文档库 最新最全的文档下载
当前位置:文档库 › 追赶法构造过程

追赶法构造过程

追赶法构造过程
追赶法构造过程

追赶法构造过程

追赶法仍然保持LU 分解特性,它是一种特殊的LU 分解。追赶法充分利用了系数矩阵的三对角特点,而且使之分解更简单,得到对三对角线性方程组的快速解法。

解出。

及可由时,

当,表示

,则三对角方程的矩阵若记的计算公式,为:

和的及的元素于是得计算,,,有:

由矩阵乘法及相等定义y Ux d Ly LU A d Ax d d d d p b q n k c q a p b q q U p L n k c b p q a q p b q T n k k k k k k k k k i i i k k k k k k k k k =====-========+==--------),,,()

,,3,2()

,,3,2(211

111

1

111111

1 γγγγγ????????????????????????????????=????????????????----n n n

n n n n n q q q p p p b a c b a c b a c b Doolittle 1221132111222

111111γγγ 分解形式

矩阵

2) 追赶法算法

1.输入变量个数n 、系数矩阵对应的三个向量a,b,c 、常数项b

2. For k=2,3,…,n

2.1 如果b k-1=0,则输出“追赶法失败”提示并终止

2.2 a k ? a k /b k-1

2.3 b k ?b k - a k *c k-1

2.4 d k ?d k - a k *d k-1

3.For k=n,n-1,…,1

3.1 x k ? (d k - c k *x k+1)/b k

时不能进行。

消元法的缺点,即当在消元法,因此也存

来源于空间,但是因为追赶法节省了计算时间和存贮程,

。追赶法的特殊求解过法次数仅有较简单,计算量、乘除追赶法。

组的方法亦称为追赶法用这组公式解线性方程,,,

分解的计算公式:

综合以上,求解出计算公式为:

0451

,,1)(,,3,21

,,2,1)(,,3,211111111111

1=-?????????-=-==-==-====--=-===-==+---+-k k k k k k n n n k k k k

k k k k k k k k k k k k n

n n k k k k q Gauss Gauss n n k q x c y x q y x y p d y n k c p b q q a p d y b q Doolittle n n k q x c y x q y x n

k y p d y d y

注:因为三对角矩阵的非零元素都集中在三条对角线上,因此只用三个向量a,b,c来存储系数矩阵,这样可以把二维数据的存储变为一维数据存储。此外,因为追赶法的LU分解是特殊的分解,它只有二个向量数据p,q。与Doolittle分解一样考虑,为节省计算机存储单元,用原来系数矩阵A的向量a,b来贮存p,q,不但省存储单元,而且可以减少计算量。

3) 追赶法程序

Clear[a,b,c,a,x];

n=Input["线性方程组阶数n="];

a=Input["三对角系数向量a="];

b=Input["三对角系数向量b="];

c=Input["三对角系数向量c="];

d=Input["三对角常数项向量d="];

eps1=0.00001;

t=1;

Do[If[Abs[b[[k-1]]]

a[[k]]=a[[k]]/b[[k-1]];

b[[k]]=b[[k]]-a[[k]]*c[[k-1]];

d[[k]]=d[[k]]-a[[k]]*d[[k-1]],

{k,2,n}];

x=Table[0,{n}];

If[t==1,

x[[n]]=d[[n]]/b[[n]];

Do[x[[k]]=(d[[k]]-c[[k]]*x[[k+1]])/b[[k]], {k,n-1,1,-1}]

];

Print["Ax=d的解为 " , x]

