文档库 最新最全的文档下载
当前位置:文档库 › 最全的各类遥感影像介绍汇总

最全的各类遥感影像介绍汇总

最全的各类遥感影像介绍汇总
最全的各类遥感影像介绍汇总

各类遥感影像介绍汇总

1 MODIS数据介绍

MODIS遥感数据特点:

MODIS数据是TERRA、AQUA卫星上的中分辨率成象光谱仪获取的数据。MODIS数据主要有三个特点,其一,NASA对MODIS数据实行全世界免费接收的政策(TERRA卫星除MODIS外的其他传感器获取的数据均采取公开有偿接收和有偿使用的政策),这样的数据接收和使用政策对于目前我国大多数科学家来说是不可多得的、廉价并且实用的数据资源;其二,MODIS数据涉及波段范围广(36个波段)、数据分辨率比NOAA-AVHRR 有较大的进展(250米、500米和1000米)(表1:MODIS技术指标表、表2:MODIS 波段分布特征、表3:MODIS波段分布特征-续)。这些数据均对地球科学的综合研究和对陆地、大气和海洋进行分门别类的研究有较高的实用价值;其三,TERRA和AQUA卫星都是太阳同步极轨卫星,TERRA在地方时上午过境,AQUA将在地方时下午过境。TERRA 与AQUA上的MODIS数据在时间更新频率上相配合,加上晚间过境数据,对于接收MODIS 数据来说,可以得到每天最少2次白天和2次黑夜更新数据。这样的数据更新频率,对实时地球观测和应急处理(例如森林和草原火灾监测和救灾)有较大的实用价值。

MODIS技术指标表:

MODIS波段分布和主要应用:

2 中巴资源卫星介绍

中巴地球资源卫星是1988年中国和巴西两国政府联合议定书批准,由中、巴两国共同投资,联合研制的卫星(代号CBERS)。1999年10月14日,中巴地球资源卫星01星(CBERS-01)成功发射,在轨运行3年10个月;02星(CBERS-02)于2003年10月21日发射升空,目前仍在轨运行。

2004年中巴两国正式签署补充合作协议,启动资源02B星研制工作。2007年9月19日,卫星在中国太原卫星发射中心发射,并成功入轨,2007年9月22日首次获取了对地观测图像。此后两个多月时间里,有关单位完成了卫星平台在轨测试、有效载荷的在轨测试和状态调整及数据应用评价等工作,正式交付用户使用。2007年10月29日,国防科工委与国土资源部签署协议,国土资源部成为资源02B星的主用户。

02B星是具有高、中、低三种空间分辨率的对地观测卫星,搭载的2.36米分辨率的HR相机改变了国外高分辨率卫星数据长期垄断国内市场的局面,在国土资源、城市规划、环境监测、减灾防灾、农业、林业、水利等众多领域发挥重要作用。02B星的应用在国际上也产生了广泛的影响,2007年5月,我国政府以资源系列卫星加入国际空间及重大灾害宪章机制,承担为全球重大灾害提供监测服务的义务;2007年11月在南非召开的国际对地观测组织会议上,中国政府代表宣布与非洲共享资源卫星数据,反响热烈。

CBERS-1/02星特性

。。。。。轨道:太阳同步回归冻结轨道

。。。。。平均高度:778公里

。。。。。降交点地方时:10:30

。。。。。回归周期:26天

。。。。。平均节点周期:100.26 分钟

。。。。。每日圈数:14+9/26

。。。。。相邻轨道间距离:107.4公里

。。。。。相邻轨道间隔时间:3天

CBERS-1/02星有效载荷

三种传感器:

。。。。。☆电荷耦合器件摄像机(CCD)

。。。。。☆红外多光谱扫描仪(IRMSS)

。。。。。☆宽视场相机(WFI)

。。。。。高密度数字磁记录仪(HDDR)

。。。。。数据采集系统(DCS)

。。。。。空间环境监测系统(SEM)

。。。。。数据传输系统(DTS)

CCD相机(CCD)

CCD相机在星下点的空间分辨率为19.5米,扫描幅宽为113公里。它在可见、近红外光谱范围内有4个波段和1个全色波段。具有侧视功能,侧视范围为±32°。相机带有内定标系统。

红外多光谱扫描仪(IRMSS)

红外多光谱扫描仪(IRMSS)有1个全色波段、2个短波红外波段和1个热红外波段,扫描幅宽为119.5公里。可见光、短波红外波段的空间分辨率为78米,热红外波段的空间分辨率为156米。IRMSS带有内定标系统和太阳定标系统。

宽视场成像仪(WFI)

宽视场成像仪(WFI)有1个可见光波段、1个近红外波段,星下点的可见分辨率为258米,扫描幅宽为890公里。由于这种传感器具有较宽的扫描能力,因此,它可以在很短的时间内获得高重复率的地面覆盖。WFI星上定标系统包括一个漫反射窗口,可进行相对辐射定标。

表1给出了这三种遥感器的一些基本特征参数。

下表是资源一号卫星传感器的基本参数:

高密度磁记录器

除了上述三种遥感器外,资源一号卫星在星上还配有一台高密度磁记录器,用以记录所需地区的CCD相机观测数据,待卫星进入地面站接收范围内,再将记录数据进行回放,并由地面站进行接收。星上高密度磁记录器的主要技术指标为:

记录/重放码速率为53Mb/s;误码率≤1×10-6;记录/重放时间均不小于15分钟。

02B星有效载荷及性能指标

3 Landsat7卫星的TM/ETM+数据介绍

LANDSAT是美国陆地探测卫星系统。从1972年开始发射第一颗卫星LANDSAT 1,到目前最新的LANDSAT 7。

LANDSAT 7 卫星于99年发射,装备有Enhanced Thematic Mapper Plus(ETM+)设备,ETM+被动感应地表反射的太阳辐射和散发的热辐射,有8个波段的感应器,覆盖了从红外到可见光的不同波长范围。ETM+比起在LANDSAT 4、5上面装备的Thematic Mapper(TM)设备在红外波段的分辨率更高,因此有更高的准确性。

Landset卫星介绍:

LANDSAT 7 的一些总体数据:

一、波段介绍

1.TM1 0.45-0.52um,蓝波段

对水体穿透强, 该波段位于水体衰减系数最小,散射最弱的部位(0.45—0.55um),

对水体的穿透力最大,可获得更多水下信息,用于判断水深,浅海水下地形,水体浑浊度,沿岸水,地表水等;

能够反射浅水水下特征,区分土壤和植被、编制森林类型图、区分人造地物类型,分析土地利用。

对叶绿素与叶色素反映敏感,有助于判别水深及水中叶绿素分布以及水中是否有水华等。

2.TM2 0.52-0.60um,绿波段

对植物的绿反射敏感该波段位于健康绿色植物的绿色反射率(0.54—-0.55um)附近;

对健康茂盛植物的反射敏感,

主要观测植被在绿波段中的反射峰值,这一波段位于叶绿素的两个吸收带之间,利用这一波段增强鉴别植被的能力

对绿的穿透力强,

探测健康植被绿色反射率,按绿峰反射评价植物的生活状况,区分林型,树种,植被类型和评估作物长势

对水体有一定的穿透力,可反映水下特征,水体浑浊度,水下地形,沙洲,沿岸沙地等。.

可区分人造地物类型,

3.TM3 0.62-0.69um ,红波段

对水中悬浮泥沙反映敏感。该波段位于含沙浓度不同的水体辐射峰值

(0.58—-0.68um)附近,对水中悬浮泥沙反映敏感。

叶绿素的主要吸收波段,

能增强植被覆盖与无植被覆盖之间的反差,亦能增强同类植被的反差,反映不同植物叶绿素吸收,植物健康状况,用于区分植物种类与植物覆盖率,

测量植物绿色素吸收率,并以此进行植物分类;

此外其信息量大,广泛用于对裸露地表,植被,岩性,地层,构造,地貌等为可见光最佳波段;

可区分人造地物类型

4 .TM4 0.76-0.96UM 近红外波段,

对绿色植物类别差异最敏感,为植物通用波段,用于牧师调查,作物长势测量,

处于水体强吸收区,水体轮廓清晰,用于勾勒水体,绘制水体边界、探测水中生物的含量和土壤湿度;

区分土壤湿度及寻找地下水,识别与水有关的地质构造,地貌,土壤,岩石类型等均有利。

测量生物量和作物长势,区分植被类型,

用来增强土壤-农作物与陆地-水域之间的反差。

5.TM5 1.55-1.75UM,中红外波段,

该波段位于水的吸收带(1.4—-1.9um)之间,受两个吸收带的影响,反映植物和土壤水分含量敏感。

探测植物含水量和土壤湿度,

区别雪和云:

适合庄稼缺水现象的探测

作物长势分析,从而提高了区分不同作用长势的能力.

