文档库 最新最全的文档下载
当前位置:文档库 › 乳糖操纵子的正负调控机制

乳糖操纵子的正负调控机制

乳糖操纵子的正负调控机制
乳糖操纵子的正负调控机制

1.乳糖操纵子的正负调控机制

⑴乳糖操纵子(lac)是由调节基因(lac I)、启动子(lac P)、操纵基因(lac O)和结

构基因(lac Z、lac Y、lac A)组成的。lac I 编码阻遏蛋白,lac Z、lac Y、lac A分别编码β-半乳糖苷酶,β-半乳糖苷透性酶和β-半乳糖苷转乙酰基酶。

⑵阻遏蛋白的负性调控:当培养基中没有乳糖时,阻遏蛋白结合到操纵子中的操纵基

因上,阻止了结构基因的表达;当培养基中有乳糖时,乳糖(真正是异乳糖)分子和阻遏蛋白结合,引起阻遏蛋白构象改变,不能结合到操纵基因上,使RNA聚合酶能正常催化转录操纵子上的结构基因,即操纵子被诱导表达。

⑶cAMP-CAP是一个重要的正调节物质,可以与操纵上的启动子区结合,启动基因转

录。培养基中葡萄糖含量下降,cAMP合成增加,cAMP与CAP形成复合物并与启动子结合,促进乳糖操纵子的表达。

⑷协调调节:乳糖操纵子调节基因编码的阻遏蛋白的负调控与CAP的正调控两种机制,

互相协调,互相制约。

2.详述大肠杆菌色氨酸操纵子的调控机理。

答:大肠杆菌色氨酸操纵子的转录受阻遏和衰减两种机制的控制,前者通过阻遏蛋白和操纵基因的作用控制转录的起始,后者通过前导序列形成特殊的空间结构控制转录起始后是否进行下去。

⑴色氨酸操纵子的可阻遏系统:

在阻遏系统中,起负调控的调节基因的产物是一个无活性的阻遏蛋白,色氨酸是辅阻遏物;当色氨酸不足时,阻遏蛋白无活性,不能和操纵基因结合,色氨酸操纵子能够转录;

当色氨酸充足时,阻遏蛋白和它结合而被激活,从而结合到操纵基因上,而色氨酸操纵子的操纵基因位于启动基因内,因此,活性阻遏物的结合排斥了RNA聚合酶的结合,从而抑制了结构基因的表达。

⑵色氨酸操纵子的衰减调控

在色氨酸操纵子的操纵基因和第一个结构基因之间有一段前导序列,在前导序列上游部分有一个核糖体结合位点,后面是以起始密码AUG开头的14个氨基酸的编码区,编码区有两个紧密相连的色氨酸密码子,后面是一个终止密码子UGA,在开放阅读框下游有一个不依赖ρ因子的终止子,是一段富含G/C的回文序列,可以形成发夹结构,因此可以在此处终止转录。另外前导序列包含4个能进行碱基互补配对的片断1区、2区、3区和4区。它们能以1、2和3、4或2、3的方式进行配对,从而使前导序列形成二级结构的变化。在细菌中,翻译与转录偶连,一旦RNA聚合酶转录出trp mRNA中的前导肽编码区,核糖体便立即结合上去翻译这一序列。当细胞中缺乏色氨酸时,Trp-tRNATrp的浓度很低,核糖体翻译前导肽至两个连续的色氨酸密码子处就陷入停顿,这时核糖体只占据1区,由RNA聚合酶转录的2区和3区便可配对,4区游离在外,这样就不能形成终止子结构,RNA聚合酶就可以一直转录下去,最后完成trp全部结构基因的转录,得到完整的mRNA分子。当细胞中存在色氨酸时,就有一定浓度的Trp-tRNATrp,核糖体便能顺利通过两个连续的色氨酸密码子而翻译出整个前导肽,直到前导肽序列后面的终止密码子UGA处停止。此时,核糖体占据了1区和2区,结果3区和4区配对,形成转录终止子结构,使RNA聚合酶终止转录。实现衰减调控的关键在于时间和空间上的巧妙安排。在空间上,两个色氨酸密码子的位置很重要,不可随意更改;在时间上,核糖体停顿于两个色氨酸密码子上时,序列4应当还未转录出来。

3.基因组文库与cDNA文库的区别:

①材料不同。基因组文库以DNA为材料,而cDNA文库以mRNA为材料。

②基因结构不同。基因组文库中包含了所有的基因,而cDNA文库只包含需要表达的

基因。对真核细胞来说,基因组文库中所含的是带有内含子和外显子的基因

组基因,而cDNA文库中则是已剪接去除了内含子的cDNA。

③文库内容不同。cDNA文库所包含的遗传信息远少于基因组文库,并且受细胞来源或发育时期的影响。

④载体不同。构建基因组文库常用λ噬菌体和柯斯质粒等高容量克隆载体,而构建cDNA 文库的载体选择要根据该文库的用途来确定。

⑤使用范围不同。基因组文库常用于分离特定的基因片段、分析特定的基因结构以及研究基因表达调控等,而cDNA文库可用于某些RNA病毒等的基因组结构研究及有关基因的克隆分离。

描述乳糖操纵子的作用机理

描述乳糖操纵子的作用机理? 1.针对大肠杆菌利用乳糖的适应现象,法国的Jacob和Monod等人做了一系列遗传学和生化学研究实验,于1961年提出乳糖操纵元(lac operon)学说,如图19-3所示。图19-3中z、a和b型是大肠杆菌编码利用乳糖所需酶类的基因,p是转录z、a、b所需要的启动子,调控基因i编码合成调控蛋白R,R能与o结合而阻碍从p开始的基因转录,所以o就是调节基因开放的操纵序列,乳糖能改变R结构使其不能与o结合,因而乳糖浓度增高时基因就开放,转录合成所编码的酶类,这样大肠杆菌就能适应外界乳糖供应的变化而改变利用乳糖的状况,这个模型是人们在科学实验的基础上第一次开始认识基因表达调控的分子机理。 2.操纵子(operator)是指能被调控蛋白特异性结合的一段DNA序列,常与启动子邻近或与启动子序列重叠,当调控蛋白结合在操纵子序列上,会影响其下游基因转录的强弱。以前许多书中将操纵子称为操纵基因(operator gene)。但现在基因定义是为蛋白质编码的核酸序列,而操纵序列并不是编码蛋白质的基因,却是起着调控基因表达强弱的作用,正如启动序列不叫启动基因而称为启动子一样,操纵序列就可称为操纵子。以前将operon译为操纵子则可改译为操纵元,即基因表达操纵的单元之意。 举乳糖操纵元中的操纵子为例,如图19-5所示,其操纵子(o)序列位于启动子(p)与被调控的基因之间,部分序列与启动子序列重叠。仔细分析该操纵子序列,可见这段双链DNA具有回文(palindrome)样的对称性一级结构,能形成十字形的茎环(stem loop)构造。不少操纵子都具有类似的对称性序列,可能与特定蛋白质的结合相关。 阻遏蛋白与操纵子结合,就妨碍了RNA聚合酶与启动子的结合及其后β-半乳糖苷酶等基因的转录起始,从而阻遏了这群基因的表达。最早只把与阻遏蛋白结合、起阻遏作用的序列

