文档库 最新最全的文档下载
当前位置:文档库 › 探索解决大规模风电储存的新途径_风电直接制氢及燃料电池发电系统_张宪平

探索解决大规模风电储存的新途径_风电直接制氢及燃料电池发电系统_张宪平

探索解决大规模风电储存的新途径_风电直接制氢及燃料电池发电系统_张宪平
探索解决大规模风电储存的新途径_风电直接制氢及燃料电池发电系统_张宪平

风能与储能技术

风能与储能技术 风电是我国唯一已经被大规模开发利用的可再生能源。2010年底,我国风电装机总容量达到4473.3万千瓦,超过美国成为世界第一,风电并网容量也达到了2956万千瓦,十二五末总装机容量达到1亿千瓦。但是由于风力发电固有的间歇性和波动性,风电大规模接入电网必然会使电网的可靠性降低,从而影响电网的调度和运行方式,现阶段的情况是风电场的建设速度已经超出了电网的接受能力,出现了一些风电场弃风,因此如何让电网大规模的接受风电成为我国风电发展的关键因素。使用储能技术以抵消风电的间歇性与波动性是一种有效的方法。 一、能源发展趋势 人类的能源利用从最初的薪柴时代到后来的煤炭时代,再到现在的油气时代的演变,总量不断增长,同时能源结构也在不断变化。而每次生产力的巨大飞跃都和是能源的变迁离不开,可以说能源极大地推动了人类经济社会的发展。但是,伴随着人口的剧烈增长,而传统的化石能源是有限的,以至于现在人类经济和社会发展受能源的制约越来越明显。众所周知,我们现在消耗的,主要是地球上千万年来存储下来的化石能源,是不可再生的能源,而且正面临耗竭的危机,下图是传统化石能源开发利用的年限,由图1可以看出油气的使用年限为40-60年。 图1 BP 2011世界化石能源开采年限统计 如今谁也无法否认高油价时代已经到来,而传统化石能源给中国带来的污染问题更已让中国经济的发展蒙上了另一层阴影。中国经济如果无法摆脱高能耗高

污染的惯性,那么未来之路将充满变数。正是在这样的背景下,通过风能、生物 质能、太阳能等绿色能源来解决问题已成为中国经济发展不可避免的现实,同时 国家也在加快智能电网建设。 二、新能源发展迅速 相比与传统的化石能源,新能源具有绿色无污染的特点,所以世界各国都在 大力发展清洁的新能源技术。特别是近年来新能源的发展十分迅速。 来自《BP2011世界能源统计年鉴》的信息表明,2010年世界消费的能源强 劲增长,其中新能源较常规化石能源更是实现了大幅增长,生物燃料增长了 13.8%,,风能发电量持续强劲增长(+22.7%),而风能增长由中国和美国带动, 两者风能发电量增长总和差不多占全球增长的70%,在此带动下用于发电的可再 生能源总体增长15.5%,如下图2,这些类型的可再生能源占全球能源消费的比 例从2000年的0.6%上升至1.8%。 图2 2010年世界消费的各种能源增长率 三、风能 当前全球风电发展迅速,据资料显示,全球风电总装机自1997年至2008 年,年均增长30%,而中国同期增长更快,约50%(表1),尤其是近期,增长 更快,仅仅内蒙地区,2010年底总装机量就达到1000万千瓦。 表1 1997-2008全球和中国风电装机容量演变表(单位GW) 年份1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 全球总装机容量7.6 10.2 13.6 17.4 23.9 31.1 39.4 47.6 59.1 74.2 93.9 120.8 新装机容量 1.5 2.5 3.4 3.8 6.5 7.3 8.1 8.2 11.5 15.2 19.9 27.1 中国 总装机容量0.17 0.22 0.27 0.34 0.10 0.47 0.67 0.76 1.26 2.6 5.9 12.21 新装机容量0.11 0.06 0.04 0.08 0.06 0.07 0.19 0.20 0.50 1.34 3.30 3.6 作为风力发电行业最权威的中文媒体期刊《风能世界》杂志预测:到2020 年风能将成为世界最重要的能源力量。

