文档库 最新最全的文档下载
当前位置:文档库 › ZigBee射频模块各项功率指标

ZigBee射频模块各项功率指标

ZigBee射频模块各项功率指标
ZigBee射频模块各项功率指标

ZigBee射频模块各项功率指标

High sensitivity (-95 dBm)

高灵敏度-95 dBm

Input RF level 10dBm

输入RF电平10dBm

Nominal output power-3dBm

标称输出功率-3dBm

2nd harmonic-44 dBm

两次谐波功率-44 dBm

3rd harmonic-64 dBm

三次谐波功率-44 dBm

The output power is programmable in 8 steps from approximately –24 to 0 dBm.

输出功率有八个可调功率,从-24到0 dBm.

Receiver Sensitivity-90dBm

接收灵敏度-90dBm

Saturation (maximum input level) 10 dBm

最大输入功率10 dBm

Adjacent channel rejection + 5 MHz channel spacing 45dB

相邻信道抑制+5MHz45dB

Adjacent channel rejection - 5 MHz channel spacing 30dB

相邻信道抑制-5MHz30dB

Adjacent channel rejection + 5 MHz channel spacing 54dB

相邻信道抑制+10MHz54dB

Adjacent channel rejection + 5 MHz channel spacing 53dB 相邻信道抑制-10MHz53dB

Channel rejection

≥ + 15 MHz 62dB

≤ - 15 MHz 62dB

Zigbee使用的信道抑制62dB

Co-channel Rejection -3dB

共信道抑制-3dB

Blocking / Desensitisation 隔绝特性

+/- 5 MHz from band edge-28 dBm

+/- 20 MHz from band edge-28 dBm

+/- 30 MHz from band edge-27 dBm

+/- 50 MHz from band edge-28 dBm

Frequency error tolerance -300 300 kHz

频率容限-300 300 kHz

Carrier sense level ? 77 dBm

载波侦听功率? 77 dBm

RSSI dynamic range 100 dB

接受信号强度指示器动态范围100 dB

RSSI accuracy ± 6dB

接受信号强度指示器精确度± 6dB

RSSI linearity ± 3 dB

接受信号强度指示器线性度± 6dB

射频功率放大器

实验四:射频功率放大器 【实验目的】 通过功率放大器实验,让学生了解功率放大器的基本结构,工作原理及其设计步骤,掌握功率放大器增益、输出功率、频率范围、线性度、效率和输入/输出端口驻波比等主要性能指标的测试方法,以此加深对以上各项性能指标的理解。 【实验环境】 1.实验分组:每组2~4人 2.实验设备:直流电源一台,频谱仪一台,矢量网络分析仪一台,功率计一只,10dB衰减器一个,万用表一只,功率放大器实验电路 板一套 【实验原理】 一、功率放大器简介 功率放大器总体可分成A、B、C、D、E、F六类。而这六个小类又可以归入不同的大类,这种大类的分类原则,大致有两种:一种是按照晶体管的导通情况分,另一种按晶体管的等效电路分。按照信号一周期内晶体管的导通情况,即按导通角大小,功率放大器可分A、B、C三类。在信号的一周期内管子均导通,导θ(在信号周期一周内,导通角度的一半定义为导通角θ),称为A 通角? =180 θ。导通时间小于一半周期的类。一周期内只有一半导通的成为B类,即? =90 θ。如果按照晶体管的等效电路分,则A、B、C属于一大称为C类,此时? <90 类,它们的特点是:输入均为正弦波,晶体管都等效为一个受控电流源。而D、E、F属于另一类功放,它们的导通角都近似等于? 90,均属于高功率的非线性放大器。 二、功率放大器的技术要求 功率放大器用于通信发射机的最前端,常与天线或双工器相接。它的技术要求为: 1. 效率越高越好 2. 线性度越高越好 3. 足够高的增益

4. 足够高的输出功率 5. 足够大的动态范围 6. 良好的匹配(与前接天线或开关器) 三、功率放大器的主要性能指标 1.工作频率 2.输出功率 3.效率 4.杂散输出与噪声 5.线性度 6.隔离度 四、功率放大器的设计步骤 1.依据应用要求(功率、频率、带宽、增益、功耗等),选择合适的晶体管 2.确定功率放大器的电路和类型 3.确定放大器的直流工作点和设计偏置电路 4.确定最大功率输出阻抗 5.将最大输出阻抗匹配到负载阻抗(输出匹配网络) 6.确定放大器输入阻抗 7.将放大器输入阻抗匹配到实际的源阻抗(输入匹配网络) 8.仿真功率放大器的性能和优化 9.电路制作与性能测试 10.性能测量与标定 五、本实验所用功率放大器的简要设计过程 1. PA 2. 晶体管的选择 本实验所选用的晶体管为安捷伦公司的ATF54143_PHEMT,这种晶体管适合用来设计功率放大器。单管在~处能达到的最大资用增益大于18dB,而1dB压缩点高于21dB。