操纵子简介

操纵组(英语:Operon)又称操纵子或操纵元,是一组关键的核苷酸序列,包括了一个操纵基因(Operator),一个普通的启动子,及一个或以上的结构基因被用作生产信使RNA(mRNA)的基元。操纵子主要在原核生物及线虫动物门出现。它们是由弗朗索瓦·雅各布及雅克·莫诺于1961年所发现。 操纵子是与调节子及刺激子有关:操纵子包含了一组受操纵基因调节的基因,调节子包含了一组受单一调节蛋白质的基因,而刺激子则包含一组受单一细胞调节的基因。 作为转录的基元 操纵子包含一个或以上的结构基因,这个结构基因会被转录成为一个多基因性的mRNA。一个单一的mRNA分子会为多于一个蛋白质编码。在结构基因上游的是启动子序列,能给核糖核酸聚合酶(RNA聚合酶)提供结合位点及引发转录。在启动子附近的是一组DNA称为操纵基因。操纵子亦会包含调控基因,如阻遏基因能为调控蛋白质编码,使之与操纵基因结合及阻止转录。调控基因未必是操纵子的一部份,但是位于基因组的某一处。阻遏基因会到达操纵基因阻碍结构基因的转录。原核生物的一个转录区段可视为一个转录单位,也称作操纵子。 启动子 主条目:启动子 一个启动子是一组DNA序列能使一个基因进行转录。启动子是由RNA聚合酶所确认,并且引发转录。在RNA的合成中,启动子是一种方法区分哪一个基因用作制造mRNA,及进而控制细胞制造哪一种蛋白质。 操纵基因 操纵基因是DNA的一节能调控与操纵子连结的结构基因的活动,这种调控是透过独特阻遏基因或活跃基因的相互作用。这是一个调控过程将基因“关掉”或“开启”。 基因调节 控制操纵子基因是属于基因调节的一种,能使生物调控不同基因对环境条件的表现。操纵子调节可以是负向或正向的。负向调节涉及与阻遏基因与操纵基因的结合,以阻止转录。 在负向可诱导操纵子中,一个调节的阻遏蛋白质一般会与操纵基因结合,并阻止操纵子中基因的转录。若存在着一个诱导物分子,它会与阻遏基因结合,并改变它的构造,使它不能与操纵基因结

乳糖操纵子

14 原核生物基因的表达调控 生物体在其生命活动中,基因的表达严格有序,任何影响到基因开启与关闭、转录和翻译等基因表达程序的调节作用,都属于对基因表达的调控。原核生物是单细胞生物,没有核膜和明显的核结构。它们与周围环境关系密切。在长期进化过程中产生了高 度的适应性和应变能力,这是它们赖以生存的保证。由此可见,原核生物的基因表达既 与自身的遗传结构相适应,又体现了它们对环境的应变能力。 原核生物基因表达调控主要发生在转录水平上,这可以最经济地在基因表达的第一 步实行最有效的控制。原核生物以操纵子为单位的调控系统即体现了这一特点。然而, 转录调控的方式多种多样,如噬菌体基因表达的时序调控;大肠杆菌色氨酸合成代谢的 衰减调控,即是转录调控的明显例证。此外,也有许多翻译水平上的调控机制,如核糖体 蛋白质合成的自身调节;反义RNA或小RNA对mRNA翻译的调控作用等等。有时, 原核生物甚至还能从DNA水平上对基因表达进行调节,如沙门氏杆菌的相变过程,就 是以基因重排的方式调控基因转录。

327  14畅1 大肠杆菌乳糖操纵子的调控机制 14畅1畅1 大肠杆菌对乳糖的利用和酶诱导 早在20世纪初期就发现,酵母细胞只有在某种底物存在时才产生相应的酶。这种由底物诱导而产生酶的效应,称为诱导作用(i nducti on )。酶诱导普遍存在于细菌中,如大肠杆菌(E 畅co li )的乳糖利用 系统便是诱导过程的典型例证。大肠杆菌的乳糖代谢需要有β半乳糖苷酶(βgalactosidase )的催化,该酶能把乳糖水解为半乳糖(gal acto se )和葡萄糖(g l u co se )(图141)。如果在大肠杆菌的培养基中所用的碳源不是乳糖,而是其他种类的糖(如葡萄糖),那么细胞内的β半乳糖苷酶的分子极少,平均只有0畅5~5个分子。可是,一旦培养基的碳源完全用乳糖取代葡萄糖,则在2~3m i n 内,细胞中就合成了大量β半乳糖苷酶分子,数量骤增,分子数可达1000~10000个。当从培养基中除去半乳糖,细菌很快就停止合成β半乳糖苷酶。显然,新合成的β半乳糖苷酶是在底物乳糖诱导下产生的。可见,乳糖是合成β半乳糖苷酶的诱导物,而β半乳糖苷酶是可诱导酶(i n duci b l e enzym e )。这个系统称为可诱导系统(i nduci b l e system )。 大肠杆菌对乳糖的分解利用,除了需要β半乳糖苷酶外,还需要半乳糖苷透性酶(gal acto si de permease )。半乳糖苷透性酶是一种膜蛋白,可协助乳糖分子穿膜进入细胞。除上述两种酶外,还产生了硫代半乳糖苷转乙酰基酶(thi ogal acto si de transacetyl ase )。 14畅1畅2 大肠杆菌乳糖操纵子的负控制 为解释上述现象,1961年法国分子生物学家F 畅Jacob 和J 畅M onod 通过对大肠杆菌乳糖代谢系统的一系列研究,根据其基因的活动和表达的调节提出了操纵子学说(operon hypo thesis )。实验证明,3种蛋白质:β半乳糖苷酶(Z )、半乳糖透性酶(Y )和硫代半乳糖苷转乙酰基酶(A )的编码基因l a cZ 、l acY 图141 乳糖操纵子的结构 (引自G riffiths 等,2005) 和l acA 依次连接在一起,形成了一个转录单位。操纵子学说主张,该转录单位的转录是从启动子 14畅1 大肠杆菌乳糖操纵子的调控机制

