文档库 最新最全的文档下载
当前位置:文档库 › 汽车系统动力学综述

汽车系统动力学综述

汽车系统动力学综述
汽车系统动力学综述

汽车系统动力学综述

摘要:本文通过对大量教科书和文献进行了分析,对汽车系统动力学的研究内容,研究方法及理论基础以及发展趋势做了清晰的阐述。

关键词:系统,汽车,系统动力学

1、系统及系统动力学概念

1.1 系统

“系统“这个名问含义很广,因此对系统的定义很多。我国著名科学家钱学森对系统作如下定义:“把很其复杂的研究对象称为系统.即由相互作用和相互依赖的若干组成部分结

合而成的具有特定功能的有机整体,而且这个系统本身又是它所从属的一个更大系统的组

成部分”。

这表明系统具有以下特征:

1、具有层次性

系统是由两个以上的元素或元件组成的事物。一个大系统往往可以分成几个子系统,每个子系统又能分成几个更小的子系统,并且子系统都有与其他系统相区别的特性。所以如果将大系统分解,可以形成很多层次的结构,这就是系统的层次性。

2、具有整体性

系统由许多元素组成,但是系统的性能并不是各个元素性能的简单相加,而是相互影响,相互联系的,所以系统的整体功能具有各个元素所没有的更高的价值。例如一辆汽车是由发动机、传动系统、车轮、车身、操纵系等组成的。如果只有发动机,是不会自己行走的,但当发动机装在具有车轮的汽车底盘上时,就可以成为能够行驶的汽车。由此可见,研究系统应该从整体的观点来看。系统的性能是由其整体性能为代表的,而不是由某一元素所能代表的。

3、具有目的性

是指人工系统是为了某一个目的而构成的。目的不同,系统的构成也就不相同:例如货车是为运输货物这一目的而构成的,所以它必须有货箱来装载货物;而客车则是为运输乘客而设计的,所以必须有客箱和座椅,而运货设备就很小或者没有。

4、具有功能共性

系统中存在着物质、能量和信息的流动,并与外界进行物质、能量和信息的交流,即可以从外界环境输入或向外界输出物质、能量和信息。例如汽车系统把燃料燃烧所释放的能量转换为汽车的动能,这就是能量的流动。而在行驶过程中驾驶员从环境得到信息,加以判断,发出必要的指示信息,以保证汽车安全合理的运动,这就是信息流动。

1.2系统动力学

系统动力学就是讨论动态系统的数学模型和响应的学科。

当系统各变量对时间保持恒定时,称为静态系统。严格来讲真正的静态系统是没有的,而且根据静态分析结果来判断系统特性将会得到不全面或者是错误的结论。所以系统动力学的研究对象放在动态系统上,动态系统的行为是随时间变

化的,是时间的函数,动态系统分析比静态系统分析更为复杂,但更为必要,因为在动态的分析中可以考虑到许多外部干扰或者不稳定性。

2汽车系统动力学研究内容

2.1对纵向动力学的研究

纵向动力学研究车辆直线运动及其控制问题,主要是车辆沿前进方向的受力与其运动关系。按车辆工况的不同,可分为驱动动力学和制动动力学两大部分:在驱动动力学研究中,重点要了解车辆的行驶阻力,由此才能决定车辆驱动轮上所需的力矩和功率,以及能量消耗。它由两个最基本的部分组成:滚动阻力和空气阻力。它代表了车辆对动力和功率的要求,而车辆动力与传动系统则为车辆提供了对动力和功率的供应,需求与供应之间的平衡关系还与路面附着系数有关,直接影响车辆驱动性能。

在制动动力学研究中,重要要了解车辆的制动性能评价指标,其次是对车辆前后车轮制动力的分配关系和制动稳定性进行研究。

2.2对行驶动力学的研究

在行驶动力学研究中,最重要的问题是要建立起考虑悬架特性在内的车辆动力学模型,而最简单的数学模型就是具有七自由度的整车系统模型。

行驶动力学问题一般可分为两类:一类是可以通过数学建模来分析的行驶动力学问题,有人称之为“主要行驶舒适性问题”。另一类还有像15Hz高频振动的响应、更高频率范围内的振动噪声问题、悬架系统中橡胶村套的影响等等,这些几乎还没有办法用数学解析模型来准确地预测这些影响,这类问题被称为“次级行驶舒适性问题”。

2.3对操纵动力学的研究

轮胎对于汽车的操纵性具有重要的作用,因此操纵动力学建模中必须要与轮胎模型相吻合,否则建立的操纵模型将失去意义。

操纵动力学的研究范围分为三个区域,即:

1)线性域:侧向加速度约小于0.3~0.4g时,通常意味着车辆在高附着路面作小转向运动;

2)非线性域:在超过线性域且小于极限侧向加速度(约为0.8g)范围内;

3)非线性联合工况:通常指车辆在转弯制动或转弯加速时的情况;

3汽车系统动力学研究方法及理论基础

3.1研究方法

解决任何一个系统问题的首要步骤就是把实际问题抽象化,并转变为简化的模型。抽象是通过一种思维去分出现象的本质而抽出其中非本质和次要的性质的一种逻辑方法。

在抽象的基础上就要建立表达系统行为的物理或数学的模式,这就是所谓的物理模型和数学模型。模型也可以定义如下:模型是一种过程或行为的定量或定性代表,它应能显示对所考虑目标只有决定性意义的后果。

模型的分类:

1)比例的物理模型

该模型和实物的物理本质相同,仅在形状和尺寸上有差别。其优点是可以同时观察到整体的物理性能,并作一些记录等,能消除一些次要因素的干扰,能准确的预测系统的性能和参数间的关系。

2)数学等效模型

在工程中有不同的物理系统,但是其动态行为的数学形式是相同的。不同系

统的行为可以用等效的常系数微分方程来描述。这就使得我们用一种系统来模拟另一种系统成为可能。

3)数学模型

这种模型比实物模型、模拟模型更为抽象,但是在实物和数学模型间存在很强的相似性,它建立了一组法则或运算,从而将一个或多个元素(运算对象)与运动结果联系起来。它有很多种表示方法,例如数学方程式、方块图等。

模型建立的目的:

1)描述车辆动力学特性;

2)预测车辆性能并由此产生一个最佳研究方案;

3)解释现有设计中存在的问题,并找出解决方案。

3.2理论基础

在汽车系统动力学研究中,主要的理论基础有分析力学,分析力学是从能动量观点建立起来的,它利用广泛坐标作为独立参数来描述系统的运动,另一方面应用达朗贝尔原理将静力学中的虚位移原理推广到动力学问题中去,从而建立动力学普遍方程式,由此出发推导出可广泛应用的拉格朗日方程来建立系统的运动方程。用分析力学的方法可以较严格地阐明有限自由度体系振动的普遍规律和计算方法,而且所得的规律可推广于无限自由度体系。