单级放大电路知识点

一、三种常见共射放大电路静态分析见下表所示 上表是常见共射电路的静态工作点。对于实际电路不一定完全跟表中电路相同。求解时遵循以下几点可以求出。 1.思路:①画出该电路的直流通路图。 ②从电源经过基极绕到地列出电压方程(有些电路需经过电工知识进行简化,像分压式可用戴维南定理对R b1、R b2部分等效)求出I BQ 。 ③根据电流放大作用求出I CQ 。 ④从电源经过集电极到发射极到地列电压方程求出U CEQ 。 2.静态工作点的稳定 (1)固定偏置电路 没有稳定静态工作点作用,只能用在要求不高的电路中。 (2)分压式偏置电路 ①静态工作点稳定过程 ②工作点稳定对电路元件参数要求 A .要稳定效果好:V BQ 要一定,就要求I 1≈I 2 I BQ 。这样才能保证V BQ ≈ R b2 R b1+R b2 V G 。一般情况下 ??? ??I 1≈I 2=(5~10)I BQ 硅管 I 1≈I 2=(10~20)I BQ 锗管 B .稳定静态工作点效果:V EQ =I EQ R E 的上升使U BEQ 下降。当R e 越大,U BEQ 下降越快,调整灵敏度

越高,这样就有V EQ U BEQ ,一般有?????V BQ =(3~5)U BEQ 或(3~5)V 硅管 V BQ =(5~10)U BEQ 或(1~3)V 锗管。 (3)集—基反馈式 静态工作点稳定过程:V CQ =V G -(I CQ +I BQ )R c 二、三种常见共射放大电路动态分析见下表所示

几点说明: 1.r be 是三极管的输入电阻,属动态电阻,即交流阻抗,但其大小跟晶体管的静态电流大小有关,一般的估算公式为r be =r ′bb +(1+β)26mV I E mA =r ′bb +26mV I BQ mA 单位为欧姆(Ω)。 (2)r′bb 为三极管基极的等效 电阻,小功率一般约为300Ω,近似计算时,按给出值代入,不给出值时取300Ω代替。 2.输入电阻r i 和输出电阻r o 的物理意义。 r i 表征放大器输入端,相对于信号源而言是信号源的等效负载电阻。r i 越大,则向信号源索取的电流越小,信号源负担越轻。r o 表征放大器的输出端,相对于负载而言是负载的信号源,r o 即为信号源内阻,显然r o 越小,带负载的能力越强。 三、射极输出器 1、静态工作点 I BQ R b +I BQ (1+β)R e +U BEQ =V G , I CQ =βI BQ , U CEQ =V G -I EQ R e ≈V G -I CQ R e 2、动态分析 ①电压放大倍数:A u =(1+β)R L ′/[r be +(1+β)R L ′],其中R L ′=R e ∥R L ②输入电阻:r i =[r be +(1+β)R L ′]∥R b ③输出电阻:r o =∥R e ,其中R s ′=R b ∥R s 3、射极输出器的特性: 射极输出器是共集电极电路,又称射极跟随器(uo ≈ui ,且同相) 电压放大倍数略小于1,电压跟随特性好,输入阻抗高,输出阻抗低,具有一定的电流放大能力和功率放大能力。 射极输出器的反馈类型为电压串联负反馈,且反馈系数为1,属深度负反馈,Auf ≈1/F =1。 4、射极输出器的应用 在多级放大电路中,射极输出器可作为输入级,以减轻信号源的负担;也可用作输出级,提高带负载的能力;还可作为放大器的中间隔离级,减小后级对前级电路的影响;另外,还可以用作阻抗变换器。

几种常见的射频电路类型及主要指标

几种常见的射频电路类型及主要指标 1 低噪声放大器(LNA) LNA是一种特殊的放大器,主要用于射频接收机前端,将天线接收的信号以小的噪声和大的增益进行放大,对提高接收信号质量,降低噪声干扰,提高接收灵敏度有着极其重要的意义,它的性能好坏关系到整个通信系统的质量。 低噪声放大器的主要指标有:噪声系数(NF)、增益(Gain)、输入输出阻抗匹配程度(S11、S22、输入输出回波损耗或输入输出VSWR)、线性性能(三阶交调点和1dB压缩点)、反向隔离(S12)等。由于LNA位于邻近天线的最前端,它的性能好坏会直接影响接收机接收信号的质量。为了保证经天线接收的信号能在接收机的最后一级得到恢复,LNA需要在放大信号的同时产生尽可能低的噪声和失真。因此,在生产测试中,我们主要关注LNA的增益和噪声系数这两个参数。 2 射频功率放大器(PA) 射频功率放大器用于发射机的末级,它将已调制的频带信号放大到所需要的功率值,送到天线中发射,保证在一定区域内的接收机可以收到满意的信号电平,并且不干扰相邻信道的通信。不同的应用场合对发射功率的大小要求不一,如移动通信基站的发射功率可达上百瓦,卫星通信的发射功率可达上千瓦,而便携式无线通信设备却只需几十毫瓦到几百毫瓦。 射频功率放大器的主要指标有工作频段、输出功率、功率增益和增益平坦度、噪声系数、输入输出驻波比、输入输出三阶交调点、邻道功率比、效率等。与低噪声放大器相比,射频功率放大器除了要满足一定的增益、驻波比、带宽,还要有高的输出功率和转换效率及小的非线性失真。 3 射频滤波器 射频滤波器主要用于滤去不需要的信号保留有用信号,是具有选频特性的二端口器件,它对通带内频率信号呈现匹配传输,对阻带频率信号失配而进行发射衰减,从而实现信号频谱过滤功能。 根据不同的选频特性,滤波器可以分为低通、高通、带通和带阻滤波器,这是最基本的四种滤波器。图1归纳了四种滤波器的衰减系数与归一化角频率的关系。根据不同的实现方法,滤波器可分为使用无源器件(如电感、电容和传输线)实现的无源滤波器和使用有源器件(如晶体管和运算放大器)实现的有源滤波器。