6.TM6 1.04-1.25UM热红外波段,

相当于亮度、绿度、热度和湿度。在TM7个波段光谱图像中,一般第5个波段包含的地物信息最丰富。3个可见光波段(即第1、2、3波段)之间,两个中红外波段(即第4、7波段)之间相关性很高,表明这些波段的信息中有相当大的重复性或者冗余性。第4、6波段较特殊,尤其是第4波段与其他波段的相关性得很低,表明这个波段信息有很大的独立性。计算各种组合的熵值的结果表明,由一个可见光波段、一个中红外波段及第4波段组合而成的彩色合成图像一般具有最丰富的地物信息,其中又常以4,5,3或4,5,1波段的组合为最佳。第7波段只是在探测森林火灾、岩矿蚀变带及土壤粘土矿物类型等方面有特殊的作用。最佳波段组合选出后,要想得到最佳彩色合成图像,还必须考虑赋色问题。人眼最敏感的颜色是绿色,其次是红色、蓝色。因此,应将绿色赋予方差最大的波段。按此原则,采取4、5、3波段分别赋红、绿、蓝色合成的图像,色彩反差明显,层次丰富,而且各类地物的色彩显示规律与常规合成片相似,符合过去常规片的目视判读习惯。例如把4、5两波段的赋色对调一下,即5、4、3分别赋予红、绿、蓝色,则获得近似自然彩色合成图像,适合于非遥感应用专业人员使用。

741:波段组合图像具有兼容中红外、近红外及可见光波段信息的优势,图面色彩丰富,层次感好,具有极为丰富的地质信息和地表环境信息;而且清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚,不同类型的岩石区边界清晰,岩石地层单元的边界、特殊岩性的展布以及火山机构也显示清楚。

742:1992年,完成了桂东南金银矿成矿区遥感地质综合解译,利用1:10万TM7、4、2假彩色合成片进行解译,共解译出线性构造1615条,环形影像481处, 并在总结了构造蚀变岩型、石英脉型、火山岩型典型矿床的遥感影像特征及成矿模式的基础上,对全区进厅成矿预测,圈定金银A类成矿远景区2处,B 类4处,C类5处。为该区优选找矿靶区提供遥感依据。

743:我国利用美国的陆地卫星专题制图仪图像成功地监测了大兴安岭林火及灾后变化。这是因为TM7波段(2.08-2.35微米)对温度变化敏感;TM4、TM3波段则分别属于红外光、红光区,能反映植被的最佳波段,并有减少烟雾影响的功能;同时TM7、TM4、TM3(分别赋予红、绿、蓝色)的彩色合成图的色调接近自然彩色,故可通过TM743彩色合成图的分析来指挥林火蔓延与控制和灾后林木的恢复状况。

754:对不同时期湖泊水位的变化,也可采用不同波段,如用陆地卫星MSS7,MSS5,MSS4合成的标准假彩色图像中的蓝色、深蓝色等不同层次的颜色得以区别。从而可用作分析湖泊水位变化的地理规律。

541:XX开发区砂石矿遥感调查是通过对陆地卫星TM最佳波段组fefee7合的选择(TM5、TM4、TM1)以及航空、航天多种遥感资料的解译分析进行的,在初步解译查明调查区第四系地貌。例如把4、5两波段的赋色对调一下,即5、4、3分别赋予红、绿、蓝色,则获得近似自然彩色合成图像,适合于非遥感应用专业人员使用。

4 高分辨率Quickbird遥感卫星数据介绍

一数据介绍

QuickBird卫星于2001年10月由美国DigitalGlobe公司发射,是目前世界上最先提供亚米级分辨率的商业卫星,具有引领行业的地理定位精度,海量星上存储,单景影像比同时期其他的商业高分辨率卫星高出2—10倍。而且QuickBird卫星系统每年能采集七千五百万平方公里的卫星影像数据,存档数据以很高的速度递增。在中国境内每天至少有2至3个过境轨道,有存档数据约500万平方公里。其卫星数据参数见表:

二主要特征

Quickbird数据有两个特点:一是空间分辨率最高达亚米级,能满足1:3000以下的制图精度,对判译地物类型非常有利;二是其波段设置与自然真彩色接近,采用对应的R (band3)、G(band2)、B(band1)组合,即可制作出反映地表真实景观的真彩色遥感影像,对通过影像色彩及纹理进行地物的判译和分析非常有帮助。但该数据缺乏热红外波段,无法反映地面的热异常信息。

5 ASTER卫星遥感图像介绍

一数据介绍

ASTER是美国与日本合作研制的、安装在Terra卫星上的光学传感器,包括了可见光到热红外共14个光谱通道,可以为地球环境、资源研究提供遥感影像。其主要参数如下:

(1)Terra卫星的主要参数

●轨道:太阳同步,降交点时刻为10:30am;

●卫星高度:705Km;

●轨道倾角:98.2±0.15°;

●重复周期:16天(绕地球233圈/16天);

●在赤道上相邻轨道之间的距离:172Km。

(2)ASTER传感器

ASTER传感器有3个谱段:

①可见光近红外(VNIR)

●波长:见表3-2。3个波段向星下,及一个后视单波段(可用于立体像

象对观测);

●空间分辨率:15m;

●辐射分辨率:NEΔρ≤0.5%;

●绝对辐射精度:±4% ;

●立体成像后视角:27.6°;

●侧视角:±24°(垂直轨道方向);

●瞬时视场:21.3μrad(天底方向);18.6μrad(后视方向);

●立体成像基高比:0.6;

●探测器:5000像元(任意时刻实际使用为4100像元);

●扫描周期:2.2msce;

● MTF:〉0.25(横轨方向);〉0.25(沿轨方向)。

ASTER卫星数据可见光近红外波段范围

②短波红外(SWIR)

●波长:6个波段,1.60~2.43μm,见表3-3;

●空间分辨率:30m;

●辐射分辨率:NEΔρ≤0.5~1.5%;

●绝对辐射精度:±4%;

●侧视角:±8.55°(垂直轨道方向);

●瞬时视场:42.6μrad;

●探测器:2048像元/band;

●扫描周期:4.398msec;

● MTF:〉0.25(横轨方向),〉0.20(沿轨方向)。

ASTER卫星数据短波红外波段范围

③热红外(TIR)

●波长:5波段,8.125~11.65μm,见表3-4;

●空间分辨率:90m;

●辐射分辨率:NEΔT≤0.3K;

●侧视角:±8.55°(垂直轨道方向);

●瞬时视场:127.8μrad;

●探测器:10像元/band;

●扫描周期:2.2msec;

● MTF:〉0.25(横轨方向),〉0.20(沿轨方向)。

ASTER卫星数据热红外波段范围

二数据特征

●可以获取可见光到热红外谱段的地表影像数据;

●光学传感器各波段拥有较高的几何分辨率和辐射分辨率;

●在单条轨上可以获取近红外立体影像数据。

三应用范围

1)研究领域

陆地

关注和监测活火山的活动规律;

监测海岸线的侵蚀和下沉状况;

热带雨林地区的植被监测;

海水以及陆上水域

绘制、建立大西洋西部海域珊瑚、暗礁的数据库;

分析沿海地带的海平面温度变化;

极地雪川、冰河以及云量的研究

2)应用领域

农业、森林以及大农场

蔬菜、谷物、树木以及牧场的分类

农作物估产

森林培育

土壤质量调查

森林以及平原火灾的调查

野生物生活环境的调查

土地使用和地形图的制作

土地使用状况分类

跟踪城市发展动态

监测地区发展方案

交通和运输路线调查

近海和近河地区的洪水监测

地质特征

地质特征分类

岩石记述学

岩石和土壤的界定

火山分布状况调查

水资源

海岸线侵蚀调查

石油泄漏以及其它污染的调查

大气环境监测

水污染监测

土壤污染分布调查

能源以及其它一些化学工厂分布状况调查

6 高分辨率GeoEye卫星数据介绍

一数据介绍

世界上规模最大的商业卫星遥感公司美国GeoEye,已于2008年9月6日成功发射了迄今技术最先进、分辨率最高的商业对地成像卫星——GeoEye-1。该卫星具有分辨率最高、测图能力极强、重访周期极短的特点,已为全球广大用户所关注。GeoEye-1高分辨率卫星影像应用前景广阔,在实现大面积成图项目、细微地物的解译与判读等方面优势突出。