另外,线性系统理论和现代控制系统理论,概率论及其分支随机过程以及人体工程学等也都是其理论基础。

4汽车系统动力学发展趋势

随着多体动力学的发展及相应软件的开发和成熟,功能强大的计算机软件能够有效的模拟复杂的车辆模型,使得汽车汽车系统动力学成为汽车CAE技术的重要组成部分,并逐渐朝着与电子和液压控制、有限元分析等技术集成的方向发展。

传统的车辆动力学研究都是针对被动元件的设计而言的,而采用主动控制技术来改变车辆动态性能的理念,则为车辆动力学开辟了一个崭新的研究领域。控制技术的应用,使得车辆设计的目标可以是:力求使车辆系统在各种工况下都能有一种较易为驾驶者适应的特性。

或许可以这样说,是计算机技术和控制技术共同推动了现代汽车系统动力学的发展。随着各种底盘控制系统在车辆中应用的增长趋势及各功能控制系统集成程度的日益提高,车辆动力学在未来车辆控制系统设计中的作用将愈加重要。可以预见,未来的发展将在车辆主动控制、车辆多体动力学和向“人—车—路”闭环系统的扩展等方面有所体现。

车辆系统动力学发展1

汽车系统动力学的发展和现状 摘要:近年来,随着汽车工业的飞速发展,人们对汽车的舒适性、可靠性以及安全性也提出越来越高的要求,这些要求的实现都与汽车系统动力学相关。汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有车辆在垂向和横向两个方面的动力学内容。本文通过对汽车系统动力学的的介绍,对这一新兴学科的发展和现状做一阐述。 关键字:汽车系统动力学动力学响应发展历史 Summary:In recent years, with the rapid development of automobile industry, people on the vehicle comfort, reliability and safety are also put forward higher requirements, to achieve these requirements are related to vehicle system dynamics.Vehicle system dynamics is the study of all related to the movement of the car system discipline, it involves the scope is broad, in addition to the effects of dynamic response of vehicle longitudinal motion and its subsystems, and vehicles to and dynamic content crosswise two aspects in the vertical.Based on the vehicle system dynamics is introduced, the development and status of this emerging discipline to do elaborate. Keywords:Dynamics of vehicle system dynamics Dynamic response Development history 0 引言 车辆动力学是近代发展起来的一门新兴学科。有关车辆行驶振动分析的理论研究,最早可以追溯到100年前。事实上,知道20世纪20年代,人们对车辆行驶中的振动问题才开始有初步的了解;到20世纪30年代,英国的Lanchester、美国的Olley、法国的Broulhiet开始了车辆独立悬架的研究,并对转向运动学和悬架运动学对车辆性能的影响进行了分析。开始出现有关转向、稳定性、悬架方面的文章。同时,人们对轮胎侧向动力学的重要性也开始有所认识。 在随后的20年中,车辆动力学的进展甚微。进入20世纪50年代,可谓进入了一个车辆操纵动力学发展的“黄金时期”。这期间建立了较为完整的车辆操纵动力学线性域(即侧向加速度约小于0.3g)理论体系。随后有关行驶动力学的进一步发展,是在完善的测量和计算手段出现后才得以实现。人们对车辆动力学理解的进程中,理论和试验两方面因素均发挥了作用。随后的几十年,汽车制造商意识到行驶平顺性和操纵稳定性在汽车产品竞争中的重要作用,因而车辆动力学得以迅速发展。计算机及应用软件的开发,使建模的复杂程度不断提高。在过去的70多年中,车辆动力学在理论和实际应用方面也都取得了很多成就。在新车型的设计开发中,汽车制造商不仅依靠功能强大的计算机软件,更重要的是具有丰富测试经验和高超主观评价技能的工程师队伍。 传统的车辆动力学研究都是针对被动元件的设计而言,而采用主动控制来改变车辆动态性能的理念,则为车辆动力学开辟了一个崭新的研究领域。在车辆系统动力学研究中,采用“人—车—路”大闭环的概念应该是未来的发展趋势。作为驾驶者,人既起着控

转子动力学

转子动力学是固体力学的一个分支。本文主要研究转子支承系统在旋转状态下的振动,平衡和稳定性,特别是在接近或超过临界转速的情况下转子的横向振动。转子是涡轮机,电动机和其他旋转机械的主要旋转部件。 200多年来,工程和科学界一直关注转子振动。w.j.m. 1869年英格兰的兰金(Rankin)和1889年法国的拉瓦尔(c.g.p.de Laval)对挠性轴的测试是研究此问题的先驱。随着现代工业的发展,高速细长转子逐渐出现。由于它们通常在柔性状态下工作,因此它们的振动和稳定性变得越来越重要。转子动力学的主要研究内容如下: ①临界速度 由于制造误差,转子每个微小部分的质心与旋转轴略有偏离。当转子旋转时,由上述偏差引起的离心力将使转子产生横向振动。在某些速度(称为临界速度)下,这种振动似乎非常强烈。为了确保机器不会在工作速度范围内产生共振,临界速度应适当偏离工作速度,例如大于10%。临界速度与转子的弹性和质量分布有关。对于具有有限集总质量的离散旋转系统,临界速度的数量等于集总质量的数量;对于具有连续质量分布的弹性旋转系统,临界速

度是无限的。传递矩阵法是计算大型转子支撑系统临界转速的最常用数值方法。要点是:首先,将转子分成几个部分,每个部分左右两端的四个部分参数(挠度,挠度角,弯矩和剪切力)之间的关系可以通过传递来描述。该部分的矩阵。以此方式,可以获得系统的左端和右端的横截面参数之间的总传递矩阵。然后,根据边界条件和自然振动中非零解的条件,通过试错法求出各阶的临界速度,得到相应的振动模式。 ②通过临界速度的状态 通常,转子以可变速度通过临界速度,因此通过临界速度的状态是不稳定的。与以临界速度旋转时的静止状态不同,有两个方面:一是振幅的最大值小于静止状态的振幅,速度越大,振幅的最大值越小。另一个是振幅的最大值不会在像静止状态那样的临界速度下出现。在不稳定状态下,频率转换干扰力作用在转子上,这使分析变得困难。为了解决这种问题,在数值计算或非线性振动理论中必须使用渐近法或级数展开法。 ③动态响应