PNP型单级共射放大电路

PNP 型单级共射放大电路 一、 实验目的 1、 设计一个PNP 型共射放大器,使其放大倍数为80,工作电流为80mA 。 二、 实验仪器 1、 示波器 2、信号发生器 3、数字万用表 4、交流毫伏表 5、直流稳压源 三、 实验原理 1、PNP 型单级共射放大器电路图如下: 2、 静态工作点的理论计算: 静态工作点可由以下几个关系式确定: 4 34 B C C R U V R R = + 5 B BE C E U U I I R -≈= 由以上式子可知,当管子确定后,改变CC V 、3R 、4R 中任意参数值,都会导致静态工作点的变化。当电路参数确定后,静态工作点主要通过P R 调整。工作点偏高,输出信号波形易产生饱和失真;工作点偏低,输出波形易产生

截止失真。但当输入信号过大时,管子将工作在非线性区,输出波形会产生双向失真。当输出波形不很大时,静态工作点的设置应偏低,以减小电路的 静态损耗。 3、电压放大倍数的测量与计算 电压放大倍数是指放大电路输出端的信号电压(变化电压)与输入端的信号电压之比, 即:o u i u A u = 电路中有12 (//) u be R R A r β =-、 26 '(1) be bb EQ mV r r I β =++ 其中,' bb r一般取300Ω。 当放大电路静态工作点设置合理后,在其输入端加适当的正弦信号,同时用示波器观察放大电路的输出波形,在输出波形不失真的条件下,用交流毫伏表或示波器分别测量放大电路的输入、输出电压,再按定义式计算即可。 四、实验内容及结果 1、按图连接电源,确认电路无误后接通电源。 2、在放大器的输入端加入频率f=1KHz,幅值约为10mV的正弦信号,用示波器观察,同时,用示波器的另一端监视放大器的输出电压Uo的波形。调整Rp的阻值,使静态工作点处于合适位置,此时,输出波形最大而不失真。 3、测量电路工作电流Ic并与理论计算值比较

射频功率放大器实时检测的实现

射频功率放大器实时检测的实现 广播电视发射机是一个综合的电子系统,它不仅包括无线发射视音频通道,而且还包括通道的检测和自动控制电路,因此在设计时,它除了必须保证无线通道的技术指标处于正常范围外,还必须设计先进的取样检测和保护报警等电路,以确保发射机工作正常,从而实现发射机在线自动监测和控制。近年来,随着大功率全固态电视发射机多路功率合成技术的发展,越来越多的厂家采用模块化结构设计,因此单个功率放大器模块是整个发射机的基本测单元,本文就着重讨论单个模块的检测和控制电路,从而实现发射机在线状态自动监测。 一、工作原理 在功放模块中,主要检测和控制参数为电源电压,各放大管的工作电流,输出功率,反射功率,过温度和过激励保护等,图1为实现上述检测控制功能的方框图,它由取样放大电路,V/F变换,隔离电路,F/V变换,A/D转换,AT89C51,显示电路和输出保护电路等组成。 1、隔离电路 在功放模块中,由于大功率器件的应用,往往单个模块的输出功率都比较大,因而对小信号存在较大的高频干扰,如处理不好,就会影响后级模数转换电路工作,从而导致检测数据不准确,显示数据跳动的现象,甚至出现误动作。这里采用光电耦合器进行隔离,由于光电耦合器具有体积小、使用寿命长、工作温度范围宽、抗干扰性能强、无触点且输入与输出在电气上完全隔离等特点,从而将模拟电路和数字电路完全隔离,保障系统在高电压、大功率辐射环境下安全可靠地工作。 2、LM331频率电压转换器

V/F变换和F/V变换采用集成块LM331,LM331是美国NS公司生产的性能价格比较高的集成芯片,可用作精密频率电压转换器用。LM331采用了新的温度补偿能隙基准电路,在整个工作温度范围内和低到4.0V电源电压下都有极高的精度。同时它动态范围宽,可达100dB;线性度好,最大非线性失真小于0.01%,工作频率低到0.1Hz时尚有较好的线性;变换精度高,数字分辨率可达12位;外接电路简单,只需接入几个外部元件就可方便构成V/F或F/V等变换电路,并且容易保证转换精度。 图2是由LM331组成的电压频率变换电路,LM331内部由输入比较器、定时比较器、R-S触发器、输出驱动、复零晶体管、能隙基准电路和电流开关等部分组成。输出驱动管采用集电极开路形式,因而可以通过选择逻辑电流和外接电阻,灵活改变输出脉冲的逻辑电平,以适配TTL、DTL和CMOS等不同的逻辑电路。 当输入端Vi+输入一正电压时,输入比较器输出高电平,使R-S触发器置位,输出高电平,输出驱动管导通,输出端f0为逻辑低电平,同时电源Vcc也通过电阻R2对电容C2充电。当电容C2两端充电电压大于Vcc的2/3时,定时比较器输出一高电平,使R-S触发器复位,输出低电平,输出驱动管截止,输出端f0为逻辑高电平,同时,复零晶体管导通,电容C2通过复零晶体管迅速放电;电子开关使电容C3对电阻R3放电。当电容C3放电电压等于输入电压Vi时,输入比较器再次输出高电平,使R-S触发器置位,如此反复循环,构成自激振荡。输出脉冲频率f0与输入电压Vi成正比,从而实现了电压-频率变换。其输入电压和输出频率的关系为:fo=(Vin×R4)/(2.09×R3×R2×C2) 由式知电阻R2、R3、R4、和C2直接影响转换结果f0,因此对元件的精度要有一定的要求,可根据转换精度适当选择。电阻R1和电容C1组成低通滤波器,可减少输入电压中的干扰脉冲,有利于提高转换精度。 同样,由LM331也可构成频率-电压转换电路。