风力发电系统中储能技术的研究

风力发电系统中储能技术的研究 发表时间:2018-09-17T15:37:22.667Z 来源:《基层建设》2018年第25期作者:张亚云[导读] 摘要:在这个阶段,随着社会经济的不断发展,资源短缺问题越来越严重,新能源的发展已成为人们关注的焦点。 北京天润新能投资有限公司西北分公司新疆乌鲁木齐 830000 摘要:在这个阶段,随着社会经济的不断发展,资源短缺问题越来越严重,新能源的发展已成为人们关注的焦点。因此,很多国家都很早就开始探索新能源,取得了很好的效果。在风力发电方面,风电高度随机,风电来源缺乏稳定性。这是使用风力发电的瓶颈问题。为了解决风力不稳定问题,必须采用储能技术来提高风力发电的稳定性和可靠性。 关键词:风力发电、储能技术、研究 引言:风力发电是将风能作为大规模清洁能源的最有效方式,它不仅可以改善能源结构,而且可以减少对环境的污染,因此,在日益突出的环境问题上,风电技术也得到了迅速发展。随着发展,大型和大容量风电场已在全球范围内投入生产,对于风力发电系统,储能技术的重要作用主要体现在以下几个方面:一是提高风电系统的稳定性,解决风能资源稳定性差的问题;其次,风力发电系统的稳定运行可以保证整个电网系统的稳定性,确保电力输出的稳定性,可以提供大规模的能源支持。最后,储能技术还可以确保电力系统中存储足够的电力,为人们提供持续,稳定的电力支持。 1储能技术的分类 储能技术主要包括四大类:电磁储能,物理储能,电化学储能和热能储存,电磁能量存储包括超导能量存储和超级电容器能量存储。物理储能包括抽水蓄能,压缩空气储能和飞轮储能,电化学储能包括储氢,液流电池。 1.1 电磁储能。超导储能技术主要是利用超导体制成的线圈来储存电网励磁产生的磁场,并将储存的能量在正确的时间送回电网。超导储能技术具有能量储存密度高,长期无损储能,能够快速释放能量,能够在大范围内独立选择,使用寿命长的特点,超导储能装置不受位置限制维护简单,污染低。当然,超导储能技术的缺点在于其成本高昂,超级电容储能技术是一种新型的储能装置。具有功率密度大,储能效果好,安装方便等特点,它是免维护的,可以单独使用或与其他储能装置组合使用。 1.2 物理储能。抽水蓄能主要用于在电力负荷低负荷期将水从下水库泵送至上池水库,将电能转化为重力势能,并在电网高峰负荷期间释放能量。到目前为止,抽水蓄能技术已被应用于最为成熟,是风电场储能方案的最佳应用。压缩空气储能主要利用电力系统负荷低时的剩余电量来驱动空压机,将空气压入大容量封闭的地下溶洞,并将压缩空气转化为压力势能储存在储气室。飞轮储能系统属于机械能方法。它主要将电能转换成飞轮在“充电”期间的动能并存储。当需要电力时,飞轮的动能转化为电能。储能方式不适合风电场。但是,它可以快速抑制风力发电的快速波动,因此可以与其他储能系统结合使用。 1.3 电化学储能。电化学储能技术包括氢燃料电池,全钒液流电池,铅酸电池,锂离子电池和钠硫电池。当风能无法充分利用时,氢燃料电池将这些多余的能量转化为氢气用于储存。氢燃料电池将燃料的化学能直接转换成电能,全钒液流电池是液流电池发展的主流。该技术可以达到兆瓦级水平,因此主要用于大型风电场。铅酸蓄电池在储能技术上更加成熟,历史悠久。产品主要密封,免维护,储能容量可达20MW。与其他储能技术相比,铅酸蓄电池的制造成本更低,可靠性更高,能量密度适中,是电力系统中应用最广泛的蓄电池。锂离子电池是磷酸铁锂电池发展的主流,其成本较低,且环境小,因此风电的应用前景广阔。钠液流电池是当前报告的大容量蓄电池,具有良好的发展前景。 2风力发电的储能技术的研究现状 2.1低电压穿透能力在风电系统中的提高。风电技术中低压普及的发展一直是关键因素,对于系统稳定系统而言,这也是风力发电技术发展中的重要挑战之一。从两个级别的风力涡轮机和风力农场工作是一种改善低电压穿透的方法,有两种方法可以提高风机工作水平低压的渗透率:首先,改进控制方法,其优点是不需要添加其他附加设备,因此该方案实施起来更简单;缺点是电网故障引起的暂态能量不平衡,改进后的方案不能从根本上解决瞬时能量不平衡问题,难以达到预期的效果。其次,添加硬件设备。优点是有很多方法来实现这种方法;缺点是附加成本会显着增加。增加硬件设备是风电场故障穿越能力的有效方法。 2.2平衡抑制风力发电产生功率的波动。风电出力波动是电网稳定,电能质量和经济动员的根本原因之一,因此,在使风力发电系统发挥作用的情况下,需要将不确定风速的变化对风力发电系统的输出的影响抑制为最小限度,并且控制风力发电的输出的功率的变化通过合理引入ESS并制定相应的控制策略。为了达到上述目的。通过大量的研究,可以看出,对于风电的波动,ESS可以用来稳定风电机组和风电场的风电波动。从其独立的角度来看,超级电容器与风力发电系统中的独立DC并行使用。在母线上,为抑制风电机组功率的波动,采用模糊理论对现象进行调节和控制。通过实验验证,风力发电系统中风力涡轮机的预测可能在很大程度上干扰了拟议策略的实际控制结果。风力发电系统中的大型风电场的单个单元受到塔阴影效应和尾流效应的影响。预测风力发电机的输出量非常困难,实际实施起来非常困难。因此,在风电场层面,在上述中,在用于存储能量的装置中,选择并联连接的方法以连接到DC总线,同时,该方法通过测试和检验是可行的。 3储能技术在风力发电系统中的应用 3.1储能设备的接入。储能技术在风力发电系统中的应用,可以提高整个系统的稳定性,降低电力公司的投资成本,为公司带来更大的经济效益,为此,我们必须积极开发和应用有效的储能技术。如果要采用储能技术,首先要连接储能设备,使储能设备成为风电系统的重要组成部分。在获取之前,要充分了解当地风资源的特点,必须明确电力公司自身的情况和条件,根据实际需要选择不同的储能装置,以预留多余的风资源,提高稳定性的电力系统,风资源不足时投入使用,实现电能的稳定输出。 对于风力发电系统的储能技术,可根据结构形式的差异对储能技术进行合理分类。具体而言,根据不同的储能结构,储能技术可分为分布式和集中式两种。首先,分布式储能设备安装在风力涡轮机的位置,每台发电机安装储能设备以确保稳定供电。虽然这种方法能够有效提高供电质量和水平,但也存在一些不可避免的缺陷:但是,使用这种技术会增加能源的能量,必须使用先进的转换器和储能装置来满足需求,许多电力公司在这方面不具备条件,这也限制了这项技术的进一步推广。 3.2分布式储能技术的应用。在风力发电系统中,存在直流环节,如果您想使用分布式储能技术,则需要连接直流母线和电容。如果风力不够,可以使用储能设备补充直流母线和直流侧变速器的功率,然后通过变流器传输到电网,从而提高系统的稳定性。如果风电上升,剩余的能源也可以送到直流侧,这些电能可以传输到储能装置,充分利用电能资源。