乳糖操纵子

一、简述乳糖操纵子的结构和诱导机制(英文)-(大题) Functional and regulatory components of the lac operon(作用) Lac R = Regulatory gene,that encodes for the lac Repressor protein that is concerned with regulating the synthesis of the structural genes in the operon. Lac R is adjacent to the Promoter site of the operon. The lac repressor is inactivated by lactose, and is active in the absence of lactose. O = Operator,specific nucleotide sequence on DNA to which an active Repressor binds. P = Promoter,specific nucleotide sequence on DNA to which RNA polymerase binds to initiate transcription. If the Repressor protein binds to the operator, RNAp is prevented from binding with the promoter and initiating transcription. Under these conditions the enzymes concerned with lactose utilization are not synthesized. Structual gene Lac Z, Y and A = Structural Genes in the lac operon. Lac Z encodes for Beta-galactosidase; Lac Y encodes the lactose permease; Lac A encodes a transacetylase.(lac = lactose),the inducer molecule. When lactose binds to the Repressor protein, the Repressor is inactivated; the operon is derepressed; the transcription of the genes for lactose utilization occurs. Response to lactose(作用机制) ①Lack of inducer: the lac repressor binds to operator and blocks all. This prevents binding RNAp to promoter subsequent transcription of lac genes but a very low level of trans-cription of lacZYA . ②Lactose is present, the low basal level of permease allows its uptake, andβ-galactosidase catalyzes the conversion of some lactose to allolactose. ③Allolactose acts as an inducer, binding to the lac repressor and inactivate it. RNAp initiates transcription of lac structual genes. 二、Microbes are preferred to plants and animals as sources of enzymes because:(英文)1)they are generally cheaper to produce. 2)their enzyme contents are more predictable and controllable, 3)plant and animal tissues contain more potentially harmful materials than microbes, including phenolic compounds (from plants), endogenous enzyme inhibitors and proteases. 三、固定化酶的优点(Advantages of Immobilized Enzymes)(英文) Immobilised enzymes are very important for commercial uses as they possess many benefits which include: ①Convenience: Minuscule amounts of protein dissolve in the reaction, so workup can be much easier. Upon completion, reaction mixtures typically contain only solvent and reaction products. ②Economical: The immobilized enzyme is easily removed from the reaction making it easy to recycle the biocatalyst. ③Stability: Immobilized enzymes typically have greater thermal(热的)and operational stability than the soluble form of the enzyme.

乳糖操纵子的正负调控机制

1.乳糖操纵子的正负调控机制 ⑴乳糖操纵子(lac)是由调节基因(lac I)、启动子(lac P)、操纵基因(lac O)和结构基因(lac Z、lac Y、lac A)组成的。lac I 编码阻遏蛋白,lac Z、lac Y、lac A分别编码β-半乳糖苷酶,β-半乳糖苷透性酶和β-半乳糖苷转乙酰基酶。 ⑵阻遏蛋白的负性调控:当培养基中没有乳糖时,阻遏蛋白结合到操纵子中的操纵基因上,阻止了结构基因的表达;当培养基中有乳糖时,乳糖(真正是异乳糖)分子和阻遏蛋白结合,引起阻遏蛋白构象改变,不能结合到操纵基因上,使RNA聚合酶能正常催化转录操纵子上的结构基因,即操纵子被诱导表达。 ⑶cAMP-CAP是一个重要的正调节物质,可

以与操纵上的启动子区结合,启动基因转录。培养基中葡萄糖含量下降,cAMP合成增加,cAMP与CAP形成复合物并与启动子结合,促进乳糖操纵子的表达。 ⑷协调调节:乳糖操纵子调节基因编码的阻遏蛋白的负调控与CAP的正调控两种机制,互相协调,互相制约。 2.详述大肠杆菌色氨酸操纵子的调控机理。 答:大肠杆菌色氨酸操纵子的转录受阻遏和衰减两种机制的控制,前者通过阻遏蛋白和操纵基因的作用控制转录的起始,后者通过前导序列形成特殊的空间结构控制转录起始后是否进行下去。 ⑴色氨酸操纵子的可阻遏系统: 在阻遏系统中,起负调控的调节基因的产物是一个无活性的阻遏蛋白,色氨酸是辅阻遏物;当色氨酸不足时,阻遏蛋白无活性,不能和操纵基因结合,色氨酸操纵子能够转录;当色氨酸充足时,阻遏蛋白和它结合而被激活,从而结合到操纵基因上,而色氨酸操纵子的操纵基因位于启动基因内,因此,活性阻遏物的结合排斥了RNA聚合酶的结合,从而抑制了结构基因的表达。

