文档库 最新最全的文档下载
当前位置:文档库 › 数学竞赛中概率问题的求解策略

数学竞赛中概率问题的求解策略

数学竞赛中概率问题的求解策略
数学竞赛中概率问题的求解策略

数学爱好者

课余揽胜

专业精心策划

高二

人教大纲

竞赛天地

近年来,在国内中学数学竞赛中,有关概率的问题经常出现.概率问题的基础是等可能事件的概率(古典概型),在其基础上,考查互斥事件有一个

发生的概率,相互独立事件同时发生的概率以及独立重复试验的概率.此类问题的一般求解策略有以下几个.

一、巧选观察角度例1

有编号分别为1,2,3,4,5的5个红球

和5个黑球,从中取出4个,则取出的球的编号互

不相同的概率为

()

A.5

21B.27C.13

D.821

解从10个球中取出4个,不同的取法有C4

10=

210种.如果要求取出的球的编号互不相同,可以先从5个编号中选取4个编号,有C45种选法.对于每一个编号,再选择球,有两种颜色可供挑选,所以取出的球的编号互不相同的取法有C45

?24=80种.因此,取出的球的编号互不相同的概率为80210=

821

,故选D.点评

求取出的球的编号互不相同的取法数

时要选择好观察的角度,巧作分步.

二、分类讨论例2

将号码分别为b=1、2、3、…、9的九个小

球放入一个袋中,这些小球仅号码不同,其余完全相同.甲从袋中摸出一个球,

其号码为a,放回后,乙从此袋中再摸出一个球,其号码为b.则使不等式a-2b+10>0成立的事件发生的概率等于

A.52

81B.5981C.6081D.6181

甲、乙二人每人摸出一个小球都有9种不

同的结果,故基本事件总数为92=81个.由不等式a-2b+10>0得2b<a+10,于是,当b=1、2、3、4、5时,每种情形a可取1、2、3、…、9中每一个值,使不等式成立,则共有9×5=45种;当b=6时,a可取3、4、…、

9中每一个值,有7种;当b=7时,a可取5、6、7、8、9中每一个值,有5种;当b=8时,a可取7、8、9中每一个值,有3种;当b=9时,a只能取9,有1种.于是,所求事件的概率为45+7+5+3+181

=6181.

三、正难则反例3

正四面体的4个面分别写着1,2,3,4,

将4个这样均匀的正四面体同时投掷于桌面上,与桌面接触的4个面上的4个数的乘积被4整除的概率是

A.1

8B.964C.116

D.1316

解事件“4个数均为奇数”的概率为P1=(12

)4

数学竞赛中概率问题★江西

廖东明

的求解策略

!

"#

数学爱好者

课余揽胜

业精心策划

人教大纲

116

,事件“3个为奇数,另有1个为2”的概率为P2=C14×14×(12)3=18,所以所求概率为P=1-P1-P2=1316

,故选D.点评

考虑正面“与桌面接触的4个面上的4

个数的乘积被4整除”的情况十分复杂,容易遗漏或重复;而反面“与桌面接触的4个面上的4个数的乘积不被4整除”的情况则较为简单,且这两个事件是对立事件,因而正难则反,简捷解题.

四、模型化例4

甲、乙两人进行乒乓球单打决赛,采用五

局三胜制(即先胜满三局者获冠军),对于每一局比赛,甲获胜的概率为23,

乙获胜的概率为13,则爆出冷门(乙获冠军)的概率为

如果以3∶1或3∶0获胜,则将未比的一局

或两局补上,并不影响比赛结果.于是问题转化为,求乙在五局比赛中至少赢三局的概率.

乙胜五局的概率为(13)5

=1243

乙胜四局负一局的概率为C15

(13)4×23=10243

,乙胜三局负两局的概率为C25

(13)3×(23)2

=40243,所以乙获冠军的概率为1243+10243+40243=1781.点评

由于各局胜负相互独立,所以是相互独

立事件;又每局乙胜的概率为p,在五局三胜制的条件下比赛4局中的前3局、比赛5局中的前4局是n次独立重复试验(模型化!),而最后一局都是乙胜.解概率问题,

要善于列举,以透析问题;也要善于类推,以优化解题(如本例对五局三胜制则不再列举).

五、综合运用例5

一项“过关游戏”规则规定:在第n关要

抛掷一颗骰子n次,如果这n次抛掷所得的点数之和大于2n,则算过关.问:

(1)

某人在这项游戏中最多能过几关?(2)他连过前三关的概率是多少?

由于骰子是均匀的正方体,所以抛掷后各

点数出现的可能性是相等的.

(1)因为一颗骰子每次出现的最大点数为6,而6×4>24,6×5<25.

因此,当n≥5时,抛掷n次骰子出现的点数之和不可能大于2n,

即这是一个不可能事件,过关的概率为0.所以,

最多只能连过4关;(2)设事件An为“第n关过关失败”,则对立事件A

"n为“第n关过关成功”.第n关游戏中,基本事件的总数为6n个.

第1关:事件A1所含基本事件数为2(即出现点数为1和2这两种情况),所以过此关的概率为P(A"1)=1-P(A1)=1-26=23

第2关:

事件A2所含基本事件数为方程x+y=a当a分别取2,3,4时的正整数解的组数之和,即有

C11+C12+C13=1+2+3=6个,

所以过此关的概率为P(A"2)=1-P

(A2)=1-662=56

;第3关:事件a3所含基本事件数为方程x+y+z=

a当a分别取3,4,5,6,7,8时的正整数解的组数之和,即有C22+C23+C24+C25+C26+C2

7=1+3+6+10+15+21=56个,

所以过此关的概率为P

(A"3)=1-P(A3)=1-5663=2027

.故连过前三关的概率为:P(A"1)?P(A"2)?P(A"3)=23×56×2027=100243

点评

不定方程x1+x2+…+xn=m的非负整数解

的个数,等价于方程y1+y2+…+yn=m+n

(其中yi=xi+1,i=1,2,…,n)的正整数解的个数,为Cn-1n+m-1=Cm

n+m-1

(利用隔板法容易求得).本题第2、3关的基本事件数也可以一一列出来,但在列举时容易遗漏或重复,而通过建立不定方程,用隔板法求出不定方程正整数解的个数来得到“第n关过关失败”的基本事件数,方便快捷.本题综合运用了正难则反、等价转化、分类讨论(a的取值问题)等数学思想方法.