风电储能电站结构及调控策略

风电储能电站结构及调控策略 摘要:本文针对电力系统供需不平衡问题,在10kV电压等级电网中应用储能技术,满足电力系统调峰的需求。本文叙述了储能电站在大城市电网中的削峰填谷、提升新能源消纳、应急备用功能。并详细介绍了北京电网新投入运行的储能电站 的总体结构、通讯方案及控制策略。 关键词:储能电站结构;控制策略;控制流程 0 引言 目前大城市电网中,通常,白天用电是用电高峰,夜间用电量是低谷。因此,面对不同的用电需求,需要采取相应的电能调节措施,以应对不同时段的用电需求。 为实现电网削峰填谷、提升新能源消纳、应急备用等功能[1-4],北京公司分 别在怀柔、延庆建成两座储能电站,储能电站通过变电站10kV母线并网。 1储能电站调控系统 1.1总体结构 北京公司最新投入使用的储能电站及储能电站调控系统,储能电站调控系统 在基于风电预测功率,在风电峰值区域进行充电,此时间段储能系统充电至满[5-8]。 风储系统由风力发电、储能电站和负荷组成。风力发电向电网输送功率 ,储能 电站向电网输送或吸收功率,二者通过负荷母线合成的功率, 负荷并联于母线并 接入大电网系统运行。 北京电网储能电站调控系统,按照市调、地调两级部署的原则,该系统包括 三部分,分别为市调储能模块、地调储能模块。按照市调、地调两级协同配合的 原则,进行储能电站的运行控制。系统架构如下图所示: 图1 北京电网储能电站调控系统总体架构图 北京电网储能电站调控系统采用分层架构,分为调控主站与控制子站。调控 主站包括市调储能调控模市调模块,实现所有储能电站的集中监视与调度。地调 模块负责所调区域储能电站的监视与调度。市调模块将调度指令下发至地调模块,地调模块执行市调模块指令并转发至控制子站,控制子站接收调度命令并控制各 储能系统。 1.2通讯方案 储能站采用一发双收,对市调D5000与地调同步发送储能站信息。变电站数据、风电实时数据,市调模块通过D5000提供的二次开发接口读取,地调从 D5000获取数据。储能电站调度指令由市调储能模块发出,通过D5000系统下发 怀柔地调,由地调下发到储能站。预测数据经由D5000传送到数据文件路径中, 市调模块与地调模块共同读取。 储能日前、日中计划数据由市调储能模块写入到数据文件路径中,供地调储 能模块读取。 2 控制策略 2.1策略描述

2018年海上风电行业深度研究报告

2018年海上风电行业深度研究报告

目录 1.风电未来空间广阔,机组大功率化是趋势 (4) 1.1全球风电投资和装机稳定增长,未来前景广阔 (5) 1.2风电装机成本不断下降,机组大功率化成趋势 (6) 1.3中国风电装机居世界首位,国内风电占比稳步提升 (8) 2.陆上风电存量消纳仍是主要目标 (9) 2.1全国电力需求稳定增长 (9) 2.2弃风率有所降低,存量消纳仍是主要工作 (9) 2.2.1国家电网多举措促进消纳,弃风率有所改善 (9) 2.2.2预计能源局四季度将核准多条特高压工程以促进消纳 (11) 2.3新增装机规模空间有限,风电建设向中东南部迁移 (12) 2.4配额制促进消纳,竞价政策加速风电平价上网 (14) 2.5陆上风电消纳为主,分散式风电尚在布局 (14) 3.海上风电有望迎来快速发展期 (15) 4.投资建议 (20) 4.1金风科技(002202) (20) 4.2天顺风能(002531) (21) 4.3东方电缆(603606) (21)

图目录 图1:风电行业产业链 (4) 图2:全球清洁能源装机和发电量占比(包含水电) (5) 图3:全球清洁能源和风电投资额(十亿美元)及风电投资占比 (5) 图4:全球风电装机容量(GW)预测及同比增速(右轴) (5) 图5:2010-2017年全球风电装机成本和LCOE变化趋势 (6) 图6:1991-2017年中国新增和累计装机的风电机组平均功率 (6) 图7:2008-2017年全国不同单机容量风电机组新增装机占比 (7) 图8:2011年以来新增风电机组平均风轮直径(m)及增速 (7) 图9:2017年新增风电机组轮毂高度分布 (7) 图10:2017年不同国家新增风电装机份额 (8) 图11:2017年不同国家累计风电装机份额 (8) 图12:风力发电设备容量及占全部发电设备容量的比重 (8) 图13:风力发电量及占全部发电量的比重 (8) 图14:全社会用电量变化趋势 (9) 图15:近年来中国弃风电量(亿千瓦时)及弃风率情况 (10) 图16:国家电网近年来风电并网容量(GW) (10) 图17:国家电网近年来特高压线路长度(万公里) (10) 图18:2010-2017年全国风电新增和累计装机容量(GW) (12) 图19:2017年与2020年底累计风电装机占比变化趋势 (13) 图20:海上风电厂主要组成部分 (16) 图21:截至2017年底我国海上风电制造企业累计装机容量(MW) (17) 图22:截至2017年底我国海上风电开发企业累计装机容量(MW) (18) 图23:截至2017年底我国海上风电不同单机容量机组累计装机容量(万千瓦) (18) 图24:截至2017年底我国沿海各省区海上风电累计装机容量(万千瓦) (19) 表目录 表1:双馈齿轮箱技术和直驱永磁技术比较 (4) 表2:国家电网2017年消纳新能源举措(不完全统计) (11) 表3:2018年以来风电行业相关政策 (11) 表4:拟核准的三条和清洁能源输送相关的特高压工程 (12) 表5:主要政策中关于风电建设规模的表述 (13) 表6:分散式风电发展低于预期的主要原因(不完全统计) (15) 表7:我国海上风资源分类 (16) 表8:2017年我国海上风电制造企业新增装机容量 (17) 表9:2018年以来核准和开工的海上风电项目(不完全统计) (19) 表10:海陆丰革命老区振兴发展近期重大项目之海上风电项目 (20)

