文档库 最新最全的文档下载
当前位置:文档库 › 急性疼痛的发生机制

急性疼痛的发生机制

急性疼痛的发生机制
急性疼痛的发生机制

急性疼痛的发生机制

疼痛形成的神经传导基本过程可分为4 个环节:伤害感受器的痛觉传感(transduction), —级传入纤维、脊髓背角、脊髓—丘脑束等上行束的痛觉传递(transmission),皮层和边缘系统的痛觉整合(interpretation),下行控制和神经介质的痛觉调控(modulation)。理论上,阻断任何环节都可使疼痛缓解。

一、疼痛传感

疼痛感受器是伤害感受器,对伤害性刺激敏感。伤害感受器是周围神经的组成部分,能接受、转换和传递来自皮肤、黏膜、骨骼、肌肉和内脏器官的伤害性刺激,其细胞体位于脊髓神经节中。

伤害性刺激是指刺激程度强到足以能够损害或潜在损害的刺激。皮肤、躯体(肌肉、肌腱、关节、骨膜和骨骼) 、小血管和毛细血管旁结缔组织和内脏神经末梢是痛觉的外周感受器。体表刺激通过皮肤的温度、机械感受器传递疼痛。皮肤痛感受器又分为高阈机械痛感受器和多模式痛觉感受器。前者只对伤害性机械刺激发生反应,后者对多种伤害性刺激发生反应。持续性伤害刺激可使上述两种感受器阈值降低,形成痛觉过敏(hyperalgesia。内脏伤害感受器感受空腔脏器的膨胀或缺血,躯体伤害感受器感受运动系统疼痛。

任何外界或体内的伤害可导致局部组织破坏,释放内源性致痛因子,如氢离子、钾离子、5-羟色胺、组胺、乙酰胆碱等,均可以刺激疼痛感受器。受损的神经纤维本身也可释放致痛因子,如P 物质、降钙素基因相关肽和损伤细胞释放的一些酶类,在局部合成产生致痛因子,如前列腺素(主要是前列腺素E2、D2、F2a)、缓激肽等。这些化学物质可以刺激感受器。损伤和炎症过程中形成的炎性介质,如巨噬细胞和中性粒细胞释放肿瘤坏死因子 (TNF a)、白细胞介素-1 (IL-1 ),肥大细胞释放5-羟色胺等,提高对内源性致痛物质的反应强度和对外界刺激的反应程度。

二、痛觉上行传递

传导疼痛的一级传入神经轴突是有髓鞘的 A §纤维和无髓鞘的C纤维,其神

经胞体位于脊髓背根神经节。A §纤维较粗(3 ^m,感受疼痛和温度,快速传递强烈和定位准确的锐痛。此类纤维终止于脊髓背角的第I和V层。C纤维较细(V 1 mm)无髓鞘,传递较慢及不易定位的钝痛和灼痛信号,纤维终止于背角第U 层,由C 纤维到投射神经元的疼痛会引起十分强烈的神经元放电。

伤害刺激信号由传入纤维传入脊髓背角,经过初步整合后,一方面作用于腹侧运动细胞,引起局部的防御性反射,如肌肉痉挛等,另一方面再向上传递。一级传入纤维进入脊髓后,在平行的1-2 节内交叉至对侧的腹外侧,与二级神经元形成轴突,并组成上行束。上行束主要为脊髓丘脑束,也包括脊髓下丘脑束、脊髓网状束和脊髓脑桥扁桃体束。

感受伤害刺激的细胞集中在脊髓背角,尤其是第I、第U和第V层,第U层细胞(胶状细胞)的轴突走行距离短,对伤害性信号起调节作用。第V 层细胞对触、压、温度及各种伤害性刺激都能发生反应,被称为广动力型细胞。

头面部的痛觉一级神经元胞体位于三叉神经半月神经节,其轴突终止于三叉神经感觉主核和三叉神经脊束核。由此换元发出纤维越过对侧,组成三叉丘系,投射到丘脑腹后内侧核(VPM )。自VPM 发出的纤维,经内囊枕部投射至大脑皮质中央后回(1、2、3 区)的下1/3 处。

内脏痛的传入途径比较分散,一个脏器的传入纤维可经几个节段的脊髓进入中枢,而一条脊神经又可含几个脏器的传入纤维,因此内脏痛往往是弥散的,定位不够明确,且有固定的投射部位。

在脊髓传导通路中有许多受体参与疼痛信号的传导。这些受体包括:阿片受体和兴奋性氨基酸受体(如NMDA受体)、神经激肽1型(NK-1 )受体、辣椒素(capsaici n)受体和大麻素(ca nn abi no id)受体等。其中阿片受体(小S K)是疼痛信号传递及镇痛过程中最重要的受体。过去认为这3 种阿片受体主要分布于脊髓背角和脑等中枢神经系统。最近研究发现,3 种阿片受体分布于整个神经系统,包括外周神经系统及中间神经元。当致痛因子激活多种疼痛信号传导受体时,疼痛信号的传递将变得更加复杂。在脊髓背角,短时程反应的兴奋性氨基酸系统由非NMDA 受体介导,而P 物质与兴奋性氨基酸共存的长时程反应系统由NK-1 受体和NMDA 受体共同介导。

在疼痛传导过程中,疼痛信息并非一成不变地传递到更高的结构。在脊髓内,相互联结的神经元及其释放的物质组成了网状结构,统一控制次级信号的传递。脑啡肽中间神经元可以调整投射到神经元上的刺激,也具备释放内啡肽等物质的作用。所以A S纤维不仅能影响投射神经元,也会影响脑啡肽能中间神经元,可改变内啡肽的释放。阿片物质释放和作用也受其他因素的影响,当C 纤维受刺激时,不仅会传递到投射神经元,也会传递到其他不同的中间神经元和Y氨基丁酸中间神经元。神经递质Y氨基丁酸也会

抑制脑啡肽能神经元。

三、皮层和边缘系统的痛觉整合

脊髓丘脑束进入丘脑后形成二级神经元,发出纤维:①至白质、扣带回和额叶,产生躯体的疼痛感觉,包括疼痛的特性、强度和部位;②与网状结构和丘脑核相连,因此在感到疼痛时,呼吸和循环会受到影响;③延伸至边缘系统、额叶和扣带回,导致疼痛的情绪变化;④与垂体相连,引起内分泌系统改变;⑤与上行网状激活系统相连,影响注意力和警觉力。丘脑既是各种躯体感觉信息进入大脑皮质之前最重要的传递中枢,也是重要的整合中枢,如髓板内核群,包括中央核(CM )、中央外侧核(CL)及束旁核(Pf)等。Pf、CL是痛觉冲动的接受中枢,而CM 核可能是一个调制痛觉的中枢结构。

在边缘系统的某些结构,如扣带回、海马和下丘脑等部位也可记录到痛敏细胞,这可能和疼痛的情绪成分有关。刺激膈区和视前区可使疼痛阈提高,也能缓解患者的顽固性疼痛症状。尾状核是基底神经节中最大的一个核团。电刺激尾状核可能缓解癌症患者的顽固性疼痛。

大脑皮质在痛觉的整合过程中的主要作用是对痛觉进行感受和分辨。

下行痛觉调控是痛觉信号的调控系统。内源性痛觉调制系统不仅能感受和分辨疼痛信号,而且还可能产生较强的自身镇痛作用。

在脊髓背角胶质区存在大量GABA 能中间神经元,其轴突及含囊泡的树突与传入神经C 纤维末梢形成突触连接。在GABA 受体亚型中,GABAB 主要集中在脊髓背角I、U层,C纤维末梢上存在这类受体。GABAB受体激动剂可以对脊髓背角神经元的伤害性反应产生持续时间较长的抑制。在脊髓背角胶质区存在大量参与背角痛觉信号调节的内源性阿片肽(脑啡肽和强啡肽)、中间神经元及各类阿片受体。

四、下行性抑制和神经介质的痛觉调控大脑中存在痛觉抑制结构。疼痛时脊髓中抑制疼痛信号传入大脑的下行通路活性增强,这与中脑导水管周围灰质(PAG)的下行性抑制作用相一致,下行抑制结构的强度与身体状态、应激状态等有关。在下行抑制系统中,肾上腺素和