大肠杆菌乳糖操纵子的结构及其调控机制

大肠杆菌乳糖操纵子的结构及其正、负调控:负控诱导型操纵子 大肠杆菌乳糖操纵子包括三个结构基因:Z、Y、A以及一个操纵序列(启动子序列P、操纵基因序列O、调节基因I)。转录时RNA聚合酶首先与P启动子区结合,通过操纵子向下游转录出Z、 Y 、A三个基因的多顺反子。转录的调控是在启动子区和操纵子区进行。 正调控机制: cAMP-CAP复合物与启动子区的DNA结合改变了此区域DNA的次级结构,促进了RNA聚合酶结合区的解链,增强了转录。cAMP-CAP 复合物的形成取决于细胞内cAMP的浓度(或活性),当细菌以葡萄糖为能源时,因为有葡萄糖降解物的效应(抑制了腺苷酸环化酶的活性),使ATP生成cAMP的浓度降低,因而cAMP-CAP复合物的量低,导致乳糖操纵子结构基因不被转录。 负调控机制: 由调节基因I表达的阻遏蛋白以四聚体的活性结构结合于操纵子基因上,阻绕了RNA聚合酶的转录。 诱导调控: 当有诱导物(异乳糖(乳糖异构体)、IPTG、TMG等)存在时,诱导物可以与调节基因I表达的阻遏蛋白结合,改变其蛋白构象后不能与操纵基因结合,RNA聚合酶可以进行结构基因的转录,也就实现了分解乳糖代谢的相关酶的基因表达,即细菌可以分解和利用乳糖。 大肠杆菌乳糖操纵子的正、负调控协调调节其结构基因的表达。总结:使大肠杆菌乳糖操纵子高效表达,必须既有诱导物又无葡萄糖效应。 大肠杆菌培养基中有葡萄糖和乳糖时,细菌为何优先利用葡萄糖?(1)培养基中有葡萄糖,无乳糖时,cAMP-CAP复合物浓度低,即CAP 不发挥作用,无诱导物存在时,阻遏蛋白与操纵基因结合,关闭了下游结构基因的表达。 (2)培养基中既有葡萄糖,又有乳糖时,虽然阻遏蛋白不能与操纵基因结合,但cAMP-CAP复合物浓度低,即CAP不发挥作用,下游结构基因的表达仍然处于关闭状态。 (3)培养基中无葡萄糖,有乳糖时,cAMP-CAP复合物浓度高,即CAP 可以发挥(分解代谢基因激活蛋白的)作用,而且有诱导物,阻遏蛋白不能与操纵基因结合,开放下游结构基因的表达。

乳糖操纵子

乳糖操纵子 乳糖操纵子是参与乳糖分解的一个基因群,由乳糖系统的阻遏物和操纵序列组成,使得一组与乳糖代谢相关的基因受到同步的调控。1961年雅各布(F.Jacob)和莫诺德(J.Monod)根据对该系统的研究而提出了著名的操纵子学说。在大肠杆菌的乳糖系统操纵子中,β-半乳糖苷酶,半乳糖苷渗透酶,半乳糖苷转酰酶的结构基因以LacZ(z),Lac Y(y),Lac A(a)的顺序分别排列在染色体上,在z的上游有操纵序列Lac O(o),更前面有启动子Lac P(p),这就是操纵子(乳糖操纵子)的结构模式。编码乳糖操纵系统中阻遏物的调节基因Lac I(i)位于和p上游的临近位置。 细菌相关功能的结构基因常连在一起,形成一个基因簇。它们编码同一个代谢途径中的不同的酶。一个基因簇受到同一的调控,一开俱开,一闭俱闭。也就是说它们形成了一个被调控的单位,其它的相关功能的基因也包括在这个调控单位中,例如编码透过酶的基因,虽它的产物不直接参与催化代谢,但它可以使小分子底物转运到细胞中。 乳糖分解代谢相关的三个基因,lacZ、Y、A就是很典型的是上述基因簇。它们的产物可催化乳糖的分解,产生葡萄糖和半乳糖。它们具有顺式作用调节元件和与之对应的反式作用调节因子。三个结构基因图的功能是: lacZ编码β-半乳糖苷酶(β-galactosidase),此酶由500kd的四聚体构成,它可以切断乳糖的半乳糖苷键,而产生半乳糖和葡萄糖 lacY编码β一半乳糖苷透性酶(galactoside permease),这种酶是一种分子量为30kDd膜结合蛋白,它构成转运系统,将半乳糖苷运入到细胞中。 lacA编码β-硫代半乳糖苷转乙酰基酶(thiogalactosidetransacetylase),其功能只将乙酰-辅酶A上的乙酰基转移到β-半乳糖苷上。 无论是lacZ发生突变还是lacY发生突变却可以产生lac-型表型,这种lac-表型的细胞不能利用乳糖。lacZ-突变体中半乳糖苷酶失去活性,直接阻止了乳糖的代谢。lacY-突变体不能从膜上吸取乳糖。 这一个完整的调节系统包括结构基因和控制这些基因表达的元件,形成了一个共同的调节单位,这种调节单位就称为操纵子(opron)。操纵子的活性是由调节基因控制的,调节基因的产物可以和操纵子上的顺式作用控制元件相互作用。 lacZ、Y、A基因的转录是由lacI基因指令合成的阻遏蛋白所控制。lacI一般和结构基因相毗连,但它本身具有自己的启动子和终止子,成为独立的转录单位。由于lacI的产物是可溶性蛋白,按照理说是无需位于结构基因的附近。它是能够分散到各处或结合到分散的DNA 位点上(这是典型的反式-作用调节物。) 通过突变的效应是可以将结构基因和调节基因相区别的,结构基因发生突变,细胞中就失去这些基因合成的蛋白。但是调节基因发生突变会影响到它所控制的所有结构基因的表达。调节蛋白的突变的结果可以显示调节的类型。 lac基因簇是受到负调节(negative regulation)。它们的转录可被调节蛋白所关闭。若调节蛋白因突变而失活就会导致结构基因组成型表达。表明调节蛋白的功能是阻止结构基因的表达,因此称这些蛋白为“阻遏”蛋白。 乳糖操纵子的阻遏蛋白是由4个亚基(38kDa)组成的四聚体。一个野生型细胞中大约有10个四聚体。调节基因转录成单顺反子的mRNA,它和操纵子的比率与RNA聚合酶和启动子之比是相似的。 lac I的产物称为lac阻遏物(lac repressor),其功能是和lacZ、Y、A基因簇5′端的操

