文档库 最新最全的文档下载
当前位置:文档库 › 多糖化学改性方法及其生物活性的研究进展

多糖化学改性方法及其生物活性的研究进展

多糖化学改性方法及其生物活性的研究进展
多糖化学改性方法及其生物活性的研究进展

多糖化学改性方法及其生物活性的研究进展

摘要多糖的化学修饰是一种重要的多糖结构修饰方法,是增强多糖生物活性、降低其副作用的有效途径。文中综述了几种目前多糖化学改性常用的无机酸酯化方法,以及目前国内外对于化学改性多糖制备及其生物活性的研究现状。

关键词多糖,化学改性,生物活性,研究进展

多糖是存在于众多有机体中一类具有丰富结构多样性的特殊生物高分子,多糖作为某些生物转化识别过程中的关键物质已被人们深入地认识,天然多糖已具有许多优异性能,如抗肿瘤、抗病毒、抗感染、抗氧化、抗诱变等,多糖这些生物活性的发挥与其结构有关,利用糖残基上的羟基、羧基、氨基等基团,对多糖进行分子表面修饰,可以进一步改善多糖的诸多性能,甚至获得具有特定结构的功能新材料。多糖衍生物的强抗病毒活性已经在临床应用上得到了充分的证明,因而对多糖结构进行适当修饰是多糖领域研究的重点之一。

多糖醚化和酯化反应是最具多样性的多糖改性方法,因为通过这两种方法可以很容易获得各种性能优异具有生物来源的新材料。本文主要介绍多糖无机酸酯化方法及其生物活性,将新颖的酯化方法、全面的结构解析和明确的的构效关系相结合必将推动多糖在生物工程、医药等诸多领域的应用。

1多糖结构表征方法及部分多糖结构

多糖含有易于发生酯化反应的伯羟基、仲羟基和羧基,以及可以转化为氨基化合物的

-NH2。要了解衍生化过程中多糖骨架可能发生的所有结构变化,需在改性前尽可能全面地对多糖结构进行分析。因为即使多糖类型相同,多糖的化学结构包括分支、糖原连接顺序、链中的氧化部分(如葡聚糖中的醛基、酮基和羧基)和残余的天然杂质均可能存在差异,尤其是在真菌和植物多糖中。

1. 1多糖结构表征方法

要完全阐明一个糖的结构一般需要提供以下几方面的信息:

⑴分子量及组成单糖的种类与摩尔比;

⑵各糖环的构象(呋喃型或吡喃型)与异头碳的构型;

⑶各糖残基间的连接方式;

⑷糖残基的连接顺序;

⑸二级结构及空间构象等;

以及常用到的方法(见表1)。

1. 2 部分多糖的结构

对多糖高级结构和空间构象的研究,是开发和利用多糖类物质的关键,也是对多糖进行化学改性的基础。研究人员已阐明部分真菌多糖的结构。

2多糖硫酸酯化

硫酸酯化多糖( sulfated polysaccharides,SPS)也称多糖硫酸酯( polysaccharides sulfate,PSS),是指糖羟基上带有硫酸根的多糖,是抗病毒多糖中研究最多的一类天然或化学修饰多糖,包括从动、植物中提取的各种硫酸多糖、肝素、天然中性多糖的硫酸衍生物及人工合成、半合成的各种硫酸多糖,具有免疫增强、抗凝血、抗氧化等活性,尤其具有突出的抗病毒(艾滋病毒、巨噬细胞病毒、流感病毒等)活性。具有高生物活性的硫酸酯多糖一般具有:

(1)均一多糖硫酸酯化产物抑制病毒的作用优于杂多糖的硫酸酯化产物;

(2)每个单糖单位需要2~3个SO42-才能有好的抗HIV活性,但每个单糖单位含有有1.5~2个SO42有良好的抗病毒活性;

(3)多糖分子质量越小,生物活性越高,在分子质量10 000~500 000之间保持最大活性。

2. 1硫酸酯化多糖合成方法

多糖硫酸酯化常用的方法有Wolfrom法、Ngasawa法、浓硫酸法、三氧化硫-吡啶法及三氧化硫-二甲基甲酰胺法等。中性多糖一般能溶于有机溶剂,可直接对其硫酸酯化。一般毗喃型多糖的硫酸酯化常采用Wolfrom法,呋喃型多糖常采用Ngasawa法。硫酸化方法的原理为:溶于一定溶剂系统中的多糖与相应的硫酸化试剂在一定的条件下反应,使得多糖残基上的某些羟基接硫酸基团。以氯磺酸试剂为例,多糖的硫酸酯化反应是在路易斯碱溶液中由SO3H+取代多糖羟基中

的H+,经中和得到硫酸酯盐。

2. 2硫酸酯化多糖生物活性

硫酸多糖的活性不仅与硫酸根的存在与否关系密切,还受硫酸取代度大小的影响。硫酸基的取代位置也是影响硫酸多糖活性的重要因素。尽管硫酸根与硫酸多糖的抗病毒活性密切相关,但并不是硫酸根越多活性越强,分子中硫酸根过多会产生抗凝血等副作用。一些海洋硫酸多糖因硫酸基过多而显示一定的毒性,经过脱去部分硫酸基(称多糖的脱硫修饰),可降低其毒性。

2. 2. 1 天然产物中提取

Anthony Josephine等研究从羊栖菜中分离的硫酸酯化多糖能阻止因环孢霉素而引发的大鼠肾脏线粒体功能缺失,起到对环孢霉素引起大鼠肾脏线粒体抗突变的生物学效应[10]。Mahanama De Zoysa等通过测定主动脉血栓形成时间研究从发酵的褐藻中分离得到的硫酸酯化多糖的抗凝血活性,这种硫酸酯化褐藻多糖得率是1.32%,是一种酸性多糖,虽然抗凝活性弱于肝素,但是对今后海洋藻类资源的开发具有指导意义[11]。Mao等研究从绿藻袋礁膜中分离多糖的结构和抗辐射作用,具有与其它富含鼠李糖的绿藻多糖不同的化学组成,硫酸酯化含量约为21.8%,能激活因辐射受损的老鼠的白细胞和造血功能。

2. 2. 2 人工合成

硫酸化葡聚糖抗凝血活性的提高和硫酸基团的取代度(DS)和分子量有关,而且取决于2,3,4位的葡萄糖单体上是否有硫酸基取代。Cui等研究野生葛根中(1→6)-α-D-葡萄糖的结构和构象,并采用MTT法评价硫酸酯化衍生物能够减轻过氧化氢对大鼠肾上腺嗜铬细胞瘤细胞的损伤作用[13]。Guo-Guang Liu合成硫酸酯化紫云英属多糖具有很高的抗HIV活性[14]。Ronghua Huang 等研究适用于制备硫酸酯化壳聚糖的一种新方法及其抗凝血性[15]。Li Wang用氯磺酸-吡啶(CSA-Pyr)法制备九种脱脂米麸多糖硫酸化衍生物,经MTT体外实验评价其抗肿瘤活性,当硫酸化程度在0.81~1.29,糖含量在41.41%~78.56%时,硫酸化衍生物体外的抗肿瘤活性相对较高[16]。因此硫酸化修饰是目前多糖结构修饰中研究得最多而且效果突出的一种修饰手段。

2. 3多糖的脱硫修饰

硫酸根具有抗凝血作用,因而部分脱硫,可降低多糖的抗凝活性,从某种意义上降低了毒性。脱硫的研究还有助于探讨硫酸根对海洋多糖的构效关系的影响。此外,在海洋多糖的结构测定中定位脱硫非常重要。目前脱硫法有酸脱硫法、碱脱硫法和有机溶剂脱硫法。最初主要用浓H2SO4和无水乙酸进行脱硫,但反应条件剧烈,易引起糖苷键的断裂,容易引起多糖构象的改变。人们对此法稍进行改进,用甲醇分解法在比较温和的条件下进行脱硫。有机溶剂脱硫法不易引起多糖中糖苷键的断裂,也不易引起多糖分子结构改变,对多糖化学结构分析测定的研究具有重大意义。

3 多糖羧甲基化

多糖与羧酸或羧酸衍生物的酯化反应是目前应用最广泛的多糖改性方法之一。羧甲基化增加多糖溶解度和电负性,向多糖中引入羧甲基可以提高多糖的水溶性,能给多糖增强活性或带来新的活性,因而羧甲基化也是常用的对多糖进行化学修饰的方法。