!

"#

高中数学竞赛中数论问题的常用方法

高中数学竞赛中数论问题的常用方法 数论是研究数的性质的一门科学,它与中学数学教育有密切的联系.数论问题解法灵活,题型丰富,它是中学数学竞赛试题的源泉之一.下面介绍数论试题的常用方法. 1.基本原理 为了使用方便,我们将数论中的一些概念和结论摘录如下: 我们用),...,,(21n a a a 表示整数1a ,2a ,…,n a 的最大公约数.用[1a ,2a ,…,n a ]表示1a ,2a ,…,n a 的 最小公倍数.对于实数x ,用[x ]表示不超过x 的最大整数,用{x }=x -[x ]表示x 的小数部分.对于整数 b a ,,若)(|b a m -,,1≥m 则称b a ,关于模m 同余,记为)(mod m b a ≡.对于正整数m ,用)(m ?表示 {1,2,…,m }中与m 互质的整数的个数,并称)(m ?为欧拉函数.对于正整数m ,若整数m r r r ,...,,21中任何两个数对模m 均不同余,则称{m r r r ,...,,21}为模m 的一个完全剩余系;若整数)(21,...,,m r r r ?中每一个数都与m 互质,且其中任何两个数关于模m 不同余,则称{)(21,...,,m r r r ?}为模m 的简化剩余系. 定理1 设b a ,的最大公约数为d ,则存在整数y x ,,使得yb xa d +=. 定理2(1)若)(mod m b a i i ≡,1=i ,2,…,n ,)(m od 21m x x =,则 1 1n i i i a x =∑≡2 1 n i i i b x =∑; (2)若)(mod m b a ≡,),(b a d =,m d |,则 )(mod d m d b d a ≡; (3)若b a ≡,),(b a d =,且1),(=m d ,则)(mod m d b d a ≡; (4)若b a ≡(i m mod ),n i ,...,2,1=,M=[n m m m ,...,,21],则b a ≡(M mod ). 定理3(1)1][][1+<≤<-x x x x ; (2)][][][y x y x +≥+; (3)设p 为素数,则在!n 质因数分解中,p 的指数为 ∑≥1 k k p n . 定理4 (1)若{m r r r ,...,,21}是模m 的完全剩余系,1),(=m a ,则{b ar b ar b ar m +++,...,,21}也是模 m 的完全剩余系; (2)若{)(21,...,,m r r r ?}是模m 的简化剩余系,1),(=m a ,则{)(21...,,m ar ar ar ?}是模m 的简化剩余系. 定理5(1)若1),(=n m ,则)()()(n m mn ???=. (2)若n 的标准分解式为k k p p p n ααα (2) 121=,其中k ααα,...,21为正整数,k p p p ,...,21为互不相

高中数学竞赛解题策略几何分册勃罗卡定理

第32章勃罗卡定理 勃罗卡()Brocard 定理凸四边形ABCD 内接于O e ,延长AB 、DC 交于点E .延长BC 、AD 交于点F .AC 与BD 交于点G .联结EF ,则OG EF ⊥. 证法1如图321-,在射线EG 上取一点N ,使得N ,D ,C ,G 四点共圆(即取完全四边形ECDGAB 的密克尔点N ),从而B 、G 、N 、A 及E 、D 、N 、B 分别四点共圆. 分别注意到点E 、G 对O e 的幂,O e 的半径为R ,则22EG EN EC ED OE R ?=?=-. 22EG GN BG GD R OG ?=?=-. 以上两式相减得() 22222EG OE R R OG =---, 即22222OE EG R OG -=-. 同理,22222OF FG R OG -=-. 又由上述两式,有2222OE EG OF FG -=-. 于是,由定差幂线定理,知OG EF ⊥. 证法2如图321-,注意到完全四边形的性质.在完全四边形ECDGAB 中,其密克尔点N 在直线EG 上,且ON EG ⊥,由此知N 为过点G 的O e 的弦的中点,亦即知O ,N ,F 三点共线,从而EN OF ⊥. 同理,在完全四边形FDAGBC 中,其密克尔点L 在直线FG 上,且OL FG ⊥,亦有FL OE ⊥. 于是,知G 为OEF △的垂心,故OG EF ⊥. 证法3如图321-.注意到完全四边形的性质,在完全四边形ABECFD 中,其密克尔点M 在直线EF 上,且OM EF ⊥.联结BM 、CM 、DM 、OB 、OD . 此时,由密克尔点的性质,知E 、M 、C 、B 四点共圆,M 、F 、D 、C 四点共圆, 即有BME BCE DCF DMF ∠=∠=∠=∠, 从而9090BMO DMO DMF DCF ∠-∠=?-∠=?-∠ 11180909022BOD BOD BOD ??=?-∠-?=?-∠=∠ ??? , 即知点M 在OBD △的外接圆上. 同理,知点M 也在OAC △的外接圆上,亦即知OM 为OBD e 与OAC e 的公共弦. 由于三圆O e ,OBD e ,OAC e 两两相交,由根心定理,知其三条公共弦BD ,AC ,OM 共点于G .即知O ,G ,M 共线,故OG EF ⊥. 该定理有如下推论 推论1凸四边形ABCD 内接于O e ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,直线OG 与直线EF 交于点M ,则M 为完全四边形ABECFD 的密克尔点. 事实上,若设M '为完全四边形ABECFD 的密克尔点,则M '在EF 上,且OM EF '⊥. 由勃罗卡定理,知OG EF ⊥,即OM EF ⊥.而过同一点只能作一条直线与已知直线垂直,从而OM 与OM '重合,即M 与M '重合. 推论2凸四边形ABCD 内接于圆,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,M 为完全四边形ABECFD 的密克尔点的充要条件是GM EF ⊥于M . 推论3凸四边形ABCD 内接于圆O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,则G 为OEF △的垂心. 事实上,由定理的证法2即得,或者由极点公式:22222EG OE OG R =+-,22222FG OF OG R =+-,22222EF OE OF R =+-两两相减,再由定差幂线定理即证. 下面给出定理及推论的应用实例. 例1(2001年北方数学邀请赛题)设圆内接四边形的两组对边的延长线分别交于点P ,Q ,两对角线交于点R ,则圆心O 恰为PQR △的垂心.