未来5年中国风力发电行业发展预测分析

1. 2018-2020年全球风力发电行业发展现状 中投产业研究院发布的《2021-2025年中国风力发电行业深度调研及投资前景预测报告》中显示: 一、2019年 风力发电是可再生能源领域中最成熟、最具规模开发条件和商业化发展前景的发电方式之一,且可利用的风能在全球范围内分布广泛、储量巨大。同时,随着风电相关技术不断成熟、设备不断升级,全球风力发电行业高速发展。 2019年,全球新增风电装机容量超过60GW,同比增长19%,累计装机达到650GW。其中,陆上风电新增装机54.2GW,同比增长17%,累计装机容量达到621GW。海上风电新增装机创纪录地超过6GW,占全球新增装机的10%,累计装机为29.1GW。 图表2015-2019年全球陆上风电和海上风电新增装机 单位:GW 数据来源:全球风能理事会(GWEC) 二、2020年 2020年10月,GWEC(全球风能理事会)认为虽然有新冠疫情的影响,但未来五年的全球风电市场将之后维持快速增长态势。 GWEC预计2020年全球新增风电装机将达到创纪录的71.3GW(原纪录为2015年的63.8GW),相比于年初(新冠疫情之前)的预测,这一数据只下调了6%。而2021年的全球追加装机量将进一步提升至78GW,原因在于2020年受疫情影响被延迟的部分风电项目将在明年完成加装。 2. 2018-2020年中国风力发电行业发展现状分析 中投产业研究院发布的《2021-2025年中国风力发电行业深度调研及投资前景预测报告》中

一、2019年 无论是累计装机容量还是新增装机容量,中国都已经成为世界规模最大的风电市场。根据中国风能协会的统计,截至2019年底,全国风电累计装机容量为2.1亿千瓦,其中陆上风电累计装机2.04亿千瓦、海上风电累计装机593万千瓦,风电装机占全部发电装机的10.4%。 图表2011-2019年中国风电累计装机容量 单位:万千瓦 数据来源:中国风能协会 2019年,全国风电新增并网装机2574万千瓦,其中陆上风电新增装机2376万千瓦、海上风电新增装机198万千瓦。 图表2017-2019年中国风电新增装机容量 单位:万千瓦 数据来源:中国风能协会 从中国近年来的电力能源看,风电已经成为仅次于火电和水电的第三大电力来源。2019年风电发电量为4057亿千瓦时,占全国发电量的5.54%。2010年和2019年中国风电来源构

风电并网中的储能技术研究进展

风电并网中的储能技术研究进展 作者:郑东青辛东昊王立强 来源:《中国电气工程学报》2020年第14期 摘要:本文对风电并网储能技术进行了研究,首先分析目前风电并网的主要问题,然后介绍储能技术,最后分析如何使用电子开关转换系统,改变储能的效果,保证风电并网的稳定性。 关键词:风电并网;储能技术;研究进展;问题 引言:风电系统在输出功率上具有明显的不稳定性,收到风力的影响,往往会存在比较大的波动,严重威胁着电网的稳定。为此,需要合理使用储能技术,配合电子开关转换系统,来发挥储能系统的作用,满足对电网调控的要求。 一、风电并网存在的问题 传统的风电并网普遍存在输出功率不稳定的问题,导致风电并网的安全性和可靠性比较低,会面临能量转换接口动态响应特性等问题。 1.1 运行稳定性问题 风电系统的运行稳定性问题是保证传统电力系统高效运行的基础,对于风电并网的在运行过程中主要出现的若稳定性和强干扰性的问题,是给电力系统稳定性造成威胁的主要不稳定因素。稳定性的保证需要基于负载的动态特性,在运行过程中通过功率的实时平衡来完成,包括系统中的干扰问题,都以这种方式解决。无论是大扰动还是小扰动,对于系统的稳定性都是传统技术性问题,结合相关的专业研究,在风电并网的安全性的运行机制中采用动态控制的防御机制。目前,风电并网的可靠运行主要来自于两点,包括动态有限源控制,对风力系统和相位频率波动进行动态控制;动态无功功率控制,使用电力系统中的电压波动进行抑制,达到动态控制的目的。但是,风电的波动性和不确定性,以及风电所具有的的弱稳定性和弱免疫力是影响风电长途运输的常见影响因素,并且在机电动态尺度的干扰下,很难保证稳定性。 1.2 功率可控性问题 从工程的实际运行角度分析,以实现基础的功率可控性内容作为基础,可以保证对功率可控性,在处理的过程中,通过变化功率,能够保证可控性的问题得到解决。在风力涡轮机发电过程中,有效输出会随着风俗的波动不断产生变化,一般情况下,发电机的旋转动能提供的额定功率输出时间都是用惯性时间常数来表征,如果惯性时间常数比较小,那么其宣传功率也可能比较小,从而在故障期间,系统的频率则会加快。