GoogleEarth上部分城市已经有GeoEye数据,下图是在GE上截取的乌兰察布市新区广场。

二数据特点

?真正的半米卫星:全色影像分辨率0.41米,多光谱影像分辨率1.65米,定位精度达到3米

?大规模测图能力:每天采集近70万平方公里的全色影像数据或近35万平方公里的全色融合影像数据

?重访周期短:3天(或更短)时间内重访地球任一点进行观测

GeoEye-1影像参数

GeoEye-1技术参数

WorldView-I卫星

发射后在很长一段时间内被认为是全球分辨率最高、响应最敏捷的商业成像卫星。该卫星将运行在高度450公里、倾角980、周期93.4min的太阳同步轨道上,平均重访周期为 1.7天,星载大容量全色成像系统每天能够拍摄多达50万平方公里的0.5米分辨率图像。卫星还将具备现代化的地理定位精度能力和极佳的响应能力,能够快速瞄准要拍摄的目标和有效地进行同轨立体成像。来源:QQ电子网https://www.wendangku.net/doc/ee8535658.html,

WorldView-II卫星

于2009年10月6日发射升空,运行在770km高的太阳同步轨道上,能够提供0.5米全色图像和1.8米分辨率的多光谱图像。该卫星将使Digitalglobe公司能够为世界各地的商业用户提供满足其需要的高性能图像产品。星载多光谱遥感器不仅将具有4个业内标准谱段(红、绿、蓝、近红外),还将包括四个额外(海岸、黄、红边和近红外2)。多样性的谱段将为用户提供进行精确变化检测和制图的能力,由于WorldView卫星对指令的响应速度更快,因此图像的周转时间(从下达成像指令到接收到图像所需的时间)仅为几个小时而不是几天。

WorldV iew-II卫星参数:

新增波段:海岸波段、黄色波段、红边波段、近红外2波段分辨率:50厘米(0.5米)扫描宽度:最低16.4公里

侧摆:300公里仅需9秒

采集量:97.5万公里/天

平均回访速度:1.1天

WorldV iew-II卫星特点:

1.更灵活的运转

WorldView-1和WorldView-2卫星是全球第一批使用了控制力矩陀螺(CMGs)的商业卫星。这项高性能技术可以提供多达10倍以上的加速度的姿态控制操作,从而可以更精确的瞄准和扫描目标。卫星的旋转速度可从60秒减少至9秒,覆盖面积达300公里。所以,WorldView-2卫星能够更快速、更准确的从一个目标转向另一个目标,同时也能进行多个目标地点的拍摄。

2.更高容量更快回访

WorldView-2卫星能非常灵活运转,它在太空中的角色就像一个神奇的画笔,能灵活的前后扫描、拍摄大面积的区域,能在单次操作中完成多频谱影像的扫描。WorldView-2卫星独有的大容量系统,能达到每日采集一百万平方公里的数据采集量。而卫星集群可以保证每日近二百万平方公里的数据采集量。WorldView-2卫星无与伦比的灵活性能在1.1天内二次访问同一地点。如果算上卫星集群,甚至能实现在一天之内二次访问同一地点。由此可以为用户提供同一地点,同一天内的高清晰商业卫星集群影像。

3.更精确的拍摄

WorldView-2卫星先进的地理位置技术,在扫描的精确度上有了非常大的进步。其精确度已经达到了6.5米CE90,这是没有经过处理,没有地面控制,也没有高程模型的数据。目前,就WorldView-1和预期中的WorldView-2卫星而言,精确度可以达到超乎想象的4.1米CE90。

4.多波段高清晰影像

WorldView-2卫星能提供独有的8波段高清晰商业卫星影像。除了四个常见的波段外(蓝色波段:450-510;绿色波段:510-580;红色波段:630-690;近红外线波段:770-895),WorldView-2卫星还能提供以下新的彩色波段的分析:

(1)海岸波段(400-450)这个波段支持植物鉴定和分析,也支持基于叶绿素和渗水的规格参数表的深海探测研究。由于该波段经常受到大气散射的影响,已经应用于大气层纠正技术。

(2)黄色波段(585—625)过去经常被说成是yellow-ness特征指标,是重要的植物应用波段。该波段将被作为辅助纠正真色度的波段,以符合人类视觉的欣赏习惯。

(3)红色边缘波段(7055-745)辅助分析有关植物生长情况,可以直接反映出植物健康状况有关信息。

(4)近红外2 波段(860-1040)这个波段部分重叠在NIR 1波段上,但较少受到大气层的影响。该波段支持植物分析和单位面积内生物数量的研究。

WorldView特点说明总结:

1. 采集能力提高

2. 8个多光谱波段提高了分析能力

3. 机动灵活性增强

4. 高效大面积采集

5. 重访周期缩短

6. 访问时间延长

7. 采用新的地面系统

8. 采集计划响应时间缩短

9. 生产时间缩短

10.采用精度转换系统提高产品精度

8 IKONOS卫星简介

IKONOS(伊科诺斯)卫星于1999年9月24日发射成功,是世界上第一颗提供高分辨率卫星影像的商业遥感卫星。IKONOS卫星的成功发射不仅实现了提供高清晰度且分辨率达1米的卫星影像,而且开拓了一个新的更快捷,更经济获得最新基础地理信息的途径,更是创立了崭新的商业化卫星影像的标准。

IKONOS是可采集1米分辨率全色和4米分辨率多光谱影像的商业卫星,同时全色和多光谱影像可融合成1米分辨率的彩色影像。时至今日IKONOS 已采集超过2.5亿平方公里涉及每个大洲的影像,许多影像被中央和地方政府广泛用于国家防御,军队制图,海空运输等领域。从681千米高度的轨道上,IKONOS的重访周期为3天,并且可从卫星直接向全球12地面站地传输数据。

? IKONOS 基本参数

发射日期1999 年9 月24 日

发射平台雅典娜II

发射地点美国加利福尼亚范登堡空军基地

卫星制造商洛克希德马丁(LOCKHEED MARTIN) 公司

传输及数据处理系统制造商雷神(RAYTHEON) 公司

光学系统制造商柯达(KODAK) 公司

轨道高度681 千米

轨道倾角98.1 度

常见国产卫星遥感影像数据的简介

北京揽宇方圆信息技术有限公司 常见国产卫星遥感影像数据的简介 本文介绍了常见国产卫星数据的简介、数据时间、传感器类型、分辨率等情况。 中国资源卫星应用中心产品级别说明 ◆1A级和1C级产品均为相对辐射校正产品,只是不同卫星选用的生产参数不同。 ◆2级,2A级和2C级产品均为系统几何校正产品,只是不同卫星选用的生产参数不同。 其中: ■GF-1卫星和ZY3卫星归档产品为1A级,ZY1-02C卫星数据归档产品级别为1C级,其他卫星归档级别为2级! ◆归档产品是指:该类产品已经存在于系统中,仅需要从存储系统中迁移出来.即可供用户下载的数据。 ◆生产产品是指:该类产品不是已经存在的产品,需要对原始数据产品进行生产,然后再提供给用户下载的数据。

■当用户需要的产品级别是上述归档的级别,直接选择相应的产品级别,然后查询即可! ■当用户需要的产品级别不是上述归档的级别,就需要进行生产.本系统提供GF-1卫星和ZY3卫星2A级的生产产品,ZY1-02C卫星2C级的生产产品,在选择需要的级别查询后,无论有没有数据,在查询结果页上方有一个“查询0级景”按钮,点击此按钮后,进行数据查询,如果有数据,选择需要的产品直接订购,即可选择需要的产品级别。 国产卫星 一、GF-3(高分3号) 1.简介 2016年8月10日6时55分,高分三号卫星在太原卫星发射中心用长征四号丙运载火箭成功发射升空。 高分三号卫星是中国高分专项工程的一颗遥感卫星,为1米分辨率雷达遥感卫星,也是中国首颗分辨率达到1米的C频段多极化合成孔径雷达(SAR)成像卫星,由中国航天科技集团公司研制。 2.数据时间 2016年8月10日-现在 3.传感器 SAR:1米 二、ZY3-02(资源三号02星) 1.简介 资源三号02星(ZY3-02)于2016年5月30日11时17分,在我国在太原卫星发射中心用长征四号乙运载火箭成功将资源三号02星发射升空。这将是我国首次实现自主民用立体测绘双星组网运行,形成业务观测星座,