数学竞赛中的代数式求值经典问题

数学竞赛中的代数式求值经典问题 题型一、代数式恒等变形 1.若1,则111 a b c ab a bc b ca c ++++++++的值是( ) A .1. B .0. C .-1. D .-2. 解析:1,则a ,b ,c 均不为0. 选A . 2.若x 33=1000,且x 22496,则(x 33)+(42-2x 2y)-2(23). 解析:由于x 33=1000,且x 22496,因此要把(x 33)+(42-2x 2y)-2(23)分组、凑项表示为含x 33及x 22的形式,以便代入求值,为此有 (x 33)+(42-2x 2y)-2(23)33+22-2x 2(x 33)-2(x 22)=1000-2(-496)=1992 3.若m +n -p =0,则?? ? ?????? ?????? ??n m p p m n p n m 111111 ---+-的值等于. 解析:3-, 111111()()() ()()() 111 3m n p n p m p m n m m n n n p n p m p m n m p n p m n n n m m p p -+--+=-+---=-+--+=---=-提示: 4.若2,x 22=4,则x 19921992的值是 ( )

A .4 B .19922 C .21992 D .41992 解析:由2 ① 平方得x 2-22=4 ② 又已知x 22=4 ③ 所以x ,y 中至少有一个为0,但x 22=4.因此,x ,y 中只能有一个为0,另一个为2或-2.无论哪种情况,都有 x 19921992=01992+(±2)1992=21992,选C . 5.在等式2中,当1时2,当1时20,则9b 2. 解析:以12代入2得2 ① 以120代入2得20 ② ①-②,222,所以11.因此9.于是 9b 2()+9b 2=(-11)×(9)+9×112=990. 6.已知a +b =-3,a 2b +2=-30,则a 2-+b 2+11=50. 7.已知a a 1+2,则441a a += 2 ; 441a a -= 0 . 8.如果m - m 1=-3,那么m 3-31m =. 解析:36-,提示:32232211111()(1)()[()3] (3)[(3)3]36m m m m m m m m m m - =-++=--+=-?-+= 9.三个互不相等的有理数,既可表示为1,的形式,又可表示为0b a , 的形式,则a 19921993. 解析:由于三个互不相等的有理数,既可表示为1 ,

关于高等数学函数的极限与连续习题及答案

关于高等数学函数的极限与连续习题及答案 1、函数 ()12 ++=x x x f 与函数()11 3 --=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴()12 ++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与 ()x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1)1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2 020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点.

高中数学竞赛辅导讲义第十四章 极限与导数

第十四章 极限与导数 一、 基础知识 1.极限定义:(1)若数列{u n }满足,对任意给定的正数ε,总存在正数m ,当n>m 且n ∈N 时,恒有|u n -A|<ε成立(A 为常数),则称A 为数列u n 当n 趋向于无穷大时的极限,记为)(lim ),(lim x f x f x x -∞ →+∞→,另外)(lim 0 x f x x + →=A 表示x 大于x 0且趋向于x 0时f(x)极限为A ,称右极限。类 似地)(lim 0 x f x x -→表示x 小于x 0且趋向于x 0时f(x)的左极限。 2.极限的四则运算:如果0 lim x x →f(x)=a, 0 lim x x →g(x)=b ,那么0 lim x x →[f(x)± g(x)]=a ±b, 0 lim x x →[f(x)?g(x)]=ab, 0 lim x x →).0()()(≠=b b a x g x f 3.连续:如果函数f(x)在x=x 0处有定义,且0 lim x x →f(x)存在,并且 lim x x →f(x)=f(x 0),则称f(x)在x=x 0处连续。 4.最大值最小值定理:如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在[a,b]上有最大值和最小值。 5.导数:若函数f(x)在x0附近有定义,当自变量x 在x 0处取得一个增量Δx 时(Δx 充分小),因变量y 也随之取得增量Δy(Δy=f(x 0+ Δx)-f(x 0)).若x y x ??→? lim 存在,则称f(x)在x 0处可导,此极限值称为f(x)在点x 0处的导数(或变化率),记作'f (x 0)或0'x x y =或 x dx dy ,即 00) ()(lim )('0 x x x f x f x f x x --=→。由定义知f(x)在点x 0连续是f(x)在x 0可导 的必要条件。若f(x)在区间I 上有定义,且在每一点可导,则称它在此敬意上可导。导数的几何意义是:f(x)在点x 0处导数'f (x 0)等于曲线y=f(x)在点P(x 0,f(x 0))处切线的斜率。