5-羟色胺是重要的神经递质。大脑导水管周围灰质是内源性痛觉调制下行镇痛系统中起核心作用的重要结构,连接丘脑、下丘脑和延髓头端腹内侧网状结构

(RVM),通过下行抑制通路对脊髓背角的痛觉初级传入活动进行调节。延髓头端腹内侧网状结构包括中缝脊髓系统和中缝旁脊髓系统。①中缝脊髓系统:中缝大核的5-羟

色胺能神经元是PAG下行抑制的重要转递站。尽管PAG含有大量脑啡肽能神经元,但是它们不投射到NRM ,许多实验表明,PAG 主要通过神经降压素(neurotensin)激活NRM中神经元的活动。②中缝旁脊髓系统:主要包括网状旁巨细胞核(RPG)、外侧网状旁巨细胞核(Rpgl)、Rpg腹侧的网状巨细胞核的a部分(Rgc a)。这些核团的去甲肾上腺素能、脑啡肽能、5-羟色胺能下行纤维都经DLF 终止于脊髓背角,是痛觉下行抑制的重要组成部分。在延髓,除了RVM,延髓尾部的外侧网状核(LRN )和蓝斑核(LC)也是下行抑制系统中的重要结构,去甲肾上腺素是LC和LRN下行抑制的主要神经递质。总之,在汇集脑高级部位的各种传出活动对脊髓痛觉信号的传导起调制影响时,PAG 和RVM 起着最后驿站或共同通路的作用。当下行镇痛系统发挥内源性痛觉调制作用时,就可产生抑制疼痛作用。

下行痛觉易化系统的激活通过降低痛阈值(敏化)提高机体对伤害性刺激的反应能力,也使患者表现出对疼痛高度敏感。

阿片肽是下行痛觉调控系统中最重要的激活及调节因子。内源性阿片肽是阿片受体的内源性配体,当组织受损伤及应激状态下,除产生致痛性炎性因子外,免疫细胞、神经元、角化细胞、垂体、肾上腺也释放内源性阿片肽,包括内啡肽、脑啡肽和强啡肽。这些内源性阿片肽在外周初级传入神经元与阿片受体结合,可以减弱末梢神经伤害感受器活性,减弱激活动作电位的传导,减少外周神经感觉末梢的炎症前神经肽(P物质、降钙素基因相关肽)的释放。内源性阿片肽还可以与脑、脊髓背角、神经节的阿片受体结合,激活下行痛觉调控系统,产生镇痛效果。人体自身镇痛潜能在较大程度上受内源性阿片肽释放及其参与的下行痛觉调控的影响。

痛觉调控系统还参与止痛药的镇痛作用机制过程。例如,吗啡、芬太尼等阿片类止痛药属外源性阿片,其作用与内源性阿片相似。外源性阿片也是通过激活脑、脊髓背角、神经节的阿片受体发挥镇痛作用。当外源性阿片与阿片受体结合

时,将与抑制性G蛋白结合,减少环磷腺苷生成,直接或间接抑制Ca2+及Na*通道的离子电流,减少P 物质释放,从而抑制疼痛信号传导,达到镇痛作用环类抗抑郁药则是通过选择性抑制神经末梢对神经递质去甲肾上腺素和胺的再摄取而发挥辅

5-羟色助镇痛作用。

疼痛的机理和学说

精心整理 疼痛的机理和学说 一)感受器和传入神经纤维 痛觉的感受器为游离神经末梢,它广泛分布在皮肤各层、小血管和毛细血管旁结缔组织、腹膜脏层和壁层、粘膜下层等处,任何外界的或体内的伤害性刺激(物理的或化学的),均可导致局部组织破坏,释放K+、H+、组胺、缓激肽、5-HT、Ach和P物质等内源性致痛因子。这类游离神经末梢对缓激肽等化学刺激特别敏感,称之为化学性感受器(chemoceptor)。 1. 1)新脊 2)旧脊 3)脊- 4)后索 5 2. 3. 突可在同侧或对侧脊髓前外侧索上升,伴行于脊髓丘脑束上行达丘脑VPM (三)疼痛在脊髓水平的整合 脊髓是痛觉信号处理的初级中枢。伤害性刺激的信号由细纤维传入脊髓后角,在那里加工后,一部分作用于前角运动细胞,引起局部的防御性反射如屈肌反射等,而另一部分则再继续向上传递。(四)疼痛在脊髓以上水平的整合 1.脑干

脑干网状结构是多种感觉传入冲动汇集处,非伤害性信号和伤害性信号可相互影响,或是加强或是抑制,以进行各种传入信号的综合处理。中脑中央灰质和延髓头端腹内侧网状结构(rostralventromedialmedulla,RVM)都是脑干的重要痛觉调制结构,它们是旁中央上行系统的组成部分,接受来自脊髓前外侧索的部分痛觉传入。 2.丘脑 丘脑是各种感觉信息(除嗅觉外)进入大脑皮质形成主观感觉以前的最重要的整合中枢。丘脑接受来自脊髓、脑干的纤维投射,经过丘脑的中继投射到大脑皮质。主要包括腹侧核群、髓板内核 3. 4 1.概述 70)的概灰质( 2. PAG是内源性痛觉调制系统中一个上行与下行通路中的重要结构。它在痛觉调制中的重要性在于凡是由激活更高级中枢所产生的镇痛效应,都被证明是通过它才起作用的。大量实验结果表明,吗啡镇痛、针刺镇痛、电刺激间脑和边缘系统中一些与镇痛有关的核团(尾核、下丘脑、隔区、伏隔核等)产生的镇痛效应,都可被注入微量阿片受体拮抗纳洛酮于PAG而部分阻断。电刺激PAG或注射吗啡于PAG之所以镇痛,是由于激活了下行抑制系统的结果。 3.延髓头端腹内侧网状结构及下行抑制系统

疼痛的机理和学说

疼痛的机理和学说 一)感受器和传入神经纤维 痛觉的感受器为游离神经末梢,它广泛分布在皮肤各层、小血管和毛细血管旁结缔组织、腹膜脏层和壁层、粘膜下层等处,任何外界的或体内的伤害性刺激(物理的或化学的),均可导致局部组织破坏,释放K+、H+、组胺、缓激肽、5-HT、Ach和P物质等内源性致痛因子。这类游离神经末梢对缓激肽等化学刺激特别敏感,称之为化学性感受器(chemoceptor)。 传导痛觉冲动的纤维属于最细的Aδ和C纤维,并认为Aδ纤维传导刺痛,而C纤维则传导灼痛。但必须指出,并非所有的Aδ纤维和C纤维仅传导伤害性刺激,它们也传导触、压、温、冷等感觉信息。而痛觉也并非仅由细纤维(Aδ或C纤维)传导,也可由达到一定的空间和时间构型的粗纤维(Aα纤维)传导。 二)疼痛在中枢神经系统中的传导途径 痛觉传导通路比较复杂,至今仍不很清楚。一般认为,与痛觉的传导有关的脊髓上行通路有: 1.躯干、四肢的痛觉通路 1)新脊-丘束 2)旧脊-丘束或脊-网-丘束 3)脊-颈束 4)后索-内侧丘系 5)脊髓固有束 2.头面部的痛觉通路 头面部痛觉主要由三叉神经传入纤维传导 3.内脏痛觉通路 大部分腹、盆部器官的内脏痛主要由交感神经传导,从膀胱颈、前列腺、尿道、子宫来的痛觉冲动是经过副交感神经(盆神经)传到脊髓的,在脊髓后角(有人认为在Rexed V层)换元,其轴突可在同侧或对侧脊髓前外侧索上升,伴行于脊髓丘脑束上行达丘脑VPM (三)疼痛在脊髓水平的整合 脊髓是痛觉信号处理的初级中枢。伤害性刺激的信号由细纤维传入脊髓后角,在那里加工后,一部分作用于前角运动细胞,引起局部的防御性反射如屈肌反射等,而另一部分则再继续向上传递。 (四)疼痛在脊髓以上水平的整合 1.脑干 脑干网状结构是多种感觉传入冲动汇集处,非伤害性信号和伤害性信号可相互影响,或是加强或是抑制,以进行各种传入信号的综合处理。中脑中央灰质和延髓头端腹内侧网状结构(rostral ventromedial medulla, RVM)都是脑干的重要痛觉调制结构,它们是旁中央上行系统的组成部分,接受来自脊髓前外侧索的部分痛觉传入。