SPOT卫星遥感影像数据基本参数

SPOT5遥感卫星基本参数 北京揽宇方圆信息技术有限公司 前言: 遥感传感器是获取遥感数据的关键设备,由于设计和获取数据的特点不同,传感器的种类也就繁多,就其基本结构原理来看,目前遥感中使用的传感器大体上可分为如下一些类型:(1)摄影类型的传感器; (2)扫描成像类型的传感器; (3)雷达成像类型的传感器; (4)非图像类型的传感器。 无论哪种类型遥感传感器,它们都由如下图所示的基本部分组成: 1、收集器:收集地物辐射来的能量。具体的元件如透镜组、反射镜组、天线等。 2、探测器:将收集的辐射能转变成化学能或电能。具体的无器件如感光胶片、光电管、光敏和热敏探测元件、共振腔谐振器等。 3、处理器:对收集的信号进行处理。如显影、定影、信号放大、变换、校正和编码等。具体的处理器类型有摄影处理装置和电子处理装置。 4、输出器:输出获取的数据。输出器类型有扫描晒像仪、阴极射线管、电视显像管、磁带记录仪、XY彩色喷笔记录仪等等。 虽然不同卫星的基本组成部分是相同的,但是由于,各个组成部分的具体构造的精细度又是不同的,的,所以不同的卫星具有不同的分辨率。 一、法国SPOT卫星 法国SPOT-4卫星轨道参数: 轨道高度:832公里 轨道倾角:98.721o 轨道周期:101.469分/圈 重复周期:369圈/26天 降交点时间:上午10:30分 扫描带宽度:60 公里 两侧侧视:+/-27o 扫描带宽:950公里 波谱范围: 多光谱XI B1 0.50 – 0.59um 20米分辨率B2 0.61 – 0.68um B3 0.78 – 0.89um SWIR 1.58 – 1.75um

遥感影像的分类处理

摘要 在面向对象的影像分类方法中,首先需要将遥感影像分割成有意义的影像对象集合,进而在影像对象的基础上进行特征提取和分类。本文针对面向对象影像分类思想的关键环节展开讨论和研究,(1) 采用基于改进分水岭变换的多尺度分割算法对高分辨率遥感影像进行分割。构建了基于高斯尺度金字塔的多尺度视觉单词,并且通过实验证明其表达能力优于经典的词包表示。最后,在词包表示的基础上,利用概率潜在语义分析方法对同义词和多义词较强的鉴别能力对影像对象进行分析,找出其最可能属于的主题或类别,进而完成影像的分类。 近些年来,随着航空航天平台与传感器技术的高速发展,获取的遥感影像的分辨率越来越高。高分辨率遥感影像在各行业部门的应用也越来越广泛,除了传统的国土资源、地质调查和测绘测量等部门,还涉及到城市规划、交通旅游和环境生态等领域,极大地拓展了遥感影像的应用范围。因此,对高分辨率遥感影像的处理分析成为备受关注的领域之一。高分辨率遥感影像包括以下三种形式:高空间分辨率(获取影像的空间分辨率从以前的几十米提高到1 至5 米,甚至更高);高光谱分辨率(电磁波谱被不断细分,获取遥感数据的波段数从几十个到数百个);高时间分辨率(遥感卫星的回访周期不断缩短,在部分区域甚至可以连续观测)。本文所要研究的高分辨率遥感影像均是指“高空间分辨率”影像。 相对于中低分辨率的遥感数据,高空间分辨率遥感影像具有更加丰富的空间结构、几何纹理及拓扑关系等信息,对认知地物目标的属性特征更加方便,如光谱、形状、纹理、结构和层次等。另外,高分辨率遥感影像有效减弱了混合像元的影响,并且能够在较小的空间尺度下反映地物特征的细节变化,为实现更高精度的地物识别和分类提供了可能。 然而,传统的遥感影像分析方法主要基于“像元”进行,它处于图像工程中的“图像处理”阶段(见图1-1),已然不能满足当今遥感数据发展的需求。基于“像元”的高分辨率遥感影像分类更多地依赖光谱特征,而忽视影像的纹理、形状、上下文和结构等重要的空间特征,因此,分类结果会产生很严重的“椒盐(salt and pepper)现象”,从而影响到分类的精度。虽然国内外的很多研究人员针对以上缺陷提出了很多新的方法,如支持向量机(Support Vector Machine,SVM) 、纹理聚类、分层聚类(Hierarchical Clustering) 、神经网络(Neural Network, NN)等,但仅依靠光谱特征的基于像元的方法很难取得更好的分类结果。基于“像元”的传统分类方法还有着另一个局限:无法很好的描述和应用地物目标的尺度特征,而多尺度特征正是遥感信息的基本属性之一。由于在不同的空间尺度上,同样的地表空间格局与过程会表现出明显的差异,因此,在单一尺度下对遥感影像进行分析和识别是不全面的。为了得到更好的分类结果,需要充分考虑多尺度特征。 针对以上问题,面向对象的处理方法应运而生,并且逐渐成为高空间分辨率遥感影像分析和识别的新途径。所谓“面向对象”,即影像分析的最小单元不再是传统的单个像元,而是由特定像元组成的有意义的同质区域,也即“对象”;因此,在对影像分析和识别的过程

常用的遥感卫星影像数据有哪些

北京揽宇方圆信息技术有限公司 常用的遥感卫星影像数据有哪些 公司拥有WorldView、QuickBird、IKONOS、GeoEye、SPOT、高分一号、资源三号等卫星的代理权,与国内多家遥感影像一级代理商长期合作,能够为客户提供全天候、全覆盖、多分辨率、多尺度的影像产品 WorldView,分辨率0.5米 WorldView卫星系统由两颗(WorldView-I和WorldView-II)卫星组成。WorldView-I全色成像系统每天能够拍摄多达50万平方公里的0.5米分辨率图像,并具备现代化的地理定位精度能力和极佳的响应能力,能够快速瞄准要拍摄的目标和有效地进行同轨立体成像。WorldView-II多光谱遥感器具有8个波段,平均重访周期为一天,每天采集能力达到97.5万平方公里。

QuickBird,分辨率0.61米 QuickBird具有较高的地理定位精度,每年能采集7500万平方公里的卫星影像数据,在中国境内每天至少有2至3个过境轨道,有存档数据约500万平方公里,重访周期为1-6天,每天采集能力达到21万平方公里。 IKONOS,分辨率0.8米 IKONOS卫星是世界上第一颗高分辨率卫星,开启了商业高分辨率卫星的新时代,同时也创立了全新的商业化卫星影像标准。全色影像分辨率达到了0.8米,多光谱影像分辨率4米,平均重访周期3天。

Geoeye,分辨率0.41米 GeoEye-1卫星具有分辨率最高、测图能力极强、重返周期极短的特点。全色影像分辨率达到了0.41米,多光谱影像分辨率1.65米,定位精度达到3米,重访周期2-3天,每天采集能力70万平方公里。

高分辨率遥感卫星介绍

北京揽宇方圆信息技术有限公司 高分辨率遥感卫星有哪些 高分辨率遥感可以以米级甚至亚米级空间分辨率精细观测地球,所获取的高空间分辨率遥感影像可以清楚地表达地物目标的空间结构与表层纹理特征,分辨出地物内部更为精细的组成,地物边缘信息也更加清晰,为有效的地学解译分析提供了条件和基础。随着高分辨率遥感影像资源日益丰富,高分辨率遥感在测绘制图、城市规划、交通、水利、农业、林业、环境资源监测等领域得到了飞速发展。 北京揽宇方圆信息技术有限公司是国内的领先遥感卫星数据机构,而且是整合全球的遥感卫星数据资源,分发不同性能、技术应用上可以互补的多种卫星影像,包括光学、雷达卫星影像、历史遥感影像等各种卫星数据服务,各种专业应用目的的图像处理、解译、顾问服务以及基于卫星影像的各种解决方案等。遥感卫星影像数据贯穿中国1960年至今的所有卫星影像数据,是中国遥感卫星数据资源最多的专业遥感卫星数据服务机构,提供多尺度、多分辨率、全覆盖的遥感卫星影像数据服务,最大限度的保证了遥感影像数据获取的及时性和完整性。 一、卫星类型 (1)光学卫星:worldview1、worldview2、worldview3、worldview4、quickbird、geoeye、ikonos、pleiades、deimos、spot1、kompsat系例、spot2、spot3、spot4、spot5、spot6、spot7、landsat5(tm)、Sentinel-卫星、landsat(etm)、rapideye、alos、kompsat系例卫星、planet卫星、北京二号、高景一号、资源三号、高分一号、高分二号、环境卫星。 (2)雷达卫星:terrasar-x、radarsat-2、alos雷达卫星、高分三号卫星、哨兵卫星 (3)侦查卫星:美国锁眼卫星全系例(1960-1980) 二、卫星分辨率 (1)0.3米:worldview3、worldview4 (2)0.4米:worldview3、worldview2、geoeye、kompsat-3A (3)0.5米:worldview3、worldview2、geoeye、worldview1、pleiades