最新高中数学竞赛解题策略-几何分册第32章勃罗卡定理

第32章勃罗卡定理 1 勃罗卡()Brocard 定理凸四边形ABCD 内接于O ,延长AB 、DC 交于点E .延长BC 、AD 2 交于点F .AC 与BD 交于点G .联结EF ,则OG EF ⊥. 3 证法1如图321-,在射线EG 上取一点N ,使得N ,D ,C ,G 四点共圆(即取完全四 4 边形ECDGAB 的密克尔点N ),从而B 、G 、N 、A 及E 、D 、N 、B 分别四点共圆. 5 图321 F O L G N E D C B A 6 分别注意到点E 、G 对O 的幂,O 的半径为R ,则22EG EN EC ED OE R ?=?=-. 7 22EG GN BG GD R OG ?=?=-. 8 以上两式相减得()22222EG OE R R OG =---, 9 即22222OE EG R OG -=-. 10 同理,22222OF FG R OG -=-. 11 又由上述两式,有2222OE EG OF FG -=-. 12 于是,由定差幂线定理,知OG EF ⊥. 13 证法2如图321-,注意到完全四边形的性质.在完全四边形ECDGAB 中,其密克尔点N 14 在直线EG 上,且ON EG ⊥,由此知N 为过点G 的O 的弦的中点,亦即知O ,N ,F 三点15 共线,从而EN OF ⊥. 16

同理,在完全四边形FDAGBC 中,其密克尔点L 在直线FG 上,且OL FG ⊥,亦有FL OE ⊥. 17 于是,知G 为OEF △的垂心,故OG EF ⊥. 18 证法3如图321-.注意到完全四边形的性质,在完全四边形ABECFD 中,其密克尔点M 19 在直线EF 上,且OM EF ⊥.联结BM 、CM 、DM 、OB 、OD . 20 此时,由密克尔点的性质,知E 、M 、C 、B 四点共圆,M 、F 、D 、C 四点共圆, 21 即有BME BCE DCF DMF ∠=∠=∠=∠, 22 从而9090BMO DMO DMF DCF ∠-∠=?-∠=?-∠ 23 90(180)90BCD BCD =?-?-∠=∠-? 24 11180909022BOD BOD BOD ?? =?-∠-?=?-∠=∠ ??? , 25 即知点M 在OBD △的外接圆上. 26 同理,知点M 也在OAC △的外接圆上,亦即知OM 为OBD 与OAC 的公共弦. 27 由于三圆O ,OBD ,OAC 两两相交,由根心定理,知其三条公共弦BD ,AC ,OM 28 共点于G .即知O ,G ,M 共线,故OG EF ⊥. 29 该定理有如下推论 30 推论1凸四边形ABCD 内接于O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 31 与BD 交于点G ,直线OG 与直线EF 交于点M ,则M 为完全四边形ABECFD 的密克尔点. 32 事实上,若设M '为完全四边形ABECFD 的密克尔点,则M '在EF 上,且OM EF '⊥. 33 由勃罗卡定理,知OG EF ⊥,即OM EF ⊥.而过同一点只能作一条直线与已知直线垂直,34 从而OM 与OM '重合,即M 与M '重合. 35 推论2凸四边形ABCD 内接于圆,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 36

自招竞赛 数学讲义:轮换对称式的最值问题(讲师版)

自招竞赛 数学讲义 轮换对称式的最值问题 学生姓名 授课日期 教师姓名 授课时长 知识定位 在不等式和求最值的问题中,轮换对称式是十分常见的。自招、竞赛中出现的不等式证明或代数式求最值问题以轮换对称式为主,而这一类有关轮换对称式的问题也以其简洁优美的数学形式和较为灵活多变的解决方法成为自招竞赛中的一大难点。 本章节列举了处理几类轮换对称式问题和几种常见处理方法,希望同学们在考场上见到这类问题时能够有思路有针对性地着手处理,而不是盲目地尝试变形求解(证)。 知识梳理 1. 不等式对称和轮换对称式的定义 在一个不等式中,若把其中任何两个字母(),,1,2,...,i j a a i j n i j =≠且对调位置后,这个不等式不变(如① 32 a b c b c c a a b ++≥+++,其中,,0a b c >), 我们便称此不等式是关于12,,...,n a a a 对称的。如果把不等式中的字母12,,...,n a a a 按一定顺序依次轮换(如1a 换成2a ,2a 换成3a ,...,1n a -换成n a )后不等式不变(如② 222222 0,,,0c a a b b c a b c b c c a a b ---++≥>+++其中),我们便称此类不等式是关于12,,...,n a a a 轮换对称的。 2. 对称式与轮换对称不等式的性质 由定义易知,对称的不等式一定是轮换对称的(如①),而轮换对称的不等式却不一定是对称的(如②就不是对称的)。 关于12,,...,n a a a 对称的不等式,由于,i j a a 互换后原不等式不变,因此要想怎么排列他们的大小顺序,只要调换其位即可,故我们可任意排列12,,...,n a a a 的大小顺序(如在①

高中数学竞赛资料-数论部分 (1)