乳糖操纵子

1、乳糖操纵子的组成:大肠杆菌乳糖操纵子含Z、Y、A三个结构基因,分别编码半乳糖苷酶、透酶和半乳糖苷乙酰转移酶,此外还有一个操纵序列O,一个启动子P和一个调节基因I。 2、阻遏蛋白的负性调节:没有乳糖存在时,I基因编码的阻遏蛋白结合于操纵序列O处,乳糖操纵子处于阻遏状态,不能合成分解乳糖的三种酶;有乳糖存在时,乳糖作为诱导物诱导阻遏蛋白变构,不能结合于操纵序列,乳糖操纵子被诱导开放合成分解乳糖的三种酶。所以,乳糖操纵子的这种调控机制为可诱导的负调控。 3、CAP的正性调节:在启动子上游有CAP结合位点,当大肠杆菌从以葡萄糖为碳源的环境转变为以乳糖为碳源的环境时,cAMP浓度升高,与CAP结合,使CAP发生变构,CAP结合于乳糖操纵子启动序列附近的CAP结合位点,激活RNA聚合酶活性,促进结构基因转录,调节蛋白结合于操纵子后促进结构基因的转录,对乳糖操纵子实行正调控,加速合成分解乳糖的三种酶。 4、协调调节:乳糖操纵子中的I基因编码的阻遏蛋白的负调控与CAP的正调控两种机制,互相协调、互相制约。 5、在葡萄糖存在的情况下乳糖操纵子不表达,只有在葡萄糖不存在而乳糖存在的情况下表达。 色氨酸操纵子要点 色氨酸操纵子负责色氨酸的生物合成,当培养基中有足够的色氨酸时,这个操纵子自动关闭,缺乏色氨酸时操纵子被打开,trp基因表达,色氨酸或与其代谢有关的某种物质在阻遏过程(而不是诱导过程)中起作用。 阻遏-操纵机制对色氨酸来说是一个一级开关,主管转录是否启动,相当于粗调开关。trp操纵子中对应于色氨酸生物合成的还有另一个系统进行细调控,指示已经启动的转录是否继续下去。这个细微调控是通过转录达到第一个结构基因之前的过早终止来实现的,由色氨酸的浓度来调节这种过早终止的频率。 当培养基中色氨酸的浓度很低时,前导区结构是2-3配对,不形成3-4配对的终止结构,所以转录可继续进行。 当培养基中色氨酸浓度较高时,核糖体可顺利通过两个相邻的色氨酸密码子,3-4区自由配对形成基一环终止子结构,转录被终止,trp操纵子被关闭。

乳糖操纵子的表达调控

乳糖操纵子的表达调控 阻遏蛋白的负性调控 CAP的正性调控 乳糖操纵元的结构及其基因表达调控可综合于图7-7。 阻遏蛋白的负性调控 当大肠杆菌在没有乳糖的环境中生存时,lac操纵元处于阻遏状态。此i基因在其自身的启动子Pi控制下,低水平、组成性表达产生阻遏蛋白R,每个细胞中仅维持约10个分子的阻遏蛋白。R以四聚体形式与操纵子o结合,阻碍了RNA聚合酶与启动子P lac的结合,阻止了基因的转录起动。R的阻遏作用不是绝对的,R与o偶尔解离,使细胞中还有极低水平的b -半乳糖苷酶及透过酶的生成。 当有乳糖存在时,乳糖受b -半乳糖苷酶的催化转变为别乳糖,与R结合,使R构象变化,R四聚体解聚成单体,失去与o的亲和力,与o解离,基因转录开放,使b -半乳糖苷酶在细胞内的含量可增加1000倍。这就是乳糖对lac操纵元的诱导作用。 一些化学合成的乳糖类似物,不受b -半乳糖苷酶的催化分解,却也能与R特异性结合使R构象变化,诱导lac操纵元的开放。例如异丙基硫代半乳糖苷(isopropylthiog- alactoside,IPTG)就是很强的诱导剂,不被细菌代谢而十分稳定。X-gal(5-溴-4-录-3-吲哚-β-

半乳糖苷)也是一种人工化学合成的半乳糖苷,可被b -半乳糖苷酶水解产生兰色化合物,因此可以用作b -半乳糖苷酶活性的指示剂。IPTG和X-gal都被广泛应用在分子生物学和基因工程的工作中。 CAP的正性调控 细菌中的cAMP含量与葡萄糖的分解代谢有关,当细菌利用葡萄糖分解产生能量时,cAMP生成少而分解多,cAMP含量低;相反,当环境中无葡萄糖可供利用时,cAMP含量就升高。细菌中有一种能与cAMP特异结合的cAMP受体蛋白CRP(cAMP receptor protein),当CRP未与cAMP结合时它是没有活性的,当cAMP浓度升高时,CRP与cAMP结合并发生空间构象的变化而活化,称为CAP(CRP-cAMP activated protein),能以二聚体的方式与特定的DNA序列结合。 在lac操纵元的启动子P lac上游端有一段序列与P lac部分重叠的序列,能与CAP特异结合,称为CAP结合位点(CAP binding site)。CAP与这段序列结合时,可增强RNA聚合酶的转录活性,使转录提高50倍。相反,当有葡萄糖可供分解利用时,cAMP浓度降低,CRP 不能被活化,lac操纵元的结构基因表达下降。

(精选)乳糖操纵子简介

操纵子(operon):很多功能相关的结构基因串联排列在染色体上,由一个共同的控制区来操纵这些基因的表达,包含这些结构基因和控制区的整个核苷酸序列就称为操纵子。 乳糖操纵子 ?三个特异性序列: ?操纵序列 O (operator): 阻遏蛋白结合位点。 ?启动子 P (promoter): 位于结构基因的上游。 ?CAP结合位点:环cAMP受体蛋白(分解代谢物激活蛋白)结合位点。 ?一个调节基因 ●lac I:编码阻遏蛋白,能结合于操纵序列位点。 操纵子的组成: ?----结构基因(structural gene, SG) :操纵元中被调控的编码蛋白质的基因?----启动子(promoter,P):是指能被RNA聚合酶识别、结合并启动基因转录的一段DNA序列。 ?----操纵基因(operator,O):是指能被调控蛋白特异性结合的一段DNA序列。 ?阻遏物基因(inhibitor,I),产生阻遏物(repressor)。 结构基因