3. 1羧甲基化多糖合成方法

目前多糖常用的羧甲基化方法是将多糖在NaOH中碱化,再加异丙醇、氯乙酸,获得羧甲基化衍生物。Katrin Petzold等分别采用乙醇/甲苯,乙醇,异丙醇作为反应媒介合成羧甲基化木聚糖并表征其结构。壳聚糖作为一种医用生物材料有着广泛的用途,但是由于其难溶性限制其的广泛应用,而羧甲基化壳聚糖是将其转化成水溶性的有效方法,Hua-CaiGe等研究微波辅助制备羧甲基化壳聚糖的新工艺,微波辐射会促进反应体系质的传递,会增加氯乙酸和壳聚糖活性基团的反应,从而提高羧甲基取代度。

3. 2羧甲基化多糖生物活性

近两年,关于多糖的羧甲基化报道较多,Wang YF等对从茯苓菌中获得的水不溶性的β-葡

聚糖分别进行硫酸化、羧甲基化、甲基化、羟乙基化和羟丙醇化,得到5种水溶性的衍生物,研究发现硫酸化和羧甲基化衍生物均有显著的抗S-180肿瘤细胞和胃癌瘤细胞活性,而原多糖并没有此活性[19]。Chen等制备羧甲基化壳聚糖,可以促进正常皮肤纤维原细胞及瘢痕瘤皮肤纤维原细胞中胶原的分泌[20]。ElSherbiny研究新的羧甲基化壳聚糖的合成、表征及其吸附金属离子的能力,可以应用在废水处理领域。

4 多糖乙酰基化

多糖中乙酰基对多糖活性有影响,多糖部分乙酰化后而具有抗肿瘤活性,因为乙酰基能改变多糖分子的定向性和横次序,从而改变多糖的物理性质,乙酰基的引入使分子的伸展变化,最终导致多糖羧基基团的暴露,增加在水中的溶解性。乙酰基的数量和位置对多糖活性有显著影响纤维素经过乙酰化,乙酰基取代度低于0.5,以这种低乙酰基取代度的纤维素衍生物为原料进行硫酸化修饰,然后脱乙酰基,可得到高硫酸取代度且取代基分布均匀、抗HIV活性更高的硫酸化纤维素。多糖乙酰化的主要试剂是乙酸和乙酸酐。一般是将多糖置于一定的溶剂如吡啶、甲醇、DMAc/LiCl中,然后加入乙酰化试剂来完成酰化反应,乙酰化部位可以发生在羟基氧和胺基氮上。Jing Wang等合成了过硫酸化,乙酰化和苯甲基化三种褐藻多糖衍生物,并且研究其体外抗氧化活性。在乙酰化和苯甲酰化反应中,使用了新型催化剂(NBS),同时用红外光谱和核磁共振光谱研究了其乙酰化程度。乙酰化和苯甲酰化褐藻多糖衍生物具有很强的抗氧化活性,并且明显高于褐藻多糖。苯甲基化褐藻多糖清除超氧和羟基自由基活性最强,而乙酰化的褐藻多糖硫酸酯清除DPPH自由基和还原能力最强。硫酸基、乙酰基和苯甲酰取代基对于褐藻多糖体外抗氧化活性起着重要作用,而且抗氧化活性机制不同。

5多糖磷酸酯化

在多糖生物合成过程中,向糖原引入磷酸酯基是一个非常重要的活化步骤,形成糖苷键时磷酸酯基断裂,糖的磷酸酯类也是一类比较重要的糖类衍生物,多糖磷酸酯化后一般是为了降低多糖的溶解性或增强生物活性,磷酸酯化改性可增加纺织材料的阻燃性,纤维素磷酸酯可用作弱阴离子交换剂。

5. 1磷酸酯化多糖合成方法

磷酸酯化试剂有磷酰氯、磷酸酐、磷酸或其盐。磷酸及磷酸酐或两者的混合物是最早采用的磷酰化试剂,但一般糖苷键在酸性条件下极易水解,而此反应又是在高温下进行,此条件下糖易降解,从而使产物收率和DS均不高,大大限制了该法的应用。但一些对酸稳定的多糖或寡糖,用此法进行磷酰化就比较简单易行。磷酸盐廉价、易得,但反应活性低,不易获得高DS的产物。与磷酸相比其优点是一般不会引起多糖的降解。常用的磷酸盐有磷酸氢钠、磷酸二氢钠、偏磷酸钠或它们的混合盐。磷酰氯作为磷酰化试剂可获得高DS的磷酰化产物,但反应激烈、收率低、副产物多、有多种取代磷酸酯,因而限制了它的广泛应用,往往只用于合成简单的磷酰酯。一般常用的试剂是三氯氧磷(POCl3),Yuan等用POCl3作为磷酸化试剂,以吡啶为溶剂制备磷酸酯化多糖。

5. 2磷酸酯化多糖生物活性

采用磷酸化修饰得到的多糖磷酸酯衍生物具有抗病毒、抗菌、免疫调节、抗肿瘤等活性,并且糖链的长短及磷酸根的数目与抗肿瘤活性有着密切的关系。Wang采用三氯氧磷法和多聚磷酸法分别合成两种褐藻多糖磷酸酯化衍生物,采用环氧氯丙烷和氨水合成褐藻胺基化衍生物,并分别选取超氧自由基、羟自由基和DPPH清除活性评价3种褐藻多糖衍生物体外抗氧化活性,结果显示磷酸酯化的褐藻多糖衍生物表现出更强的羟自由基和DPPH清除活性,揭示不同取代基团与抗氧化能力之间的关系[25]。目前关于糖磷酸酯化修饰的研究报道还比较少,而且对于多糖、寡糖及其类似物的磷酸酯衍生物的生物活性、磷酸基在其中的作用及作用机制还不明确,尚待进一

步深入研究。

6多糖硝酸酯化

多糖硝酸酯通常由多糖与硝酸和硫酸的混合硝化剂按一定的比例反应制备,几乎完全衍生化的淀粉硝酸酯(DS3 )可用作炸药,其制备过程与纤维素的硝酸酯化过程类似。此外,将淀粉溶解在N2O4/DMF中,在甲醇存在下,继续加热中间体淀粉亚硝酸酯,也可制得淀粉硝酸酯。纤维素硝酸酯是迄今最重要的多糖硝酸酯,简称为“硝化棉”,已应用到许多领域(见表3)。采用不同硝化试剂,可以获得不同DS的产物。采用90% HNO3与磷酸和脱水剂P2O5的混合物,或者90% HNO3与乙酸酐的混合物,均可对纤维素进行完全硝酸酯化改性(DS=3),中间体乙酰硝酸酯是高反应活性的硝化试剂。DS3的纤维素硝酸酯可用于分析领域,用于黏度法或SEC法测定分子量和分子量分布。在无水条件下,消化反应不影响多糖的平均聚合度(DP)[1]。

7 小结

自然界中存在的多糖并不都具有活性。有些多糖由于结构或理化性质等障碍而不利于其生物学活性的发挥。有些从天然生物体内分离的多糖活性较弱,有待进一步提高。有些多糖不溶于水,影响进一步的药理研究。多糖的活性与多糖的结构、分子量、溶解性等诸多因素紧密相关。因此,采取一定的化学方法对多糖结构进行适当修饰是解决以上问题的根本途径。笔者在实验室制备了一些硫酸化、乙酰化、羧甲基化的黑木耳多糖,目前正在研究其抗癌活性。但是多糖的衍生化也有使原有活性减弱或丧失,因此多糖的衍生化关键在于确定多糖的结构与活性关系,确保多糖在衍生化后活性中心的立体构象处于最佳状态。

8感谢

感谢新乡医学院多位老师的辅导和技术上的支持。

参考文献

[1]Heinze T,Liebert T,Koschella A著;尹学琼,林强译.多糖酯化反应[M].北京:化学工业出版社,2008. 13.

[2]Malay Pramanik,Indranil Chakraborty,Soumitra Mondal. Structural analysis of a water-soluble glucan (Fr. I) of an edible mushroom,Pleurotus sajor-caju[J].Carbohydrate Research,2007,342:2670-2675.

[3]Indranil Chakraborty,Soumitra Mondal,Dilip Rout,et al. Structural investigation of a heteroglycan isolated from the fruit bodies of an ectomycorrhizal fungus Astraeus hygrometricus [J].Carbohydrate Research,2007,342:982-987.