疼痛的机理及镇痛机制概述

疼痛的机理及镇痛机制概述 胡琳琳学号:20010841动生技01-4班linlinshanshan2@https://www.wendangku.net/doc/ee7018845.html, 摘要:痛觉是一种内在的感受和体验,常伴有不愉快情绪和防卫反应,这对保护机体很重要。目前,临床上一直采用药物止痛或神经外科手术止痛,如椎管内注药.交感神经节阻断.椎旁神经根注药.神经干阻滞.PCA技术.胶原酶注射.激光.射频技术等。另外,我国传统的针刺镇痛也有良好效果。它们的作用机理都是阻断.破坏或压抑有关痛觉冲动的发生.传导或是中枢的感觉整合机能。 关键词:疼痛.针刺镇痛和阿片镇痛的机理.神经 痛(Pain)包含两种成份:痛觉和痛反应。每一个“觉得痛”的人,都能根据他过去的经验诉说痛的存在以及痛的性质、强度、范围和持续时间,但很难确切地加以描述。痛反应是指致痛刺激引起的躯体和内脏活动变化以及逃避、反抗等一系列的行为表现。从生物学的角度来看,痛是一种保护性、防御性的机能,它警告机体正在遭受某种伤害性刺激,并促使机体摆脱这种刺激的继续伤害。 致痛刺激是多种多样的。但它们具有共同的特点,即都导致组织细胞的损伤破环,结果便释放出某些致痛物质,如钾离子、氢离子、血浆激肽等,进而作用分布在损伤区的感受器。作为一个已被广泛接受的概念,痛感受器乃是遍布全身各处的某些游离神经末梢。当然,决非所有的游离神经末梢都是痛感受器。痛感受器可将不同能量形式(例如机械、化学、温度)的致痛刺激转换为具有一定编码型式的神经冲动,后者沿属于Aδ(Ⅲ类)和C(Ⅳ类)的神经纤维传向中枢神经系统,其中Aδ纤维的传导速度较快,C纤维的传导速度较慢。当痛刺激作用于皮肤时,可出现性质不同的两种痛觉:先出现一种尖锐的、定位比较清楚的刺痛,又称快痛,刺激作用后立即发生,停止刺激后很快消失;接着是一种定位不甚清楚的灼痛,又称慢痛,通常是在施加刺激后0.5~1秒才感觉到,停止刺激后还能持续数秒钟,并伴有情绪及心血管和呼吸活动的变化等一系列植物性神经反应。还可以从一个侧面证实,痛信息是由两类纤维传导的,快痛由Aδ纤维传导,而慢痛由C纤维传导。 根据现代神经解剖学和生理学的看法,外周Aδ和C纤维进入脊髓后,主要和后角深层的细胞发生突触联系;这些后角细胞的轴突越过中线,交叉到对侧,经脊髓的前外侧索上升入脑。前外侧索的成份是很复杂的,包括脊髓丘脑束、脊髓网状束、脊髓顶盖束等;脊髓丘脑束又有新脊丘束和旧脊丘束之分。由新脊丘束传递的信息直达丘脑特异性感觉核,进而投射到大脑皮层感觉区的特定部位,因此便具有明确的定位和可精确分辨的性质,这和快痛的特点颇为吻合。由旧脊丘束、脊网束等传递的信息,经由多突触联结,主要和内侧丘脑、下丘脑、边缘系统相联系,参与形成脑的高级部位的背景活动及感觉的情感动机成份,似可解释慢痛所伴随的强烈的情绪色彩。总之,痛信息经由多条通路由脊髓上升入脑,由于这些不同通路的共同活动和脑的各级水平的分析处理,最后产生疼痛。 经研究发现,脑内一些结构的兴奋活动可以阻遏痛觉的整合。兴奋外周的传人粗纤维,刺激尾核头端.下丘脑外侧以及中脑中央被盖区等处也都能在不同程度上产生镇痛效果。此外,近年来研究工作者发现,中枢神经系统的一些神经元的末梢可以释放吗啡样物质。而且大脑的许多部位的神经元胞体上具有吗啡受体。吗啡样物质作用于相应受体亦会产生镇痛效果。下面就两种最普遍的镇痛方法即针刺镇痛(Anaesthesia)和阿片镇痛作简要的介绍。 针刺镇痛是在针刺刺激作用下,在机体内发生的一个从外周到中枢各极水平,涉及神经,体液许多因素,包括致痛和抗痛对立而统一的两个方面的复杂的动态过程。现代神经生理学的研究结果表明,粗神经纤维的兴奋可导致对细纤维活动的抑制。针刺信号是由较粗的(Ⅱ、Ⅲ类)纤维传导,而痛信号则是由较细的(Ⅲ、Ⅳ类)纤维传导,而且它们经由共同的传导通路、抵达共同的中枢驿站,则可把针刺镇痛效应看作是粗细两类纤维在中枢神经系统内互相作用的必然结果。另外,针刺还能激活脑内痛觉调制系统.经由脊髓腹外侧索上升入脑的针刺信号,激活了脑的各级水平的许多结构,这些结构通过复杂的神经网络联系成为一个整体,其中包括构成了脑内镇痛系统。脑内镇痛系统发放下行性冲动,最后汇集于中缝大核这一共同的、也许是最后的驿站,然后又通过背胺神经元施加影响。在针刺条件下,很可

急性疼痛的发生机制

急性疼痛的发生机制 疼痛形成的神经传导基本过程可分为4个环节:伤害感受器的痛觉传感(transduction),一级传入纤维、脊髓背角、脊髓-丘脑束等上行束的痛觉传递(transmission),皮层和边缘系统的痛觉整合(interpretation),下行控制和神经介质的痛觉调控(modulation)。理论上,阻断任何环节都可使疼痛缓解。 一、疼痛传感 疼痛感受器是伤害感受器,对伤害性刺激敏感。伤害感受器是周围神经的组成部分,能接受、转换和传递来自皮肤、黏膜、骨骼、肌肉和内脏器官的伤害性刺激,其细胞体位于脊髓神经节中。 伤害性刺激是指刺激程度强到足以能够损害或潜在损害的刺激。 皮肤、躯体(肌肉、肌腱、关节、骨膜和骨骼)、小血管和毛细血管旁结缔组织和内脏神经末梢是痛觉的外周感受器。体表刺激通过皮肤的温度、机械感受器传递疼痛。皮肤痛感受器又分为高阈机械痛感受器和多模式痛觉感受器。前者只对伤害性机械刺激发生反应,后者对多种伤害性刺激发生反应。持续性伤害刺激可使上述两种感受器阈值降低,形成痛觉过敏(hyperalgesia)。内脏伤害感受器感受空腔脏器的膨胀或缺血,躯体伤害感受器感受运动系统疼痛。 任何外界或体内的伤害可导致局部组织破坏,释放内源性致痛因子,如氢离子、钾离子、5-羟色胺、组胺、乙酰胆碱等,均可以刺激疼痛感受器。受损的神经纤维本身也可释放致痛因子,如P物质、降钙素基因相关肽和损伤细胞释放的一些酶类,在局部合成产生致痛因子,如前列腺素(主要是前列腺素E2、D2、F2α)、缓激肽等。这些化学物质可以刺激感受器。损伤和炎症过程中形成的炎性介质,如巨噬细胞和中性粒细胞释放肿瘤坏死因子(TNFα)、白细胞介素-1(IL-1),肥大细胞释放5-羟色胺等,提高对内源性致痛物质的反应强度和对外界刺激的反应程度。 二、痛觉上行传递 传导疼痛的一级传入神经轴突是有髓鞘的Aδ纤维和无髓鞘的C纤维,其神经胞体位于脊髓背根神经节。Aδ纤维较粗(3 μm),感受疼痛和温度,快速传递强烈和定位准确的锐痛。此类纤维终止于脊髓背角的第I和V层。C纤维较细(<1 mm)无髓鞘,传递较慢及不易定位的钝痛和灼痛信号,纤维终止于背角第Ⅱ