? Z编码β-半乳糖苷酶:将乳糖水解成葡萄糖和半乳糖。 ?Y编码β-半乳糖苷透过酶:使外界的β-半乳糖苷(如乳糖)能透过大肠杆菌细胞壁和原生质膜进入细胞内。 ?A编码β-半乳糖苷乙酰基转移酶:乙酰辅酶A上的乙酰基转到β-半乳糖苷上,形成乙酰半乳糖。 当一个mRNA含有编码一个以上蛋白质的编码信息,而且这些蛋白质都是以独立的多肽被翻译时,这样的mRNA称之多顺反子mRNA。 ?多顺反子mRNA在细菌中是很普遍的。 ?多顺反子lac mRNA中的lacZ,lacY,lacA经翻译生成的产物分别生成代谢分解乳糖的三种酶 ?始终存在着一定的比例关系( Z : Y : A = 5 : 2 : 1 ) ?lacZ、Y、A基因的转录是由lacI基因指令合成的阻遏蛋白R所控制。lacI一般和结构基因相毗连,但它本身具有自己的启动子和终止子,成为独立的转录单位。 ?由于lacI的产物是可溶性蛋白,按照理说是无需位于结构基因的附近。它是能够分散到各处或结合到分散的DNA位点上。 阻遏蛋白的负调节(negative control of repressor) ?无乳糖(no lactose): lac操纵元处于阻遏状态(repression) ?有乳糖(presence of lactose):lac操纵元即可被诱导(derepression,induction)?诱导剂(inducer): 别乳糖、半乳糖、IPTG(异丙基硫代半乳糖苷) 为什么选用IPTG作诱导物? ?能诱导酶的合成,但又不被分解的分子,称为安慰诱导物(gratuitous inducer)。 ?由于乳糖虽可诱导酶的合成,但又随之分解,产生很多复杂的动力学问题,因此人们常用安慰诱导物来进行各种实验。 ?X-gal(5-溴-4-录-3-吲哚-β-半乳糖苷)也是一种人工化学合成的半乳糖苷,可被β-半乳糖苷酶水解产生兰色化合物,因此可以用作β-半乳糖苷酶活性的指示剂。IPTG和X-gal都被广泛应用在分子生物学和基因工程的工作中。 ?某些诱导物与自然的β-半乳糖苷酶相似,且不能被酶分解,比如异丙基-β-D-硫代半乳糖苷,(isopropylthiogalactoside,IPTG)。不被细菌分解性质稳定,它的浓度在实验中不会改变。 ?复杂的动力学问题,便于研究。 ?IPTG能在缺乏lacY基因下而有效地被运送。

一、 乳糖操纵子的调控模式

一、乳糖操纵子的调控模式 大肠杆菌乳糖操纵子(lactose operon)包括3个结构基因:Z、Y和A,以及启动子、控制子和阻遏子等。转录时,RNA聚合酶首先与启动区(promoter,P)结合,通过操纵区(operator,O)向右转录。转录从O区的中间开始,按Z→Y→A方向进行,每次转录出来的一条mRNA上都带有这3个基因。转录的调控是启动区和操纵区进行的。 Z编码β-半乳糖苷酶;Y编码β-半乳糖苷透过酶;A编码β-半乳糖苷乙酰基转移酶。β-半乳糖苷酶是一种β-半乳糖苷键的专一性酶,除能将乳糖水解成葡萄糖和半乳糖外,还能水解其他β-半乳糖苷(如苯基半乳糖苷)。β-半乳糖苷透过酶的作用是使外界的β-半乳糖苷(如乳糖)能透过大肠杆菌细胞壁和原生质膜进入细胞内。β-半乳糖苷乙酰基转移酶的作用是把乙酰辅酶A上的乙酰基转到β-半乳糖苷上,形成乙酰半乳糖。

1.酶的诱导-lac体系受调控的证据 在不含乳糖及β-半乳糖苷的培养基中,lac+基因型每个大肠杆功细胞内大约只有1-2个酶分子。如果在培养基中加入乳糖,酶的浓度很快达到细胞总蛋白量的6%或7%,每个细胞中可有超过105个酶分子。

科学家把大肠杆菌细胞放在加有放射性35S标记的氨基酸但没有任何半乳糖诱导物的培养基中繁殖几代,然后再将这些带有放射活性的细菌转移到不含35S、无放射性的培养基中,随着培养基中诱导物的加入,β-半乳糖苷酶便开始合成。分离β-半乳糖苷酶,发现这种酶无35S标记。说明酶的合成不是由前体转化而来的,而是加入诱导物后新合成的。 已经分离在有诱导物或没有诱导物的情况下都能产生lacmRNA的突变体,这种失去调节能力的突变体称为永久型突变体,为分两类:I型和O型。 I型:野生型为I+,突变型为I- O型:野生型为O+,突变型为O c。 I+→I-或O+→O c后,Z、Y、A结构基因均表现为永久表达,所以I基因被称为调节基因(regulatory gene)。研究发现,I基因是一个产生阻遏物的调节基因,其产物使体系关闭。I-突变体由于不能产生阻遏物,使细胞成为lac永久表达型。I-/I+局部二倍体由于带有一个正常阻遏物,使细胞中的lac仍然被抑制。 遗传学图谱分析指出,O c突变位于I与Z之间,所以,lac体系的4个基因的序列为IOZY。通过这些观察,Jacob和Monod推断O c突变代表DNA链上的一个位点或一个非编码区域,而不是一个基因,因为可编码的基因具有互补性,而 O c没有这一特性。O决定相邻Z基因的产物是诱导型合成还是永久型合成,O区域称为操纵基因。