遥感图像分类方法的国内外研究现状与发展趋势

遥感图像分类方法的国内外研究现状与发展趋势

遥感图像分类方法的研究现状与发展趋势 摘要:遥感在中国已经取得了世界级的成果和发展,被广泛应用于国民经济发展的各个方面,如土地资源调查和管理、农作物估产、地质勘查、海洋环境监测、灾害监测、全球变化研究等,形成了适合中国国情的技术发展和应用推广模式。随着遥感数据获取手段的加强,需要处理的遥感信息量急剧增加。在这种情况下,如何满足应用人员对于大区域遥感资料进行快速处理与分析的要求,正成为遥感信息处理面临的一大难题。这里涉及二个方面,一是遥感图像处理本身技术的开发,二是遥感与地理信息系统的结合,归结起来,最迫切需要解决的问题是如何提高遥感图像分类精度,这是解决大区域资源环境遥感快速调查与制图的关键。 关键词:遥感图像、发展、分类、计算机 一、遥感技术的发展现状 遥感技术正在进入一个能够快速准确地提供多种对地观测海量数据及应用研究的新阶段,它在近一二十年内得到了飞速发展,目前又将达到一个新的高潮。这种发展主要表现在以下4个方面: 1. 多分辨率多遥感平台并存。空间分辨率、时间分辨率及光谱分辨率普遍提高目前,国际上已拥有十几种不同用途的地球观测卫星系统,并拥有全色0.8~5m、多光谱3.3~30m的多种空间分辨率。遥感平台和传感器已从过去的单一型向多样化发展,并能在不同平台

上获得不同空间分辨率、时间分辨率和光谱分辨率的遥感影像。民用遥感影像的空间分辨率达到米级,光谱分辨率达到纳米级,波段数已增加到数十甚至数百个,重复周期达到几天甚至十几个小时。例如,美国的商业卫星ORBVIEW可获取lm空间分辨率的图像,通过任意方向旋转可获得同轨和异轨的高分辨率立体图像;美国EOS卫星上的MOiDIS-N传感器具有35个波段;美国NOAA的一颗卫星每天可对地面同一地区进行两次观测。随着遥感应用领域对高分辨率遥感数据需求的增加及高新技术自身不断的发展,各类遥感分辨率的提高成为普遍发展趋势。 2. 微波遥感、高光谱遥感迅速发展微波遥感技术是近十几年发展起来的具有良好应用前景的主动式探测方法。微波具有穿透性强、不受天气影响的特性,可全天时、全天候工作。微波遥感采用多极化、多波段及多工作模式,形成多级分辨率影像序列,以提供从粗到细的对地观测数据源。成像雷达、激光雷达等的发展,越来越引起人们的关注。例如,美国实施的航天飞机雷达地形测绘计划即采用雷达干涉测量技术,在一架航天飞机上安装了两个雷达天线,对同一地区一次获取两幅图像,然后通过影像精匹配、相位差解算、高程计算等步骤得到被观测地区的高程数据。高光谱遥感的出现和发展是遥感技术的一场革命。它使本来在宽波段遥感中不可探测的物质,在高光谱遥感中能被探测。高光谱遥感的发展,从研制第一代航空成像光谱仪算起已有二十多年的历史,并受到世界各国遥感科学家的普遍关注。但长期以来,高光谱遥感一直处在以航空为基础的研究发展阶段,且主要

高分辨率遥感影像数据一体化测图系统PixelGrid

高分辨率遥感影像数据一体化测图系统PixelGrid 北京四维空间数码科技有限公司 一、概况介绍 高分辨率遥感影像数据一体化测图系统PixelGrid(以下简称“PixelGrid”)是由中国测绘科学研究院自主研发的“十一五”重大科技成果,获得2009年度国家测绘科技进步一等奖。 为将这一重大科技成果实现产业化,2008年开始,由中国测绘科学研究院参股单位北京四维空间数码科技有限公司进行成果转化和产品化,并开展销售。 该软件是我国西部1:5万地形图空白区测图工程以及第二次全国土地调查工程的主力软件, 被誉为国产的“像素工厂”。 PixelGrid以其先进的摄影测量算法、集群分布式并行处理技术、强大的自动化业务化处理能力、高效可靠的作业调度管理方法、友好灵活的用户界面和操作方式,全面实现了对卫星影像数据、航空影像数据以及低空无人机影像数据的快速自动处理,可以完成遥感影像从空中三角测量到各种比例尺的DEM/DSM、DOM等测绘产品的生产任务。 PixelGrid软件主界面。 二、主要特点 PixelGrid系统以现代摄影测量与遥感科学技术理论为基础,融合计算机技术和网络通讯技术,采用基于RFM通用成像模型的大范围遥感影像稀少或无控制区域网平差、基于旋转/缩放不变性特征多影像匹配的高精度航空影像自动空三、基于多基线/多重特征的高精度DEM/DSM自动提取、等高线数据半自动采集及网络分布式编辑、基于地理信息数据库等多源控制信息的高效影像地图制作、基于松散耦合并行服务中间件的集群分布式并行计算等一系列核心关键技术,是中国测绘科学研究院研制的一款类似“像素工厂”(ISTAR PixelFactoryTM)的新一代多源航空航 天遥感数据一体化高效能处理系统。

常见地遥感卫星地介绍及具体全参数

常见的遥感卫星的介绍及具体参数 遥感卫星(remote sensing satellite )用作外层空间遥感平台的人造卫星。用卫星作为平台的遥感技术称为卫星遥感。通常,遥感卫星可在轨道上运行数年。卫星轨道可根据需要来确定。遥感卫星能在规定的时间覆盖整个地球或指定的任何区域,当沿地球同步轨道运行时,它能连续地对地球表面某指定地域进行遥感。所有的遥感卫星都需要有遥感卫星地面站,卫星获得的图像数据通过无线电波传输到地面站,地面站发出指令以控制卫星运行和工作。以下列出较为常见的遥感卫星: 一、Landsat卫星 美国NASA的陆地卫星(Landsat)计划(1975年前称为地球资源技术卫星——ERTS ),从1972年7月23日以来,已发射7颗(第6颗发射失败)。目前Landsat1—4均相继失效,Landsat 5仍在超期运行(从1984年3月1日发射至今)。Landsat 7于1999年4月15日发射升空。其常见的遥感扫描影像类型有MMS影像、TM图像。 (一)、MSS影像 MSS影像为多光谱扫描仪(MultiSpectral Scanner)获取的图像,第一颗至第三颗地球卫星(Landsat)上反光束导管摄像机获取的三个波段摄影相片分别称为第1、2、3波段,多光谱扫描仪有4个波段获取的扫描影像被命名为4、5、6、7波段,两个波段为可见光波段,两个波段为近红外波段,此外,第三颗地球卫星上还供有热红外波段影像,这个影像称为第8波段,但使用不久,就因为一起的问题二关闭了。 表 1 :Landsat上MSS波段参数

(二)、TM影像 TM影像是指美国陆地卫星4~5号专题制图仪(thematic mapper)所获取的多波段扫描影像。 影像空间分辨率除热红外波段为120米外,其余均为30米,像幅185×185公里2。每波段像元数达61662个(TM-6为15422个)。一景TM影像总信息量为230兆字节),约相当于MSS影像的7倍。 因TM影像具较高空间分辨率、波谱分辨率、极为丰富的信息量和较高定位精度,成为20世纪80年代中后期得到世界各国广泛应用的重要的地球资源与环境遥感数据源。能满足有关农、林、水、土、地质、地理、测绘、区域规划、环境监测等专题分析和编制1∶10万或更小比例尺专题图,修测比例尺地图的要求。 表 2 :Landsat上TM波段参数 (三)、ETM 1999年4月15日,美国发射了Landsat-7,它采用了增强-加型专题绘图仪(ETM)遥感器来获取地球表层信息,它与TM的区别在于增加了全色波段,分辨率为15米,并改进了热红外波段影像的分辨率。