车辆系统动力学解析

汽车系统动力学的发展现状 仲鲁泉 2014020326 摘要:汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有汽车在垂直和横向两个方面的动力学内容。介绍车辆动力学建模的基础理论、轮胎力学及汽车空气动力学基础之外,重点介绍了受汽车发动机、传动系统、制动系统影响的驱动动力学和制动动力学,以及行驶动力学和操纵动力学内容。本文主要讲述的是通过对轮胎和悬架的系统动力学研究,来探究汽车系统动力学的发展现状。 关键词:轮胎;悬架;系统动力学;现状 0 前言 汽车系统动力学是讨论动态系统的数学模型和响应的学科。它是把汽车看做一个动态系统,对其进行研究,讨论数学模型和响应。是研究汽车的力与其汽车运动之间的相互关系,找出汽车的主要性能的内在联系,提出汽车设计参数选取的原则和依据。 车辆动力学是近代发展起来的一门新兴学科。有关车辆行驶振动分析的理论研究,最早可以追溯到100年前。事实上,知道20世纪20年代,人们对车辆行驶中的振动问题才开始有初步的了解;到20世纪30年代,英国的Lanchester、美国的Olley、法国的Broulhiet开始了车辆独立悬架的研究,并对转向运动学和悬架运动学对车辆性能的影响进行了分析。开始出现有关转向、稳定性、悬架方面的文章。同时,人们对轮胎侧向动力学的重要性也开始有所认识。在过去的70多年中,车辆动力学在理论和实际应用方面也都取得了很多成就。在新车型的设计开发中,汽车制造商不仅依靠功能强大的计算机软件,更重要的是具有丰富测试经验和高超主观评价技能的工程师队伍。 在随后的20年中,车辆动力学的进展甚微。进入20世纪50年代,可谓进入了一个车辆操纵动力学发展的“黄金时期”。这期间建立了较为完整的车辆操纵动力学线性域(即侧向加速度约小于0.3g)理论体系。随后有关行驶动力学的进一步发展,是在完善的测量和计算手段出现后才得以实现。人们对车辆动力学理解的进程中,理论和试验两方面因素均发挥了作用。随后的几十年,汽车制造商意识到行驶平顺性和操纵稳定性在汽车产品竞争中的重要作用,因而车辆动力学得以迅速发展。计算机及应用软件的开发,使建模的复杂程度不断提高。

综述 齿轮系统动力学的理论体系_王建军

齿轮系统动力学的理论体系 * 王建军 副教授 王建军 李润方 摘要 根据对国内外齿轮系统动力学研究成果的系统总结,阐述齿轮 系统动力学理论的基本结构体系。说明齿轮动力学的发展过程;围绕动态激 励、模型类型、建模和求解方法以及齿轮系统的固有特性、动态响应和动力稳定性等介绍齿轮系统动力学所涉及的基本问题,讨论该理论的主要工程应用的基础上,提出应进一步研究的方向与重点。 关键词 齿轮系统 动力学性能 理论体系 正问题 反问题 中国图书资料分类法分类号 T G132.41 1 齿轮系统动力学基本理论体系 齿轮系统动力学[1]是研究齿轮系统在传递运动和动力过程中的动力学行为的一门科学。它以齿轮系统为对象,以齿轮副啮合过程的动力学特性为核心,以提高和改善齿轮系统的动力学行为为目的,在充分考虑系统各零部件动态特性的基础上,利用振动力学理论和方法,研究齿轮系统在传递动力和运动中振动、冲击、噪声的基本规律, 为设计制造小振动、低噪声、高可靠性、高传动性能的齿轮系统提供理论依据。 齿轮系统是机器最主要的动力和运动传递装置,其力学行为和工作性能对整个机器有重要影响。因此,齿轮系统动力学近百年来一直受到人们的广泛关注,尤其是近20年来,由于相关力学的理论与实验技术的发展,促进了齿轮系统动力学的深入研究。迄今,已经形成了较为完整的齿轮系统动力学的基本理论体系(见图1),系统总结齿 图1齿轮系统动力学的基本理论体系 ?动载系统的计算方法?振动噪声的评价与防治?状态监测与故障诊断 ?系统参数与动态性能的关系?载荷识别与动态设计 齿轮动力学理论的应用 动态响应 (系统的输出)系统模型 (系统的力学、数学描述)动态激励(系统的输入)?稳定性指标?稳定性区域?稳定性性能?系统参数对稳定性的影响 动力稳定性?动载荷系统振动?系统参数的影响 动态响应?固有频率?固有振型?参数对固有特性的影响 固有特性?时变刚度?传递误差?齿侧间隙?支承弹性与间隙?系统阻尼 考虑因素?齿轮副纯扭模型?齿轮传动系统模型 模型类型?集中参数法 ?传递矩阵法 ?有限元法?动态子结构综合法 建模方法?时变啮合刚度?轮齿传递误差?啮入啮出冲击 内部激励?原动机的扭矩 ?负载的反作用力矩 外部激励求解方法 ?时域法 ?频域法?解析法?数值法?实验法 *国家自然科学基金资助项目(59575006),机械传动国家重点实验室开放基金资助项目 收稿日期:1997—01—03 修回日期:1998—11—20 轮系统动力学理论与方法的时机已经成熟。 2 齿轮系统动力学的发展 2.1 分析理论 (1)在本世纪50年代以前,以啮合冲击作为描述和解释齿轮动态激励、动态响应的基础,将齿轮系统简化为单自由度系统,以冲击作用下的单自由度系统的动态响应来表达齿轮系统的动力学行为。 50年代以后,将齿轮系统作为弹性的机械振动系 统,以振动理论为基础,分析在啮合刚度、传递误差和啮合冲击作用下,系统的动力学行为。这一发展奠定了现代齿轮系统动力学的基础。 (2)在振动理论的框架内,齿轮系统动力学经历了由线性振动理论向非线性振动理论的发展。在线性振动理论范畴内,人们以平均啮合刚度替代时变啮合刚度,并由此计算齿轮副的固有频率和振型,利用数值积分法计算系统的动态响应,不考虑因时变啮合刚度引起的动态稳定问题,且避免研究由齿侧间隙引起的非线性以及多对齿轮副、齿轮副 ? 55?齿轮系统动力学的理论体系——王建军 李润方

汽车系统动力学Matlab

汽车系统动力学Matlab 作业报告 小组成员:

'组内任务分配

二、 Matlab 程序与图形 1、不同转向特性车辆在不同车速下的系统特征根 m=1000;I=1500;a1=1.15;b1=1.35;Caf=53000;Car=53000; i=1;R=[]; for uc=10:5:100; D=(l*(Caf+Car)+m*(a1^2*Caf+b1^2*Car))∕(m*l*uc); S=(a1+b1)^2*Caf*Car∕(m*l*uc^2)+(b1*Car-a1*Caf)∕l; P=[1 D S]; r=roots(P); R(i,1)=r(1,1);R(i,2)=r(2,1);i=i+1; end plot(real(R(:,1)),imag(R(:,1)),'bo'); hold a2=1.25; b2=1.25; t=1; S=[]; for uc=10:5:100 P=[m 0;0 l]; Q=[(Caf+Car)∕uc,m*uc+(a2*Caf-b2*Car)∕uG(a2*Caf-b2*Car)∕uc,(a2^2*Caf+b 2^2*Car)∕uc]; R=[Caf;a2*Caf]; A=-P^(-1)*Q; d=eig(A); i=imag(d); r=real(d); S(t,1)=r(1); S(t,2)=i(1); t=t+1; end plot(S(:,1),S(:,2),'*') a3=1.35; b3=1.15; for uc=10:5:100 P=[m 0;0 l];

Q=[(Caf+Car)∕uc,m*uc+(a3*Caf -b3*Car)∕uc; (a3*Caf-b3*Car)∕uc,(a3^2*Caf+b3^2*Car)∕uc]; R=[Caf;a3*Caf]; A=-P^(-1)*Q; d=eig(A); i=imag(d); r=real(d); S(t,1)=r(1); S(t,2)=i(1); t=t+1; end grid On Plot(S(:,1),S(:,2),'d'); axis([-14 2 0 3]); xlabel('实轴(Re)'); ylabel('虚轴(Im)'); text(-8,2.8,'不足转向'); text(0,0.2,'过多转向'); text(-3,0.2,'中性转向') set(gca,'Fo ntName','Helvetica','Fo ntSize',10) title(['不同转向特性车辆在不同车速下的系统特征根'],'FontSize',12); E 一 書不同转向特杵乍辆在不同乍速下的系统待征戕

汽车系统动力学习题答案分析解析

1.汽车系统动力学发展趋势 随着汽车工业的飞速发展,人们对汽车的舒适性、可靠性以及安全性也提出越来越高的要求,这些要求的实现都与汽车系统动力学相关。汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有车辆在垂向和横向两个方面的动力学内容,随着多体动力学的发展及计算机技术的发展,使汽车系统动力学成为汽车CAE技术的重要组成部分,并逐渐朝着与电子和液压控制、有限元分析技术集成的方向发展,主要有三个大的发展方向: (1)车辆主动控制 车辆控制系统的构成都将包括三大组成部分,即控制算法、传感器技术和执行机构的开发。而控制系统的关键,控制律则需要控制理论与车辆动力学的紧密结合。 (2)多体系统动力学 多体系统动力学的基本方法是,首先对一个由不同质量和几何尺寸组成的系统施加一些不同类型的连接元件,从而建立起一个具有合适自由度的模型;然后,软件包会自动产生相应的时域非线性方程,并在给定的系统输入下进行求解。汽车是一个非常庞大的非线性系统,其动力学的分析研究需要依靠多体动力学的辅助。 (3)“人—车—路”闭环系统和主观与客观的评价 采用人—车闭环系统是未来汽车系统动力学研究的趋势。作为驾驶者,人既起着控制器的作用,又是汽车系统品质的最终评价者。假如表达驾驶员驾驶特性的驾驶员模型问题得到解决后,“开环评价”与“闭环评价”的价值差别也许就

不存在了。因此,在人—车闭环系统中的驾驶员模型研究,也是今后汽车系统动力学研究的难题和挑战之一。除驾驶员模型的不确定因素外,就车辆本身的一些动力学问题也未必能完全通过建模来解决。目前,人们对车辆性能的客观测量和主观之间的复杂关系还缺乏了解,而车辆的最终用户是人。因此,对车辆系统动力学研究者而言,今后一个重要的研究领域可能会是对主观评价与客观评价关系的认识 2.目前汽车系统动力学的研究现状 汽车系统动力学研究内容范围很广,包括车辆纵向运动及其子系统的动力学响应,还有车辆垂向和横向动力学内容。及行驶动力学和操纵动力学。行驶动力学研究路面不平激励,悬架和轮胎垂向力引起的车身跳动和俯仰运动;操纵动力学研究车辆的操纵稳定性,主要是轮胎侧向力有关,引起的车辆侧滑、横摆、和侧倾运动。汽车系统动力学的研究可以分为三个阶段: 阶段一(20世纪30年代) ①对车辆动态性能的经验性的观察 ②开始注意到车轮摆振的问题 ③认识到车辆舒适性是车辆性能的一个重要方面 阶段二(30年代—50年代) ①了解了简单的轮胎力学,给出了轮胎侧偏角的定义 ②定义不足转向和过度转向 ③建立了简单的两自由度操纵动力学方程

多体系统动力学综述

1. 绝对节点坐标法 传统有限元方法建立的单元为非等参数单元,其使用节点处的位移梯度来描述物体的无限小的转动,但在物体发生大变形时,节点处的位移梯度已不能准确描述物体的转动变形,从而极大影响到计算的精度。 Shabana [1]提出了绝对节点坐标法(Absolute nodal coordinate formulation, ANCF ),其理论基础主要是有限元和连续介质力学理论。该方法将物体的单元节点坐标定义在全局坐标系下,使用节点处的斜率(slope)矢量作为节点坐标而不是节点处的无限小转动[2],不需要另外计算刚体位移与柔性变形之间的耦合,能较精确地计算大变形的多体系统动力学问题。其最终推导出的多体系统的微分代数方程组(DAEs )中,质量矩阵是一个常数矩阵,但刚度矩阵将是一个非线性的时间函数。 1.1梁单元的绝对节点坐标法 Shabana 首先推导出一维梁单元的绝对节点坐标法模型[1][3]。在这种模型中,梁单元用中性轴来简化,如图1所示,其上面任意一点P 在全局坐标系下的坐标表达为: 23101232320123r =Se r a a x a x a x r b b x b x b x ??+++??==????+++???? 图1 其中,x 为沿轴线的单元局部坐标,[]0,x l ∈,l 为梁单元初始长度;S 为单元形函数;e 为含有8个单元节点坐标的广义坐标矢量。 123456781102205162e []|,|,|,|, T x x x l x l e e e e e e e e e r e r e r e r ========= 1 2 1 2 304078,,,x x x l x l r r r r e e e e x x x x ====????====????

