术能够降油气低泄露问题发生的概率,促进技术管道提高安全性和储运稳定性。 1.2促进油气市场进一步发展 提升油气储运安全技术具有促进油气市场进一步发展的意义,具体可以通过以下两个方面来了解,第一,随着我国社会经济的不断发展,油气产业也在稳定运行,并且出口量不断提高,在储运的过程中,一旦发生石油泄漏问题,会降低经济效益,但在合理应用储运安全技术时,能够降低泄漏问题的发生概率,促进石油产业进一步发展。第二,应用安全储运技术能够将管道进行优化,避免管道出现渗漏的问题,并进一步提高运输效率与运输稳定性,促进石油市场进一步发展 2储运技术问题分析 2.1能源的损耗严重 由于工艺、设备、管理等原因,造成油气资源中一部分进入大气,造成损失,这就是能源的损耗。在日常管理中,由于管理人员的责任心不强,缺乏经验或操作失误,对油气极易造成事故损耗。据统计,在油气储运的过程中,有高达原油产量3%的损耗,这对企业和整个社会来说,无疑是巨大的损失。 2.2管道易被腐蚀 随着我国石油行业的飞速发展,油气运输大多采用管道运输这种形式,管道运输虽然有损耗低等优点,但也存在一定的局限性。当前,油气运输的管道大致分为三类,一种是碳素钢无缝钢管;一种是螺旋焊缝钢管;一种是直缝电阻焊钢管。在进行油气运输时,都会把管道埋入地下和架空,然而经过一段时间的运行和其他土壤空气等介质的影响,管道在环境中难免会发生物理变化和化学反应,这种变化导致管道极易被腐蚀,管道腐蚀这将对油气储运系统的正常运行产生严重的后果。由于腐蚀的发生,会影响管道的形状和性能,直接缩短管道的使用寿命。另外,如果管道已经被严重腐蚀,可能会导致油气泄漏。油气泄漏不仅会造成油气资源的损耗,还会污染周围的空气和土壤等环境资源。 2.3管道运输技术落后 当前,世界油气储运技术已十分成熟。尽管中国在管道运输技术上取得了很大的进步,但仍然追不上世界先进油气输送理论和技术的脚步。第一,在大型油气管道网络的技术方面,综合网络系统没有形成集约化的平台;其次,在线勘测技术尚未全年开展,技术水平较低。目前中国着力研究自动监控系统的设计,由于国内对这方面的技术还不成熟,所以相关硬件和软件需要向国外采购,导致软件使用经验不足,容易造成技术机密外泄,无法在质量和调度方面实行自动化。所以,加强油气储运技术的创新势在必行。 2.4存在安全隐患 油气特征分析可归纳如下:首先是油气都属于易燃易爆炸物体;二是油气的化学特性容易导致接触人员中毒;三是易聚集抗静电,对开采设备可能造成影响。油气的这些特点都会对储运造成风险,忽略这些特性会造成重大的安全隐患,严重的导致爆炸和起火,储存过程中的遗漏会严重影响人们的生命财产安全,也是中国石油和天然气工业发展的不利因素,所以如何保证化学油气储运的安全是油气运输需要着重考虑的问题。 3提升油气储运安全技术的策略 3.1合理应用风险评估技术 为了能够进一步提升油气储运的安全性,需要合理应用风险评估技术,具体可以通过以下两个方面来了解,第一,由于油气在储运的过程中,存在一定的安全问题,为了能够进一步提高储运稳定性,需要合理应用风险评估技术,例如:技术人员可以先对储运位置、路线等方面进行总结分析,并分析其中可能出现的风险。并利用超声波、涡流等技术对运输环境进行检查,整理出储运中存在的问题,并进行改进,提高油气储运的安全性[1]。第二,由于外界因素也能够影响油气储运的安全性,在进行风险评估的过程中,需要考虑自然因素的影响,并制定完善的风险防范工作,促进油气储运提高安全性。另外,在风险预估的过程中,可以应用压力检测技术,并将压力数据与安全制值进行对比,进一步提高设备的运行效率。 3.2完善天然气轻烃回收技术

相关文档
相关文档 最新文档