专业遥感卫星影像单位介绍

北京揽宇方圆信息技术有限公司 北京揽宇方圆信息技术有限公司是国内的领先遥感卫星数据机构,而且是整合全球的遥感卫星数据资源,分发不同性能、技术应用上可以互补的多种卫星影像,包括光学、雷达卫星影像、历史遥感影像等各种卫星数据服务,各种专业应用目的的图像处理、解译、顾问服务以及基于卫星影像的各种解决方案等。遥感卫星影像数据贯穿中国1960年至今的所有卫星影像数据,是中国遥感卫星数据资源最多的专业遥感卫星数据服务机构,提供多尺度、多分辨率、全覆盖的遥感卫星影像数据服务,最大限度的保证了遥感影像数据获取的及时性和完整性。 优势: 1:北京揽宇方圆国内老牌卫星数据公司,经营时间久,行业口碑相传,1800个行业用户选择的实力见证。 2:北京揽宇方圆遥感数据购买专人数据查询一对一服务,数据查询网址是卫星公司网。 3:北京揽宇方圆拥有大型正版遥感处理软件,遥感数据处理工程师有10年以上遥感处理工作经验,并有国家大型项目工作经验自主卫星数据处理软件著作权,最大限度保持遥感卫星影像处理的真实度。 4:北京揽宇方圆国家高新技术企业,通过ISO900认证的国际质量管理操作体系,无论是遥感卫星品质和遥感数据处理质量,都能得到保障。 5:影像数据官方渠道:所有的卫星数据都是卫星公司授权的原始数据,全球公众数据查询网址公开查询,影像数据质量一目了然,数据反应客观公正实事求是,数据处理技术团队国标规范操作,提供的是行业优质的专业化服务。 6:签定正规合同:影像数据服务付款前,买卖双方须签订服务合同,提供合同相应的正规发票,发票国家税网可以详细查询,有增值税普通发票和增值税专用发票两种发票类型可供选择。以最有效的法律手段来保障您的权益。

IKONOS卫星遥感影像解译数据分辨率是多少

IKONOS卫星遥感影像解译数据分辨率是多少? IKONOS卫星简介 IKONOS为美国DigitalGlobe公司的高分辨率遥感卫星,于1999年09月24日发射,其影像分辨率达0.82米,为全球首颗提供1米以下分辨率的商用光学卫星,揭开了高分辨率卫星影像的时代。--广西善图科技。 IKONOS卫星基本参数

IKONOS卫星影像样片 IKONOS卫星影像 IKONOS卫星影像 卫星遥感数据分类: 一、卫星分辨率 1.0.3米:worldview3、worldview4 2.0.4米:worldview3、worldview2、geoeye、kompsat-3A 3.0.5米:worldview3、worldview2、geoeye、worldview1、pleiades、高景一号 4.0.6米:quickbird、锁眼卫星 5.1米:ikonos、高分二号、kompsat、deimos、北京二号 6.1.5米:spot6、spot7、锁眼卫星 7.2.5米:spot5、alos、资源三号、高分一号(4颗)、高分六号、锁眼卫星 8.5米:spot5、rapideye、锁眼卫星、planet卫星4米

9.10米:spot5、spot4、spot3、spot2、spot1、Sentinel-卫星 10.15米:landsat5(tm)、landsat(etm)、landsat8、高分一号16米 二、卫星类型 1.光学卫星:spot2、spot3、spot4、spot5、spot6、spot7、worldview1、worldview2、worldview3、worldview4、quickbird、geoeye、ikonos、pleiades、deimos、spot1、kompsat系例、landsat5(tm)、Sentinel-卫星、landsat(etm)、rapideye、alos、kompsat系例卫星、planet卫星、高分一号、高分二号、高分六号、北京二号、高景一号、资源三号、环境卫星。 2.雷达卫星:terrasar-x、radarsat-2、alos雷达卫星、高分三号卫星、哨兵卫星 3.侦查卫星:美国锁眼卫星全系例(1960-1980) 4.高光谱类卫星:高分五号、环境小卫星、ASTER卫星、EO-1卫星 三、卫星国籍 1.美国:worldview1、worldview2、worldview3、quickbird、geoeye、ikonos、landsat5(tm)、landsat(etm)、锁眼卫星、planet卫星 2.法国:pleiades、spot1、spot2、spot3、spot4、spot5、spot6 3.中国:高分一号、高分二号、高分六号、高景卫星、北京二号、资源三号等 4.德国:terrasar-x、rapideye 5.加拿大:radarsat-2 四、卫星发射年份 1.1960-1980年:锁眼卫星(0.6米分辨率至10米) 2.1980-1990年:landsat5(tm)、spot1 3.1990-2000年:spot2、spot3、spot4、landsat(etm)、ikonos 4.2000-2010年:quickbird、worldview1、worldview2、spot5、rapideye、radarsat-2、alos 5.2010-至今:高分一号、高分二号、高分三、高分四、高分五、高分六号、高分七、spot6、spot7、资源三号、worldview3、worldview4、pleiades、高景卫星、planet卫星

卫星全色和多光谱模式介绍

QuickBird卫星全色和多光谱模式 时间:2009-08-24 众所周知,遥感是使用各种传感器远距离探测目标所辐射、反射或散射的电磁波,经加工处理变成能够识别和分析的图像和信号,以获取目标性质和状态信息的综合技术。 遥感根据获取目标的手段不同可分为狭义遥感和广义遥感。 狭义遥感以电磁辐射为感测对象,而广义遥感还包括磁力、重力等地球物理的测量和属于地球物理测量范畴的地震波、声波等弹性波。 我们通常所说的遥感概念则专指以电磁辐射为特征的狭义遥感。不同的目标物受到太阳或其他辐射源的电磁辐射时,它们所特有的反射、发射、透射、吸收电磁辐射的性质是不同的。通过获取目标物对电磁辐射的显示特征,可识别目标的属性和状态。所以传感器谱段的设置与目标物的光谱特性有着密切的关系。 目前世界上用于卫星遥感的传感器有两大类:光学遥感和微波遥感。 光学遥感: 光学遥感指利用光学设备探测和记录被测物体辐射、反射和散射的相应谱段电磁波,并分析、研究其特性及变化的技术。 光学遥感覆盖了红外、可见光和紫外三个谱段,常用的有以下三种: 可见光遥感: 其工作波长为0.4~0.76微米,一般采用感光胶片或光电探测器作为感测元件,属于摄影成像遥感。它主要使用可见光远摄镜头照相和可变焦距电视摄像等,感测的是目标及背景反射或自身发出的可见光,记录的信息或拍摄的图像是物体反射光或发光强度的空间分布。可见光遥感是光学遥感中历史最长的一种,是对地观测和军事侦察的主要手段之一。摄影成像的分辨率(G)很高,可以近似地表示为: G=f×R/H 其中f为镜头焦距,R为镜头与底片的综合分辨率,H为高度(或距离)。 红外遥感器: 主要包括红外扫描仪、红外辐射仪等。红外遥感通过探测红外辐射获取目标和背景的辐射温度或热成像。其探测能力取决于目标、背景与周围环境的温度差。红外遥感的最大优点是可获取无光照或薄云下目标和背景的图像。 多谱段遥感: 使用几个不同的谱段同时对一目标或地区进行感测,从而获得与各谱段相对应的各种信息。将不同谱段的遥感信息加以组合,可获取目标物更多的信息。多谱段遥感是在可见光和红外遥感的基础上发展起来的,它能明显地分辨多种目标和背景特性,兼有可见光和红外遥感技术的优点。也为高光谱和超高光谱的发展提供了依据。微波遥感: 微波遥感是利用微波遥感设备,对地物目标和环境的微波辐射、反射或散射能量实施探测的技术,其波长为1~1000毫米. 微波遥感按工作模式的不同可分为两种: 有源微波遥感: 主要由成像雷达、微波散射计和微波高度计组成。在卫星遥感中应用较多的是合成孔径雷达,它是利用平台与目标的相对运动产生的多普勒频移,经二维相关处理或匹配滤波处理而获得高分辨率的图像。 无源微波遥感: 主要指各种微波辐射计,它是通过测量自然界各种物体发出的微弱微波辐射来测量目标的辐射特性和实际温度。