[4]Sun Yongxu,Wang Shusheng,Li Tianbao. Purification,structure and immunobiological activity of a new water-soluble polysaccharide from the mycelium of Polyporus albicans (Imaz.) Teng

[J].Bioresource Technology,2008,99:900-904.[5]Liu Yuhong,Wang Fengshan. Structural characterization of an active polysaccharide from Phellinus ribis[J].Carbohydrate Polymers,2007,70:386-392.

[6]Debabrata Maiti,Krishnendu Chandra,Subhas Mondal,et al. Isolation and characterization of a heteroglycan from the fruits of Astraeus hygrometricus[J].Carbohydrate Research,2008,343:817-824.

[7]Juliana C Santos-Neves,Maria Izabel Pereira,Elaine R Carbonero,et al. novel branched αβ-glucan isolated rom heasidiocarps of the edible mushroom Pleurotus florida[J].Carbohydrate Polymers,2008,73:309-314.

[8]Y u Rongmin,Yang Wei,Song Liyan.Structural characterization and antioxidant activity of a polysaccharide from the fruiting bodies of cultured Cordyceps militaris[J].Carbohydrate Polymers,2007,70:430-436.

[9]Nakano M,Itoh Y,Mizumo T,et al. Poltsaccharide from Aspalathus linearis with strong anti-HIV acticity[J].Biosci Biatechnol Biochem,1997,61(2):267-271.

[10]Anthony Josephine,Ganapathy Amudha,Coothan Kandaswamy Veena,et al.Beneficial effect of sulfated poly-saccharides from Sargassum wightii against mitochondrial alterations induced by Cyclosporine A in rat kidney[J].Mol Nutr Food Res,2007,51:1413-1422.

[11]Mahanama De Zoysa,Chamilani Nikapitiya,You-Jin Jeon,et al. Anticoagulant activity of sulfated polysaccharide isolated from fermented brown seaweed Sargassum fulvellum[J].Appl Phycol,2008,20:67-74.

[12]Mao Wenjun,Li Yi,Wu Ligen,et al. Chemical characterization and radioprotective effect of polysaccharide from Monostroma angicava (Chlorophyta)[J].Journal of Applied Phycology,2005,17:349-354.

[13]Cui Hengxiang,Liu Qin,Tao Yongzhen,et al. Structure and chain conformation of a(1→6) -α-D-glucan from the root of Pueraria lobata (Willd. ) Ohwi and the antioxidant activity of its sulfated derivative[J].Carbohydrate-Polymers,2008(74):771-778.[14]Liu Guo-Guang,Gereltu Borjihan,Huricha Baigude,et al. Synthesis and anti-HIV activity of sulfated Astragalus polysaccharide[J].Polymers forAdvancedTechnologies,2003,14:471-476.

[15]Huang Ronghua,Du Yumin,Yang Jianhong,et al. Influence of functional groups on the in vitro Anticoagulant activity of chitosan sulfate[J].Carbohydrate Research,2003,338:483-489. [16]Wang Li,Li Xiaoxuan,Chen Zhengxing. Sulfated modification of thepolysaccharides obtained from defatted ricebranandtheirantitumor activities[J].International Journal of Biological Macromolecules,2009,44:211-214.

[17]Katrin Petzold,Katrin Schwikal,Thomas Heinze. Carboxymethyl xylan-synthesis and detailed structure characterizatio[J].Carbohydrate

Polymers,2006,(64): 292-298.

[18]Ge Hua-cai,Luo Deng-ke. Preparation of carboxymethyl chitosaninaqueous solution under microwave irradiatio[J].Carbohydrate Research,2005,340:1351-1356.

[19]WangYi-feng,Zhang Li-na,Li Yun-qiao,et al. Correlation of structure to antitumor activities of five derivatives of β-glucanfromporia cocos sclerotium[J].Carbohydr Res,2004,339(15):256-2574.

绿藻多糖的研究进展

综述 绿藻多糖的研究进展 海藻是生长于海洋中的低等植物,是海洋生物的重要组成之一。主要由褐藻、红藻、绿藻、蓝藻四大类海藻组成,其中,褐藻和红藻已经被大规模的人工养殖和工业利用,广泛应用于生产和实践中,在食品工业、纺织工业、医药卫生等领域发挥重要作用,而绿藻则未被广泛开发和利用,只有部分产量高的绿藻被用作饲料、饵料、肥料等,绿藻被人类认识和利用的程度远不如褐藻和红藻。然而,绿藻却是种类最多的一类海藻,绿藻是藻类植物中最大的一门,约有350个属,7500~8000种。绿藻的分布很广,在淡水和海水中均有分布,海产种类约占10%,淡水产种类约占90%。海产种多分布在海洋沿岸,往往附着在10公尺以上浅水中的岩石上。绿藻营养价值很高,含有大量糖、蛋白质、脂肪、无机盐和各种维生素,人们通过不断的提取、分离、鉴定,得知藻类中具有较高活性的物质是海藻多糖类。20世纪60年代初,英国的Percival研究组开始对孔石莼所含的碳水化合物进行研究,1961年,日本的三田对石莼的水提多糖水解后进行了纸色谱分析,结果表明含有D-葡萄糖、L-鼠李糖、D-木糖、和D-葡萄糖醛酸等。至此揭开了人类研究绿藻多糖的序幕,此后相继有学者投入到绿藻多糖的研究中来,取得了很多令人鼓舞的成果,迄今为止,日本和法国对绿藻多糖的研究报道较多[1],而我国对绿藻多糖的研究则较少。大量的研究证明,从绿藻中提取的天多 糖来源广泛、品种多、毒副作用低、安全性高、具有多种生物活性,成为近年来研究开发的热点。 1绿藻多糖的组成与结构 目前,人们只对绿藻门中某些种属的多糖进行了较为详尽的研究,这些种属的多糖表现出了较强的生物活性。总体来看,对多糖研究较多的绿藻种属主要有石莼属(Ulva)、松藻属(Codium)、浒苔属(Enteromorpha)、礁膜属(Monostroma)、小球藻属(Chlorella)、刚毛藻属(Cladophora)等等。绿藻多糖主要位于细胞间质中,多为水溶性硫酸多糖。它也存在于细胞壁之中,细胞壁微纤维主要不是由纤维素组成,而是由木聚糖或甘露聚糖构成,另外,细胞质内尚有少量的多糖存在。水溶性硫酸多糖是绿藻多糖的主要成分,其组分和结构随绿藻种类的不同而不

改性涤纶的染色

改性涤纶的染色 改性涤纶的品种较多,有化学改性和物理改性两类。物理改性主要是采用等离子体表面改性;化学改性主要以增加涤纶纤维分子结构中的非结晶部分,提高这一部分的分子间活动性能,即在聚酯纤维的大分子链中引入不对称的第三单体或极性基团。因此出现了不同改性纤维,如CDP,ECDP和ADP纤维。 CDP纤维是在涤纶中引入第三单体——磺酸基,通常为间苯二甲酸磺酸钠,包括α-—磺酸基—1,3—苯二甲酸,4—磺酸基—1,3—苯二甲酸和5—磺酸基—1,3—苯二甲酸。目前,CDP纤维多数采用间位第三单体,有时也用对位第三单体或同时加入此两种单体。CDP纤维根据所用改性剂的不同又分为高压型(高温型)即CDP纤维和常压型(低温型、易染型)即ECDP纤维。前者是在涤纶中引入第三单体磺酸基团及酸度较小的磷酸基团化合物,可用阳离子染料染色,但染色必须在110~130℃。后者除采用上述相同的第三单体外,还应加入第四单体如脂肪族二羧酸、二醇等改变纤维的非结晶区和扩大其分子活动性,同时降低玻璃化温度,因此可用阳离子染料在常压沸染下染色。 涤纶改性纤维除上述酸改性外,还有阴离子染料可染型(anionicdyeable polyester)简称ADP纤维,ADP纤维主要是在聚酯大分子链中引入碱性极性基团,疏松纤维内部结构,从而可使酸性染料上染。 分散阳离子染料: 具有阴离子性特性。因此很适合改性涤纶(CDP)纤维及其混纺产品的染色。与阴离子染料相容性好,可一浴法染色。 染料的溶解:用适量的50℃以下水搅拌至完全溶解。 染色:用冰醋酸调节pH=4-4.5,30分钟升温至120℃,保温30分钟。 可染阳离子染料: 部分阳离子染料也适合改性涤纶(CDP)纤维的染色:如:阳离子金黄X-GL、红X-2GL,红X-GRL、翠蓝X-GB、蓝X-BL、黑FDLT等。