初等数论简介 绪言:在各种数学竞赛中大量出现数论题,题目的内容几乎涉及到初等数论的所有专题。 1. 请看下面的例子: (1) 证明:对于同样的整数x 和y ,表达式2x+3y 和9x+5y 能同时被整除。(1894年首届匈牙利 数学竞 赛第一题) (2) ①设n Z ∈,证明213 1n -是168的倍数。 ②具有什么性质的自然数n ,能使123n ++++ 能整除123n ??? ?(1956年上海首届数学竞赛第一题) (3) 证明:3 231 122 n n n + +-对于任何正整数n 都是整数,且用3除时余2。(1956年北京、天津市首届数学竞赛第一题) (4) 证明:对任何自然数n ,分数 214 143 n n ++不可约简。(1956年首届国际数学奥林匹克竞赛第一题) (5) 令(,,,)a b g 和[,,,]a b g 分别表示正整数,,,a b g 的最大公因数和最小公倍数,试证: [][][][]()()()() 2 2 ,,,,,,,,,,a b c a b c a b b c c a a b b c c a =??(1972年美国首届奥林匹克数学竞赛第一题) 这些例子说明历来数论题在命题者心目中首当其冲。 2.再看以下统计数字: (1)世界上历史最悠久的匈牙利数学竞赛,从1894~1974年的222个试题中,数论题有41题,占18.5%。 (2)世界上规模最大、规格最高的IMO (国际数学奥林匹克竞赛)的前20届120道试题中有数论13题,占10.8% 。 这说明:数论题在命题者心目中总是占有一定的分量。如果将有一定“数论味”的计数型题目统计在内,那么比例还会高很多。 3.请看近年来国内外重大竞赛中出现的数论题: (1)方程323652x x x y y ++=-+的整数解(,)x y 的个数是( ) A 、 0 B 、1 C 、3 D 、无穷多 (2007全国初中联赛5) (2)已知,a b 都是正整数,试问关于x 的方程()2 1 02 x abx a b -++=是否有两个整数解? 如果有,请把它们求出来;如果没有,请给出证明。 (2007全国初中联赛12)

高等数学竞赛极限与连续真题

高等数学竞赛极限与连续真题 1. 计算:22 2 sin )(cos 112lim 2x e x x x x x -+-+→ 析: ),(08 21144 22 x x x x +-+=+ )(08 1 1124422x x x x +=+-+ 又)(02 3 )](01[)](0211[cos 2222224 x x x x x x e x x +-=++-+- =- 故22 2 sin )(cos 112lim 2x e x x x x x -+-+→ 121sin )(023)(081lim sin 1)(023)(081lim 222244022 22 24 40-=?+-+=??+-+=→→x x x x x x x x x x x x x x x 2.计算求n n n n n n n ln )ln ln ( lim -+∞→的值。 (选自广东省大学生高等数学竞赛试题) 析:n n n n n n n ln )ln ln (lim -+∞→=n n n n n n n n n n ln 2ln 2ln ])ln ln 21[(lim --∞→-+ 令,ln t n n =则原式.)11(lim 21 0e t t t t =-++ → 3.计算:)1)1(31211(lim 1n n n -∞→-+++- 析: )21 4121(12131121312112n n n S n +++--+++=- -+-= =n n n n n n ++++++=+++-++++1 2111)214121(22131211 =)11 211111(1n n n n n ++++++

山西省太原市高中数学竞赛解题策略-几何分册第25章九点圆定理汇总

第25章 九点圆定理 九点圆定理 三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆. 如图25-1,设ABC △三条高AD ,BE ,CF 的垂足分别为D 、E 、F ,三边BC 、CA 、AB 的中点分别为L 、M 、N ,又AH 、BH 、CH 的中点分别为P 、Q 、R ,则D 、E 、F 、L 、M 、N 、P 、O 、R 九点共圆. H O Q L R N M P F E D C B A 图25-1 证法1联结PQ ,QL ,LM ,MP ,则1 2 L M B A Q P ∥∥,即知L M P Q 为平行四边形,又LQ CH AB LM ⊥∥∥,知LMPQ 为矩形.从而L 、M 、P 、Q 四点共圆,且圆心V 为PL 与QM 的交点.同理,MNQR 为矩形,从而L 、M 、N 、P 、Q 、R 六点共圆,且PL ,QM ,NR 均为这个圆的直径. 由90PDL QEM RFN ∠∠=∠=?=,知D ,E ,F 三点也在这个圆上,故D 、E 、F 、L 、M 、N 、P 、Q 、R 九点共圆. 证法2如图25-1,由1 1801802NQD BQD BHD ∠=?-∠=?-∠,以及注意到DE 是N 与R 的公共弦, 知 NR DE ⊥,有1 2 N R D D R E C ∠= ∠=∠,亦即180NRD EHD ∠=?-∠,从而知 ()360180NQD NRD BHD EHD ∠+∠=?-∠+∠=?. 因此,N 、Q 、D 、R 四点共圆. 同理,Q 、L 、D 、R 四点共圆.即知N 、Q 、L 、D 、R 五点共圆. 同理,L 、D 、R 、M 、E 以及R 、M 、E 、P 、F ;E 、P 、F 、N 、Q ;F 、N 、Q 、L 、D 分别五点共圆. 故D 、E 、F 、L 、M 、N 、P 、Q 、R 九点共圆. 证法3如图25-1.联结PL 、PN 、PQ 、PF 、LQ 、LF 、QN 、FL ,则90PDL ∠=?.注意到PN BH ∥,NL AC ∥,BE AC ⊥,则PN NL ⊥,即90PNL ∠=?. 又PQ AB ∥,QL CH ∥,而CH AB ⊥,则QL PQ ⊥,即90PQL ∠=?. 注意到PF PH =,则PFH PHF CHD ∠∠∠==. 由LF LC =,有CFL HCD ∠∠=. 因90CHD HCD ∠+∠?=,则90PFL PFH CFL ∠∠+∠?==. 同理,PM L ∠、PEL ∠、PRL ∠皆等于90?.即D 、N 、Q 、F 、M 、E 、R 各点皆在以PL 为直径的圆周上. 故D 、E 、F 、L 、M 、N 、P 、Q 、R 九点共圆. 证法4如图25-1,注意到LQHR 为平行四边形,QP BA ∥,RP CA ∥,则么180180QLR QHR A QPR ∠=∠?-∠?∠==-,即知L 、Q 、P 、R 四点共圆. 又180180QDR QDH RDH QHD RHD QHR A QPR ∠∠+∠∠+∠∠?∠?-∠====-=(注意QP BA ∥,