急性疼痛的发生机制

急性疼痛得发生机制 疼痛形成得神经传导基本过程可分为4个环节:伤害感受器得痛觉传感(transduction),一级传入纤维、脊髓背角、脊髓-丘脑束等上行束得痛觉传递(transmission),皮层与边缘系统得痛觉整合(interpretation),下行控制与神经介质得痛觉调控(modulation)。理论上,阻断任何环节都可使疼痛缓解。 一、疼痛传感 疼痛感受器就是伤害感受器,对伤害性刺激敏感。伤害感受器就是周围神经得组成部分,能接受、转换与传递来自皮肤、黏膜、骨骼、肌肉与内脏器官得伤害性刺激,其细胞体位于脊髓神经节中。 伤害性刺激就是指刺激程度强到足以能够损害或潜在损害得刺激。 皮肤、躯体(肌肉、肌腱、关节、骨膜与骨骼)、小血管与毛细血管旁结缔组织与内脏神经末梢就是痛觉得外周感受器。体表刺激通过皮肤得温度、机械感受器传递疼痛。皮肤痛感受器又分为高阈机械痛感受器与多模式痛觉感受器。前者只对伤害性机械刺激发生反应,后者对多种伤害性刺激发生反应。持续性伤害刺激可使上述两种感受器阈值降低,形成痛觉过敏(hyperalgesia)。内脏伤害感受器感受空腔脏器得膨胀或缺血,躯体伤害感受器感受运动系统疼痛。 任何外界或体内得伤害可导致局部组织破坏,释放内源性致痛因子,如氢离子、钾离子、5-羟色胺、组胺、乙酰胆碱等,均可以刺激疼痛感受器。受损得神经纤维本身也可释放致痛因子,如P物质、降钙素基因相关肽与损伤细胞释放得一些酶类,在局部合成产生致痛因子,如前列腺素(主要就是前列腺素E2、D2、F2α)、缓激肽等。这些化学物质可以刺激感受器。损伤与炎症过程中形成得炎性介质,如巨噬细胞与中性粒细胞释放肿瘤坏死因子(TNFα)、白细胞介素-1(IL-1),肥大细胞释放5-羟色胺等,提高对内源性致痛物质得反应强度与对外界刺激得反应程度。 二、痛觉上行传递 传导疼痛得一级传入神经轴突就是有髓鞘得Aδ纤维与无髓鞘得C纤维,其神经胞体位于脊髓背根神经节。Aδ纤维较粗(3 μm),感受疼痛与温度,快速传递强烈与定位准确得锐痛。此类纤维终止于脊髓背角得第I与V层。C纤维较细(<1 mm)无髓鞘,传递较慢及不易定位得钝痛与灼痛信号,纤维终止于背角

疼痛机制研究进展

疼痛机制研究进展 2001年,国际疼痛研究协会(IASP)对疼痛进行了新的定义: 疼痛是与实际的或潜在的组织损伤相关联的不偷快感觉和情绪体验,或用这类组织损伤的词汇来描述的自觉症状;对于无交流能力的个体,决不能否认其存在痛的体验,需采取适当措施来缓解疼痛的可能性。疼痛就其生物学意义来讲是一种警戒信号,表示机体已经发生组织损伤或预示即将遭受损伤而通过神经系统的调节引起一系列防御反应,如果疼痛长期持续不止,便失去警戒信号的意义,对机体构成一种难以忍受的精神折磨,严重影响学习、工作、饮食和睡眠,最终因生活质量降低而产生不可忽视的经济和社会问题。现就疼痛机制研究进展作一综述。 一、疼痛的解剖生理学 疼痛是由一定的刺激(伤害性刺激)作用于外周感受器(伤害性感受器)换能后转变成神经冲动(伤害性信息),循相应的感觉传人通路(伤害性传人通路)进人中枢神经系统,经脊髓、脑干、间脑中继后直到大脑边缘系统和大脑皮质,通过各级中枢整合后产生疼痛感觉和疼痛反应。 伤害性感受器是游离于外周的神经末梢,广泛分布于机体的皮肤、肌肉、关节和内脏组织,直接接受伤害性刺激或间接被致痛物质所激活。脊髓后角汇聚来自外周的传人神经及来自脑干和大脑皮质的下行投射神经,加上后角局部中间神经元,组成复杂的神经网络,并含有丰富的生物活性物质,接受、传递和加工处理伤害性传人信息。丘脑和大脑皮质是痛觉的高级中枢,除嗅觉冲动外,任何感觉传人信号都经丘脑整合到达大脑皮质。 近年来,随着正电子发射断层扫描、单光子发射断层扫描和功能磁共振技术的发展及应用,可以直观地观察疼痛发生、发展过程中不同脑区的变化,对皮质在疼痛中的作用也有更多的认识。有研究表明,急性疼痛和神经病理性疼痛激活的脑区范围不同,急性疼痛激活对侧脑区,包括大脑体感区、前扣带回、脑岛和前额皮质,提示这些脑区参与急性疼痛的中枢信息加工。而下肢神经损伤所致的持续性神经病理性疼痛激活双侧的脑岛、后叶、前额叶外侧下部、后扣带皮质和右侧的前扣带回,表现为区域脑血流图增强。值得注意的

疼痛的诊断与发生机制

疼痛的诊断与发生机制 一、第五生命体征——疼痛 疼痛的定义是:“疼痛是组织损伤或潜在组织损伤所引起的不愉快感觉和情感体验。” 1 、疼痛作为第5生命体征,与血压、体温、呼吸、脉搏一起,是生命体征的重要指标。 2 、患者是自身疼痛的体验者和表述者,鼓励患者之间的互相交流;只有患者才能真正了解其自身的疼痛感觉类型、疼痛如何影响生活以及如何减轻疼痛。 3 、患者有权对自身的疼痛进行客观评价。 二、疼痛的分类 1 、依病理学特征,疼痛可以分为伤害感受性疼痛和神经病理性疼痛 ( 或两类的混合性疼痛 ) 伤害感受性疼痛是完整的伤害感受器感受到有害刺激引起的反应,疼痛的感知与组织损伤有关。正常情况下,疼痛冲动由神经末梢产生,神经纤维负责传递冲动。当神经纤维受损或神经系统因创伤或疾病发生异常改变时也会产生自发冲动,引起的痛感会投射到神经起源部位,称为神经病理性疼痛。 2 、依疼痛持续时间和性质,疼痛可分为急性疼痛和慢性疼痛,慢性疼痛又分为慢性非癌痛和慢性癌痛。 急性疼痛指短期存在( 少于 2 个月) 、通常发生于伤害性刺激之后的疼痛。慢性疼痛的时间界限说法不一,多数将无明显组织损伤,但持续 3 个月的疼痛定义为慢性疼痛。 3 、其他特殊的疼痛类型还包括反射性疼痛、心因性疼痛、躯体痛、内脏痛、特发性疼痛等。 三、疼痛发生的机制 认为急性疼痛是疾病的一个症状,而慢性疼痛本身就是一种疾病。 疼痛形成的神经传导基本过程可分为 4 个阶梯。伤害感受器的痛觉传感(transduction) ,一级传入纤维、脊髓背角、脊髓一丘脑束等上行束的痛觉传递(transmission) ,皮层和边缘系统的痛觉整合(interpretation) ,下行控制和神经介质的痛觉调控(modulation) 。 (一)、急性疼痛的发生机制 急性疼痛为伤害感受性疼痛。伤害感受性疼痛的发生机制是疼痛形成的神经传导基本过程。机体受到物理、化学或炎症刺激后产生急性疼痛的痛觉信号,并通过神经传导及大脑的分析而感知。 1 、痛觉传感 皮肤、躯体( 肌肉、肌腱、关节、骨膜和骨骼) 、小血管和毛细血管旁结缔组织和内脏神经末梢是痛觉的外周伤害感受器。 2 、痛觉上行传递