设计一个射频小信号放大器[1]要点

射 频 课 程 设 技 论 文 院系:电气信息工程学院 班级:电信2班 姓名:贾珂 学号:541101030211

1射频小信号放大器概述 射频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,所谓小信号,一是信号幅度足够小,使得所有有源器件(晶体三极管,场效应管或IC)都可采用二端口Y参数或线性等效电路来模型化;二是放大器的输出信号与输入信号成线性比例关系.从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 小信号放大器的分类:按元器件分为:晶体管放大器、场效应管放大器、集成电路放大器; 按频带分为:窄带放大器、宽带放大器; 按电路形式分为:单级放大器、多级放大器; 按负载性质分为:谐振放大器、非谐振放大器;. 小信号谐振放大器除具有放大功能外,还具有选频功能,即具有从众多信号中选择出有用信号,滤除无用的干扰信号的能力.从这个意义上讲,高频小信号谐振放大电路又可视为集放大,选频一体,由有源放大元件和无源选频网络所组成的高频电子电路.主要用途是做接收机的高频放大器和中频放大器. 其中射频小信号调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。本文以理论分析为依据,以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的频率选择;另加其它电路,实现放大器与前后级的阻抗匹配。2电路的基本原理 图2-1所示电路为共发射极接法的晶体管高频小信号单级单调谐回路谐振放大器。它不仅要放大高频信号,而且还要有一定的选频作用,因此,晶体管的集电极负载为LC并联谐振回路。在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器输出信号的频率或相位。晶体管的静态工作点由电阻R b1、R b2及Re决定,其计算方法与低频单管放大器相同。

单级放大电路

实验二 单级放大电路 一、实验目的 1. 掌握放大器静态工作点的调试方法,学会分析静态工作点对放大器性能的影响。 2. 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 3. 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验仪器及器材 双踪示波器、低频函数信号发生器、低频交流毫伏表、数字万用表、模拟电路实验箱 三、实验原理 图2-1 共射极单管放大器 图2-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B2和R B1 组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号U i 后,在放大器的输出端便可得到一个与U i 相位相反,幅值被放大了的输出信号U 0,从而实现了电压放大。 在图2-1电路中,当流过偏置电阻R B1和R B2的电流远大于晶体管T 的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算,U CC 为供电电源,此为+12V 。 CC B B B B U R R R U 2 11 +≈ (2-1) C E BE B E I R U U I ≈-= (2-2) )(E C C CC CE R R I U U +-= (2-3) 电压放大倍数 be L C V r R R A β -= (2-4)

输入电阻 be B B i r R R R 21= (2-5) 输出电阻 C R R ≈0 (2-6) 放大器静态工作点的测量与调试 1) 静态工作点的测量 测量放大器的静态工作点,应在输入信号U i =0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的数字万用表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。一般实验中,为了避免断开集电极,所以采用测量电压,然后算出I C 的方法,例如,只要测出U E ,即可用E E E C R U I I = ≈算出I C (也可根据C C CC C R U U I -=, 由U C 确定I C ),同时也能算出E C CE E B BE U U U U U U -=-=,。 2) 静态工作点的调试 放大器静态工作点的调试是指对三极管集电极电流I C (或U CE )调整与测试。 静态工作点是否合适,对放大器的性能和输出波形都有很大的影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时u O 的负半周将被削底,如图2-2(a )所示,如工作点偏低则易产生截止失真,即u O 的正半周被缩顶(一般截止失真不如饱和失真明显),如图2-2(b )所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一定的u i ,检查输出电压u O 的大小和波形是否满足要求。如不满足,则应调节静态工作点的位置。 (a)饱和失真 (b)截止失真 图2-2 静态工作点对U0波形失真的影响 改变电路参数U CC ,R C ,R B (R B1,R B2)都会引起静态工作点的变化,如图2-3所示,但通常多采用调节偏电阻R B2的方法来改变静态工作点,如减小R B2,则可使静态工作点提高等。 最后还要说明的是,上面所说的工作点“偏高”或“偏低”不是绝对的,应该是相对信号的幅度而言,如信号幅度很小,即使工作点较高或较低也不一定会出现失真。所以确切的说,产生波形失真是信号幅度与静态工作点设置配合不当所致。如须满足较大信号的要求,静态工作点最好尽量靠近交流负载线的中点。

宽带射频功率放大器设计

?阻抗变换器和阻抗匹配网络已经成为射频电路以及最大功率传输系统中的基本部件。为了使宽带射频功率放大器的输入、输出达到最佳的功率匹配,匹配电路的设计成为射频功率放大器的重要任务。要实现宽带内的最大功率传输,匹配电路设计非常困难。本文设计的同轴变换器电路就能实现高效率的电路匹配。同轴变换器具有功率容量大、频带宽和屏蔽好的特性,广泛应用于VHF/UHF波段。常见的同轴变换器有1:4和1:9阻抗变换,如图1所示。但是实际应用中,线阻抗与负载不匹配时,它们的阻抗变换不再简单看作1:4或1:9.本文通过建立模型,提出一种简化分析方法。 1 同轴变换器模型 同轴变换器有三个重要参数:阻抗变换比、特征阻抗和电长度。这里用电长度是为了分析方便。当同轴线的介质和长度一定时,电长度就是频率的函数,可以不必考虑频率。 1.1理想模型 理想的1:4变换器的输入、输出阻抗都匹配,每根同轴线的输入、输出阻抗等于其特征阻抗Z0,其等效模型如图2所示。