动力系统综述

Xxxxxx U N I V E R S I T Y 《微分方程定性理论》实践报告 所属学院:理学院 专业班级:应用数学 姓名: 学号:xxxxxxxxxxx 实践课题:动力系统综述 实践成绩: 任课教师:

动力系统综述 随着数学知识的不断扩充及科学技术的不断发展,动力系统被广泛应用于工程、力学、生态等各大领域,推动着社会的发展。动力系统是随时间而演变的系统。 随着数学知识的不断扩充及科学技术的不断发展,动力系统被广泛应用于工程、力学、生态等各大领域,推动着社会的发展。动力系统是随时间而演变的系统。对于含参数的系统,当参数变化并经过某些临界值时,系统的定性性态,如平衡点或周期运动的数目和稳定性等会发生突然变化,这种变化称为分叉[2]。 分叉理论主要研究当参数在分叉值附近变化时,系统轨线的拓扑结构或定性性态将如何变化。近几十年来,动力系统的分叉理论被系统而深入的研究,并得到了迅猛的发展,且广泛应用于物理、化学、生物、工程等研究领域中,分叉问题的研究己成为非线性动力系统研究的重点和难点之一。 1动力系统简介 动力系统的研究起源于牛顿的经典力学理论.假设空间R n 的一个质点M 在时刻t 的坐标为),,,(21n x x x x =并且己知质点M 此时的运动速度为))(,),(),(()(21x v x v x v x v n =,并且只与坐标x 有关.那么质点M 的运动方程为: )(x v dt dx = (1) 这个方程是一个自治的微分方程.更进一步如果方程(1)满足微分方程解的存在和唯一性定理的条件,那么对任何的初值条件00)(x t x =,则方程存在唯一解),,()(00x t t t =?。 我们称x 取值的空间n ?为相空间,而称((t , x )的取值空间“n ???”为增广相空间.按照微分方程的几何意义,方程(1)定义了增广相空间中的一个向量场.解的几何意义为增广相空间中经过点),(00x t 的唯一的积分曲线[1]. 2 动力系统在力学中的应用 稳定性是系统的一个重要特性。对系统运动稳定性分析是系统与控制论的一个重要组成部分,一个实际的系统必须是稳定的,不稳定的系统是不能付诸于工程实施的。 设系统的向量状态方程为: 0,)(),,(00≥==t x t x t x f x (2.1) 式中:x 为n 维状态向量;),(??f 为n 维向量函数。

系统动力学模型

1.1 海洋资源可持续开发研究综述 海洋可持续发展包括三层含义,即海洋经济的持续性、海洋生态的持续性和社会的持续性,海洋的可持续发展以保证海洋经济发展和资源永续利用为目的,实现海洋经济发展与经济环境相协调,经济、社会、生态效益相统。运用海洋可持续发展理论和海域承载力理论研究海洋资源开发的可持续性,从我国的海洋产业入手,分析我国海洋资源开发利用的状况,从海洋产业结构和产业布局、海洋管理和海洋开发技术等方面总结我国海洋开发的问题,并针对这些问题,提出切实可行的实现海洋可持续发展的途径和措施。国外学者对海洋资源的发展和研究进行研究,建立相应的模型,认为技术在海洋资源发展过程中起到极其重要的作用。国内学者则以具体省份为例研究海洋资源可持续发展,对辽宁省所拥有的海洋资源进行概述后,分析了辽宁海洋资源开发与海洋生态环境保护之间的关系,提出开展海域资源价值折损评估,采用政策调控和市场机制保护海洋生态环境。利用我国重要海洋产业数据,分析我国海洋资源开发利用的状况,并从海洋产业结构和布局及管理等角度总结海洋资源开发存在的问题,提出实现海洋资源可持续发展的途径。学者从海洋资源与环境保护角度分析,研究开发海洋的过程中,存在着海洋环境污染、海洋渔业资源衰退等问题。 1.2 系统动力学模型研究综述 到20 世纪70 年代初系统动力学被用来解决很多领域的问题,成为比较成熟的学科,系统动力学到20 世纪70 年代初所取得的成就使人们相信它是研究和处理诸如人口、自然资源、生态环境、经济和社会等相互连带的复杂系统问题的有效工具。基于市场均衡论和信用风险理论,完善运用于分析代际消费计划的系统动力学机制模型,并提出可替换选择。国内学者将系统动力学运用于研究资源与

系统动力学与案例分析

系统动力学与案例分析 一、系统动力学发展历程 (一)产生背景 第二次世界大战以后,随着工业化的进程,某些国家的社会问题日趋严重,例如城市人口剧增、失业、环境污染、资源枯竭。这些问题范围广泛,关系复杂,因素众多,具有如下三个特点:各问题之间有密切的关联,而且往往存在矛盾的关系,例如经济增长与环境保护等。 许多问题如投资效果、环境污染、信息传递等有较长的延迟,因此处理问题必须从动态而不是静态的角度出发。许多问题中既存在如经济量那样的定量的东西,又存在如价值观念等偏于定性的东西。这就给问题的处理带来很大的困难。 新的问题迫切需要有新的方法来处理;另一方面,在技术上由于电子计算机技术的突破使得新的方法有了产生的可能。于是系统动力学便应运而生。 (二)J.W.Forrester等教授在系统动力学的主要成果: 1958年发表著名论文《工业动力学——决策的一个重要突破口》,首次介绍工业动力学的概念与方法。 1961年出版《工业动力学》(Industrial Dynamics)一书,该书代表了系统动力学的早期成果。 1968年出版《系统原理》(Principles of Systems)一书,论述了系统动力学的基本原理和方法。 1969年出版《城市动力学》(Urban Dynamics),研究波士顿市的各种问题。 1971年进一步把研究对象扩大到世界范围,出版《世界动力学》(World Dynamics)一书,提出了“世界模型II”。 1972年他的学生梅多斯教授等出版了《增长的极限》(The Limits to Growth)一书,提出了更为细致的“世界模型III”。这个由罗马俱乐部主持的世界模型的研究报告已被翻译成34种语言,在世界上发行了600多万册。两个世界模型在国际上引起强烈的反响。 1972年Forrester领导MIT小组,在政府与企业的资助下花费10年的时间完成国家模型的研究,该模型揭示了美国与西方国家的经济长波的内在机制,成功解释了美国70年代以来的通货膨胀、失业率和实际利率同时增长的经济问题。(经济长波通常是指经济发展过程中存在的持续时间为50年左右的周期波动) (三)系统动力学的发展过程大致可分为三个阶段: 1、系统动力学的诞生—20世纪50-60年代 由于SD这种方法早期研究对象是以企业为中心的工业系统,初名也就叫工业动力学。这阶段主要是以福雷斯特教授在哈佛商业评论发表的《工业动力学》作为奠基之作,之后他又讲述了系统动力学的方法论和原理,系统产生动态行为的基本原理。后来,以福雷斯特教授对城市的兴衰问题进行深入的研究,提出了城市模型。 2、系统动力学发展成熟—20世纪70-80年代 这阶段主要的标准性成果是系统动力学世界模型与美国国家模型的研究成功。这两个模型的研究成功地解决了困扰经济学界长波问题,因此吸引了世界范围内学者的关注,促进它在世界范围内的传播与发展,确立了在社会经济问题研究中的学科地位。 3、系统动力学广泛运用与传播—20世纪90年代-至今 在这一阶段,SD在世界范围内得到广泛的传播,其应用范围更广泛,并且获得新的发展.系统动力学正加强与控制理论、系统科学、突变理论、耗散结构与分叉、结构稳定性分析、灵敏度分析、统计分析、参数估计、最优化技术应用、类属结构研究、专家系统等方面的联系。许多学者纷纷采用系统动力学方法来研究各自的社会经济问题,涉及到经济、能源、交通、环境、生态、生物、医学、工业、城市等广泛的领域。 (四)国内系统动力学发展状况 20世纪70年代末系统动力学引入我国,其中杨通谊,王其藩,许庆瑞,陶在朴,胡玉奎等专家学者是先驱和积极倡导者。二十多年来,系统动力学研究和应用在我国取得飞跃发展。我国成立国内系统动力学学会,国际系统动力学学会中国分会,主持了多次国际系统动力学大会和有关会议。 目前我国SD学者和研究人员在区域和城市规划、企业管理、产业研究、科技管理、生态环保、海洋经济等应用研究领域都取得了巨大的成绩。 二、系统动力学的原理 系统动力学是一门分析研究信息反馈系统的学科。它是系统科学中的一个分支,是跨越自然科学和社会科学的横向学科。系统动力学基于系统论,吸收控制论、信息论的精髓,是一门认识系统问题和解决系统问题交叉、综合性的新学科。从系统方法论来说,系统动力学的方法是结构方法、功能方法和历史方法的统一。 系统动力学是在系统论的基础上发展起来的,因此它包含着系统论的思想。系统动力学是以系统的结构决定着系统行为前提条件而展开研究的。它认为存在系统内的众多变量在它们相互作用的反馈环里有因果联系。反馈之间有系统的相互联系,构成了该系统的结构,而正是这个结构成为系统行为的根本性决定因素。