ZSM-5分子筛合成和改性的研究进展详解

ZSM-5分子筛合成和改性的研究进展 摘要:ZSM-5分子筛在工业中应用广泛。本文详细阐述了ZSM-5沸石分子筛的各种合成方法,并介绍了常用的高温水热处理、金属改性和磷改性等改性技术现状及其应用。 关键词:ZSM-5,分子筛,合成,改性 ZSM-5沸石分子筛是Mobil公司于20世纪70年代开发的一种高硅三维交叉直通道的新结构沸石分子筛。ZSM-5分子筛属高硅五元环型沸石,其基本结构单元由8个五元环组成,这种基本结构单元通过共边联结成链状结构,然后再围成沸石骨架,其理想晶胞组成为:Na n(Al n Si96-n O192)·16H2O。该沸石分子筛亲油疏水,热和水热稳定性高,大多数的孔径为0.55nm左右,属于中孔沸石。由于其独特的孔结构不仅为择形催化提供了空间限制作用,而且为反应物和产物提供了丰富的进出通道,也为制备高选择性、高活性、抗积炭失活性能强的工业催化剂提供了晶体结构基础。由此,其成为了石油工业中择形反应中最重要的催化材料之一。不仅如此,ZSM-5分子筛在精细化工和环境保护等领域中也得到了广泛的应用。因此,对ZSM-5分子筛的研究具有重要的理论意义和实践价值。 本文在介绍ZSM-5分子筛结构的基础上,分析总结了ZSM-5分子筛的各种合成方法,如有机胺合成,无机胺合成等方法。此外,浅述了ZSM-5分子筛在改性方面的研究,以及未来ZSM-5分子筛的重点研究方向。 1 ZSM-5分子筛的结构 ZSM-5分子筛属于正交晶系,晶胞参数[1]为a=2.017nm,b=1.996nm,c=1.343nm。ZSM-5的晶胞组成可表示为Na n(Al n Si96-n O192)·16H2O。式中n是晶胞中Al原子个数,可以由0~27变化,即硅铝物质的量比可以在较大范围内改变,但硅铝原子总数为96个。 ZSM-5分子筛的晶体结构由硅(铝)氧四面体所构成。硅(铝)氧四面体通过公用顶点氧桥形成五元硅(铝)环,8个这样的五元环组成ZSM-5分子筛的基本结构单元。ZSM-5分子筛的孔道结构由截面呈椭圆形的直筒形孔道(孔道尺寸为0.54 nm × 0.56 nm)和截面近似为圆形的Z字型孔道(孔道尺寸为0.52 nm × 0.58 nm)交叉所组成[2],如图1所示。两种通道交叉处的尺寸为0.9 nm,这可能是ZSM-5

沸石研究进展

沸石在环境中的吸附特性的研究进展 张艳艳 南京工业大学环境学院环境工程 摘要:沸石是一种优良的吸附剂,具有成本低、使用方便、安全且不会造成二次污染等特点。其特性对于控制环境污染极为重要,尤其适用于水处理,净化空气,脱水方面,同时还可作滤料。沸石的应用前景广泛,应继续加大对各种天然沸石性能、结构和其改性工艺的研究,充分发挥其应用性能、拓宽其应用范围,使其在环境保护和污染处理中得到更好的应用。 关键词:沸石吸附作水处理 Study on investigation processes of zeolite adsorption effect in the environment Zhang Yanyan Nanjing University of Technology Collgege of Environmental Sciences Abstrac t:Zeolite is a superior adsorbent,which is cheap, convenient, safe and without any secondary pollution. Its characteristics are quite useful for the environmental pollution-control, particularly suitable for water treatment, air purification, dehydration aspect, and it can also be a filter. The application prospects of zeolite is quite extensive,the attention should be focused on the further study of all kinds of natural zeolites and their character, structure and modification to widen their application in water treatment. Key words: zeolite; adsorption ;water treatment 1 引言 沸石作为一种具有优异功能的非金属矿物材料,在工业中有广泛的应用。其显著特点是孔隙度高、比表换性、吸附性、催化性、耐酸性、耐热性、耐辐射性

涤纶-TPU涂层织物界面性能研究进展

涤纶-TPU涂层织物界面性能研究进展 周长城李忠东王兆军鞠国良 总后建筑工程研究所,陕西西安710032 摘要:涤纶织物表面惰性是制约涤纶-TPU涂层织物复合牢度的重要因素,纤维及织物表面改性是改善涂层与织物界面结合效果的有效措施。在分析涤纶-TPU涂层织物界面结合强度影响因素的基础上,综述了国内外涤纶织物表面改性的研究进展,以及涂层织物研究中常用的研究方法及技术手段。 涤纶;热塑性聚氨酯;涂层织物;界面 TS101.923A1672-2191 (2011 )04-0053-05 2011-02-22 周长城(1980-),男,工程师,主要从事TPU涂层织物的研究。 jgszcc@163.com

?54?

?55?

@@[1]沃尔特?冯.涂层和层压纺织品[M].顾振亚,牛家嵘, 田俊莹,译.北京:化学工业出版社,2006. @@[2]杨如馨.涤纶织物涂胶复合工艺研究[C]//第六届全国 印染后整理学术研讨会论文集.青岛,2002:15-19. @@[3]张翠玲,赵国,宋立丹,等.涤纶表面改性研究的进展 [J].涤纶工业,2007,20(6): 5-8.@@[4]别图霍夫.涤纶织物[M].张中岳,译.北京:中国工业 出版社,1964. @@[5]徐正宁.涤纶工业丝及其车用帘子布的现状与发展[J]. 合成纤维工业,2003,26(4): 1-4. @@[6]赵艳敏.涤纶纱线染色中低聚物的危害及去除剂的研 制与应用[J].宁波化工,2007(1): 10-13. @@[7]李忠东.防霉变可压延TPU材料设计及制备工艺研究 [D].西安:西安交通大学,2009. @@[8]程贞娟.改性涤纶仿真丝织物的碱处理[J].纺织学报, 1997,18(1): 34-39. @@[9] 白秀娥,秦志忠,张巧莲,等.改性涤纶碱胺同浴碱处 理[J].合成纤维,2003(9): 10-12. @@[10] Matthew D P, William C Q, Martin J B, et al. Modi fication of polyethylene terephthalate(Dacron) via denier reduction: effects on material tensile strength, weight, and protein binding capability[J]. Journal of Applied Biomaterials, 1995, 6: 289-299. @@[11]马丕波,徐卫林,黄丽,等.电晕处理对涤纶纱线上浆 性能的影响[J].纺织学报,2009,30(4): 74-82. @@[12] Eniko F, Andra S T, Erika K. Surface change of co rona-discharge-treated polyethylene films[J]. Journal of Applied Polymer Science, 2000, 76:1 529-1 540.@@[13]唐晓亮,任忠夫,李驰,等.常压等离子体表面改性涤 纶织物[J].纺织学报,2007,28(8): 63-65, 74. @@[14] Marcel Simora, Jozef Rahel, Mirko Cerna. Atmospher ic-pressure plasma treatment of polyester nonwoven fabrics for electroless plating[J]. Surface & Coatings Technology, 2003, 172(1): 1-6 @@[15] Watanabe Hirosuke, Makino Shoji, Kuroda Toshimasa. Process for producing an adhesive treated polyester fiber cord: US, 6528113[P]. 2003. @@[16] Langer Heimo J, McKllip William J. Bonding of rub ber to reinforcing elements: US, 4187349[P]. 1980.@@[17] Zavisza Daniel M. Adhesion of textile cords to rubber using a butadiene-styrene vinylpyridine rubber latex and an aldehyde condensale-glyoxal reaction products mixture: US, 4263190[P]. 1981. @@[ 18] Solomon Thomas S. Preparation of cord for bonding to rubber: CA, 1241787[P]. 1988. @@[19]陈铁均,唐威.涤纶帘帆布浸胶胶液:CN,1352333[P]. 2002. @@[20]袁爱春,胡祖明,刘兆峰,等.一种改进涤纶帘子线与 橡胶粘合的浸胶配方及制备方法:CN,100999868[P]. 2007. @@[21]宋月贤,郑元锁,王有道,等.涤纶织物与橡胶的粘合 研究[J].西安交通大学学报,1998,32(1):104-106. @@[22]王沛喜.涤纶帘子布浸渍用胶粘剂[J].中国胶粘剂, 2005,14(1): 12-16. @@[23]许其军,姚峻,程辉,等.涤纶浸胶用封闭异氰酸酯的 性能及应用[J].产业用纺织品,2002(6):37-39. @@[24]狄剑锋.表面处理对涤纶润湿性及可染性的影响[J]. 纺织学报,2005,26(4): 49-53.