卫星遥感数据处理规范流程

北京揽宇方圆信息技术有限公司遥感卫星影像图像数据处理介绍 北京揽宇方圆信息技术有限公司是国内的领先遥感卫星数据机构,而且是整合全球的遥感卫星数据资源,分发不同性能、技术应用上可以互补的多种卫星影像,包括光学、雷达卫星影像、历史遥感影像等各种卫星数据服务,各种专业应用目的的图像处理、解译、顾问服务以及基于卫星影像的各种解决方案等。遥感卫星影像数据贯穿中国1960年至今的所有卫星影像数据,是中国遥感卫星数据资源最多的专业遥感卫星数据服务机构,提供多尺度、多分辨率、全覆盖的遥感卫星影像数据服务,最大限度的保证了遥感影像数据获取的及时性和完整性。 优势: 1:北京揽宇方圆国内老牌卫星数据公司,经营时间久,行业口碑相传,1800个行业用户选择的实力见证。 2:北京揽宇方圆遥感数据购买专人数据查询一对一服务,数据查询网址是卫星公司网。 3:北京揽宇方圆拥有大型正版遥感处理软件,遥感数据处理工程师有10年以上遥感处理工作经验,并有国家大型项目工作经验自主卫星数据处理软件著作权,最大限度保持遥感卫星影像处理的真实度。

4:北京揽宇方圆国家高新技术企业,通过ISO900认证的国际质量管理操作体系,无论是遥感卫星品质和遥感数据处理质量,都能得到保障。 5:影像数据官方渠道:所有的卫星数据都是卫星公司授权的原始数据,全球公众数据查询网址公开查询,影像数据质量一目了然,数据反应客观公正实事求是,数据处理技术团队国标规范操作,提供的是行业优质的专业化服务。 6:签定正规合同:影像数据服务付款前,买卖双方须签订服务合同,提供合同相应的正规发票,发票国家税网可以详细查询,有增值税普通发票和增值税专用发票两种发票类型可供选择。以最有效的法律手段来保障您的权益。 7:对公帐号转款:合同约定的对公帐号,与合同主体名发票上面的帐号名称一致,是由工商行政管理部门核准的公司银行账户,所有交易记录均能查询,保障资金安全。 8:售后服务:完善的售后服务体制,全国热线,登陆官网客服服务同步。 技术能力说明 北京揽宇方圆拥有大型正版遥感处理软件,遥感数据处理工程师有10年以上遥感处理工作经验,并有国家大型项目工作经验自主卫星数据处理软件著作权,最大限度保持遥感卫星影像处理的真实度。 一.图像预处理 1.降噪处理 由于传感器的因素,一些获取的遥感图像中,会出现周期性的噪声,我们必须对其进行消除或减弱方可使用。 (1)除周期性噪声和尖锐性噪声 周期性噪声一般重叠在原图像上,成为周期性的干涉图形,具有不同的幅度、频率、和相位。它形成一系列的尖峰或者亮斑,代表在某些空间频率位置最为突出。一般可以用带通或者槽形滤波的方法来消除。 消除尖峰噪声,特别是与扫描方向不平行的,一般用傅立叶变换进行滤波处理的方法比较方便。

高分辨率遥感影像分类实验报告

高分辨率遥感影像分类实验报告 班级:___________________ 姓名:___________________ 学号:___________________ 指导老师:_______________ 地球科学与环境工程学院 二?一四年六月

目录 1 实验方法——面向对象方法 (1) 2 实验内容 (1) 2.1 影像预处理 (1) 2.1.1 影像数据融合 (1) 2.1.2 影像增强处理 (2) 2.2 创建工程 (2) 2.3 分割处理 (3) 2.4 分类 (4) 2.4.1 水体 (4) 2.4.2 陆地 (5) 2.4.3 植被 (6) 2.4.4 裸土 (7) 2.4.5 建筑物 (8) 2.4.6 道路 (9) 2.4.7 阴影 (10) 2.4.8 总体分类图 (12) 3 结语 (13)

1实验方法——面向对象方法 面向对象方法是一个模拟人类大脑认知的过程,将图像分割为不同均质的对 象,充分利用对象所包含的信息,将知识库转换为规则特征,从而提取影像信息。 因为分析的是对象而不是像元,因此我们可以利用对象丰富的语义信息, 结合各 种地学概念,如面积、距离、光谱、尺度、纹理等进行分析。 面向对象的遥感影像分析方法与传统的面向像元的影像分析方法不同。 首先 需要使用一定方法对遥感影像进行分割, 在提取分割单元(图像分割后所得到的 内部属性相对一致或均质程度较高的图像区域) 的各种特征后,在特征空间中进 行对象识别和标识,从而最终完成信息的分类与提取。 2实验内容及详细过程 2.1影像预处理 2.1.1影像数据融合 实验数据为QuickBird 影像,包括4个多光谱波段以及一个全色波段。 QuickBird 影像星下点分辨率:全色为 0.61m ,多光谱为2.44m 。对于面向对象 影像分类 来说,越高的高空间分辨率越好,但在对对象进行分类时,光谱信息同 样重要,因此,可将高分辨率的全色影像和多光谱影像进行数据融合。 使用 ERDAS 进行数据融合: Interprete u spatialenchancemen ^resolution mergeo 图1 全色影像与多光谱影像融合 Ib^pul Fh (*.网| MJitiMewl lfl img 乓 | nwin?_r?J_pM4 |i ■J Nurb-w of 4 Mai hod DiJput OpJcm: riHEWT^SBn-n r Bchnaiuar f* Fmcpai T Newwt Nd^ibor 厂 5Woh to Unsigned 6 W 厂 厂l|>Kj 沽Eti 臼? 一 Brcvay TividuirTi 件 iDi-tc T 呼 Nunt-B? Mulkip?cdi4 Inpui Lafin: 4 G 喑 Sca*e: Uns^ned 1E tt |1 Nlu ■弔 pecirot Uns^flrwd 1 百 b* U M ■ E -jiiiiH In EKH

遥感卫星影像数据信息提取.

北京揽宇方圆信息技术有限公司 、 遥感卫星影像数据信息提取 北京揽宇方圆信息技术有限公司中科院企业,卫星影像数据服务全国领先。业务包括遥感数据获取与分发、遥感数据产品深加工与处理。按照遥感卫星数据一星多用、多星组网、多网协同的发展思路,根据观测任务的技术特征和用户需求特征,重点发展光学卫星影像、雷达卫星影像、历史卫星影像三个系列,构建由 26个星座及三类专题卫星组成的遥感卫星系统,逐步形成高、中、低空间分辨率合理配置、多种观测技术优化组合的综合高效全球观测和数据获取能力形成卫星遥感数据全球接收与全球服务能力。 (1光学卫星影像系列。 面向国土资源、环境保护、防灾减灾、水利、农业、林业、统计、地震、测绘、交通、住房城乡建设、卫生等行业以及市场应用对中、高空间分辨率遥感数据的需求,提供 worldview1、worldview2、worldview3、worldview4、quickbird、geoeye、 ikonos、pleiades、spot1、spot2、spot3、spot4、spot5、spot6、spot7、landsat5(tm、 landsat(etm、 rapideye、alos、Kompsat 卫星、北京二号、资源三 号、高分一号、高分二号等高分辨率光学观测星座。围绕行业及市场应用对基础地理信息、土地利用、植被覆盖、矿产开发、精细农业、城镇建设、交通运输、水利设施、生态建设、环境保护、水土保持、灾害评估以及热点区域应急等高精度、高重访观测业务需求,发展极轨高分辨率光学卫星星座,实现全球范围内精细化观测的数据获取能力。像国产的中分辨率光学观测星座。围绕资源调查、环境监测、防灾减灾、碳源碳汇调查、地质调查、水资源管理、农情监测等对大幅宽、快速覆盖和综合观测需求,建设高、低轨道合理配置的中分辨率光学卫星星座,实现全球范围天级快速动态观测以及全国范围小时级观测。

高分辨率遥感影像分类实验报告

高分辨率遥感影像分类实验报告 班级: 姓名: 学号: 指导老师: 地球科学与环境工程学院 二〇一四年六月

目录 1实验方法——面向对象方法 (1) 2实验内容 (1) 2.1 影像预处理 (1) 2.1.1影像数据融合 (1) 2.1.2 影像增强处理 (2) 2.2 创建工程 (2) 2.3 分割处理 (3) 2.4 分类 (4) 2.4.1 水体 (4) 2.4.2陆地 (5) 2.4.3 植被 (6) 2.4.4 裸土 (7) 2.4.5 建筑物 (8) 2.4.6 道路 (9) 2.4.7 阴影 (10) 2.4.8 总体分类图 (12) 3 结语 (13)