车辆系统动力学-复习提纲

1. 简要给出完整约束与非完整约束的概念2-23,24,25, 1)、约束与约束方程 一般的力学系统在运动时都会受到某些几何或运动学特性的限制,这些构成限制条件的具体物体称为约束,用数学方程所表示的约束关系称为约束方程。 2)、完整约束与非完整约束 如果约束方程只是系统位形及时间的解析方程,则这种约束称为完整约束。 完整约束方程的一般形式为: 式中,qi为描述系统位形的广义坐标(i=1,2,…,n);n为广义坐标个数;m为完整约束方程个数;t为时间。 如果约束方程是不可积分的微分方程,这种约束就称为非完整约束。 一阶非完整约束方程的一般形式为:

式中,qi为描述系统位形的广义坐(i = 1, 2, …,n);为广义坐标对时间的一阶与数;n为广义坐标个数;m为系统中非完整约束方程个数;t为时间。 2. 解释滑动率的概念3-7,8 1.滑动率S 车轮滑动率表示车轮相对于纯滚动(或纯滑动)状态的偏离程度,是影响轮胎产生纵向力的一个重要因素。 为了使其总为正值,可将驱动和被驱动两种情况分开考虑。驱动工况时称为滑转率;被驱动(包括制动,常以下标b以示区别)时称为滑移率,二者统称为车轮的滑动率。

参照图3-2,若车轮的滚动半径为rd,轮心前进速度(等于车辆行驶速度)为uw,车轮角速度为ω,则车轮滑动率s定义如下: 车轮的滑动率数值在0~1之间变化。当车轮作纯滚动时,即uw=rd ω,此时s=0;当被驱动轮处于纯滑动状态时,s=1。 3. 轮胎模型中表达的输入量和输出量有哪些?3-22,23 轮胎模型描述了轮胎六分力与车轮运动参数之间的数学关系,即轮胎在特定工作条件下的输入和输出之间的关系,如图3-7所示。 根据车辆动力学研究内容的不同,轮胎模型可分为:

车辆动力学 综述

车辆动力学综述 人们常说控制一辆高速机动车的主要作用力产生于四块只有手掌般大小的区域——车轮与地面的接触区。这种说法恰如其分。对充气(橡胶)轮胎在路面生所产生的力和力矩的认识。是了解公路车辆动力学的关键。广义上,车辆动力学包括了各种运输工具——轮船、飞机、有轨车辆、还有橡胶轮胎车辆。各种类型运输工具的动力学所包含的原理,各不相同并且十分广泛。 车辆动力学主要分为车辆系统动力学和车辆行驶动力学。 因为车辆性能——在加速、制动、转向和行驶过程中运动的表现——是施加在车辆上的力的响应。,所以多是车辆动力学的研究必须涉及两个问题:怎样以及为什么会产生这些力。在车辆上影响性能的主要作用力是地面对轮胎产生的反作用力。因此,需要密切关注轮胎特性,这些特性有轮胎在各种不同工况下产生的力和力矩所表征。研究轮胎性能。而不彻底了解其在车辆中的重要意义,是不够的:反之亦然。 车辆系统动力学的研究的主要方向是如何提高车辆的平顺性、稳定性以及安全性。主要将动力学原理用于车辆行驶系统的控制以及优化控制,包括轮胎、转向、悬架以及电控系统的分析研究,进而得到更优的力学特性。 1、悬架 传统的被动悬架具有固定的悬架刚度和阻尼系数,设计的出发点是在满足汽车平顺性和操纵稳定性之间进行折中。被动悬架在设计和工艺上得到不断改善,实现低成本、高可靠性的目标,但无法解决平顺性和操纵稳定性之间的矛盾。20世纪50年代产生了主动悬架的概念,这种悬架在不同的使用条件下具有不同的弹簧刚度和减振阻尼器。汽车悬架可分为被动悬架和主动悬架。主动悬架根据控制方式,可分为半主动悬架、慢主动悬架和全主动悬架。目前,主动悬架的研究主要集中在控制策略和执行器的研发两个方面。图1所示为上述各种悬架系统的结构示意图,其中K代表悬架弹性元件刚度,代表轮胎等效刚度,C。代表减振器阻尼,代表主动装置,代表非悬挂质量,代表悬挂质量。 (a)被动悬架(b)阻尼可测试半主动悬架(c)刚度可调式半主动悬架