疼痛的机制

疼痛的机制 目前许多学者从不同方面、不同领域对疼痛机制进行了深入、细致的研究,较权威的有致痛释放学说、神经调节理论和闸门控制理论。 1.致痛释放学说 该学说认为刺激作用于机体达一定程度时,机体组织受损,释放致痛物质,如组胶、缓激肤、5-短色胶、乙酸胆碱、H+等,作用于痛觉感受器。这些痛觉感受器存在于游离的神经末梢和细纤维组织中,分布在皮下及深部组织的小动脉周围,产生痛觉冲动,沿传入神经传入脊髓,随后沿脊髓丘脑束和脊髓网状束传人大脑皮质的某一区域,引起痛觉。 2.神经调节理论 该理论则认为神经调节剂或影响神经冲动传导的物质,是疼痛的重要影响因素之一。这些物质存在于躯体感受器、脊髓后角的神经末梢及脊髓丘脑束的感受器中。它们可分为两类:神经递质和神经调质。神经递质可通过两个神经纤维的突触间隙传递电冲动,它包括P物质、血清素和前列腺素。而神经调质包括调节神经元的活动并调整或改变疼痛刺激的传送,但不直接通过突触间隙传送神经信号。人们认为它们是通过增加或降低特定神经递质的作用而间接地起作用。神经调质包括内啡肤、力啡肤和缓激肤。疼痛的药物治疗主要是考虑选择可影响神经调节剂的药物。 3.闸门控制理论 已知神经系统中无特定的疼痛中枢。该理论认为中枢神经系统的闸门装置可对疼痛冲动进行控制甚至阻断。闸门装置位于脊髓后角、丘脑和边缘叶系统的实体浆细胞中。疼痛冲动敞开时可顺利穿行,而当闸门关闭时就会被阻断。因此如何关闭闸门是疼痛干预的重点闸门的开闭由感觉神经元和大脑下行控制纤维这两者活动的平衡来协调。当A-σ和C 神经元起主要作用时,它们释放P物质有助于冲动通过闸门装置,个体就会感觉到疼痛。 当机械感受器、较粗的快速A-?神经元的作用为主时,会释放起抑制作用的神经递:闭闸门装置,个体就不觉得疼痛。按摩可刺激机械感受器,因而有助于缓解疼痛。即冲动上传到大脑,大脑皮质中枢也可调节个体对疼痛的感知。内源性阿片类物质,如:生的天然止痛药一一一内啡肤,可沿下行神经通路释放,通过阻滞P物质的释放而关|装置。促进内啡肤释放的方法有分散注意力、心理咨询和运动等。 感知疼痛即个体对疼痛的意识。疼痛刺激经由脊髓上传到丘脑和中脑。在丘脑,疼痛信递到大脑的不同区域,包括躯体感觉皮质区和副皮质区(两者都位于顶叶)、额叶和系统。躯体感觉皮质区可辨别疼痛的位置和强度,而副皮质区决定个体对疼痛的感前认为边缘叶系统中有控制情绪特别是焦虑情绪的细胞。因此,边缘叶系统在疼痛的应方面有重要作用。在神经传导的末端,个体在高级脑中枢的作用下而感到疼痛。 人意识到疼痛时,一个复杂的反应就启动了。因此对疼痛的感知是心理因素、认知因经生理因素相互作用的结果。它可使个体意识和了解疼痛,从而作出反应。

急性疼痛考试题

急性疼痛考试题 姓名得分 一、填空题: 1、头痛按发病机制分、、牵涉性头痛、紧张性头痛、脑膜刺激性头痛、神经炎性头痛。 2、蛛网膜下腔出血病因中约占57%。 3、高血压急症是指在原发性或继发性高血压患者,在某些诱因作用下,血压突然和显著升高(一般超过 mmHg),同时伴有进行性心、脑、肾等重要靶器官功能急性损害的一种严重危及生命的临床综合征。高血压急症包括、颅内出血(脑出血和蛛网膜下腔出血)、脑梗死、急性心力衰竭、肺水肿、急性冠脉综合征、主动脉夹层、子痫等。以往所谓的恶性高血压、高血压危象等均属于此范畴。 4、高血压急症通常表现为 ,伴有恶心呕吐,视力障碍和精神及神经方面异常改变。 5、高血压急症一般情况下,初始阶段(数分钟到1h内)血压控制的目标为平均动脉压的降低幅度不超过治疗前水平的 %。在随后的2~6h内将血压降至较安全水平,一般为 mmHg左右。 6、急性冠状动脉综合征(ACS)是以冠状动脉粥样硬化斑块破裂或侵袭,继发完全或不完全闭塞性血栓形成为病理基础的一组临床综合征,包括、和不稳定型心绞痛(UA)。 7、急性冠状动脉综合征典型表现为发作性,紧缩压榨感或压迫感、烧灼感,可向、下颌、颈、背、肩部或左前臂尺侧放射,呈间断性或持续性,伴有出汗、恶心、呼吸困难、窒息感、甚至晕厥,持续>10~20分钟,含不能完全缓解时常提示急性心肌梗塞。 8、病理性Q波是的Q波。 9、当有典型的缺血性胸痛症状或心电图动态改变而无升高时,可诊断为心绞痛。 10、稳定型心绞痛胸痛常由体力劳动或情绪激动(如愤怒、焦急、过度兴奋等)所诱发,疼痛多发生于劳力或激动的当时。典型的心绞痛常在相似的条件下重复发生,并逐步加重,多在分钟内渐消失。停止原来诱发症状的活动或舌下含用硝酸甘油能在几分钟内使之缓解。

疼痛机制与分类

疼痛的机制与分类付凤琴 疼痛的机制 1.疼痛是脑对急性或慢性损伤组织所引起的伤害性传入进行抽象和概括后说形成的不愉快感觉,伴有复杂的自主神经活动,运动反射,心理和情绪反应。 2伤害性感受器:产生疼痛信号的外周换能装置,皮肤,黏膜,胃肠道黏膜和浆膜下层,肌肉,骨膜,血管外膜等 其初级神经元的外周部分,胞体位于背根神经节和三叉神经节。 3.三级传导 a痛觉感受器将痛觉冲动经第一级神经元传入脊髓(胞体位于脊髓后跟的脊神经节)b第二级神经元位于脊髓背角顶端的罗氏胶质区,大部分纤维经白质前联合交叉至对侧,经外侧脊髓丘脑束上行直达丘脑 c第三极神经元(丘脑)轴突经内囊投射到大脑皮质中央后回第一感觉区,引起定位特征的疼痛。 4感受疼痛的初级感觉神经元胞体位于背根神经节和三叉神经节中。伤害性感受器将刺激通过胞体传出,传出纤维与位于脊髓的中间神经元发生突触联系 5.脊髓背角是疼痛信息传递和调制第一站 初级传入神经元传入的信号----脊髓背角不同的板层----终止于脊髓后角(大部分) 伤害性神经元:后角的表层(I层),胶质层(∏层)大多神经元接受Aδ和C类维的投射。 胶质层几乎全部由中间神经元组成,包括兴奋性和抑制性神经元 疼痛的调制主要区域在脊髓,其阶段性调制是主要方式,抑制性中间神经元起着闸门作用 Aδ--兴奋—关闭 C类—抑制—开放 6.脊髓到脑的三条主要上行通路 a脊髓丘脑束--起至对侧脊髓灰质1层4-7层----白质前联合交叉,同节和上1-2节的外侧索和前索内上行----在脑干下部,前束纤维加入内测丘系,外侧束延续为脊髓丘系 b脊髓网状束--由脊髓后角I层和V层神经元轴突构成,在脊髓前外侧四分之一处上传,多数进入脑干同侧网状结构,少数对侧穿行,终止于延髓和脑桥网状结构核团弥散的特点 c脊髓中脑束--由脊髓后角I层和V层神经元轴突构成部分神经元的轴突投射到杏仁核 杏仁核:情感边缘系统重要成分,疼痛情绪方面有关 7.脑干下行抑制和异化系统对疼痛的调制 a中脑导水管周围灰质区接受脊髓的伤害性神经元传入----激活其内的抑制性调制神经元----传出主要终止于延髓头端腹内侧区,少数到达背角 腹外侧区:镇痛 背部区:镇痛,情绪和逃避反应 b延髓头端腹内侧核群 区域神经元被激活会抑制脊髓伤害感觉信号传递和行为伤害感觉反射 对脊髓背角痛觉信息传递产生抑制性调制,在脑干也抑制三叉神经脊核痛敏神经元