ZSM_5沸石分子筛的合成和表面改性研究进展

ZSM -5沸石分子筛的合成和表面改性研究进展 杨少华 崔英德 陈循军 涂 星 (广东工业大学轻工化工学院,广州510090) 摘 要 综述了近年来ZS M -5沸石分子筛的合成及表面改性研究进展。合成方面重点介绍了有机胺合成、无机胺合成及负载合成方法;表面改性方面重点介绍了水蒸气改性、离子交换改性及化学气相沉积改性方法。 关键词 ZS M -5沸石 分子筛表面改性 合成 收稿日期:2003202221。 作者简介:杨少华,广东工业大学在读研究生,主要从事高分子材料的合成研究。 沸石是一种结晶态的铝硅酸盐,由SiO 4和AlO 4四面体单元交错排列成空间网络结构。在 晶体结构中存在着大量的空穴,空穴内分布着可移动的水分子和阳离子。这种结构特点使沸石具 有选择吸附、催化和离子交换三大特性〔1〕 。ZS M -5沸石分子筛是M obil 公司于20世纪70年 代开发的高硅三维直通道结构沸石,属于中孔沸石,由于它没有笼,所以在催化过程中ZS M -5沸石催化剂不易积碳,并且有极好的热稳定性、耐酸 性、疏水性和水蒸气稳定性〔2〕。 1 ZSM -5沸石分子筛的合成1.1 有机胺合成 有机胺合成是合成沸石分子筛最常用的方 法。常用的有机胺模板剂可分为5类〔3〕 :(1)直链或环状烷基胺,如苄基丁胺、四乙基铵盐、三丁胺、三乙胺、二异丙胺、异丁胺、二异丁胺、叔辛胺、新戊基胺、环己胺、环庚胺、1,2-二氨基环己烷、2-或4-甲基环己胺、四甲基乙基二胺、R 4N +-螺旋化合物等;(2)含氧有机化合物,如羟基二胺、氯化钠-三乙醇胺、含1个或2个氧原子的饱和环胺、与Ⅳ族金属络合的醚(尤为环醚类)、乙醇胺、饱和低碳醇;(3)含氮杂环化合物,如吡啶、2-氨基吡啶、甲基紫等;(4)烷基磺酸盐;(5)含氮正离子的紫罗烯或其离子交联聚合物等。 模板剂对ZS M -5分子筛的粒径有显著影响。孙慧勇等人分别以正丁胺、乙二胺和己二胺作模板剂,用水热合成法制备了粒径在200~1000nm 的小晶粒ZS M -5分子筛,研究了碱度、 温度、模板剂和初始浓度等对分子筛粒径和分布 的影响〔4〕 。结果表明,较高的碱度和反应物浓度 有利于晶粒杂原子分子筛的合成。水热合成中程序升温合成的分子筛颗粒小,粒度均匀,抑制了二 次成核过程。用不同模板剂合成的ZS M -5分子筛晶粒大小的顺序为:正丁胺>己二胺>乙二胺。 国外也有关于纳米级ZS M -5分子筛的报道〔5,6〕 。 有文献报道了一种高硅ZS M -5分子筛的合成方法〔7〕 ,以固体硅胶为硅源,硫酸铝或偏铝酸钠为铝源,烷基胺类有机物(Q )为有机模板剂,制备出n (SiO 2)∶n (Al 2O 3)=100~1000,n (H 2O )∶n (SiO 2)=1.0~9.5,n (Na 2O )∶n (SiO 2)=0.02~0.3,n (Q )∶n (SiO 2)=0.02~0.50的反应混合 物。然后将该反应混合物按常规方法水热晶化,或者先将反应混合物于20~105℃陈化4~48h 后再在较高温度下晶化。该方法因投料含水量较低,可以提高单釜合成效率并降低有机模板剂的用量。1.2 无机胺合成 由于有机胺合成ZS M -5分子筛的价格比较昂贵且存在较大的毒性,所以很多学者对无机胺合成ZS M -5分子筛进行了广泛的研究。已有关于用乙醇或甲醇代替有机胺合成ZS M -5分子筛 的报道〔8〕 。陈丙义等人以氨水、硫酸铝、水玻璃为主要原料合成了ZS M -5分子筛,研究了合成温 度和时间对分子筛的影响〔9〕 。结果表明,在147~177℃范围内,以氨水为模板剂可以合成出ZS M -5沸石分子筛。温度越低,合成所需时间越 长。通过XRD 分析,以氨水为模板剂合成的

微生物多糖的研究进展

微生物多糖的研究进展 生命科学技术学院08级2班杜长蔓 摘要: 就微生物多糖的种类,生物合成、提取与纯化、实现了工业化的微生物多糖及其应用进行了综述, 展望了微生物多糖开发利用的前景。微生物多糖主要指大部分细菌、少量的真菌和藻类产生的多糖。微生物多糖由于具有安全性高、副作用小、理化特性独特等优点而使其在食品和非食品工业备受关注,尤其在医药领域具有巨大的应用潜力。微生物多糖在细胞内主要有三种存在形式: ①黏附在细胞表面上,即胞壁多糖; ②分泌到培养基中,即胞外多糖; ③构成微生物细胞的成分,即胞内多糖。而其中的胞外多糖具有产生量大、易于与菌体分离、可通过深层发酵实现工业化生产。一般微生物多糖的生产主要是利用淀粉为碳源,经过微生物的发酵进行生产,也有通过利用微生物产生的酶作用制成的。能够产生微生物胞外多糖的微生物种类较多,但是真正有应用价值并已进行或接近工业化生产的仅十几种。近几年,随着对微生物多糖研究的深入,世界上微生物多糖的产量和年增长量在10 %以上,而一些新兴多糖年增长量在30 %以上。到目前为止,已大量投产的微生物胞外多糖有黄原胶(Xant han gum) 、结冷胶( Gellan gum) 、小核菌葡聚糖(Scleeroglucan) 、短梗霉多糖( Pullulan) 、热凝多糖(Curdlan) 等。微生物多糖和植物多糖相比较具有以下优势:①生产周期短,不受季节、地域、病虫害等条件的限制; ②具有较强的市场竞争力和广阔的发展前景; ③应用广泛,例如已作为胶凝剂、成膜剂、保鲜剂、乳化剂等广泛应用于食品、制药、石油、化工等多个领域。据估计,目前全世界微生物多糖年加工业产值可达80 亿左右。 关键词: 微生物多糖; 生物合成; 提取与纯化;开发应用 0引言 多糖是一种天然的大分子化合物,来源于动物、植物及微生物,在海藻、真菌及高等植物中尤为丰富。它是由醛糖和(或)酮糖通过糖苷键连接成的聚合物,作为有机体必不可少的成分,同维持生命体机能密切相关,具有多种多样的生物学功能。 根据多糖在微生物细胞内的位置,可分为胞内多糖、胞壁多糖和胞外多糖。人们对多糖的初始研究可追溯到1936 年Shear对多糖抗肿瘤活性的发现, 但微生物多糖倍受关注是从20 世纪50 年代开始的. 20 世纪50 年代, J eanes等人筛选、获得了许多黄原胶(Xan than gum ) 的产生菌. 1964 年, 原田等人从土壤中分离到产凝结多糖(Cu rdlan, 又称热凝多糖) 的细菌, 后发现农杆菌(A grobacterium sp. ) 也可以产生该多糖. 1978 年,美国人生产制造了产生于少动鞘脂类单胞菌(S p hing om onas p aucim obilis, 旧称伊乐藻假单胞菌) 的结冷胶(Gellan gum , 又称胶联多糖). 随后, 小核菌葡聚糖(Scleeroglucan)、短梗霉多糖(Pu llu lan, 又称普蓝)、透明质酸( Hyalu ron ic acid)、壳聚糖(Ch i2tasan) 等微生物多糖又相继被人们发现.近年来又兴起一些新型微生物多糖如海藻糖、透明质酸、壳聚糖等的研究。微生物多有广泛的应用价值, 已作为乳化剂、增稠剂、稳定剂、胶凝剂、悬浮剂、润滑剂、食品添药品等应用于石油、化工、食品、医疗、制药保健等多个领域[1 ]. 为了不断开发微生物多糖的潜能, 仍然需要筛选、分离新的多糖产生菌, 了解多糖的生物合成, 研究它们的结构、理化学特性,进一步拓展它们的应用领域. 1微生物多糖的生物合成 多糖有的合成于微生物的整个生长过程, 有的合成于对数生长后期, 而有的则合成于静止期. 它们种类繁多, 可分为同型多糖和异型多糖, 都是由相同或不同的单糖或者和其它基团在特