其源阻抗Zg与ZL负载阻抗变换比为: 图2和公式(1)表明:变换器的阻抗变换比等于输入阻抗与输出阻抗之比。 同轴变换器的输入阻抗等于同轴线的输入阻抗并联,输出阻抗等于同轴线的输出阻抗串联。 1.2通用模型 由于特征阻抗是实数,而源阻抗与负载阻抗一般都是复数,所以,就不能简单的用变换比来计算。阻抗匹配就是输入阻抗等于源阻抗的共轭,实现功率的最大传输。特征阻抗为Z0,电长度为E的无耗同轴线接复阻抗的电路如图3所示。 由于源阻抗与同轴线特征不匹配,电路的反射系数就不是负载反射系数。 由于同轴线是无耗的,进入同轴线的功率就等于负载消耗的功率。那就可以把电路简化只有一个负载Zin,又因为Zg与Zin都是复数且串联,就可以把Zg中的虚部等效到Zin中,最后得到反射系数为: 其中:

运放参数解释

运放带宽相关知识! 一、单位增益带宽GB 单位增益带宽定义为:运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增益后,可以计算出单位增益带宽,用以选择合适的运放。这用于小信号处理中运放选型。 二、运放的带宽是表示运放能够处理交流信号的能力(转) 对于小信号,一般用单位增益带宽表示。单位增益带宽,也叫做增益/带宽积能够大致表示运放的处理信号频率的能力。例如某个运放的增益带宽=1MHz,若实际闭环增益=100,则理论处理小信号的最大频率=1MHz/100=10KHz。 对于大信号的带宽,既功率带宽,需要根据转换速度来计算。 对于直流信号,一般不需要考虑带宽问题,主要考虑精度问题和干扰问题。 1、运放的带宽简单来说就是用来衡量一个放大器能处理的信号的频率范围,带宽越高,能处理的信号频率越高,高频特性就越好,否则信号就容易失真,不过这是针对小信号来说的,在大信号时一般用压摆率(或者叫转换速率)来衡量。 2、比如说一个放大器的放大倍数为n倍,但并不是说对所有输入信号的放大能力都是n倍,当信号频率增大时,放大能力就会下降,当输出信号下降到原来输出的0.707倍时,也就是根号2分之一,或者叫减小了3dB,这时候信号的频率就叫做运放的带宽。 3、当输出信号幅度很小在0.1Vp-p以下时,主要考虑增益带宽积的影响。 就是Gain Bandwidth=放大倍数*信号频率。 当输出信号幅度很大时,主要考虑转换速率Sr的影响,单位是V/uS。 在这种情况下要算功率带宽,FPBW=Sr/2πVp-p。 也就是在设计电路时要同时满足增益带宽和功率带宽。 运放关于带宽和增益的主要指标以及定义 开环带宽:开环带宽定义为,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得开环电压增益从运放的直流增益下降3db(或是相当于运放的直流增益的0.707)所对应的信号频率。这用于很小信号处理。 单位增益带宽GB:单位增益带宽定义为,运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽

电子技术实验报告—实验单级放大电路

电子技术实验报告 实验名称:单级放大电路系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期:

目录 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) (一)单级低频放大器的模型和性能 (3) (二)放大器参数及其测量方法 (5) 四、实验内容 (7) 1、搭接实验电路 (7) 2、静态工作点的测量和调试 (8) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (9) 4、放大器上限、下限频率的测量 (10) 5、电流串联负反馈放大器参数测量 (11) 五、思考题 (11) 六、实验总结 (11)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一)单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放

大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

运算放大器地全参数选择

运算放大器的参数指标 1.开环电压增益Avd 开环电压增益(差模增益)为运算放大器处于开环状态下,对小于200Hz的交流输入信号的放大倍数,即输出电压与输入差模电压之比。它一般为104~106,因此它在电路分析时可以认为无穷大。 2.闭环增益A F 闭环增益是运算放大器闭环应用时的电压放大倍数,其大小与放大电路的形式有关,与放大器本身的参数几乎无关,只取决于输入电组和反馈电阻值的大小。 反相比例放大器,其增益为 A F=- RI RF 3.共模增益Avc和共模抑制比 当两个输入端同时加上频率小于200Hz的电压信号Vic时,在理想情况下,其输出电压应为零。但由于实际上内部电路失配而输出电压不为零。此时输出电压和输入电压之比成为共模增益Avc。 共模抑制比Kcmr= Avc Avd 共模增益 运算放大器的差模增益, 通常以对数关系表示:Kcmr=20log Avc Avd 共模增益 运算放大器的差模增益 共模抑制比一般在80~120Db范围内,它是衡量放大器对共模信号抑制能力高低的重要指标。这不仅是因为许多应用电路中要求抑制输入信号中夹带的共模干扰,而且因为信号从同相端输入时,其两个输入端将出现较大的共模信号而产生较大的运算误差。