2018年风电行业深度研究报告

2018年风电行业深度研究报告

核心观点 ?风电需求影响因素及分析框架:风电行业的需求主要受到投资内部收益率 的驱动,而装机容量、上网电价、利用小时数、度电成本及财务压力是影响内部收益率水平的核心边际条件。行业需求需要经过核准、招标和吊装,才能转化为中游制造企业的订单,因此结合总量的视野和边际的变化能够分析出风电行业终端需求的变化趋势,从而根据供需格局分析盈利能力进一步判断投资机会。 ?边际因素变化对需求波动影响:行业从发展初期到成熟期,各影响因素在 周期中呈现出阶段性切换的特征。通过复盘风电装机周期的波动,我们认为:1)风电上网标杆电价下调前一年,通常会面临抢装;2)风电装机增速远高于电网投资及电力需求增速,弃风限电成为制约行业主要发展因素;3)设备制造技术不断升级,2010~2012年风电安全问题将不会再现,同时度电成本不断降低,2020年有望实现平价上网;4)补贴收入回款延迟,对融资能力和偿债能力不足的企业带来较大的现金流压力。 ?需求波动对盈利和股价影响:1)需求周期与盈利的波动呈密切正相关。 2009-2011、2016年行业盈利大幅下滑对应两次装机增速大幅回落,2012~2015年盈利上涨对应期间装机大幅增长;2)从估值角度来看,风电行业估值水平短期受边际变化影响,业绩预期的逐步兑现是行情能够长期的关键,弃风限电成为压制估值重要因素。 ?风电复苏判断依据:1)总量视野下,2017年底核准未建设项目达 114.59GW,2018-2020年新增建设规模分别为28.84GW、26.60GW、 24.31GW,2019年开工即可锁定更高上网电价,2018~2019年大概率抢装 机;2)边际变化下来看,2017年弃风率反转拐点,度电成本处于持续下降通道,企业通过创新金融手段解决财务压力。 ?弃风限电改善驱动及趋势:1)政策重视,弃风限电问题已被提升至重要 高度,我国已出台多项解决弃风限电的政策,从控制增量、增量结构变化、消化存量、增加电力外送通道等多个维度解决弃风问题;2)部分区域移出红色预警意味弃风限电出现明显好转,特高压及装机结构东移有利于进一步优化弃风限电的问题。

风电功率波动平抑效能与储能容量之间关系的分析

2009年中国电机工程学会年会 风电功率波动平抑效能与储能容量之间关系的分析 研究 宇航,张真卿,苑田芬,黄亚峰 (东北电力大学,吉林吉林 132012) The relationships between the efficiency of stabilizing wind power fluctuations and capacity of storage system YU Hang,ZHANG Zhenqing,YUAN Tianfen,HUANG Yanfeng (Northeast Dianli University,Jilin 132012,JilinProvince,China) abstract: This paper takes the relationships between the efficiency of stabilizing wind power fluctuations and capacity of storage system as research objectives while proposing the methods of stabilizing wind power fluctuations and the algorithms of calculating the storage system capacity based on the principles of low-pass filter.Then simulating the process of stabilizing power fluctuations based on the output power data. The simulation results show that stabilizing the short-tem fluctuations in minutes level could reduce the change rate of wind farm output power and the needed storage capacity is smaller, while stabilizing the mid-tem or long-tem fluctuations in hours level could make the waves of output power more stably but the increase amplitude of the needed storage capacity is larger. keywords:storage system;wind power fluctuations;low-pass fliter 摘 要:本文以风电功率波动平抑效能与储能容量之间的关系为研究目标,提出了基于低通滤波原理的风电功率波动储能平抑方法及满足平抑过程能量需求的储能容量算法,根据风电场实际输出功率数据对功率波动平抑过程进行仿真。研究结果表明,滤除风电功率的分钟级短期波动,可明显减小风电场输出功率的变化率,而且所需的储能容量较小,滤除风电功率的小时级甚至一天的中、长期波动,虽然可以使风电场输出功率更加平稳,但所需储能容量增幅很大。 关键字:储能;风功率波动;低通滤波 0 引言 随着能源和环境问题的日益突出,作为一种新型的可再生能源,风力发电具有环境友好、技术成熟、全球可行的特点,越来越受到人们的重视。近年来我国风电得到较快发展,截止到2008年底,装机容量达到892万千瓦,预计在2020年,我国风电累计装机可以达到1亿千瓦。 风电机组输出功率取决于风速,具有不可预期性和波动性。当电网所接纳的风电容量超过一定份额时,风电功率波动将增加电网运行调整负担[1],因此,对于大型风电场往往需要限制其输出功率的波动,如中华人民共和国国家标准化指导性文件GB/Z 19963-2005中对风电场输出功率变化率作出了明确的规定[2]。 在风电场出口处安装储能系统是减小风电场输出功率变化率的理想途径[3-4],当储能系统容量足够大时,可以利用储能系统对风电功率波动进行有效调控,使风电场成为可调度电源。然而,由于储能系统成本往往比较昂贵,实际上只能利用有限容量的储能系统来优化风电场的功率输出,风电场输出功率的可控程度与所配置的储能容量密切相关。因此,分析风电功率波动平抑效能与储能容量之间的关系是风电控制领域前沿的研究课题之一。 本文提出了一种利用储能系统抑制风电功率变化率的方法以及满足平抑过程能量需求的储能容量算法,以某额定容量为50MW的风电场为例,根据其实际输出功率数据对功率波动平抑过程进行仿真,验证该平抑方法的有效性,分析风电功率波动平抑效能与储能容量之间的关系,为风电场通过配置储能系统平抑风电功率波动提供有效的参考。 1 基于低通滤波原理的风电功率波动储能平抑方法 应用储能系统平抑风电功率波动的原理如图1

全球及中国风电行业研究报告-20200619

全球及中国风电行业研究报告

1、全球风电行业概况 世界风能协会(WWEA)发布数据显示,全球风电装机容量持续增长,由2013年318,919MW增长到2019年的650,758MW,年复合增长率为13%。全球风电装机累计容量TOP10如下表所示: 图表2:2014-2019年全球风电机组新增装机容量 数据来源:世界风能协会(WWEA)

图表3:2019年全球风电装机累计容量市场份额分布 图表4:2019年全球风电装机新增容量市场份额分布 数据来源:世界风能协会(WWEA) 2、中国风电行业概况 目前我国风电叶片步入稳定增长阶段,2019年中国新增风电机组装机容量占全球新增装机容量的46%,风电领域玻璃纤维需求存在较大空间。风能成为我国能源市场正在快速发展的重要领域,中国在风电领域已经逐步加大力度投资。