数学竞赛中代数式最值问题的解题策略

数学竞赛中代数式最值问题的解题策略 邮编:422200 作者:湖南隆回一中 邹启文 数学竞赛中最值问题,有一定难度,但只要我们去认真的分析,仔细地思考,不管问题再难,其实万变不离其宗,总离不开所学过的知识点和基本方法。如不等式法(包含非负数性质a ≥0,2a ≥0, a ≥0,一元二次方程判别式△≥0,整体大于部分等等),公式法(包括二次函数顶点坐标公式、三角函数公式、完全平方公式等等),区间取值法(包括一次函数线段端点取值与曲线在某区间内的最值求取等等),在求解方法上也有其规律性,如夹逼法、递推法、枚举法、放缩法、排序法,还有转化为几何图形法等等。近两年来的各级各类初中数学竞赛中的最值问题,在题型上已呈现出一个崭新的形势,其变化之多、涉及面之广、形式之灵活可谓达到了空前的程度,同时最值的求法也有了较大的拓展,打破了原有的思维定势,但仍然是有章可循的。 例1:已知设1x 、2x 、3x 、……n x 均为连续正整数,且1x <2x <3x <……<n x , 1x +2x +, 3x +……+n x =2005,则n x 的最大值是____最小值____(2005年 自编题) 分析:这是一道须利用不等式求解的试题,由于有1x +2x +3x +……+n x =2005,所以应当想到这些数的平均数必与中位数接近,于是可由此确定3x 的数值或范围。然后再求n x 的最大与最小数值。 解:由题意可设1x +2x +3x +……+n x =1+2+3+……+n =2005,由高斯求和公式可 得 ()200521=+n n ,解得63≈n ,但当63=n 时()()201632632 1636321=?=+=+n n 当62=n 时()()195363312 1626221=?=+=+n n ,∵1953≤2005≤2016,且n 是整数,∴n ≠62或63,我们又观察到平均值()?=++++n n n x x x x 13211ΛΛ40152005?=,

(完整版)小学奥数中的数论问题

小学奥数中的数论问题 在奥数竞赛中有一类题目叫做数论题,这一部分的题目具有抽象,思维难度大,综合运用知识点多的特点,基本上出现数论题目的时候大部分同学做得都不好。 一、小学数论究包括的主要内容 我们小学所学习到的数论内容主要包含以下几类: 整除问题:(1)整除的性质;(2)数的整除特征(小升初常考内容) 余数问题:(1)带余除式的运用被除数=除数×商+余数.(余数总比除数小) (2)同余的性质和运用 奇偶问题:(1)奇偶与加减运算;(2)奇偶与乘除运算质数合数:重点是质因数的分解(也称唯一分解定理)约数倍数:(1)最大公约最小公倍数两大定理 一、两个自然数分别除以它们的最大公约数,所得的商互质。 二、两个数的最大公约和最小公倍的乘积等于这两个数的乘积。 (2)约数个数决定法则(小升初常考内容) 整数及分数的分解与分拆:这一部分在难度较高竞赛中常

出现,属于较难的题型。二、数论部分在考试题型中的地位 在整个数学领域,数论被当之无愧的誉为“数学皇后”。翻开任何一本数学辅导书,数论的题型都占据了显著的位置。在小学各类数学竞赛和小升初考试中,系统研究发现,直接运用数论知识解题的题目分值大概占据整张试卷总分的30%左右,而在竞赛的决赛试题和小升初一类中学的分班测试题中,这一分值比例还将更高。 出题老师喜欢将数论题作为区分尖子生和普通学生的依据,这一部分学习的好坏将直接决定你是否可以在选拔考试中拿到满意的分数。三、孩子在学习数论部分常常会遇到的问题 数学课本上的数论简单,竞赛和小升初考试的数论不简单。 有些孩子错误地认为数论的题目很简单,因为他们习惯了数学课本上的简单数论题,比如:例1:求36有多少个约数? 这道题就经常在孩子们平时的作业里和单元测试里出现。可是小升初考题里则是:例2:求3600有多少个约数? 很多孩子就懵了,因为“平时考试里没有出过这么大的数!”(孩子语)于是乎也硬着头皮用课堂上求约数的方法去求,白白浪费了大把的时间,即使最后求出结果也并不划

数学竞赛准备策略

关于参加全国大学生数学竞赛的应对策略建议 (内部资料,严禁外传!) 2015年全国大学生数学竞赛再有一个多月就要举行了,现根据竞赛特点提出以下意见和建议,供参赛同学参考。 一、竞赛内容:高等数学上下册。近几年出现了高等数学教材中打*的内容 数学竞赛考察的内容属于高等数学的较高要求,题目既有基础的内容,也有提高的内容,具有较强的灵活性。下面就一些平时不要求但需要注意的内容进行一些说明,共大家参考。 1. 泰勒公式 泰勒公式是分析函数性质的重要工具,在整个微积分中起着重要作用。从某个角度讲,泰勒公式掌握的是否熟练,是检验一个人微积分水平的一个标志。泰勒公式在极限计算、级数敛散性判定、函数项级数和反常积分收敛、一致收敛、定积分等式证明、不定积分不等式证明中均起重要作用。因此参加数学竞赛的同学请务必熟练掌握泰勒公式,可以翻阅数学分析(数学系学生学习的)的有关参考书。也是培训的重要内容之一。 2. 微分中值定理 罗尔中值定理、拉格朗日中值定理、柯西中值定理现在教学要求中不要求掌握构造辅助函数证明等式不等式的题目。但是在研究生入学考试和数学竞赛中一直属于测试内容。特别是证明存在两个中值的题目一般教材没有,但是考研试题中屡屡出现,需要通过练习掌握其方法技巧。 3. 利用对称性计算多元函数的积分 在教材中要求不高但在考研中十分重要。包括区域对称性和轮换对称性在计算二重积分、三重积分、曲线积分、曲面积分中经常遇到,需要掌握。 4. 用定义计算或证明导数、偏导数、全微分 5. 各类积分的物理应用 6. 熟练掌握各类积分的计算,掌握格林公式、高斯公式、曲线积分与路径无关的条件等。 7. 空间解析几何中平面、直线的位置关系,用线性代数中有关秩的理论研究这些关系。 8. 微分方程的计算(经常与曲线积分、实际应用题目结合) 9. 级数的敛散性判别 10. 各类不等式的证明 二、补充知识点 1.利用Stolz定理求极限、利用定积分求极限、利用级数求极限、利用数列的变形求极限、利用单调有界定理证明数列极限存在及解方程法求极限、利用夹逼准则求带有积分号的极限、利用泰勒公式求极限(熟练掌握)。 2. 不等式证明:利用泰勒公式证明代数不等式、微分不等式、积分不等式(有些难度较大);利用函数单调性、拉格朗日中值定理、极值最值、凹凸性、各类积分的估值性质、拉格朗日乘数法证明不等式、利用二重积分与定积分的关系证明定积分不等式。