疼痛的机制

2慢性广泛性疼痛的脊髓机制 2.1谷氨酸的释放增加:兴奋性氨基酸谷氨酸和天冬氨 酸在脊髓的伤害性刺激传导中起重要作用。慢性广泛性疼痛 时,脊髓背侧角的兴奋性氨基酸谷氨酸和天冬氨酸的释放增 加[8]。酸性盐肌肉注射导致的慢性广泛性疼痛中,重复酸性 盐注射1周后,在脊髓的背侧角,兴奋性氨基酸谷氨酸和天冬 氨酸的基础浓度升高,表明在脊髓水平有兴奋性神经递质持 续的释放增加,且谷氨酸和天冬氨酸浓度的增加水平与痛觉 过敏和中枢痛觉致敏的水平呈正相关[2]。 重复性酸性盐肌肉注射导致的非炎症性慢性广泛性疼痛 的模型中,阻断脊髓部位的谷氨酸受体,包括N-甲基-D- 天(门)冬氨酸(NMDA)受体和o-氨基羟甲基恶唑丙酸/红 藻氨酸盐受体,能改善痛觉过敏;单纯阻断NMDA受体,还可 以延缓痛觉过敏的发生,这一现象表明谷氨酸的释放增加在 重复性酸性盐注射导致的痛觉过敏中发挥重要作用[9]。纤维 肌痛的患者应用氯胺酮阻断NMDA受体,可缓解高渗盐水肌 肉注射引起的注射部位疼痛和牵涉痛[10]。然而, NMDA受 体兴奋剂右美沙芬不能加剧上述疼痛[11]。因此,除NMDA 受体之外,纤维肌痛可能另有机制。 2.2环磷腺苷(cAMP)通路的激活:脊髓cAMP通路的激 活对伤害性疼痛的上传非常重要。脊髓cAMP通路的激活引 起脊髓水平的机械性痛觉过敏,并加强脊髓丘脑束神经元对 有害的机械性冲动的反应[3]。当小鼠体内缺乏腺苷酸环化酶 1和腺苷酸环化酶8时,痛觉过敏不会发生[12]。阻断腺苷酸 环化酶或蛋白激酶A(PKA),同样能够避免酸性盐肌肉注射 或者辣椒辣素肌肉关节注射导致的机械性痛觉过敏[3,13,14]。 PKA的催化亚基核转移引起cAMP效应元件结合蛋白 (CREB)的丝氨酸133位点磷酸化。重复性酸性盐肌肉注射 后,双侧脊髓背侧角中的CREB和磷酸化CREB增加,阻断 cAMP通路能抑制磷酸化CREB的生成[13]。产生的磷酸化 CREB并非只存在于脊髓,也存在于脊髓丘脑束和其他神经 细胞[14],而且其生成具有时效依赖性,痛觉过敏发生后24小 时内磷酸化CREB增加,1周后磷酸化CREB恢复正常[13]。 而cAMP通路阻滞也具有时效依赖性,于深部痛觉过敏后24 小时内发生,1周后恢复[3,13]。由此,可得出结论:深部组织受 损后,cAMP通路发生时效性激活,从而引发痛觉过敏,此反 应与磷酸化CREB的基因转录激活有关。 其他蛋白激酶参与慢性广泛性疼痛与痛觉过敏也有报 道。PKC通路的激活剂巴豆油酯能够导致痛觉过敏,然而,脊 髓水平的PKC通路阻滞不能抑制重复性酸性盐注射导致的 非炎症性痛觉过敏,这一现象表明:非炎症性疼痛中,蛋白酶C通路的激活不发生在脊髓水平[15]。 2.3神经胶质细胞的作用:中枢神经系统尤其是脊髓中, 神经胶质细胞对伤害性疼痛的信息处理有关键作用[16]。神

神经病理性疼痛发病机制研究进展.

神经病理性疼痛发病机制研究进展 袁维秀解放军总医院麻醉科解剖学病因神经病理性疼痛起源于神经系统的损伤,其本质是一种伤害感受,包括骨关节炎和炎性疼痛等。病因包括自身免疫性疾病(如多发性硬化)、代谢性疾病(如糖尿病性神经痛)、感染(如带状疱疹)、血管性疾病、创伤和肿瘤等。并非所有涉及伤害感受通路的损伤都能引起疼痛,单纯切断脊神经背根几乎不会引发持续性疼痛[1],但脊髓损伤确实有诱发疼痛的风险。Vireck等发现灵长类动物切断脊髓丘脑外侧束,仅损伤脊髓白质时不产生异常疼痛行为,而损伤脊髓灰质部分则产生疼痛[2]。脑干和丘脑损伤涉及伤害感受通路时可引起疼痛[3]。中枢神经系统疾病伴发的疼痛许多中枢神经系统疾病可伴有疼痛症状,表现为持续性疼痛或痛觉过敏,一些病人轻微的四肢温度降低即出现痛觉过敏现象。Mitchell 称之为“皮肤烧灼痛”的临床表现为:水肿、异常出汗、皮肤温度升高或降低,剧烈的自发性疼痛,不伴有明确神经损伤的称为“复杂性区域疼痛综合征(CRPS)1 型”,伴有神经损伤的称为CRPS2型。三叉神经痛是一种典型的神经病理性疼痛,表现为面部发作性剧烈疼痛,发作间歇期无或仅有轻微疼痛,轻触皮肤可诱发疼痛发作,其病因与神经根进入脑干部位的机械变形有关,神经根受压部位出现脱髓鞘现象。血管变异引起神经受压也是常见病因之一[4]。糖尿病性神经痛是一种典型的神经病理性疼痛,表现为双侧足趾的烧灼样痛。水痘病毒感染后激活带状疱疹病毒,后者侵犯脊髓背根神经节,该神经节支配区域皮肤出现持续性疼痛,即使切断支配该区域的c纤维疼痛依然存在。神经病理性疼痛动物模型自从制作大鼠坐骨神经松结扎模型后,有关神经病理性疼痛的研究取得了长足的进步。Chung等发明了脊神经切断大鼠模型(SNL),保留支配足趾的部分神经,记录相邻脊神经的传入冲动。糖尿病模型是通过注射连脲酶素,动物表现与人类神经痛相似。最近又发明了紫杉醇-长春新碱诱发的神经病理性疼痛模型。动物持续性疼痛的测定较为困难,大鼠后肢去神经支配后可出现自残行为,采用细胞内标记物神经元活性的增加,如脊髓背角即刻早期基因蛋白c-fos表达的增加,可用以评估持续性疼痛。功能性核磁成像(fMRI)和/或PET 成像技术将成为可能的测定手段。继发性痛觉过敏及中枢敏感化皮肤损伤后产生持续性疼痛和痛觉过敏,原发性痛觉过敏发生在组织损伤部位,部分由初级伤害性感受器调节,表现为热刺激的反应增强。继发性痛觉过敏发生在损伤周围的正常组织,表现为对机械刺激的反应增强,如轻触刺激诱发疼痛,与人体神经病理性疼痛的痛觉过敏相似,与中枢敏感化有关。有研究发现触痛来自 Aβ纤维出入冲动引发的中枢敏感化,而刺痛来源于对辣椒素不敏感的Aδ伤害感受器[5]。触觉纤维聚集在脊髓背角,该部位接受初级神经纤维的伤害性冲动传入。初级传入纤维的作用药理学研究发现初级传入纤维在神经病理性疼痛的形成过程中具有重要作用。例如,静脉?予AM1241,一种选择性大麻素受体(CB2)激动剂,可以逆转 SNL损伤后的机械和热痛觉过敏。由于CB2在CNS 不表达,其作用可能是通过外周机制[6]。反义寡核苷酸(6DNs)可直接拮抗Nav1.8,从而逆转机械性痛敏。Nav1.8 是一种河豚毒素拮抗钠通道,仅在初级传入小细胞上表达,即使神经损伤6-14d,应用6DNs 仍然有效,说明持续性外周神经冲动的传入参与了神经病理性疼痛的维持过程。神经损伤的局部会形成神经瘤,已经证实对机械、热和化学刺激产生的自发性和异常电位活动起源于创伤性神经瘤[7]。有报道SNL 大鼠L5 背根A 纤维出现自发性活动,这种自