在常温(25℃)下当输入电压为零时,其输出电压不为零。此时将其折算到输入端的电压称为输入失调电压。它一般为±(0.2~15)mV 。这就是说,要使放大器输出电压为零,就必须在输入端加上能抵消Vio 的差值输入电压。 5. 输入偏置电流 在常温(25℃)下输入信号为零(两个输入端均接地)时,两个输入端的基极偏置电流的平均值称为输入偏置电流,即 I IB =2 1( I IB -+ I IB+) 它一般在10nA~1uA 的范围内,随温度的升高而下降,是反映放大器动态输入电阻大小的重要参数。 6. 输入失调电流I IO 输入失调电流可表示为 I IO =︱I IB -- I IB+∣ 在双极晶体管输入级运算放大器中,I IO 约为(0.2~0.1)I IB -或(0.2~0.1)I IB+。当I IO 流过信号源内阻时,产生输入失调电压。而且它也是温度的函数。 7. 差模输入电阻R ID 在一般应用电路中,输入阻抗是指差模输入电阻R ID 。它一般为100K Ω~1M Ω,高输入阻抗运算放大器的差模输入电阻可达1013Ω。 8. 温度漂移 输入失调电压、输入失调电流和输入偏置电流等参数均随温度、时间和电源等外界条件的变化而变化。其中输入偏置电流的变化是造成放大器温度漂移的主要原因。对于双极晶体管输入级运算放大器,输入偏置电流随温度上升而变小,数量级为nA 级。

单级共射放大电路实验报告精编版

单级共射放大电路实验报告 一、实验目的 1.熟悉常用电子仪器的使用方法。 2.掌握放大器静态工作点的调试方法及对放大器电路性能的影响。 3.掌握放大器动态性能参数的测试方法。 4.进一步掌握单级放大电路的工作原理。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 4.交流毫伏表 5.直流稳压源 三、预习要求 1.复习基本共发射极放大电路的工作原理,并进一步熟悉示波器的 正确使用方法。 2.根据实验电路图和元器件参数,估算电路的静态工作点及电路的 电压放大倍数。 3.估算电路的最大不失真输出电压幅值。 4.根据实验内容设计实验数据记录表格。 四、实验原理及测量方法 实验测试电路如下图所示:

1.电路参数变化对静态工作点的影响: 放大器的基本任务是不失真地放大信号,实现输入变化量对输出变化量的控制作用,要使放大器正常工作,除要保证放大电路正常工作的电压外,还要有合适的静态工作点。放大器的静态工作点是指放大器输入端短路时,流过电路直流电流IBQ、ICQ及管子C、E极之间的直流电压UCEQ 和B、E极的直流电压UBEQ。图5-2-1中的射极电阻BE1、RE2是用来稳定放大器的静态工作点。其工作原理如下。 ○1用RB和RB2的分压作用固定基极电压UB。 由图5-2-1可各,当RB、RB2选择适当,满足I2远大于IB时,则有 UB=RB2·VCC/(RB+RB2) 式中,RB、RB2和VCC都是固定不随温度变化的,所以基极电位基本上是一定值。 ○2通过IE的负反馈作用,限制IC的改变,使工作点保持稳定。具体稳定过程如下: T↑→IC↑→IE↑→UE↑→UBE↓→IB↓→IC↓ 2.静态工作点的理论计算: 图5-2-1电路的静态工作点可由以下几个关系式确定

射频宽带放大器D题优选稿

射频宽带放大器D题集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

2013年全国大学生电子设计竞赛射频宽带放大器(D题) 【本科组】 2013年9月7日

摘要 本系统以程控增益调整放大器AD603为核心,外加宽带放大器OPA690的配合,实现了高增益可调的射频宽带放大器。系统主要由六个模块构成:前置放大电路、一阶RC高通滤波电路、可控增益放大电路、输出缓冲电路、直流稳压电源以及单片机显示控制模块。系统通过第一级OPA690两级级联电路放大 20dB,再通过单片机程控两级级联的AD603实现-20~60dB的动态增益变化,从而满足电压增益Av在0~60dB范围内可调的要求。整个系统放大器可放大1mV 有效值信号,增益可达80dB,通频带内增益起伏1dB,放大器在Av=60dB的时候,输出噪声电压峰-峰值为80mV,通过单片机控制可实现电压增益Av可预置并显示的功能。整个系统工作可靠、稳定,且成本低。 关键词:射频宽带放大;可控增益;AD603

目录

射频宽带放大器(D题) 【本科组】 1系统方案论证 1.1方案比较与选择 1.1.1前置放大电路 方案一:使用分立元件三极管、电阻、电容、电感等构成前置放大电路。该电路在元件参数设置不精准的情况下,误差较大,且电路结构复杂,设计困难,调试繁琐,故不采用。 方案二:使用仪表放大电路。仪表放大器具有低输入失调电压、高共模抑制比、可用单电阻实现增益大范围调节等优点,但是专用的仪表放大器价格通常比较昂贵,所以不予采用。 方案三:采用OPA690运放电路。OPA690为低噪声、低直流零点漂移运放,且结构简单,调试容易,电路稳定,效果较好。 综合以上三种方案,选择方案三。 1.1.2可控增益放大电路 方案一:利用高速运放加数字电位器构造可程控放大器,通过控制数字电位器阻值来控制放大器增益。但数字电位器建立时间最快也需几us,加之数字电位器3db截止频率一般在几百KHz,当输入信号为MHz数量级下阻值准确性会产生失真,使得程控变得困难,而且高速运放在低频下的响应远不能满足要求。因此,此方案可行性较差。 方案二:采用可编程放大器的思想,将输入交流信号作为高速DAC的基准电压,用DAC的电阻网络构成运放反馈网络的一部分,通过改变DAC数字控制量实现增益控制。理论上讲,只要DAC的速度足够快、精度足够高就可以实现很宽范围的精密增益控制,但是控制的数字量和最后的20dB不成线性关系而成指数关系,造成增益调节不均匀,精度下降,因此不选用此方案。 方案三:选用两级集成可控增益放大器直接耦合作为增益控制,集成可控增益放大器的增益与控制电压成线性关系,控制电压由单片机控制DAC产生。单级集成可控增益放大器AD603具有-10dB到+30dBdB的增益控制范围,两级级