中国《可再生能源发展“十三五”规划》提出,实现2020、2030年非化石能源占一次能源消费比重分别达到15%、20%的能源发展战略目标,加快对化石能源的替代进程,改善可再生能源经济性。 中国风能协会(CWEA)预计,到2020年国内在风力发电领域将投资3,500亿元,其中,20%(即700亿元)左右的领域需要使用玻璃纤维(如风机叶片),这对中国玻璃纤维企业来说是一个很大的市场。玻纤织物约占叶片总成本的20%;而叶片是风电机组最重要的部件之一,约占其总成本的25%。 世界风能协会(WWEA)发布数据显示,中国风电机组累计装机容量由2013年91,412MW增长到2019年的237,029MW,年复合增长率为17%。 图表5:2014-2019年中国风电机组累计及新增装机容量 数据来源:世界风能协会(WWEA) 根据2019年发改委发布的《国家发展改革委关于完善风电上网电价政策的通知》:“2018年底之前核准的陆上风电项目,2020年底前仍未完成并网的,国家不再补贴;2019年1月1日至2020年底前核准的陆上风电项目,2021年底前仍未完成并网的,国家不再补贴。自2021年1月1日开始,新核准的陆上风电项目全面实现平价上网,国家不再补贴。”随着2021年陆上风电平价上网时间节点的临近,政策节点临近驱动产业大规模抢装。因此,2020年风机设备抢装仍将进行,并且2020年将成为抢装高峰,根据国盛证券研究中心预测,2019

风力发电储能技术

风力发电储能技术 根据新能源振兴规划,预计到2020年我国风力装机容量将达到1.5亿kW,将超过电力总装机容量的10%。 从电网运行的现实及大规模开发风电的长远利益考虑,提高风电场输出功率的可控性,是目前风力发电技术的重要发展方向。把风力发电技术引入储能系统,能有效地抑制风电功率波动,平滑输出电压,提高电能质量,是保证风力发电并网运行、促进风能利用的关键技术和主流方式。 按储存能量的形式不同,适合风力发电系统、有应用前景的储能方式主要有飞轮储能、抽水蓄能、液流电池、锂电池、超级电容器、超导、压缩空气储能等几种形式。 飞轮储能 飞轮储能是一种机械储能方式,其基本原理是将电能转化为飞轮转动的动能,并且长期储存起来,需要时再将飞轮转动的动能转换为电能,供给电力用户使用。高强度碳素纤维和玻璃纤维材料、大功率电力电子变流技术、电磁和超导磁悬浮轴承技术促进了储能飞轮的发展。 飞轮储能的功率密度大于5Kw/kg,能量密度大于20kwh/kg,效率大于90%。其优点在于无污染、无噪声、维护简单、可持续工作。飞轮储能主要用于不间断电源、应急电源、电网调峰和频率控制。 目前飞轮储能技术正在向大型机发展,其难点主要集中在转子强度设计、低功耗磁轴承、安全防护等方面。 抽水储能 抽水蓄能是在电力负荷低谷期将水从下池水库抽到上池水库,将电能转化为重力势能储存起来,在电网负荷高峰期释放上池水库的水发电。 抽水蓄能的释放时间可以从几个小时到几天,综合效率在70—85%之间,主要用于电力系统的调峰填谷、调频、调相、紧急事故备用等。抽水蓄能电站的建设受地形制约,当电站距离用电区域较远时输电损耗较大。 液流电池 液流电池或称氧化还原液流蓄电系统,与通常蓄电池的活性物质被包容在固态阳极或阴极之内不同,液流电池的活性物质以液态形式存在,既是电极活性材料又是电解质溶液,它可溶解于分装在两大储液罐的溶液中,由各个泵使溶液流经液流电池,在离子交换膜两侧的电极上分别发生还原和氧化反应。这种电池没有固态反应,不发生电极物质结构形态的改变,与其它常规蓄电池相比,具有明显的优势。 液流电池的储能容量取决于电解液容量和密度,配置上相当灵活只需增大电解液容积和浓度即可增大储能容量,并且可以进行深度充放电。 锂离子蓄电池 锂离子电池与现有的铅酸电池、镍氢电池等电池相比有诸多优点,如无记忆效应、高工作电压、低自放电率、无环境污染性、高能量密度等,在电子消费品领域应用十分普遍。现在国内外都在大力研发新式的储能电池,其中锂离子蓄电池备受关注。

2021风力发电行业研究分析报告

2021年风力发电行业研 究分析报告

目录 1.风力发电行业现状 (4) 1.1风力发电行业定义及产业链分析 (4) 1.2风力发电市场规模分析 (6) 2.风力发电行业前景趋势 (7) 2.1中东部和南方地区陆上风能资源开发加速 (7) 2.2海上风电建设加快 (8) 2.3行业协同整合成为趋势 (8) 2.4生态化建设进一步开放 (9) 2.5需求开拓 (9) 2.6行业发展需突破创新瓶颈 (9) 3.风力发电行业存在的问题 (11) 3.1零部件制造不平衡 (11) 3.2整机制造产能过剩 (11) 3.3技术有缺失、产品质量存隐患 (11) 3.4行业服务无序化 (12) 3.5产业结构调整进展缓慢 (12) 3.6供给不足,产业化程度较低 (13) 4.风力发电行业政策环境分析 (14) 4.1风力发电行业政策环境分析 (14) 4.2风力发电行业经济环境分析 (14)

4.3风力发电行业社会环境分析 (14) 4.4风力发电行业技术环境分析 (15) 5.风力发电行业竞争分析 (16) 5.1风力发电行业竞争分析 (16) 5.1.1对上游议价能力分析 (16) 5.1.2对下游议价能力分析 (16) 5.1.3潜在进入者分析 (17) 5.1.4替代品或替代服务分析 (17) 5.2中国风力发电行业品牌竞争格局分析 (18) 5.3中国风力发电行业竞争强度分析 (18) 6.风力发电产业投资分析 (19) 6.1中国风力发电技术投资趋势分析 (19) 6.2中国风力发电行业投资风险 (19) 6.3中国风力发电行业投资收益 (20)