国内外系统动力学研究综述

综述 ——系统动力学研究现状摘要: 回顾了系统动力学的国内外发展历程,特别是对20世纪90年代以来,系统动力学在宏观领域、项目管理领域、学习型组织领域、物流与供应链领域所取得的成果进行了综述。最后指出了在基于主体的建模,心智模型、制订动态决策与学习,组织和社会的进化等理论领域和模拟软件等技术领域系统动力学未来面临的挑战和发展方向。 通过对国内外系统动力学研究的文献进行梳理,明确系统动力学理论研究、方法研究以及应用研究的研究体系,并在此基础上指出系统动力学研究趋势。为促进系统动力学方法的广泛应用和深入研究,综述了当前国内外系统动力学应用的主要研究成果,讨论了未来系统动力学方法的应用方向。 首先评述了系统动力学在国外的发展历程及应用情况; 然后从预测、管理、优化与控制3个方面对国内系统动力学的应用研究现状进行评述,并着重从装备规模优化与控制、装备保障过程控制、装备全寿命费用管理与控制、作战效能分析与评估、作战行动指挥模拟等方面,分析了系统动力学方法在我国军事、武器和战略领域的应用研究情况; 最后指出分析装备价格及其特性之间的内在关系等是未来系统动力学方法的应用方向,探讨了系统动力学方法在寿命周期费用技术领域中的应用前景。 关键词:系统动力学、研究体系、研究综述、应用现状

引言 系统动力学自创立以来,其理论、方法和工具不断完善,应用方向日益扩展,在处理工业、经济、生态、环境、能源、管理、农业、军事等诸多人类社会复杂问题中发挥了重要作用。随着现代社会复杂性、动态性、多变性等问题的逐步加剧,更加需要像系统动力学这样的方法,综合系统论、控制论、信息论等,并与经济学交叉,使人们清晰认识和深入处理产生于现代社会的非线性和时变现象,作出长期的、动态的、战略性的分析与研究[1]。这为系统动力学方的进一步发展提供了广阔的平台,也为深入研究系统动力学的应用提供了机遇和挑战。 为此,本文从系统动力学应用研究现状入手,通过总结和分析当前系统动力学的应用情况,探寻系统动力学未来的应用前景和方向,希望能促进系统动力学方法在现代社会中的广泛应用。 一、国内系统动力学的应用研究现状 20世纪70年代末系统动力学引入我国。1986年国内成立系统动力学学会筹委会,1990年正式成立国际系统动力学学会中国分会,1993 年正式成立中国系统工程学会系统动力学专业委员会。在30多年时间里,系统动力学经过杨通谊先生、王其藩教授、许庆瑞教授和胡玉奎、陶在朴、贾仁安等一代代专家学者的积极倡导和潜心研究,取得了飞跃发展。 至今,国内系统动力学应用领域几乎涉及人类社会与自然科学的所有领域。其中,水土资源、农林、生态领域,宏观、区域经济、可

车辆系统动力学试题及答案

西南交通大学研究生2009-2010学年第( 2 )学期考试试卷 课程代码 M01206 课程名称 车辆系统动力学 考试时间 120 分钟 阅卷教师签字: 答题时注意:各题注明题号,写在答题纸上(包括填空题) 一. 填空题(每空2分,共40分) 1.Sperling 以 频率与幅值的函数 ,而ISO 以 频率与加速度的函数 评定车辆的平稳性指标。 2.在轮轨间_蠕滑力的_作用下,车辆运行到某一临界速度时会产生失稳的_自激振动_即蛇行运动。 3.车辆运行时,在转向架个别车轮严重减重情况下可能导致车辆 脱轨 ,而车辆一侧全部车轮严重 减重情况下可能导致车辆 倾覆 。 4.在车体的六个自由度中,横向运动是指车体的横移、 侧滚 和 摇头 。 5.在卡尔克线性蠕滑理论中,横向蠕滑力与 横向 蠕滑率和 自旋 蠕滑率呈相关。 6.设具有锥形踏面的轮对的轮重为W ,近似计算轮对重力刚度还需要轮对的 接触角λ 和 名义滚动圆距离之半b 两个参数。 7.转向架轮对与构架之间的 横向定位刚度 和 纵向定位刚度 两个参数对车辆蛇行运动稳定性影 响较大。 8. 纯滚线距圆曲线中心线的距离与车轮 的_曲率_成反比、与曲线的_曲率_成正比。 9.径向转向架克服了一般转向架 抗蛇行运动 和 曲线通过 对转向架参数要求的矛盾。 10.如果两辆同型车以某一相对速度冲击时其最大纵向力为F ,则一辆该型车以相同速度与装有相同缓冲器 的止冲墩冲击时的最大纵向力为_21/2F _,与不装缓冲器的止冲墩冲击时的最大纵向力为_2F_。 院 系 学 号 姓 名 密封装订线 密封装订线 密封装订线

共2页 第1页 5.什么是稳定的极限环? 极限环附近的内部和外部都收敛于该极限环,则称该极限环为稳定的极限环。 6.轨道不平顺有几种?各自对车辆的哪些振动起主要作用? 方向、轨距、高低(垂向)、水平不平顺。方向不平顺引起车辆的侧滚和左右摇摆。轨距不平顺对轮轨磨耗、车辆运行稳定性和安全性有一定影响。高低不平顺引起车辆的垂向振动。水平不平顺则引起车辆的横向滚摆耦合振动。 三.问答题 (每题15分,共30分) 1.已知:轮轨接触点处车轮滚动圆半径r ,踏面曲率半径R w ,轨面曲率半径R t , 法向载荷N ,轮轨材料的弹性模量E 和泊松比o 。试写出Hertz 理论求解接触椭圆 长短半径a 、b 的步骤。P43-P44 根据车轮滚动圆半径、踏面在接触点处的曲率半径、钢轨在接触点处的曲率半径得到A+B 、B-A ,算得cos β,查表得到系数m 、n ,然后分别根据钢轨和车轮的弹性模量E 和泊松比σ,求得接触常数k ,得出轮轨法向力N ,然后带人公式求得a 、b 。 2. 在车辆曲线通过研究中,有方程式 ()W f r y f w O W μψλ212 1 2 222 * 11=??? ?????+???? ?? 二.简答题 (每题5分,共30分) 1.与传统机械动力学相比,轨道车辆动力学有何特点? 2.轮轨接触几何关系的计算有哪两种方法,各有何优缺点? 解析和数值方法。数值方法可以用计算机,算法简单,效率高,但存在一定误差;解析方法是利用轮轨接触几何关系建立解析几何的方式求解,比较准确,但是计算繁琐,方法难于理解。 3.在车辆系统中,“非线性”主要指哪几种关系? 轮轨接触几何非线性、轮轨蠕滑关系非线性、车辆悬挂系统非线性 4.怎样根据特征方程的特征根以判定车辆蛇行运动稳定性?。 根据求出的特征根实部的正负判断车辆蛇行运动的稳定性,当所有的特征根实部均为负时,车辆系统蛇行运动稳定,存在特征根为零或者负时,车辆系统的蛇行运动不稳定。