沸石改性综述

L沸石的改性 一.引言 酸型沸石是一种广泛应用于石油精炼厂和石化生产过程的催化剂。由于沸石分子筛的酸强度及酸分布都会影响到沸石的稳定性和催化性能,因此沸石科学的早期人们就已经开始研究利用离子交换技术来改变沸石酸性质。例如,20世纪40 年代Barrer描述了丝光沸石的离子交换行为[i][ii]。Sherry[iii]和Breck [iv]已经总结出一套一般的离子交换方法[v],这种方法适用于分子筛离子交换已经得到证实[vi,vii]。接着,在20世纪六七十年代,焙烧作为一种主要的方法被用来研究Y(FAU)沸石[viii,ix]。沸石分子筛的催化性能受SiO2/Al2O3的影响,改变分子筛的SiO2/Al2O3也成了研究分子筛的重点,常常通过直接合成或者通过合成后处理的方法,得到高硅铝比的沸石分子筛,经脱铝处理的高稳定的USY分子筛为流化催化裂化奠定了基础,高硅铝比的丝光沸石也显示出了独特的催化性能。 分子筛的改性范围很广,从简单的离子交换直到结构完全崩塌的材料都属此范围。既包括对非骨架元素的改性也包括对骨架元素的改性。兰州炼油化工总厂石化研究院的高繁华等人总结了沸石改性的方法,主要包括三大类:一是结构改性,即改变沸石的SiO2/M2O3(M=Al或Fe,B,Ca等)从而达到改变沸石酸性的目的,水热脱铝是这类改性沸石的典型方法;二是沸石晶体表面改性,如加入不能进入沸石孔道的大分子金属有机化合物达到改性目的;三是内孔结构改性,即改变沸石的酸性位置或限制沸石的内孔的直径,例如金属阳离子交换。 目前工业上广泛应用的分子筛大多是需要提高其耐酸性能,分子筛骨架的酸碱性与分子筛骨架的硅铝比密切相关,所以往往需要对分子筛进行后处理来改变骨架的硅铝比,从而改变它的酸碱性和活性中心的数目和强度来适应催化反应的需要。改变分子筛的硅铝比,通常是在合成后对分子筛进行脱铝补硅处理,沸石分子筛脱铝补硅的方法很多[x,xi],主要有: (1)酸处理的方法可用无机酸或有机酸处理分子筛,使其骨架脱铝,可使用的酸有盐酸、硫酸、硝酸、甲酸[xii]、乙酸、柠檬酸[xiii]、乙二胺四乙酸(H4EDTA)等。根据分子筛耐酸性的差异,采用不同浓度的酸进行骨架脱铝。对于耐酸性好的高硅沸石多用盐酸漂法,以抽走骨架中的铝,结构仍保持完好。在骨架铝脱出的同时,孔道中非晶态物质也被溶解,这样减少了孔道阻力。对于耐酸性差的分

灵芝多糖的研究进展_张卫国

中图分类号:R979.1 R730.53;文献标识号:A ;文章篇号:1007-2764(2003)03-0036-85  灵芝多糖的研究进展 张卫国1 刘欣2 陈永泉2  (1韶关大学英东生物工程学院 韶关 512005)(2华南农业大学食品学院 广州510642) 摘 要: 灵芝多糖是灵芝中含有的一种高分子活性多糖,具有多种生理功能,国内外对此开展了广泛的研究。本文对其生理功能、结构特点、发酵生产等方面的研究进行了综述。  关键词:多糖;生理功能;结构;发酵    Research advance of G.japonicum polysaccharide Zhang Weiguo1, Liuxin 2, Chen Yongquan2 (1 Food Department , Shaoguan University, Shaoguan ,512005) (2 Food college, South-China Agricultural University, Guangzhou 510642) Abtract: G.japonicum Polysaccharide is a high-molecule active material that has many functions. Its research has done widely at home and abroad. The paper reviews its function, structure and fermenting production.。 Key words: polysaccharide; function; structure; fermentation   1 灵芝及其医疗保健作用  灵芝是一种营养、保健价值极高的大型担子菌。目前已知灵芝属约有100多种,其中以赤芝和紫芝的药理价值最高,临床上主要也是使用这两种灵芝[1]。我国是灵芝真菌资源丰富的国家,它们多生长在浙江、江西、湖南、广西、云南、贵州、福建、海南等地区,紫芝是中国特有的灵芝种类[2]。灵芝含有有机锗、高分子多糖、灵芝酸及腺嘌呤核苷等生物活性成分。 灵芝与人类健康有极其密切的关系。关于灵芝的药效作用,历代本草学家都有所论述,早在2千多年前的春秋战国时期,《列子、汤问》列御寇中云“朽壤之一,有菌之者”,并总结当时利于灵芝治病保健的经验:“煮百沸其味清芳,饮之明目,脑清、心静、肾坚,其宝物也”[3]。 最早的药学著作《专著神农本草经》把灵芝列为上品,谓其“久味苦平,主治胸中结,益心气,补中,增智慧,不忘,久服轻身不老”。 李时珍在《本草纲目》中对灵芝药性和功效作了详尽的记述:赤芝,苦平无毒,主治胸中结、益心收稿日期:2003-5-2 气、补中、增智慧、不忘;紫芝,甘温无毒,好颜色、治虚劳、治痔[4]。 现代医学药理研究和临床上都已证明:灵芝可增强机体对自由基的清除能力,故能减少自由基对机体的损伤,有延缓衰老之功效,还可以提高免疫力、抗炎症、降低血液中胆固醇含量、降血脂、降血糖等药效[6]。 2 活性多糖的研究概述 活性多糖是一种具有某些特殊生理功能的多糖类高分子化合物,广泛存在于植物、动物和微生物组织中。按照来源分类,活性多糖分为植物多糖、动物多糖、微生物多糖等,还可以进一步细分,如微生物多糖再分为细菌多糖和真菌多糖等。按照化学结构分类,多糖分为均多糖和杂多糖[7]。活性多糖作为药物始于1943年,六十年代后,活性多糖作为广谱免疫促进剂引起了人们极大的兴趣[8]。八十年代又发现活性多糖的糖链在分子生物学中具有决定性的作用,能控制细胞分裂和分化,调节细胞的生长和衰老[9]。近年来,多糖结构与功能的关系以及多糖复合物疫苗等研究在国际上受到了较多的关注。 85