1实验方法——面向对象方法 面向对象方法是一个模拟人类大脑认知的过程,将图像分割为不同均质的对象,充分利用对象所包含的信息,将知识库转换为规则特征,从而提取影像信息。因为分析的是对象而不是像元,因此我们可以利用对象丰富的语义信息,结合各种地学概念,如面积、距离、光谱、尺度、纹理等进行分析。 面向对象的遥感影像分析方法与传统的面向像元的影像分析方法不同。首先需要使用一定方法对遥感影像进行分割,在提取分割单元(图像分割后所得到的内部属性相对一致或均质程度较高的图像区域)的各种特征后,在特征空间中进行对象识别和标识,从而最终完成信息的分类与提取。 2实验内容及详细过程 2.1 影像预处理 2.1.1影像数据融合 实验数据为QuickBird影像,包括4个多光谱波段以及一个全色波段。QuickBird影像星下点分辨率:全色为0.61m,多光谱为2.44m。对于面向对象影像分类来说,越高的高空间分辨率越好,但在对对象进行分类时,光谱信息同样重要,因此,可将高分辨率的全色影像和多光谱影像进行数据融合。 使用ERDAS进行数据融合:Interpreter→spatialenchancement→resolution merge。 图 1 全色影像与多光谱影像融合

遥感卫星影像数据特点

北京揽宇方圆信息技术有限公司 遥感卫星影像数据特点 北京揽宇方圆信息技术有限公司的卫星遥感影像以其快速、覆盖范围广、周期性等独特的优势,已成为现代遥感卫星影像数据源的最重要的数据源之一,为各行各业遥感数据应用提供充足数据支撑的重担。随着我国资源三号、高分系列等遥感卫星的成功发射,为用户提供0.3米卫星影像-30米卫星影像数据数据源打下了坚实的数据基础。然而随着各行各业的遥感用户工作范围、工作内容、技术手段等多个方面都新的要求,对我国卫星影像数据的获取和保障能力形成巨大的挑战,如何利用我国现有的和规划中的卫星资源,提升卫星影像获取和保障能力,以满足新型基础测绘的需要,成为北京揽宇方圆遥感卫星影像部门一项刻不容缓的工作。 遥感卫影像数据为遥感数据应用提供更加充足、更加高效、更加精准的数据支撑。 1)覆盖范围广。遥感影像数据不仅要覆盖我国陆地国土面积,还要能够覆盖海洋、周边乃至全球,覆盖范围急剧扩大,影像数据要实现全覆盖将具有一定的挑战性。 2)空间分辨率高。便新遥感卫星影像数据为常规工作内容,只有空间分辨率较高的影像数据才能满足基础测绘的精度要求。 3)时效性强。新型基础测绘服务内容由基本比例尺地图纸质图件向多样化数字产品、定制化制图服务以及地理国情监测、数字城市、应急测绘等个性化服务转变。而诸如此类的个性化服务对数据的时效性要求较高,尤其像应急测绘等服务,更是对影像数据提出了准实时化的要求。 4)覆盖频次要求高。200多颗遥感卫星影像对于重点区域动态更新的频率较高,对影像数据的覆盖频次具有较高要求,可以实现卫星影像对研究区域的定制化要求 5)区域性差异大。不同区域的基础测绘任务对影像数据的需求具有较大的差别,由于不同地区的地物变化频率、地物复杂程度、地域气候状况等要素的影响,使得该区域对影像数据的空间分辨率、时效性、覆盖频次等方面的需求也不尽相同。 为什么购买遥感卫星数据服务选择北京揽宇方圆 信誉超级好:多年的遥感卫星数据数据经营品牌公司,行业用户的实力选择,国家高新技术企业,国家A级纳税人企业,1800多个行业用户的选择。 遥感数据正版:卫星影像数据来源正规版权,提供正规的遥感数据查询服务。

Landsat卫星影像简介

Landsat 卫星影像简介 同济大学罗新 1. Landsat系列卫星概述(Avalanche P) Landsat系列卫星是由美国的NASA和USGS共同努力的成果。其中NASA负责火箭的发射以及遥感卫星的研制。USGS负责卫星的运行以及卫星影像的接收和处理。Landsat系列卫星中由于Landsat 5长时间高质量的运行(运行了28年10个月)为全球地表的连续监测提供了数据支撑,因此意义重大。 历代Landsat卫星的发射以及运行情况如下图所示: 2. 卫星影像获取 Landsat 7和Landsat 8都是太阳同步卫星,轨道相同,都是轨道高为705km,成像宽度为185km,视场角为15°,运动轨迹为地球阳面从北向南,卫星绕地球一周时间为99分钟,每天能绕地球14周,重访周期为16天。 Landsat 卫星重访示意图:

Landsat 数据接收站位置: 3. 传感器和波段设置 Landsat 1,2和3的传感器都是多光谱扫描器MSS,该传感器能收集4个多光谱波段(3个可见光和1个近红外波段),影像分辨率为79m。影像最终被采样为了60m分辨率。Landsat 4和5同时荷载了MSS传感器和可接受可见光,近红外,短波中红外波段且影像分辨率为30m的TM传感器。除此之外Landsat 4和5同时增加了一个120m分辨率的热红外波段(后被采样为30m)。 Landsat 7荷载的是ETM+传感器,在2003年5月31日时,该传感器发生故

障,导致获取影像上出现条带缺失,影像上缺失信息占影像总面积的

22%,严重影响了遥感影像的使用。 各传感器详细光谱信息如下: Note:Landsat ETM+ 获取的热红外波段影像分辨率为60 m, Landsat TM获取的热红外波段为120米!Landsat TM只有一个热红外波段,Landsat ETM+有两个热红波段,但是同一个光谱区间分别在低和高增益下获取的,Landsat 8有两个热红外波段,分别在不同光谱区间获取。 Reference: Landsat-8: Science and product vision for terrestrialglobal change research 4. Landsat 8数据 2013年发射的Landsat8卫星包含11个波段。影像特征较之前的Landsat 7卫星有部分改进。该数据详细光谱信息如上表所示。在Landsat 8数据获取过程中有一个质量评估影像(QA),该影像反映了像元受到传感器和云污染的影响。

学习遥感卫星影像基础知识

北京揽宇方圆信息技术有限公司 学习遥感卫星影像基础知识 前言:教学目标 ?掌握遥感的概念、遥感的原理与方法、遥感的技术系统。 ?掌握常用遥感数据的特征和应用、信息提取的方法。 ?了解遥感信息的应用。 前言:教学主要内容 n遥感概念及遥感技术系统遥感基础原理遥感数据类型航空像片及信息提 取陆地卫星图像及信息的提取遥感图像的计算机处理 第一章遥感—碧空慧眼 n§1遥感绪论 n遥感(Remote Sensing)概念 v广义:泛指一切无接触的远距离探测,包括对电磁场、力场、机械波(声波、地震波)等的探测。 v遥感定义:是从远处探测感知物体,也就是不直接接触物体,从远处通过探测仪器接收来自目标地物的电磁波信息,经过对信息的处理,判别出目标地物的属性。 §2遥感概念和遥感数据 n遥感数据(遥感数据获取示图)

太阳辐射经过大气层到达地面,一部分与地面发生作用后反射,再次经过大 气层,到达传感器。传感器将这部分能量记录下来,传回地面,即为遥感数据(遥感数据示例)。 §3遥感的特性 空间特性 v视域范围大,具有宏观特性(…)。 v光谱特性:探测的波段从可见光向两侧延伸,扩大了地物特性的研究范围(…)。 v时相特性:周期成像,有利于进行动态研究和环境监测(…)。 遥感的特点 v大面积的同步观测(…)。时效性(…)。数据的综合性和可比性(…)。经济性(…)。局限性(…)。 §5遥感数据的类型 §按平台分 地面遥感、航空遥感、航天遥感数据。 §按电磁波段分可见光遥感、红外遥感、微波遥感、紫外遥感数据等。 §按传感器的工作方式分主动遥感、被动遥感数据。 §6遥感数据的应用领域(一) §林业:清查森林资源、监测森林火灾和病虫害。 §农业:作物估产、作物长势及病虫害预报。 §水文与海洋:水资源调查、水资源动态研究、冰雪监控、海洋渔业。 §国土资源:国土资源调查、规划和政府决策。 §气象:天气预报、气候预报、全球气候演变研究。- - §6遥感数据的应用领域(二) §7遥感的发展简况(一) n照相机、气球、飞机构成初期遥感技术系统。

相关文档