乳糖操纵子发现历程

乳糖操纵子发现历程 (本文是我在2005年为了给硕士生上课所整理的材料) 已有知识背景 1927年H J Muller用X-光进行诱变 1941年George Beadle,E L Tatum提出one gene-one enzyme假说 1944年Oswald Avery等证明基因是DNA 1940年,Jacques Monod开始研究E.coli进行乳糖代谢的一些特征研究,观察到乳糖和其他半乳糖苷可以诱导β-半乳糖苷酶的产生。他和MelvinCohn用抗β-半乳糖苷酶抗体检测酶蛋白,发现诱导后酶量增加。 进一步研究发现事情更复杂。一些神秘的突变株“cryptic mutants”能产生β-半乳糖苷酶,但是却不能在以乳糖为碳源的培养基中生长。这是什么原因呢? 为了回答这个问题,他们用放射性标记的半乳糖苷进行研究。发现野生型菌在乳糖诱导后会摄取半乳糖苷,而这种突变型菌不能。 -Lactose+Lactose Wild strain-+ Cryptic mutant-- 这个实验结果有什么提示呢? 1)在野生型菌中,有一种物质与β-半乳糖苷酶一起被诱导,它负责输送半乳糖苷进入细胞。 2)突变株中,这种物质的基因被破坏。 Monod将这种物质命名为半乳糖苷透过酶。但为此他遭到了同事们的批评,因为他在这个蛋白未分离到之前就进行命名。Monod对当时的情形作了如下描述: This attitude reminded me of that of two traditional English gentlemen who, even if they know each other well by name and by reputation,will not speak to each other before having been formally introduced. Monod和同事努力分离纯化得到了半乳糖苷透过酶。在这个过程中,他们还分离到了另一个蛋白:半乳糖苷转乙酰酶,该酶与β-半乳糖苷酶和半乳糖苷透过酶一起被诱导。 这样,到了50年代末,Monod已经知道有三种酶共同被半乳糖苷诱导。他们也发现了一些组成型突变株,不需要诱导就可以产生这三种酶。Monod认识到用遗传学分析可以加快实验进展,所以与同在Pasteur Institute工作的Francois Jacob开展了合作研究。 在Arthur Pardee的协作下,Jacob和Monod构建了局部二倍体(merodiploid),携带着野生型和组成型的等位基因。野生型等位基因证明是显性的。野生型细胞可以产生某种物质使lac基因关闭。这种物质也可以使组成型基因表达关闭,从

乳糖操纵子的正负调控机制

1.乳糖操纵子的正负调控机制 2.⑴乳糖操纵子(lac)是由调节基因(lac I)、启动子(lac P)、操纵基因(lac O)和结 构基因(lac Z、lac Y、lac A)组成的。lac I 编码阻遏蛋白,lac Z、lac Y、lac A分别编码β-半乳糖苷酶,β-半乳糖苷透性酶和β-半乳糖苷转乙酰基酶。 3.⑵阻遏蛋白的负性调控:当培养基中没有乳糖时,阻遏蛋白结合到操纵子中的操纵基 因上,阻止了结构基因的表达;当培养基中有乳糖时,乳糖(真正是异乳糖)分子和阻遏蛋白结合,引起阻遏蛋白构象改变,不能结合到操纵基因上,使RNA聚合酶能正常催化转录操纵子上的结构基因,即操纵子被诱导表达。 4.⑶cAMP-CAP是一个重要的正调节物质,可以与操纵上的启动子区结合,启动基因转 录。培养基中葡萄糖含量下降,cAMP合成增加,cAMP与CAP形成复合物并与启动子结合,促进乳糖操纵子的表达。 5.⑷协调调节:乳糖操纵子调节基因编码的阻遏蛋白的负调控与CAP的正调控两种机制, 互相协调,互相制约。 6. 7.详述大肠杆菌色氨酸操纵子的调控机理。 8.答:大肠杆菌色氨酸操纵子的转录受阻遏和衰减两种机制的控制,前者通过阻遏蛋白和 操纵基因的作用控制转录的起始,后者通过前导序列形成特殊的空间结构控制转录起始后是否进行下去。 9.⑴色氨酸操纵子的可阻遏系统: 10.在阻遏系统中,起负调控的调节基因的产物是一个无活性的阻遏蛋白,色氨酸是辅阻遏 物;当色氨酸不足时,阻遏蛋白无活性,不能和操纵基因结合,色氨酸操纵子能够转录; 当色氨酸充足时,阻遏蛋白和它结合而被激活,从而结合到操纵基因上,而色氨酸操纵子的操纵基因位于启动基因内,因此,活性阻遏物的结合排斥了RNA聚合酶的结合,从而抑制了结构基因的表达。 11.⑵色氨酸操纵子的衰减调控 12.在色氨酸操纵子的操纵基因和第一个结构基因之间有一段前导序列,在前导序列上游部 分有一个核糖体结合位点,后面是以起始密码AUG开头的14个氨基酸的编码区,编码区有两个紧密相连的色氨酸密码子,后面是一个终止密码子UGA,在开放阅读框下游有一个不依赖ρ因子的终止子,是一段富含G/C的回文序列,可以形成发夹结构,因此可以在此处终止转录。另外前导序列包含4个能进行碱基互补配对的片断1区、2区、3区和4区。它们能以1、2和3、4或2、3的方式进行配对,从而使前导序列形成二级结构的变化。在细菌中,翻译与转录偶连,一旦RNA聚合酶转录出trp mRNA中的前导肽编码区,核糖体便立即结合上去翻译这一序列。当细胞中缺乏色氨酸时,Trp-tRNATrp 的浓度很低,核糖体翻译前导肽至两个连续的色氨酸密码子处就陷入停顿,这时核糖体只占据1区,由RNA聚合酶转录的2区和3区便可配对,4区游离在外,这样就不能形成终止子结构,RNA聚合酶就可以一直转录下去,最后完成trp全部结构基因的转录,得到完整的mRNA分子。当细胞中存在色氨酸时,就有一定浓度的Trp-tRNATrp,核糖体便能顺利通过两个连续的色氨酸密码子而翻译出整个前导肽,直到前导肽序列后面的终止密码子UGA处停止。此时,核糖体占据了1区和2区,结果3区和4区配对,形成转录终止子结构,使RNA聚合酶终止转录。实现衰减调控的关键在于时间和空间上的巧妙安排。在空间上,两个色氨酸密码子的位置很重要,不可随意更改;在时间上,核糖体停顿于两个色氨酸密码子上时,序列4应当还未转录出来。 13.基因组文库与cDNA文库的区别:

乳糖操纵子.