神经病理性疼痛发病机制研究进展(一)

神经病理性疼痛发病机制研究进展(一) 解剖学病因 神经病理性疼痛起源于神经系统的损伤,其本质是一种伤害感受,包括骨关节炎和炎性疼痛等。病因包括自身免疫性疾病(如多发性硬化)、代谢性疾病(如糖尿病性神经痛)、感染(如带状疱疹)、血管性疾病、创伤和肿瘤等。 并非所有涉及伤害感受通路的损伤都能引起疼痛,单纯切断脊神经背根几乎不会引发持续性疼痛1],但脊髓损伤确实有诱发疼痛的风险。Vireck等发现灵长类动物切断脊髓丘脑外侧束,仅损伤脊髓白质时不产生异常疼痛行为,而损伤脊髓灰质部分则产生疼痛2]。脑干和丘脑损伤涉及伤害感受通路时可引起疼痛3]。 中枢神经系统疾病伴发的疼痛 许多中枢神经系统疾病可伴有疼痛症状,表现为持续性疼痛或痛觉过敏,一些病人轻微的四肢温度降低即出现痛觉过敏现象。Mitchell称之为“皮肤烧灼痛”的临床表现为:水肿、异常出汗、皮肤温度升高或降低,剧烈的自发性疼痛,不伴有明确神经损伤的称为“复杂性区域疼痛综合征(CRPS)1型”,伴有神经损伤的称为CRPS2型。 三叉神经痛是一种典型的神经病理性疼痛,表现为面部发作性剧烈疼痛,发作间歇期无或仅有轻微疼痛,轻触皮肤可诱发疼痛发作,其病因与神经根进入脑干部位的机械变形有关,神经根受压部位出现脱髓鞘现象。血管变异引起神经受压也是常见病因之一4]。 糖尿病性神经痛是一种典型的神经病理性疼痛,表现为双侧足趾的烧灼样痛。水痘病毒感染后激活带状疱疹病毒,后者侵犯脊髓背根神经节,该神经节支配区域皮肤出现持续性疼痛,即使切断支配该区域的c纤维疼痛依然存在。 神经病理性疼痛动物模型 自从制作大鼠坐骨神经松结扎模型后,有关神经病理性疼痛的研究取得了长足的进步。Chung等发明了脊神经切断大鼠模型(SNL),保留支配足趾的部分神经,记录相邻脊神经的传入冲动。糖尿病模型是通过注射连脲酶素,动物表现与人类神经痛相似。最近又发明了紫杉醇-长春新碱诱发的神经病理性疼痛模型。 动物持续性疼痛的测定较为困难,大鼠后肢去神经支配后可出现自残行为,采用细胞内标记物神经元活性的增加,如脊髓背角即刻早期基因蛋白c-fos表达的增加,可用以评估持续性疼痛。功能性核磁成像(fMRI)和/或PET成像技术将成为可能的测定手段。 继发性痛觉过敏及中枢敏感化 皮肤损伤后产生持续性疼痛和痛觉过敏,原发性痛觉过敏发生在组织损伤部位,部分由初级伤害性感受器调节,表现为热刺激的反应增强。继发性痛觉过敏发生在损伤周围的正常组织,表现为对机械刺激的反应增强,如轻触刺激诱发疼痛,与人体神经病理性疼痛的痛觉过敏相似,与中枢敏感化有关。有研究发现触痛来自Aβ纤维出入冲动引发的中枢敏感化,而刺痛来源于对辣椒素不敏感的Aδ伤害感受器5]。触觉纤维聚集在脊髓背角,该部位接受初级神经纤维的伤害性冲动传入。 初级传入纤维的作用 药理学研究发现初级传入纤维在神经病理性疼痛的形成过程中具有重要作用。例如,静脉给予AM1241,一种选择性大麻素受体(CB2)激动剂,可以逆转SNL损伤后的机械和热痛觉过敏。由于CB2在CNS不表达,其作用可能是通过外周机制6]。反义寡核苷酸(6DNs)可直接拮抗Nav1.8,从而逆转机械性痛敏。Nav1.8是一种河豚毒素拮抗钠通道,仅在初级传入小细胞上表达,即使神经损伤6-14d,应用6DNs仍然有效,说明持续性外周神经冲动的传入参与了神经病理性疼痛的维持过程。 神经损伤的局部会形成神经瘤,已经证实对机械、热和化学刺激产生的自发性和异常电位活动起源于创伤性神经瘤7]。

疼痛的机制传导途径

疼痛的机制传导途径 疼痛由能使机体组织受损伤或破坏的刺激作用所引起,是一种对周围环境的保护性适应方式。这种致痛刺激在疼痛感受器接收之后,经过不同水平的痛觉传导路,最后达到脑,引起疼痛感觉 三大学说:特异学说,型式学说,闸门控制学说 基本传导途径(一)感受器和传入神经纤维 痛觉的感受器为游离神经末梢,它广泛分布在皮肤各层、小血管和毛细血管旁结缔组织、腹膜脏层和壁层、粘膜下层等处,任何外界的或体内的伤害性刺激(物理的或化学的),均可导致局部组织破坏,释放K+、H+、组胺、缓激肽、5-HT、Ach和P物质等内源性致痛因子。这类游离神经末梢对缓激肽等化学刺激特别敏感,称之为化学性感受

器(chemoceptor)。 传导痛觉冲动的纤维属于最细的Aδ和C纤维,并认为Aδ纤维传导刺痛,而C纤维则传导灼痛。但必须指出,并非所有的Aδ纤维和C 纤维仅传导伤害性刺激,它们也传导触、压、温、冷等感觉信息。而痛觉也并非仅由细纤维(Aδ或C纤维)传导,也可由达到一定的空间和时间构型的粗纤维(Aα纤维)传导。 (二)疼痛在中枢神经系统中的传导途径 痛觉传导通路比较复杂,至今仍不很清楚。一般认为,与痛觉的传导有关的脊髓上行通路有: 1.躯干、四肢的痛觉通路 1)新脊-丘束外周神经的细纤维由后根的外侧部进入脊髓,然后在后角换元,再发出纤维上行,在中央管前交叉到对侧的前外侧索内,沿脊髓丘脑侧束的外侧部上行,抵达丘脑的腹后外侧核(VPL)。此神经纤维束在种系发生上出现较晚,故称新脊-丘束。该束传递的信息可经丘脑的特异感觉核群(即VPL)投射到大脑皮质的中央后回上2/3处,具有精确的分析定位能力,这和刺痛(快痛)的形成有关。 2)旧脊-丘束或脊-网-丘束也是由后角细胞的轴突组成,交叉后沿脊髓丘脑侧束的内侧部上行。旧脊-丘束的纤维分布弥散,长短不一。在上行途中多数纤维终止在脑干的内侧网状结构、中脑被盖和中央灰质区等处,再经中间神经元的多级转换传递而达到丘脑的髓板内核群以及下丘脑、边缘系统等结构。其中短的纤维就是脊髓网状束。还有少量最长的纤维直达丘脑的内侧核群。由于在低等动物就有此束,故