【数学竞赛各阶段书籍推荐】

金牌学生推荐(可参照选择) 一、第零阶段:知识拓展 《数学选修4-1:几何证明选讲》 《数学选修4-5:不等式选讲》 《数学选修4-6:初等数论初步》 二、全国高中数学联赛各省赛区预赛(即省选初赛) 1、《五年高考三年模拟》B版或《3年高考2年模拟》第二轮复习专用 2、《高中数学联赛备考手册》华东师范大学出版社(推荐指数五颗星) 3、《奥赛经典:超级训练系列》高中数学沈文选主编湖南师范大学出版社(推荐指数五颗星) 4、单樽《解题研究》(推荐指数五颗星) 5、单樽《平面几何中的小花》(个别地区竞赛会考到平几) 6、《平面几何》浙江大学出版社 7、奥林匹克小丛书第二版《不等式的解题方法与技巧》苏勇熊斌著 三、第二阶段:全国高中数学联赛 一试 0、《奥林匹克数学中的真题分析》沈文选湖南师范大学出版社(推荐指数五颗星) 1、《高中数学联赛考前辅导》熊斌冯志刚华东师范大学出版社 2、《数学竞赛培优教程(一试)》浙江大学出版社 3、命题人讲座《数列与数学归纳法》单樽 4、《数列与数学归纳法》(小丛书第二版,冯志刚) 5、《数列与归纳法》浙江大学出版社韦吉珠 6、《解析几何的技巧》单樽(建议买华东师大出版的版本) 7、《概率与期望》单樽 8、《同中学生谈排列组合》苏淳 9、《函数与函数方程》奥林匹克小丛书第二版 10、《三角函数》奥林匹克小丛书第二版 11、《奥林匹克数学中的几何问题》沈文选(推荐指数五颗星) 12、《圆锥曲线的几何性质》 13、《解析几何》浙江大学出版社 二试 平几 1、高中数学竞赛解题策略(几何分册)沈文选(推荐指数五颗星)

2、《奥林匹克数学中的几何问题》沈文选(推荐指数五颗星) 3、奥林匹克小丛书第二版《平面几何》 4、浙大小红皮《平面几何》 5、沈文选《三角形的五心》 6、田廷彦《三角与几何》 7、田廷彦《面积与面积方法》 不等式 8、《初等不等式的证明方法》韩神 9、命题人讲座《代数不等式》计神 10、《重要不等式》中科大出版社 11、奥林匹克小丛书《柯西不等式与平均值不等式》 数论 (9,10,11选一本即可,某位大神说二试改为四道题以来没出过难题) 12、奥林匹克小丛书初中版《整除,同余与不定方程》 13、奥林匹克小丛书《数论》 14、命题人讲座《初等数论》冯志刚 组合 15、奥林匹克小丛书第二版《组合数学》 16、奥林匹克小丛书第二版《组合几何》 17、命题人讲座刘培杰《组合问题》 18、《构造法解题》余红兵 19、《从特殊性看问题》中科大出版社 20、《抽屉原则》常庚哲 四、中国数学奥林匹克(Chinese Mathematical Olympiad)及以上 命题人讲座《圆》田廷彦 《近代欧式几何学》 《近代的三角形的几何学》 《不等式的秘密》范建熊、隋振林 《奥赛经典:奥林匹克数学中的数论问题》沈文选 《奥赛经典:数学奥林匹克高级教程》叶军 《初等数论难题集》 命题人讲座《图论》 奥林匹克小丛书第二版《图论》 《走向IMO》

九年级数学竞赛题:代数最值

九年级数学竞赛题:代数最值 数学问题中常见的一类问题是:求某个变量的最大值或最小值.在生产实践中,我们经常面对带有“最”字的问题,如投入最少、利益最高、时间最短、效益最大、耗材最少等.我们把这类问题称为“最值问题”.最值问题也是数学竞赛中的热点问题,它内容丰富,涉及面广,解法灵活,解最值问题的常见方法有: 1.利用配方法求最值; 2.运用不等式或不等分析法求最值; 3.建立二次方程,在方程有解的条件下,利用判别式求最值; 4.构造二次函数模型求最值; 5.构造图形求最值. 例1 某乒乓球训练馆准备购买n 副某种品牌的乒乓球拍,每副球拍配k (k ≥3)个乒乓球.已知A 、B 两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元.现两家超市正在促销,A 超市所有商品均打九折(接原价的90%付费)销售,而B 超市买1副乒乓球拍送3个乒乓球.若仅考虑购买球拍和乒乓球的费用,请解答下列问题: (1)如果只在某一家超市购买所需球拍和乒乓球,那么去A 超市还是B 超市买更合算? (2)当k =12时,请设计最省钱的购买方案. 例2 光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,现将这50台联合收割机派往A 、B 两地区收割小麦,其中30台派往A 地区,20台派往B 地区. 两地区与该农机租赁公司商定的每天的租赁价格见下表: (1)设派往A 地区x 台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y 元,求y 与x 间的函数关系式,并写出x 的取值范围; (2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案设计出来; 、 (3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理建议. 例3已知实数a 、b 、c 满足.4,2==++abc c b a (1) 求a 、b 、c 中最大者的最小值; (2) 求||||||c b a ++的最小值. 例4 某商场将进价为30元的书包以40元售出,平均每月售出600个.调查表明:这种书