几种常用集成运算放大器的性能参数解读

几种常用集成运算放大器的性能参数 1.通用型运算放大器 A741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。它们是目前应用最为广泛的集成运算放大器。μ通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例 2.高阻型运算放大器 ,IIB为几皮安到几十皮安。实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。用FET作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。常见的集成器件有LF356、LF355、LF347(四运放)及更高输入阻抗的CA3130、CA3140等。Ω这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般rid>(109~1012) 3.低温漂型运算放大器 在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。低温漂型运算放大器就是为此而设计的。目前常用的高精度、低温漂运算放大器有OP-07、OP-27、AD508及由MOSFET组成的斩波稳零型低漂移器件ICL7650等。4.高速型运算放大器 s,BWG>20MHz。μA715等,其SR=50~70V/μ在快速A/D和D/A转换器、视频放大器中,要求集成运算放大器的转换速率SR一定要高,单位增益带宽BWG一定要足够大,像通用型集成运放是不能适合于高速应用的场合的。高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。常见的运放有LM318、 5.低功耗型运算放大器 W,可采用单节电池供电。μA。目前有的产品功耗已达微瓦级,例如ICL7600的供电电源为1.5V,功耗为10μ由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。常用的运算放大器有TL-022C、TL-060C等,其工作电压为±2V~±18V,消耗电流为50~250 6.高压大功率型运算放大器 A791集成运放的输出电流可达1A。μ运算放大器的输出电压主要受供电电源的限制。在普通的运算放大器中,输出电压的最大值一般仅几十伏,输出电流仅几十毫安。若要提高输出电压或增大输出电流,集成运放外部必须要加辅助电路。高压大电流集成运算放大器外部不需附加任何电路,即可输出高电压和大电流。例如D41集成运放的电源电压可达±150V, 集成运放的分类 1. 通用型 这类集成运放具有价格低和应用范围广泛等特点。从客观上判断通用型集成运放,目前还没有明确的统一标准,习惯上认为,在不要求具有特殊的特性参数的情况下所采用的集成运放为通用型。由于集成运放特性参数的指标在不断提高,现在的和过去的通用型集成运放的特性参数的标准并不相同。相对而言,在特性

射频功率放大器RFPA概述

基本概念 射频功率放大器(RF PA)是发射系统中的主要部分,其重要性不言而喻。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大(缓冲级、中间放大级、末级功率放大级)获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。在调制器产生射频信号后,射频已调信号就由RF PA将它放大到足够功率,经匹配网络,再由天线发射出去。 放大器的功能,即将输入的内容加以放大并输出。输入和输出的内容,我们称之为“信号”,往往表示为电压或功率。对于放大器这样一个“系统”来说,它的“贡献”就是将其所“吸收”的东西提升一定的水平,并向外界“输出”。如果放大器能够有好的性能,那么它就可以贡献更多,这才体现出它自身的“价值”。如果放大器存在着一定的问题,那么在开始工作或者工作了一段时间之后,不但不能再提供任何“贡献”,反而有可能出现一些不期然的“震荡”,这种“震荡”对于外界还是放大器自身,都是灾难性的。 射频功率放大器的主要技术指标是输出功率与效率,如何提高输出功率和效率,是射频功率放大器设计目标的核心。通常在射频功率放大器中,可以用LC谐振回路选出基频或某次谐波,实现不失真放大。除此之外,输出中的谐波分量还应该尽可能地小,以避免对其他频道产生干扰。 分类 根据工作状态的不同,功率放大器分类如下: 传统线性功率放大器的工作频率很高,但相对频带较窄,射频功率放大器一般都采用选频网络作为负载回路。射频功率放大器可以按照电流导通角的不同,分为甲(A)、乙(B)、丙(C)三类工作状态。甲类放大器电流的导通角为360°,适用于小信号低功率放大,乙类放大器电流的导通角等于180°,丙类放大器电流的导通角则小于180°。乙类和丙类都适用于大功率工作状态,丙类工作状态的输出功率和效率是三种工作状态中最高的。射频功率放大器大多工作于丙类,但丙类放大器的电流波形失真太大,只能用于采用调谐回路作为负载谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然接近于正弦波形,失真很小。 开关型功率放大器(Switching Mode PA,SMPA),使电子器件工作于开关状态,常见的有丁(D)类放大器和戊(E)类放大器,丁类放大器的效率高于丙类放大器。SMPA将有源晶体管驱动为开关模式,晶体管的工作状态要么是开,要么是关,其电压和电流的时域波形不存在交叠现象,所以是直流功耗为零,理想的效率能达到100%。 传统线性功率放大器具有较高的增益和线性度但效率低,而开关型功率放大器具有很高的效率和高输出功率,但线性度差。具体见下表: 电路组成 放大器有不同类型,简化之,放大器的电路可以由以下几个部分组成:晶体管、偏置及稳定电路、输入输出匹配电路。