慢性疼痛的发生机制

慢性疼痛的发生机制 慢性疼痛是人们就诊最多的原因之一,发生率20%~45%,而且需较长时间就诊和治疗。据一项美国统计表明,美国2.9亿人口,慢性疼痛人数约8 600万人,造成经济损失900亿美元/年。英国5 900万人口,有2 400万慢性疼痛人数,每年经济损失200亿美元。加拿大3 100万人口,慢性疼痛人数1 400万,经济损失100亿美元/年,所以疼痛既是一个很大的健康问题,也是社会和经济的问题。 一、慢性疼痛的发生机制 除伤害感受性疼痛的基本传导调制过程外,慢性疼痛的发生还表现出不同于急性疼痛的特殊发生机制: 1.脊髓敏化的形成伤害感受器被反复慢性刺激促使脊髓背角细胞发生病理变化,胶质细胞等合成新的神经递质,如内皮素1,通过内皮素受体亚型的作用并对原有递质EAAS、SP、CGRP等发生调制,导致脊髓背角整合。 2.受损神经异位电活动慢性疼痛常表现为在组织损伤愈合后的持续性疼痛。神经损伤导致神经元的异位电活动是痛觉异常的生理基础。神经损伤引起的痛觉异常通常与神经损伤方式有关。横断性神经损伤可能在中枢残端形成神经瘤状结构,这是由于轴突运输的正常通道受到破坏,来自胞体的轴浆和其他活性物质被无序堆积在残端而形成神经瘤。此种情况下,虽然受损器官的末梢感受器不能诱发任何疼痛,但患者会感到神经的原靶器官自发产生幻肢痛或自发性疼痛。然而,选择性地损伤有鞘纤维而保留传递痛觉信号的C类纤维,则表现为自发性疼痛和感觉倒错,而损害性刺激损伤神经支配的感受器则诱发出痛觉过敏、痛性感觉异常。神经损伤诱发异位电活动的发放形式与正常神经末梢受刺激产生的传入活动具有明显的差别,受损神经可以在无任何外部刺激的条件下产生高频簇状放电,导致痛觉过敏和感觉异常。 3.痛觉传导离子通道和受体异常在慢性疼痛过程中,痛觉传导离子通道和受体发生异常变化。神经损伤区及其DRG神经元对离子通道药物的敏感性明显高于正常神经。神经轴突的钠离子、钾离子、钙离子通道都可能发生异常表达和异位分布,大量的异位和自发的非编码传入放电,促使痛觉过敏和感觉异常。慢性疼痛促使谷氨酸盐释放,并激活NMDA受体,导致神经细胞与其他不参与

第六章 疼痛机理与治痛方法

第六章疼痛机理与治痛方法 第六章疼痛机理与治痛方法 人的一生肌体感受最多痛苦就在不同部位与不同程度上的疼痛。比如像感冒发热头痛,大小外伤性疼痛,蚊叮虫咬的疼痛都会在很短时间内消失。而一些致痛性慢性病则会久久让人痛苦不堪。可以这样说,人的一生机体没有感触过疼痛的滋味那是不可能的。因为各处疾病都会直接或间接导致人的机体局部发生隐痛或剧痛,最终也是在疼痛或最痛苦挣扎中死亡。 人一旦患了疾病就意味疼痛与痛苦即将开始。有80%以上的疾病都会直接或间接导致人的肌体隐痛或剧痛。为此,医药学家们就精心研制出很多种能有直接间接镇痛药物,可各种镇痛药中除去外用中药膏、贴、水、酊等,佘对机体内脏器官与神经组织均有不同程度的不良影响。 为了进一步认识了解疼痛的机理,我们需要了解温习在身体发生疼痛。一些科学性的知识,因为它几乎牵涉到医院内的各个科室和每一位病人,这对一个医生或是一位理疗师,或一位医学爱好者,都是显得十分重要,同时也是你踏入医学殿堂的起步。

第六章第二节中医学对疼痛的认识我们的祖先在长期与 疾病的斗争中,对疼痛的机制,积累了十分宝贵的经验与认识,在治疗疼痛方面,不但经验丰富,甚至有很奇特的治法,为人们的健康繁衍做出巨大贡献。 祖国医学认为,风﹑寒﹑暑﹑湿﹑燥﹑火等六淫,及喜﹑怒﹑忧﹑思﹑悲﹑恐﹑惊等七情是重要的致病因素,特别是自然环境以及地理条件的不同,都对人体影响极大,是人产生传染性的流行性疾病,如痢疾﹑霍乱﹑肺结核﹑流行脑膜炎等特殊疾病,各种致病因素,可以使人产生不同的经络脏腑病变,出现各种不同的症状。而疼痛是各脏腑经络疾病的一个症状,有时是主要症状。而各经络脏腑病变,必然导致某些部位产生疼痛,并有规律可循的。因此治疗时针对某一经络脏腑病变进行针刺或药物治疗疾病是可以痊愈的,疼痛亦可随之消失,或减轻,因此我们应当继承,并加以研究,使之在治疗上有更卓越的突破。 第六章第三节致病因素1、物理性致痛因素: (1)温度——热度升高到达44.9℃时,即开始刺激痛感受装置,当升高到45℃以上时,就激发疼痛。 (2)机械性刺激——如触、压、切割、剪等达到损伤组织的程度,都可引起痛觉。物理性刺激达到组织损伤程度时,

疼痛发病机制及治疗原理的中医认识

疼痛发病机制及治疗原理的中医认识 【关键词】疼痛;治疗;中医 临床上我们发现颈肩腰腿痛的疼痛主要表现于“不通则痛、不荣则痛、不松则痛、不顺则痛、不动则痛、不正则痛”几个方面;对此疼痛的治疗原理为“通则不痛、荣则不痛、松则不痛、顺则不痛、动则不痛、正则不痛。”因此颈肩腰腿痛治疗关键在于“通、荣、松、顺、动、正”。临床上我们以上述理论为指导,辨证治疗颈肩腰腿痛,取得了满意效果,现报告如下。 1发病机制 “痛”:狭义指疼痛;广义上理解为不舒服的感觉,如局部疼痛、不适、恶心、胸闷、情绪不稳等。疼痛发病的机制主要表现在“不通、不荣、不松、不顺、不正、不动”。 1.1不通则痛“通”是指畅通,无阻塞,具体表现气血运行足、脏腑升降好、经络沟通畅。没有堵塞,可以穿过;有路到达;连接;传达。通过(从一端到另一端或从一侧到另一侧,穿过)、通畅(运动无阻)、通彻(贯通)、通行(在交通线上通过)。“不通则痛”指风寒湿、瘀血、痰浊等阻塞脉络或饮食阻滞六腑,导致气血运行受阻、脏腑升降失调、经络沟通闭塞而引起的疼痛或不适。包括气滞痛、血瘀痛、痰食痛、寒痹痛、行痹痛、著痹痛等。 1.2不荣则痛”荣”即兴盛,荣华,是指营养、润养、濡养充足,又通“容”,指脸上的神情和气色,容光(脸上的光彩),再通“营”,养分、有机体从外界吸取需要的物质来维持生长发育等生命活动的物质,具体表现气血足,供养(氧)充足的意思。“不荣则痛”就是指因营养、润养、濡养不充分或血液循环不好,导致供养(氧)不足而导致的局部或全身的疼痛或不舒服的感觉。包括气虚作痛、血虚作痛、气血两虚、肾虚腰痛等。 1.3不松则痛“松”跟紧相对,指松散(轻松舒缓)、松弛(不紧张)、松快(轻松愉快),局部舒松、全身轻松、心情愉快,《内经素问·生气通天论篇》有“湿热不攘,大筋短……短为拘”。“不松则痛”指局部或全身肌痉挛、情绪紧张或低落等引起的疼痛或不适,如肝郁胁痛。 1.4不顺则痛“顺”跟逆相对,指向着同一方向,顺畅(顺利通畅,没有阻碍);使方向一致,使有条理次序。“不顺则痛”则指经络流注阻碍或脏腑气机升降失常,次序紊乱,不能很好地行使顺畅职能而引起的疼痛或不适。《内经素问·厥论篇》“少阳厥逆,机关不利,机关不利者,腰不可以行,项不可以顾”、“手太阳厥逆,耳聋泣出,项不可以顾,腰不可以俯仰”如“骨错缝、筋出槽”。 1.5不动则痛“动”跟静相对,动作(全身或局部的活动与行动)、运动(体育活动)。“不动则痛”指缺乏必需的运动和活动或运动和活动不便或运动和活动时间

相关文档