齿轮动力学国内外研究现状资料

1.2.1 齿轮系统动力学研究 从齿轮动力学的研究发展来看,先后进行了基于解析方法的非线性齿轮动力学研究、基于数值方法的齿轮非线性动力学研究、基于实验方法的齿轮系统的非线性动力学研究和考虑齿面摩擦及齿轮故障的齿轮系统的非线性动力学研究。其中,解析方法包括谐波平衡法、分段技术法和增量谐波平衡法等;数值方法则不胜枚举,包括Ritz法、Parametric Continuation Technique方法等。[1]齿轮系统间隙非线性动力学的研究起始于1967年K.Nakamura的研究。[2]在1987年,H. Nevzat ?zgüven等人对齿轮系统动力学的数学建模方法进行了详细的总结。他分别从简化的动力学因子模型、轮齿柔性模型、齿轮动力学模型、扭转振动模型等几个方面分类,详细总述了齿轮动力学的发展进程。[3]1990年,A. Kaharman等人分析了一对含间隙直齿轮副的非线性动态特性,考虑了啮合刚度、齿侧间隙和静态传递误差等内部激励的影响,考察了啮合刚度与齿侧间隙对动力学的共同影响。[4] 1997年,Kaharaman和Blankenship对具有时变啮合刚度、齿侧间隙和外部激励的齿轮系统进行了实验研究,利用时域图、频域图、相位图和彭家莱曲线等揭示了齿轮系统的各种非线性现象。[5]同年,M. Amabili和A. Rivola研究了低重合度单自由度的直齿轮系统的稳态响应及其系统的稳定性。 [6]2004年,A. Al-shyyab等人用集中质量参数法建立了含齿侧间隙的直齿齿轮副的非线性动力学模型,利用谐波平衡阀求解了方程组的稳态响应,并研究了啮合刚度、啮合阻尼、静态力矩和啮合频率对齿轮系统振动的影响。[7]2008年,Lassaad Walha等人建立了两级齿轮系统的非线性动力学模型,考虑了时变刚度、齿侧间隙和轴承刚度对动力学的影响。对非线性系统分段线性化并用Newmark迭代法进行求解,研究了齿轮脱啮造成的齿轮运动的不连续性。[8]2010年,T. Osman 和Ph. Velex在齿轮轻微磨损的情况下,建立了动力学模型,通过数值模拟揭示了齿轮磨损的非对称性。[9]2011年,Marcello Faggioni等人通过分析直齿轮的非线性动力学特性及其响应,建立了以齿轮振动幅值的目标函数,利用Random–Simplex优化算法优化了齿廓形状。[10]2013年,Omar D. Mohammed等人对时变啮合刚度的齿轮系统动力学进行了研究,对于裂纹过长所带来的有限元误差问题,提出了一种新的时变啮合刚度模型。通过时域方面的故障诊断数据和FEM结果对比,证明了新模型能够更好地解长裂纹问题。[11] 国内研究齿轮系统动力学也进行了大量的研究。2001年,李润芳等人建立了具有误差激励和时变刚度激励的齿轮系统非线性微分方程,利用有限元法求得齿轮的时变啮合刚度和啮合冲击力,研究了齿轮系统在激励作用下的动态响应。 [12]2006年,杨绍普等人研究了考虑时变刚度、齿轮侧隙、啮合阻尼和静态传递误差影响下的直齿轮副的非线性动力学特性,利用增量谐波平衡法对系统方程进行了求解,研究了系统的分岔特性以及阻尼比和外激励大小对系统幅频曲线的影响。[13]2010年,刘国华等人建立了考虑齿轮轴的弹性、齿侧间隙、油膜挤压刚度和时变啮合刚度等因素的多体弹性非线性动力学模型,研究了齿廓修形和轴的扭转刚度对动力学特性的影响。[14] 2013年,王晓笋,巫世晶等人建立了含有非线性齿侧间隙、内部误差激励和含磨损故障的时变啮合刚度的三自由度齿轮传动系统平移—扭转耦合动力学方程。采用变步长Gill积分、GRAM—SCHMIDT方法,得到了系统对应的分岔图和李雅普诺夫指数谱,研究发现了系统内部丰富的非线性现象,而系统进入混沌运动的途径也是多样的。[15]

系统动力学研究综述

系统动力学研究综述 摘要 本文首先对系统动力学进行简要概述,并回顾其在国外和国内的发展历程。其次通过对文献综述的方式,对系统动力学的研究领域进行梳理和罗列,并且介绍了系统动力学的研究成果和应用情况。本文的目的在于对系统动力学的发展和应用进行清洗明确的概括的,增进系统动力学的了解,并表述其目前的发展趋势。 关键词:系统动力学、综述、应用现状、研究成果 一、引言 系统动力学自创立以来,其理论、方法和工具不断完善,应用范围不断拓展,在解决经济、社会、环境、生态、能源、农业、工业、军事等诸多领域的复杂问题中发挥了重要作用。随着现代社会复杂性、动态性、多变性等问题的逐步加剧,更加需要类似系统动力学这样的方法,综合系统论、控制论、信息论等,并于经济学、管理学交叉,使人们清晰认识和深入处理产生于现代社会的非线性和时变现象,做出长期的、动态的、战略的分析和研究。这位系统动力学方法的进一步发展提供了广阔的平台,也为深入研究系统动力学的应用提供了机遇和挑战。 为此,本文从系统动力学的研究与应用现状着手,通过总结和分析当前系统动力学的应用情况,探寻系统动力学未来的应用前景和方向,希望能促进系统动力学方法在现代社会中的广泛应用。 二、系统动力学概述 系统动力学(System Dynamics,简称SD)起源于控制论。自Wienes在40年代建立控制论以来,随着现代工业与科学技术的日益发展,控制论的概念、领域和工具也得以拓展。五十年代初,中国把自动控制理论翻译为“自动调节原理”。苏联的B.B. COJIOJIOBHNKOB教授,在研究有关随即控制问题时,引入“系统动力学”的概念。钱学森先生结合龚恒问题,编著了《工程控制论》,也阐述了系统动力学的有关问题。苏联与后总共对系统动学的研究,是针对工程技术问题,限于自然科学领域。美国在50年代后期,在系统动力学方面取得了很大的突破。

相关文档