高中数学竞赛数论

高中数学竞赛 数论 剩余类与剩余系 1.剩余类的定义与性质 (1)定义1 设m 为正整数,把全体整数按对模m 的余数分成m 类,相应m 个集合记为:K 0,K 1,…,K m-1,其中K r ={qm+r|q ∈Z,0≤余数r ≤m-1}称为模m 的一个剩余类(也叫同余类)。K 0,K 1,…,K m-1为模m 的全部剩余类. (2)性质(ⅰ)i m i K Z 1 0-≤≤=Y 且K i ∩K j =φ(i ≠j). (ⅱ)每一整数仅在K 0,K 1,…,K m-1一个里. (ⅲ)对任意a 、b ∈Z ,则a 、b ∈K r ?a ≡b(modm). 2.剩余系的定义与性质 (1)定义2 设K 0,K 1,…,K m-1为模m 的全部剩余类,从每个K r 里任取一个a r ,得m 个数a 0,a 1,…,a m-1组成的数组,叫做模m 的一个完全剩余系,简称完系. 特别地,0,1,2,…,m -1叫做模m 的最小非负完全剩余系.下述数组叫做模m 的绝对最小完全剩余系:当m 为奇数时,2 1 ,,1,0,1,,121,21--+----m m m ΛΛ;当m 为偶数时,12 ,,1,0,1,,12,2--+-- m m m ΛΛ或2,,1,0,1,,12m m ΛΛ-+-. (2)性质(ⅰ)m 个整数构成模m 的一完全剩余系?两两对模m 不同余. (ⅱ)若(a,m)=1,则x 与ax+b 同时遍历模m 的完全剩余系. 证明:即证a 0,a 1,…,a m-1与aa 0+b, aa 1+b,…,aa m-1+b 同为模m 的完全剩余系, 因a 0,a 1,…,a m-1为模m 的完系时,若aa i +b ≡aa j +b(modm),则a i ≡a j (modm), 矛盾!反之,当aa 0+b, aa 1+b,…,aa m-1+b 为模m 的完系时,若a i ≡a j (modm),则有 aa i +b ≡aa j +b(modm),也矛盾!

中学数学竞赛讲义—极限的概念及求极限方法

中学数学竞赛讲义—极限 数列极限的定义 一般地,如果当项数n 无限增大时,无穷数列{}n a 的项n a 无限地趋近于某个常数a (即n a a -无限地接近于0),那么就说数列{}n a 以a 为极限. 注:a 不一定是{}n a 中的项. 几个常用的极限 (1)lim n C C →∞=(C 为常数);(2)1 lim =0n n →∞;(3)lim 0n n q →∞=(1q <). 两个重要极限 (1)0sin lim 0x x x →= (2)1lim 1x x e x →∞?? += ??? 数列极限的四则运算法则 设数列{a n }、{b n },当lim n n a a →∞ =,lim n n b b →∞ =时,l i m ()n n n a b a b →∞ ±=±;lim()n n n a b a b →∞ = ;lim n n n a a b b →∞=(0b ≠). 求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方;

山西太原市高中数学竞赛解题策略-几何分册第1章直角三角形

第一编 点击基本图形 第1章 直角三角形 直角三角形是含有内角为90?的特殊三角形,它是一类基本图形. 直角三角形的有趣性质在处理平面几何问题中常发挥重要作用. 性质1 一个三角形为直角三角形的充要条件是两条边长的平方和等于第三条边长的平方(勾股定理及其逆定理). 性质2 一个三角形为直角三角形的充要条件是一边上的中线长等于该边长的一半. 推论1 直角三角形的外心为斜边的中点. 性质3 ABC △为直角三角形,且C 为直角顶点的充要条件是当C 在边AB 上的射影为D 时,下列五个等式之一成立. (1)2AC AD AB =?. (2)2BC BD AB =?. (3)2CD AD DB =?. (4)22 BC AB CD AD =. (5)22AC AB CD DB = . 事实上,由2AC AD AB =?,有 AB AC AC AD = .注意到A ∠公用,知ACB △∽ADC △.而90ADC ∠=?,故90ACB ∠=?.即可得(1)的充分性. 我们又由 22222BC AB BC CD AB AD CD AD CD AD --=?= 22 DB DB CD AD ?=,即2CD AD DB =?. 即可证得(4)的充分性. 其余的证明略. 推论2 非等腰ABC △为直角三角形,且C 为直角顶点的充要条件是当C 在边AB 上的射 影为D 时,22AC AD BC DB = . 事实上,由性质3中的(1)、(2)相除或(4)、(5)相除即证.下面,另证充分性.由 222 222 AD AC AD CD DB BC CD DB +== +, 有 2()()0CD AD DB AD DB -?-=. 而AD DB ≠,即有2CD AD DB =?.由此即可证. 性质4 ABC △为直角三角形,且C 为直角顶点的充要条件是当C 在边AB 上的射影为点D ,过CD 中点P 的直线AP (或BP )交BC (或AC )于E ,E 在AB 上的射影为F 时,2EF CE EB =?(或2EF = CE EA ?) . 证明 必要性.如图11-,过D 作DG AE ∥交BC 于G ,则

相关文档
相关文档 最新文档