改性涤纶的发展

改性涤纶的发展 【转载】发布者:日期:2011-04-03 1941年英国Whenfield和Dikson以对苯二甲酸和乙二醇为原料合成了聚对苯二甲酸乙二酯,并制成了纤维,在我国商品名为涤纶。涤纶于1946年在英国工业化生产,1953年开始在世界范围内大规模工业化生产,1971年开始在数量上超过尼龙,成为第一大合成纤维。由于涤纶具有强度高、弹性好、保型性好、尺寸稳定性高等优异性能,由其织成的衣物经久耐穿,电绝缘性好,易洗快干,具有“洗可穿”的美称,因而被广泛应用于服装、装饰、产业等领域。但是涤纶由于内部分子排列紧密,分子间缺少亲水结构,因此回潮率很小,吸湿性能差。在相对湿度为95%的条件下,其最高吸湿率为0.7%,由于其吸湿性差,抗静电性不好,涤纶织物透气性不好,染色性差,抗起毛起球性差。 针对涤纶使用性能的缺陷,其改性研究主要有:一是物理改性方法,主要在涤纶的生产过程中进行物理共混改性;二是化学改性方法,运用化学接枝或嵌段的方法改变涤纶的分子链结构,改善涤纶的服用性能。 1 涤纶的染色改性 涤纶纤维是疏水性的合成纤维,缺乏能与直接染料、酸性染料、碱性染料等结合的官能团。虽然具有能与分散染料形成氢键的酯基,但是涤纶分子链结构紧密,染料分子不易进入纤维内部,致使染色困难,色泽单调,直接影响到涤纶面料花色品种的开发。由于涤纶的结晶度高,纤维中只存在较小的空隙,当温度较低时,分子热运动改变其位置的幅度较小,在潮湿条件下,涤纶纤维又不会象棉纤维那样能通过剧烈溶胀而使空隙增大,染料分子难以渗透到纤维内部。涤纶染色时通常只能用分散染料进行染色,并且必须在高温高压下或借助载体进行染色。为了提高涤纶的染色性能,从分子结构上考虑,提高分子链的疏松程度,将有助于染料分子的进入。改善染色性能主要采用的方法有:(1)与分子体积庞大的化台物共聚;(2)与具有可塑化效应的化合物混合纺丝;(3)导入具有醚键那样的和分散性染料亲和性好的基团。采用共聚方法改性制得的涤纶树脂熔点低,结晶度低,纤维的热性能和机械性能受到一定程度的损害。 阳离子染料可染改性方法是将涤纶染色改性剂,如简苯二甲酸二甲脂-5-磺酸钠(俗称三单体,英文缩写SIPM)与涤纶共聚,共聚后的涤纶分子链中引入了磺酸基团,可用阳离子染料染色,所染织物色彩鲜艳,染料吸尽率高,大幅度减少了印染废水的排放,共聚聚酯切片又能增加抗静电、抗起毛球及吸湿性能,是近年来改善涤纶染色性能的主要方法之一。日本尤尼吉卡公司用4份含磺酸基团的间苯二甲酸盐单元的阳离子可染聚酯与1份乙二醇/聚乙二醇/磺酸基间苯二甲酸钠/对苯二甲酸的嵌段共聚物共混纺丝,可制成具有高染色深度

涤纶表面改性研究的进展

涤纶表面改性研究的进展 2012-06-25 来源: 张翠玲,赵国樑,,宋立丹,王甜甜点击次数:294 关键字:涤纶;表面改性;方法和原理 摘要:介绍了近年来国内外涤纶表面改性的原理、方法、应用以及各种常用表征方法。对等离子体处理方法的3个方面的应用做了详细阐述;介绍了紫外光接枝方法的原理、应用,以及近年来对该方法的改进;阐述了碱处理的原理、应用及近年来的发展趋势。 关键词:涤纶;表面改性;方法和原理 涤纶是产量最大的合成纤维,具有许多优良性能,如:断裂强度和弹性模量高,回弹性适中,热定形性好,耐热和耐光性好,抗有机溶剂、氧化剂以及耐腐蚀性好,对弱酸、碱等稳定[1],等等。由于以上种种优点,在纺织及其他工、农业领域具有广泛的应用。但是,聚酯分子结构对称,结晶度较高,结构中又没有高极性基团, 因此亲水性较差[2],这就在很大程度上限制了它的舒适性、可染性等。另外,由于涤纶对人体安全、无毒、低的吸水性,对人体的体液具有高抗渗透性[3], 近年来,作为生物医学材料的研究也越来越多。但是,很多文献报道:涤纶的低亲水性结构使其血液相容性很差,这也是生物材料领域亟需解决的一个问题。为了使涤纶的应用更广泛,扬长避短,近年来人们开始研究涤纶的表面改性方法。表面改性是指在不改变材料及其制品本体性能的前提下,赋予其表面新的性能,如亲水性、抗静电性、染色性、耐老化性、生物相容性等[4]。 目前,对涤纶的表面主要有低温等离子体处理法、紫外光引发接枝法、湿法化学法、离子束照射法[5]、光化学法[6]等改性方法。 等离子体处理 等离子体表面改性是通过等离子体处理以及在材料表面等离子体接枝来改变材料表面结构的一种表面改性方法[7]。低温等离子体在纤维改性方面的应用研究始于20世纪60年代,此后美国进行了一些研究并有应用该技术处理加工的聚酯纤维(商品名Refresca)投放市场[8]。等离子体对涤纶的表面改性主要有以下几个方面:利用低温等离子体引发接枝聚合反应(Plasma-initiatedGraftedPolymerization);单纯利用等离子体处理,引发表面结构的变化;等离子体聚合沉积成膜对材料表面进行改性。在低温等离子体引发接枝聚合反应方面,很多研究者做了大量的工作。日本九州国立大学的 YoungJinKim等人利用氧气等离子体引发,接枝丙烯酸,然后经过一系列的化学反应来改变涤纶的表面结构达到改变其血液相容性的效果[9]。 天津工业大学的张晓林、马小光通过丙烯酸微波等离子体对涤纶的表面接枝改性来达到提高其染色性能的目的[10]。西南交通大学的潘长江等人利用等离子体表面接枝方法在涤纶表面接枝不同分子质量的聚乙二醇(PEG),使涤纶的抗凝血性能得到了显著改善[11]。 Shizuoka大学聚合物化学实验室的N. NAGAKI等人利用Ar等离子引发涤纶表面改性,通过XPS光谱发现其表面结构发生了变化,通过接触角测试,发现表面改性后亲水性显著改善[12]。在单纯等离子体处理对涤纶进行表面改性的研究中, 日本静冈大学的NORIHIRO INAGAKI等人[13214]也做了大量的工作来证实等离子体对于涤纶表面改性的显著作用。结果表明涤纶表面的N/C比例发生了很明显的变化,其接触角也发生显著变化。西北纺织工学院的陈杰瑢等人单纯利用氧等离子体对涤纶表面进行处理,表面张力评价的解析结果表明,氧等离子体处理后的涤纶表面自由能增大。X射线光电子能谱(XPS)分析表明,涤纶表面被引入了大量含氧和含氮极性基团,最终使得涤纶的亲水性增强[15]。 近年来,人们已开始关注等离子体沉积成膜对涤纶进行表面改性的技术。西南交通大学的王进、潘长江等人采用乙炔等离子体浸没离子注入与沉积(PIII2D)技术,对医用涤纶缝合环材料进行表面改性,分析结果表明:在涤纶材料表面有效地沉积了一层类金刚石(DLC)薄膜。原子力显微镜(AFM)的图像分析进一步证明,表面平均粗糙度从58. 9nm降低到11. 2nm。细菌黏附实验结果证明,沉积了类金刚石薄膜的表面对金黄色葡萄球菌(SA)等5种细菌的黏附均有明显抑制作用[16]。中科院物理所的陈光良等人 [17],以及北京印刷学院的张跃飞等人[18]分别以CH4 为碳源,Ar为稀释气体,用射频等离子体增强化学气相沉积法,在涤纶上沉积了阻隔性能优良的碳氢膜,镀碳氢膜涤纶的阻隔性能都有提高。目前,利用等离子体处理的技术较成熟,在美国已实现了工业化。而在我国,等离子体改性的研究也日益深入,但距离工业化还有一段距离。而涤纶等离子体表面改性的工业化是一种必然的趋势。2紫外光表面接枝