放大器参数说明

放大器参数说明 工作频率范围(F): 指放大器满足各级指标的工作频率范围。放大器实际的工作频率范 围可能会大于定义的工作频率范围。 功率增益(G): 指放大器输出功率和输入功率的比值,单位常用“dB”。 增益平坦度(ΔG): 指在一定温度下,在整个工作频率范围内,放大器增益变化的范围。 增益平坦度由下式表示(见图1): 图1 ΔG=±(Gmax-Gmin)/2dB ΔG:增益平坦度 G max:增益——频率扫频曲线的幅度最大值 三阶截点(IP3): 测量放大器的非线性特性,最简单的方法是测量1dB压缩点 功率电平P1dB。另一个颇为流行的方法是利用两个相距5到 10MHz的邻近信号,当频率为f1和f2的这两个信号加到一个 放大器时,该放大器的输出不仅包含了这两个信号,而且也 包含了频率为mf1+nf2的互调分量(IM),这里,称m+n为互 调分量的阶数。在中等饱和电平时,通常起支配作用的是最 接近基音频率的三阶分量(见图4)。 因为三阶项直到畸变十分严重的点都起着支配作用,所以常 用三阶截点(IP3)来表征互调畸变(见图3)。三阶截点是 描述放大器线性程度的一个重要指标。三阶截点功率的典型 值比P1dB高10-12dB。IP3可以通过测量IM3得到,计算公式为: IP3=P SCL+IM3/2;

G min:增益——频率扫频曲线的幅度最小值 噪声系数(NF): 噪声系数是指输入端信噪比与放大器输出端信噪比的比值,单位常用“dB”。 噪声系数由下式表示:NF=10lg(输入端信噪比/输出端信噪比) 在放大器的噪声系数比较低(例如NF<1)的情况下,通常放大器的噪声系数用噪声温度(T)来表示。 噪声系数与噪声温度的关系为:T=(NF-1)T0 或 NF=T/T0+1 T0-绝对温度(290K) 噪声系数与噪声温度的换算表(见图2) 1分贝压缩点输出功率(P1dB): 放大器有一个线性动态范围,在这个范围内,放大器的输出功率随输入功率线性增加。这种放大器称之为线性放大器,这两个功率之比就是功率增益G。随着输入功率的继续增大,放大器进入非线性区,其输出功率不再随输入功率的增加而线性增加,也就是说,其输出功率低于小信号增益所预计的值。通常把增益下降到比线性增益低1dB时的输出功率值定义为输出功率的1dB压缩点,用P1dB表示。(见图3)P SCL——单载波功率; 如三阶互调点已知,则基波与三阶互调抑制比与三阶互调点的杂散电平可由下式估计: 基波与三阶互调抑制比=2[IP3-(P IN+G)] 三阶互调杂散电平=3(P IN+G)-2IP3 输入/输出驻波比(VSWR): 微波放大器通常设计或用于50Ω阻抗的微波系统中,输入/ 输出驻波表示放大器输入端阻抗和输出端阻抗与系统要求阻抗(50Ω)的匹配程度。 用下式表示: VSWR = (1+|Γ|)/(1-|Γ|); 其中Γ= (Z-Z0)/(Z+Z0) VSWR:输入输电压出驻波比 Γ:反射系数 Z:放大器输入或输出端的实际阻抗 Z O:需要的系统阻抗 工作电压/电流: 指放大器工作时需要供给的电源电压和放大器工作时要求供给的电流值。 放大器增益窗的定义: 在本产品手册中,放大器的增益定义采用增益窗的定义方法(不含窄带功率放大器)。增益窗的定义方法是根据放大器允许的最大增益(Gmax),放大器允许的最小增益(Gmin),

集成运算放大器IC的主要参数【经典】

集成运算放大器IC的主要参数 本节以《中国集成电路大全》集成运算放大器为主要参考资料,同时参考了其它相关资料。 集成运放的参数较多,其中主要参数分为直流指标和交流指标。 其中主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏置电流、输入失调电流、输入偏置电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰-峰值电压、最大共模输入电压、最大差模输入电压。 主要交流指标有开环带宽、单位增益带宽、转换速率SR、全功率带宽、建立时间、等效输入噪声电压、差模输入阻抗、共模输入阻抗、输出阻抗。 这里重点描述——直流指标 输入失调电压VIO:输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV之间;采用场效应管做输入级的,输入失调电压会更大一些。对于精密运放,输入失调电压一般在1mV以下。输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。 输入失调电压的温度漂移(简称输入失调电压温漂)αVIO:输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。 输入偏置电流IIB:输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。输入偏置电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。输入偏置电流与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入偏置电流在±10nA~1μA之间;采用场效应管做输入级的,输入偏置电流一般低于1nA。 输入失调电流IIO:输入失调电流定义为当运放的输出直流电压为零时,其两输入端偏置电流的差值。输入失调电流同样反映了运放内部的电路对称性,对称性越好,输入失调电流越小。输入失调电流是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电流大约是输入偏置电流的百分之一到十分之一。输入失调电流对于小信号精密放大或是直流放大有重要影响,特别是运放外部采用较大的电阻(例如10k?或更大时),输入失调电流对精度的影响可能超过输入失调电压对精度的影响。输入失调电流越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。 输入失调电流的温度漂移(简称输入失调电流温漂):输入偏置电流的温度漂移定义为在给定的温度范围内,输入失调电流的变化与温度变化的比值。这个参数实际是输入失调电流的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。输入失调电流温漂一般只是在精密运放参数中给出,而且是在用以直流信号处理或是小信号处理时才需要关注。

相关文档