原核生物基因表达转录水平调控之乳糖操纵子模型 (2012-07-13 00:37:45) 转载▼ 原核生物基因表达在转录水平上的调控最经典学说是操纵子学说。 一、操纵子 细菌基因表达调控的许多原理是在研究E.coli乳糖代谢调节时被发现的。法国巴斯德研究院的Francois Jacob与Jacques Monod于1960年在法国科学院院报(Proceeding of the French Academy of Sciences)上发表了一篇论文,提出乳糖代谢中的两个基因被一靠近它们的遗传因子所调节。这二个基因为β半乳糖苷酶(β-galactosidase)和半乳糖苷透过酶(galactoside penmase)。前者能水解乳糖成为半乳糖和葡萄糖,后者将乳糖运输到细胞之中。在此文中他们首先提出了操纵子(operon)和操纵基因(operator)的概念,他们的操纵子学说(theory of operon)使我们得以从分子水平认识基因表达的调控,是一个划时代的突破,因此他们二人于1965年荣获诺贝尔生理学奖。 Jacob与Monod所提出的关于基因表达调控的操纵子学说可以简述如下:有一个专一的阻遏分子(蛋白质)结合在靠近β半乳糖苷酶基因上面,这段DNA他们称之为操纵基因。由于阻遏分子结合在DNA的操纵基因上,从而阻止了RNA聚合酶合成β半乳糖苷酶的mRNA。此外,他们还指出乳糖为诱导物,当乳糖结合到阻遏分子上时,即阻止阻遏分子与操纵基因的结合。当有乳糖时,阻遏分子即失活,mRNA就可以转录出来。如果去掉乳糖时,阻遏分子又恢复其活力,与操纵基因DNA结合,将乳糖基因关闭。 二、乳糖操纵子 https://www.wendangku.net/doc/e117129838.html,/fzswx/knowledge/knowledge01.asp?zsdBianhao=060302 https://www.wendangku.net/doc/e117129838.html,/s/blog_4b07ffbc01016v21.html 乳糖操纵子(lac operon)是原核生物中研究得最清楚的一种操纵子。在乳糖操纵子上,除去β半乳糖苷酶(Z)和半乳糖苷透过酶(Y)基因之外,还有一个硫半乳糖苷转乙酰酶(thiogalactoside transacytylase)基因(A)它的生理功能尚不清楚)。这3个基因每个前面都有一翻译信号,引导核糖体结合及蛋白质合成。在底物乳糖不存在时,lac操纵子基因即被阻遏,β半乳糖苷酶只以很少的拷贝存在(每个细胞几个分子)。Jacob

乳糖操纵子的正负调控机制

1. 乳糖操纵子的正负调控机制 2. ⑴乳糖操纵子(lac)是由调节基因(lac I )、启动子(lac P)、操纵基因(lac 0)和结构基因 (lac Z、lac Y、lac A)组成的。lac I编码阻遏蛋白,lac Z、lac Y、lac A分别编码B-半乳糖苷酶,B -半乳糖苷透性酶和B -半乳糖苷转乙酰基酶。 3. ⑵ 阻遏蛋白的负性调控:当培养基中没有乳糖时,阻遏蛋白结合到操纵子中的操纵基 因上,阻止了结构基因的表达;当培养基中有乳糖时,乳糖(真正是异乳糖)分子和阻遏蛋白结合,引起阻遏蛋白构象改变,不能结合到操纵基因上,使RNA 聚合酶能正常催化转录操纵子上的结构基因,即操纵子被诱导表达。 4. ⑶ cAMP-CAP 是一个重要的正调节物质,可以与操纵上的启动子区结合,启动基因转 录。培养基中葡萄糖含量下降,cAMP 合成增加,cAMP 与CAP 形成复合物并与启动子结合,促进乳糖操纵子的表达。 5. ⑷ 协调调节:乳糖操纵子调节基因编码的阻遏蛋白的负调控与CAP 的正调控两种机制,互相协 调,互相制约。 6. 6. 详述大肠杆菌色氨酸操纵子的调控机理。 7. 答:大肠杆菌色氨酸操纵子的转录受阻遏和衰减两种机制的控制,前者通过阻遏蛋白和操纵基因 的作用控制转录的起始,后者通过前导序列形成特殊的空间结构控制转录起始后是否进行下去。 8. ⑴ 色氨酸操纵子的可阻遏系统: 9. 在阻遏系统中,起负调控的调节基因的产物是一个无活性的阻遏蛋白,色氨酸是辅阻遏物;当色 氨酸不足时,阻遏蛋白无活性,不能和操纵基因结合,色氨酸操纵子能够转录;当色氨酸充足时,阻遏蛋白和它结合而被激活,从而结合到操纵基因上,而色氨酸操纵 子的操纵基因位于启动基因内,因此,活性阻遏物的结合排斥了RNA聚合酶的结合,从而抑制了结构基因的表达。 10. ⑵ 色氨酸操纵子的衰减调控 11. 在色氨酸操纵子的操纵基因和第一个结构基因之间有一段前导序列,在前导序列上游部 分有一个核糖体结合位点,后面是以起始密码AUG开头的14个氨基酸的编码区,编码区有两个紧密相连的色氨酸密码子,后面是一个终止密码子UGA在开放阅读框下游有一个不依赖P因子的终止子,是一段富含G/C的回文序列,可以形成发夹结构,因此可 以在此处终止转录。另外前导序列包含 4 个能进行碱基互补配对的片断 1 区、 2 区、 3 区和 4 区。它们能以1、 2 和3、 4 或2、 3 的方式进行配对,从而使前导序列形成二级结构的变化。在细菌中,翻译与转录偶连,一旦RNA聚合酶转录出trp mRNA中的前导肽编码区,核糖体便立即结合上去翻译这一序列。当细胞中缺乏色氨酸时,Trp-tRNATrp 的浓度很低,核糖体翻译前导肽至两个连续的色氨酸密码子处就陷入停顿,这时核糖体 只占据1区,由RNA聚合酶转录的2区和3区便可配对,4区游离在外,这样就不能形成终止子结构,RNA聚合酶就可以一直转录下去,最后完成trp全部结构基因的转录,得到完整的mRNA分子。当细胞中存在色氨酸时,就有一定浓度的Trp-tRNATrp ,核糖体便能顺利通过两个连续的色氨酸密码子而翻译出整个前导肽,直到前导肽序列后面的终止密码子UGA处停止。此时,核糖体占据了1区和2区,结果3区和4区配对,形成转 录终止子结构,使RNA聚合酶终止转录。实现衰减调控的关键在于时间和空间上的巧妙安排。 在空间上,两个色氨酸密码子的位置很重要,不可随意更改;在时间上,核糖体停顿于两个色氨酸密码子上时,序列 4 应当还未转录出来。 12. 基因组文库与cDNA文库的区别:

相关文档