风力发电系统中储能技术的研究 宋铭磊

风力发电系统中储能技术的研究宋铭磊 发表时间:2017-12-31T10:52:30.137Z 来源:《电力设备》2017年第26期作者:宋铭磊 [导读] 摘要:可再生能源如风电能源和核能是唯一可大规模利用的替代能源。 (国华能源投资有限公司呼伦贝尔分公司内蒙古自治区呼伦贝尔市 021000) 摘要:可再生能源如风电能源和核能是唯一可大规模利用的替代能源。随着现代科技技术的飞速发展,风电新能源作为国家近年来大力发展的项目之一,研究风力发电系统中储能技术具有非常重大的现实意义。本文对风力发电储能技术的主要内容和应用进行概述,主要研究风力发电储能技术的发展。 关键词:可再生能源;风电能源;储能技术 1引言 由于不可再生资源的耗竭,风电新能源如今受到关注。风电作为可再生资源具有环境友好型,可再生等诸多优点使得许多地方对风力发电系统进行研究。但是风力发电系统有一个最大的缺点是具有不稳定不可控性。其来源并不稳定因此对储能技术的要求较高。通过研究风力发电系统中的储能技术来提高风力发电的稳定性和可控性。 2风力发电储能技术概述 风力发电储能技术主要指通过风力转换产生电能并将电能储存起来的技术。按储存能量的形式不同,适合风力发电系统、有应用前景的储能方式主要有飞轮储能、抽水蓄能、超级电容器、超导、压缩空气储能等几种形式。 2.1飞轮储能 飞轮储能是一种机械储能方式,原理是将风力制造的电能转化成飞轮的动能,等到需要时再将飞轮的动能释放出来转化成电能。飞轮储能的功率大于5kw/kg,效率大于90%,其优点在于技术成熟度高、充放电次数无限以及无污染,但飞轮储能的能量密度不够高、自放电率高,如停止充电,能量在几到几十个小时内就会自行耗尽。适用于电网调频和电能质量保障。如今许多技术如高强度碳素纤维,大功率电力电子变流技术,电磁和超导磁悬浮承轴技术等同样能够促进储能技术的发展。 2.2抽水储能 抽水储能是在电力负荷低谷期将水从下池水库抽到上池水库时将电能转化成重力势能储存起来的形式,综合效率在70%到85%之间,应用在电力系统的调峰填谷、调频、调相、紧急事故备用,综合效率在70%到85%之间,应用在电力系统的调峰填谷、调频、调相、紧急事故备用。这种大规模集中型的能量储存技术是比较成熟的,可以用于电网的能量管理和调峰,但厂址选择比较依赖地理条件,难度较高。 2.3超级电容器 根据电化学双电层理论研制而成,又称双电层电容器,两电荷层的距离非常小,采用特殊电极结构,使电极表面积成万倍的增加,从而产生极大的电容量。已知化学电池是通过电化学反应产生正负电荷转移来储存电荷的,而超级电容器的电荷储存在双电层上并在电极表面发生电荷的转移。 超级电容器的优点是寿命长循环次数多,充放电时间快,效率高,运行温度范围广等,且超级电容器的比功率是电池的10倍以上。但超级电容器的电介质耐压较低,制成的电容器一般耐压仅有几伏,储能水平受到耐压的限制,因此储存的能量不大。其能量密度低,投资成本高,有一定的自放电率。 2.4超导储能 超导储能是由一个用超导材料制成的,放在低温容器中的线圈,功率调节系统和低温制冷系统等组成。能量以超导线圈中循环流动的直线电流方式储存在磁场中。这是一种新型的蓄能方式。储能时将风力发电系统中的交流电转变为直流电,激励超导线圈;发电时将直流电转变为交流电输出,将电荷直接接入电力系统。 其优点是由于将电能储存在磁场中,并无能量形式转换,能量的充放电非常快,因此功率密度很高。响应速度极快,可改善配电网的电能质量。但其缺点也很明显,超导材料价格昂贵,维持低温制冷运行需要大量能量,能量密度低,最大的缺陷是市面上虽然已有商业性的低温和高温超导储能材料可用,但因价格昂贵和维护复杂,在电网中应用很少,大多是试验性的。 2.5压缩空气储能 压缩空气储能采用空气作为能量的载体,大型的压缩空气利用过剩电力将空气压缩并储存在一个地下的结构,当需要时再将压缩空气与天然气混合,燃烧膨胀以推动燃气轮机发电。其优点是有调峰功能,适合用于大规模电场,因为风能产生的机械功可以直接驱动压缩机旋转,减少了中间转化成电的环节,从而提高效率。但是其使用地点非常有限,需要很大的空间储存空气;需要燃气轮机配合,并需要一定的燃气做燃料,适用于能量管理,负荷调平和削峰。 综上所述: (1)物理储能方法如飞轮和空气压缩等方式:无污染但储能的能量密度不够。 (2)电磁方法如利用超导物质实现风力资源的储备:功率密度高但是材料昂贵维护复杂。 (3)化学储能方法主要是利用一些蓄电池等方法对电力资源进行储备:这种方式比较合理且运用较广。其保证风力发电后将电力资源储存并合理的处理,其输出的效率较高,电能性能稳定。 3风力发电储能技术的应用 3.1储能设备的接入 在风力发电系统中利用储能技术,增强风力发电的稳定性,可以提高发电效率。在风力发电系统中接入储能设备可以增强风力发电的稳定性,并将成本耗损降至最低。我们在储能设备的接入时要对其进行选择,使其符合风力发电的条件。一般选择条件为实际储存环境和需求。同时风力发电储能技术也能将暂不使用的电能储存起来,在下次有需求时补偿使用。这是一种能量的可循环利用,能提升发电储存系统的稳定性, 我们根据储能技术结构的不同可将储能技术分为分布式储能技术和集中式储能技术。分布式储能技术是将储能设备安装到每一台发动机,以保证发电设备的稳定运行。每一台发电装置有一台储能装置的方法对于风力发电系统稳定运行是非常有好处的。但是其缺点也很明