沸石在水处理中应用的分析研究进展及前景

沸石在水处理中应用的研究进展及前景 刘慧芳 <华南师范大学化學与环境科学学院) [摘要] 沸石是一种具有优异功能的非金属矿物材料,本文对近两年来沸石在水处理应用的研究进展进行了综合评述。介绍了沸石在去除水中氨氮、有机物质、重金属离子、等方面的应用。认为应继续加大对各种天然沸石性能、结构和其改性工艺的研究,充分发挥其应用性能、拓宽其应用范围,使其在环境保护和污染处理中得到更好的应用。 [关键词] 沸石;吸附;离子交换;氨氮;改性沸石;斜发沸石;深度处理;生态床系统;超微沸石;丝光沸石;应用 沸石作为一种具有优异功能的非金属矿物材料,在工业中有广泛的应用。其显著特点是孔隙度高、比表面积大,离子交换性、吸附性、催化性、耐酸性、耐热性、耐辐射性等性能优异, 因此被广泛用于石油化工、环境保护、农牧业、建材工业、轻工业及高新尖端技术等领域。沸石可用做催化剂、干燥剂、水质软化剂、吸附剂、离子交换剂等,在工业上常作分子筛,用来净化气体、石油及废水处理,海水提钾、淡化、硬水软化等[1]。目前国际上对天然沸石的开发、研究和生产相当活跃。本文对近两年来沸石在水处理应用的研究进展进行了综合评述,介绍了天然和改性沸石在去除水中氨氮、有机物质、重金属离子、放射性物质等方面的应用。 1 沸石的由来、结构及其特性 1.1 沸石的由来 1765年瑞典矿物学家C ronstedt在冰岛玄武岩杏仁状空隙内,首先发现一种白色透明的矿物,因其加热时出现发泡沸腾现象,便以希腊文命名为“zeolite”,意为“沸腾的石头” [2]。关于沸石的定义存在着一个演变的过程,直至1997 年,国际矿物学协会采纳了由D.S.Coombs等18名成员署名发表的有关沸石类矿物命名的建议,将沸石矿物定义为一类结晶物质,其结构以四面体连接形成的格架为特征,四面体由4个氧原子围绕一个阳离子组成[3]。 1.2沸石的结构 沸石最基本的结构单元是SiO4和AlO4四面体,相邻的四面体之间以氧桥键的方式共用氧原子。其中Si或Al位于四面体的中心,分别与氧键合,氧位于四面体各顶点。这种结合方式使其在三维方向上形成一个具有规整结构的无机聚合体。其中AlO4带一个负电荷,那么必然就有一个相反的电荷存在,以中和架电荷。因此沸石中存在很多骨架外阳离子,这实际上就是沸石能够作为催化剂的最本质的原因。同时,其骨架也搭起了一个内部空旷、充满孔隙与相互联通的孔道与笼的结构,提供催化反应的场所以及传输的通道。 1.3 沸石的特性 (1>吸附 沸石晶体的大量孔穴和孔道(孔穴度高达40%~50%>,使沸石具有很大的比表面积,因此色散力强。结构比较空旷的沸石与活性炭的比表面积(800~1050m2/g>相近,结构空旷度较低的沸石也与微孔硅胶(500~600m2/g>相近,都明显高于活性氧化铝的比表面积(200~400m2/g>。又因为晶体内部各种构造形式的笼内充填着阳离子,并且部分硅(铝>氧四面体骨架氧也有负电荷,在这些离子周围形成强大的电场,从而还有强大的静电引力。晶体内外表面过剩自由能所决定的色散力和这种静电引力的存在,使得沸石有优良的吸附性能。 (2>离子交换 由于分子筛骨架中含有大量的AlO4四面体,其骨架是荷负电的。因而在其孔内必然有大量的金属阳离子以平衡其骨架电荷。这些阳离子位于骨架外,是可以进行离子交换的离子

多糖类功能性食品生物活性的研究进展

多糖类功能性食品生物活性的研究进展 The research progress of bioactive polysaccharide functional food

摘要 随着社会的进步和人们生活水平的提高,人们越来越注意饮食健康。但随着生活结构的改变和环境恶化因素的影响,导致人们的身体出现各种各样的慢性疾病,影响了人们身体健康,降低了人们生活质量,从而对于供能食品来调节机体有了确切的渴望。本文通过阐述功能性食品的概念,功能性食品现状,多糖的功能特性以及发展趋势等几个方面介绍了功能性食品。 关键词:多糖;功能性食品;前景

ABSTRACT Along with the social progress and people living standard rise,people more and more attention to healthy diet. But with the change of the structure,and the influence of environmental factors,lead to people's body appear all sorts of chronic disease,affected the people healthy body,the lower the quality of life,thus to supply food to regulate the body had a definite desire. This paper explains the concept of functional food and functional food current situation,features and development trend of polysaccharides are introduced in several aspects,such as functional food. Key words:Polysaccharide;Functional food;Outlook

阳离子可染改性涤纶纤维

阳离子可染改性涤纶纤维 阳离子可染改性涤纶纤维阳离子可染改性涤纶是在涤纶大分子上引入对阳离子染料具有亲和力的磺酸基或磷酸基团,分高压型(CDP)和常压型(ECDP)两种。 CDP纤维所加入抑第三单体为间苯二甲酸磺酸钠,其染色温度为120℃左右;ECDP纤维除第三单体外,还加入第四单体,常见的有脂肪或芳香二羧酸及其衍生物、脂肪或芳香二元醇及其衍生物以及羧酸类化合物等,其染色温度为100℃;ECDP纤维还分醚型和酯型两种,酯型的耐热性比醚型的好。 阳离子可染改性涤纶纤维的主要特点是可用阳离子染料常压沸染,这既克服了常规涤纶必须用高温高压或载体染色的不足,又可使毛/涤、涤/腈等混纺织物一浴法染色较为容易,而且染色的色泽比较鲜艳。阳离子可染改性涤纶可用于生产各类仿毛产品,短纤或长丝广泛用于生产多类混纺的精、粗纺呢绒,毛线、毛毯以及仿毛花呢等织物。 阳离子可染改性涤纶的缺点是强力较低,耐酸碱性较差,尤其对强碱很敏感,在强碱作用下水解速度比常规涤纶高2~3倍。但可利用这一特性对其进行碱减量处理,提高纤维的柔软性和吸湿性,进而提高其穿着舒适性。 另外,阳离子可染改性涤纶纤维的耐热性也较差,故在织物的定形后处理中,温度要适当降低,一般CDP为170℃,ECDP为160℃较好。 实务: 目前坊间染染改性涤纶纤维很多,主要以保特瓶回收后加工处理,为环保尽力;Recycle 标志。 现场染色加工与传统腈纶差异不大,差在批次的稳定度,纱的饱和值及起始上色温度、最大上色的温度点。 因此现场染色时每批纱务必要先做纱的饱和值(对比性)及起始上色温度、最大上色的温度点(Step-dyeing)控管,决定缓染剂使用量及持温控管点,否则问题层出不穷。

ZSM-5沸石分子筛改性研究进展

ZSM-5沸石分子筛改性研究进展 摘要本文综述了近年来ZSM-5沸石分子筛的改性研究进展,重点从酸性调节和孔道调节对近年来的改性研究进行归纳总结,对ZSM-5沸石分子筛的研发工作具有促进作用。 关键词ZSM-5分子筛;改性;酸性;孔道 沸石是分子筛中应用最广泛的物质,是具有四面体骨架结构的硅铝酸盐,具有分子筛作用的沸石,通常称为沸石分子筛。ZSM-5分子筛(Zeolite Socony Mobil Number 5)是其中非常重要的一种人工合成的沸石分子筛,是由美国Mobil石油公司于1972年首次开发的高硅三维直孔道结构沸石,属于第二代沸石,具有二维的孔道系统,独特的交叉孔道结构。ZSM-5分子筛还具有很高的水热稳定性、择形性和亲油疏水能力,加上特殊的三维交叉孔道体系,使其成为石油化工领域首选的催化材料,在催化裂化、催化重整、润滑油馏分脱蜡、乙烯苯烃化、二甲苯异构化、甲醇转化汽油、甲醇/二甲醚制丙烯、甲苯歧化等装置中得到广泛的使用。 1 ZSM-5分子筛的改性进展 ZSM-5分子筛的改性方法按目的划分,大体可以分为两个方面: 1)调节分子筛的酸强度与酸量,主要通过在ZSM-5表面负载金属或非金属氧化物、分子筛的脱铝补铝等方式来实现。2)调节分子筛的孔道,一般可通过酸碱处理或化学硅沉积的方法来达到目的。 1.1 酸性调节 通过调节ZSM-5的酸强度或者酸量,使其具有较为适中的酸性,一方面可以减少无需的副反应发生,从而提高催化剂的选择性,另一方面可减少催化剂因积碳而导致的失活,延长催化剂使用寿命。 1.1.1 氧化物改性 对于中等强度酸性氧化物改性,磷化物是采用最多的改性物质。Kaeding等用磷化合物改性ZSM-5沸石后,MTO的C2=-C4= 烯烃选择性达70%,认为是由于处理后较强酸中心减少所造成的。Zhao等采用磷酸、氧化锆改性HZSM-5用于DME转化制烯烃的研究,甲醇转化率达100%,丙烯摩尔选择性达45%,总低碳烯烃64.6%。采用磷化物进行改性,不但可以有效减少ZSM-5表面的强酸中心,还将改变分子筛表面的亲水性能。另外,杨静等采用密度泛函理论和团簇模型,从微观角度通过计算证实了磷改性可提高ZSM-5的水热稳定性。 采用中性或略偏碱性氧化物(如锌的氧化物等)对ZSM-5进行修饰,所制

相关文档