2018年风电行业市场分析研究报告

2018年风电行业市场分析研究报 告

目录 一、行业概述 (3) 二、行业主管部门、监管体制、主要法律法规及政策 (4) 1. 行业主要监管部门 (4) 2. 行业主要法律法规和相关政策 (5) 三、行业发展情况 (8) 1. 全球风电装机规模发展情况 (8) 2. 全球风电行业概况 (9) 3. 我国风电行业概况 (14) 四、市场竞争格局 (20) 1. 风电市场竞争特点 (20) 2. 行业市场化程度 (21) 五、全球风力发电机组制造商简介 (22) 六、我国风电投资商和运营商简介 (28)

一、行业概述 从进入工业化社会之后,伴随着经济的发展,能源的需求也就不断的增加,而全球能源的来源一直以石化原料为主,即石油、天然气、煤炭等。近年来,因使用这些石化原料造成的温室气体排放,已经严重的改变全球的气候环境,其影响造成北极圈臭氧层的破洞、全球气温的上升、海平面的上升、气候的变化剧烈、以及对动植物生态环境的影响等,有关全球暖化的议题,已成为世人嘱目的焦点,如1997年12月于日本举行的气候变化纲要公约的第三次缔约国大会(COP3)中签署京都议定书(KYOTO PROTOCOL),规范缔约国以个别或共同的方式控制人为排放之温室气体数量以期减少温室效应对全球环境所造成的影响。2007年诺贝尔和平奖由拍摄「不愿面对的真相」环保纪录片的美国前副总统高尔(Albert Arnold "Al" Gore, Jr.)与联合国跨国气候变迁小组 (Intergovernmental Panel on Climate Change)共同获得。此外,由于近年来石油价格的高涨,造成能源成本的大幅提升,加上对于石油供给量是否已达到峰值的考虑,各国纷纷发展替代性能源,以期可降低对于石油能源的依赖性,并同时达到全球国家间对于温室气体排放的要求。目前主要的替代性能源方案,主要有风力、太阳能、水力、地热等,皆属于天然且可再生、无污染的能源,因各国家间客观环境的差异,水力及地热所受到的限制较大,因此风力及太阳能的发展,即成为目前再生能源发展的主流。 风力发电行业属于电力工业链的发电环节,其工作原理和流程是将空气动能首先通过叶轮转化为机械能,再通过发电机将机械能转化为电能,发电机组输出的电能通过升压变电站升压后输送到电网中,电网再将电能送至各用电单位。

风电储能容量优化计算

大型并网风电场储能容量优化方案 2012-08-17 00:00 原文链接 为减少大型并网风电场输出功率不稳定给系统频率造成的较大影响,在Matlab平台中仿真了风电机组输出功率随风速变化的规律,以风电机组输出功率特性函数和风电场风速概率分布函数为基础,提出了一种计算大型风电系统长时间稳定输出所需储能容量的方法,并用实际风电场数据验证了该方法的有效性,以期为风电场设计提供决策参考。 0 引言 风能是一种清洁的可再生能源,风力发电是风能利用的主要形式。风力发电作为一种特殊的电力,其原动力是风。自然界风的变化是很难预测的,风速和风向的变化影响着风力发电机的出力。风力发电机输出功率的不稳定性使风力发电具有许多不同于常规能源发电的特点。大规模风电场并网对系统稳定性[1-2]、电能质量[3-6]的影响不容忽视,如果这些问题得不到适当的处理,不仅会危及负荷端用电,甚至可能导致整个电网崩溃,而且会制约风能的利用,限制风电场的规模。 我国《可再生能源发展“十一五”规划》[7]指出,在“十一五”期间全国将重点建设约30 个10万kW以上的大型发电场和5个百万kW 级风电基地。大型风电并网将对电网运行的稳态频率产生一定影响。风电场优化输出[8]是保证电网频率稳定的重要技术问题。 文献[9]用飞轮储能系统来实现风电机输出功率补偿,具有储能密度大、充放电速度快且无环境污染的优点。 文献[10]仿真研究了串并联型超级电容器储能系统对平滑风力发电系统输出功率的影响,具有高功率密度、高充放电速度、控制简单、转换效率高、无污染等特点。 文献[11]研究了电池储能系统(battery energy storage system,BESS)在改善并网风电场电能质量方面的应用情况,具有快速的功率吞吐率和灵活的4 象限调节能力。 文献[12-14]对超导储能装置(superconducting magnetic energy storage,SMES)在并网型风力发电系统中的应用作了深入研究,发现超导储能系统具有良好的动态特性、4 象限运行能力和无损储能等优势。 储能技术在并网风电场中的应用已被广泛研究,相关学者正努力攻克大容量储能技术,并不断降低单位储能成本。目前,容量为5GW.h 的SMES已通过可行性分析和技术论证[1 5]。不过,按现有的储能方式,即风力发电机始终以最大功率点跟踪(maximum power poi nt tracking,MPPT)方式运行,当负荷较轻(如夜间)时,部分电能被储存,当负荷重且遇到弱风时,储能设备中的能力被转换成电能进行补偿,这时因为电网负荷的波动特性往往并不与风电功率的波动特性一致,仍存在如何合理选取储能容量大小的问题。另一种办法是降额发电,即在正常情况下,风电场不按照最大功率点跟踪的方式运行,而是按最大功率的一定百分比发电,当风力下降或上升时,相应地提升或降低发电能力,以减缓发电量的随机波动。这种方法直接影响了风能利用的效率,大大降低了运营利润,且调节能力有限。

相关文档