数学解题中的构造法思想

数学解题中的构造法思想 数学科 庞春英 我们首先从下面例题的解法开始讨论: 例:解方程组 ?? ???=++=++=++323232c z c cy x b z b by x a z a ay x 解法一:直接按照三元一次方程组的消元法解题 (略)。 解法二:把原方程组改写为?????=---=---=---0002323 23x cy z c c x by z b b x ay z a a 利用方程根的定义,我 们把a,b,c 看成关于t 的三次方程023=---x yt zt t 的三个根。根据韦达定理得: x abc y ac bc ab z c b a ==++=++,,,因此原方程组的解为:?? ? ??++=++==c b a z ca bc ab y abc x 。 比较例题的两种解法:解法一作为一般的方法,求解极为麻烦,运算量大;解法二则是构造一个满足问题条件的关于t 的三次方程,构造的元件是a,b,c ,构造的“支架”是原方程变形的关系式“023=---x yt zt t ”。在解法二中,以问题已知元素或条件为“元件”,数学中的某些关系式为“支架”,在思维中构造了一种新的“建筑物”这种方法有一定的普遍意义。 在解题过程中思维的创造活动的特点是“构造”,我们称之为构造性思维,运用构造性思维解题的方法称为构造法,即为了解决某个数学问题,我们通过联想和化归的思想,人为地构造辅助图形、模型、方程、函数以帮助解决原来的问题,这样的解题方法,可以看作是构造解题。 早在公元前三百年左右,欧几里德为了证明素数有无穷多个,假设只有有限个素数n p p p p 321,,,而构造一个新素数121+n p p p ,从而证明了原命题。另外,古希腊人为了证明毕达哥拉斯学派的信条“万物皆为(有理数)”是不对的,构造一个边长为1的正方形,则它的对角线竟不是一个“有理数”。上述这些大概是数学史上最早采用构造法解题的例子吧。 所谓构造法,其实质就是运用数学的基本思想,经过认真的观察,深入的思考,构造出解题的数学模型,从而使问题得以解决。构造法体现了数学发现的思想,因为解决问题同获得知识一样,首先需要感知它,要通过仔细地观察、分析,去发现问题的各个环节以及其中的联系,从而为寻求解法创造条件;构造法还体现了类比的思想,为了找出解题的途径,很自然地联系已有知识中与之类似的或与之相关的问题,从而为构造模型提供了参照对象;构造法还体现了化归的思想,把一个个零散的发现由表及里,由浅入深地集中和联系起来,通过恰当的方法加

初中数学常用几何模型及构造方法大全

初中数学常用几何模型及构造方法大全几何是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间… 全等变换 平移:平行等线段(平行四边形) 对称:角平分线或垂直或半角 旋转:相邻等线段绕公共顶点旋转 对称全等模型 角分线模型 往角两边作垂线 往角两边截取等线段 过角分线某点作垂线 说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。两边进行边或者角的等量代换,产生联系。垂直也可以做为轴进行对称全等。

对称半角模型 说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。 旋转全等模型 半角:有一个角含1/2角及相邻线段 自旋转:有一对相邻等线段,需要构造旋转全等 共旋转:有两对相邻等线段,直接寻找旋转全等 中点旋转:倍长中点相关线段转换成旋转全等问题 旋转半角模型 说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

自旋转模型 构造方法: 遇60度旋60度,造等边三角形 遇90度旋90度,造等腰直角 遇等腰旋顶点,造旋转全等 遇中点旋180度,造中心对称 共旋转模型 说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。通过“8”字模型可以证明。

模型变换 说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。 当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。

谈构造法在数学解题中的运用

谈构造法在数学解题中的运用 摘要:“构造法”作为一种重要的化归手段,在数学解题中有着重要的作用。本文从“构造函数”、“构造方程”等常见构造及“构造模型”、“构造情境”等特殊构造出发,例谈构造法在数学解题中的运用。 关键词:构造数学解题 历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构造法”成功地解决过数学上的难题。数学是一门创造性的艺术,蕴含着丰富的美,而灵活、巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。近几年来,构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。 构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提,根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带,使解题另辟蹊径、水到渠成。 “构造法”作为一种重要的化归手段,在数学中有着极为重要的作用,现举例谈谈其在数学解题中的运用。 一、构造函数 理解和掌握函数的思想方法有助于实现数学从常量到变量的这个认识上的飞跃。很多数学命题繁冗复杂,难寻入口,若巧妙运用函数思想,能使解答别具一格,耐人寻味。 [例1](柯西不等式)设a i,b i(i=1,2,…,n)均为实数,证明:

? ? ????? ??≤??? ??∑∑∑===n i i n i i n i i i b a b a 1212 12 证:构造二次函数f(x)=?? ? ??+??? ??+??? ??∑∑∑===n i i n i i i n i i b x b a x a 1212122,则 [例2]已知x,y,z ∈(0,1),求证: x(1-y)+y(1-z)+z(1-x)<1 (第15届俄罗斯数学竞赛题) 分析:此题条件、结论均具有一定的对称性,然而难以直接证明,不妨用构造法一试。 证:构造函数 f(x)=(y+z-1)x+(yz-y-z+1) ∵y,z ∈(0,1), ∴f(0)=yz-y-z+1=(y-1)(z-1)>0 f(1)=(y+z-1)+(yz-y-z+1)=yz >0 而f(x)是一次函数,其图象是直线, ∴由x ∈(0,1)恒有f(x) >0 即(y+z-1)x+(yz-y-z+1) >0 整理可得x(1-y)+y(1-z)+z(1-x) <1 二、构造方程 方程是解数学题的一个重要工具,许多数学问题,根据其数量关系,在已知和未知之间搭上桥梁,构造出方程,使解答简洁、合理。 [例3]已知a,b,c 为互不相等的实数,试证: bc (a-b)(a-c) +ac (b-a)(b-c) +ab (c-a)(c-b) =1 (1) 证:构造方程

不等式数学归纳法

1. 设实数122018,,..,x x x 满足任意的12018i j ≤<≤,均有(1)i j i j x x ++≥-,求2018 1 i i ix =∑ 求2018 1i i ix =∑最小值. 2. 设正实数12,,..,n x x x 满足12..1n x x x =,求证:{}{}{}1221 ...2 n n x x x -+++≤ ,其中 {}x 表示x 的小数部分.

3. 设互不相等正整数12,,..,(2)n x x x n ≥,求证: (1)2221212231.......23n n x x x x x x x x x n +++≥++++-, (2) 222121221 ...(...)3 n n n x x x x x x ++++≥+++ 4.设[]2,(1),0,1i n i i n x ≥?≤≤∈,求证: 11 13n k l k k l n k n kx x kx ≤<≤=-≤∑∑,

5.设1233,...n n x x x x ≥<<<<,证明:111 (1) ()(1)2n n i j i j i j n i j n n x x n i x j x ≤<≤==->--∑∑∑ 6. 求证:12 n i π =

7.设函数211 ()1.....2!n n f x x x x n =++++,证明: (1) 当0x >,(),x n e f x n N +>∈; (2)当0x >,存在实数y,使得11 ()(1)! x n y n e f x x e n +=++,证明:0y x << 8.设()f n n =+,定义数列{}n a ,11,,()n n a m m N a f a ++=∈=,证明:对于每一个正整数m,数列{}n a 必有无穷多个完全平方数. ,

中考数学构造法解题技巧

构造法在初中数学中的应用 所谓构造法就是根据题设条件或结论所具有的特征和性质,构造满足条件或结论的数学对象,并借助该对象来解决数学问题的思想方法。构造法是一种富有创造性的数学思想方法。运用构造法解决问题,关键在于构造什么和怎么构造。充分地挖掘题设与结论的内在联系,把问题与某个熟知的概念、公式、定理、图形联系起来,进行构造,往往能促使问题转化,使问题中原来蕴涵不清的关系和性质清晰地展现出来,从而恰当地构造数学模型,进而谋求解决题目的途径。下面介绍几种数学中的构造法: 一、构造方程 构造方程是初中数学的基本方法之一。在解题过程中要善于观察、善于发现、认真分析,根据问题的结构特征、及其问题中的数量关系,挖掘潜在已知和未知之间的因素,从而构造出方程,使问题解答巧妙、简洁、合理。 1、某些题目根据条件、仔细观察其特点,构造一个"一元一次方程" 求解,从而获得问题解决。 例1:如果关于x的方程ax+b=2(2x+7)+1有无数多个解,那么a、b的值分别是多少? 解:原方程整理得(a-4)x=15-b ∵此方程有无数多解,∴a-4=0且15-b=0 分别解得a=4,b=15 2、有些问题,直接求解比较困难,但如果根据问题的特征,通过转化,构造"一元二次方程",再用根与系数的关系求解,使问题得到解决。此方法简明、功能独特,应用比较广泛,特别在数学竞赛中的应用。

3、有时可根据题目的条件和结论的特征,构造出方程组,从而可找到解题途径。 例3:已知3,5,2x,3y的平均数是4。 20,18,5x,-6y的平均数是1。求 的值。 分析:这道题考查了平均数概念,根据题目的特征构造二元一次方程组,从而解出x、y的值,再求出的值。 二、构造几何图形 1、对于条件和结论之间联系较隐蔽问题,要善于发掘题设条件中的几何意义,可以通过构造适当的图形把其两者联系起来,从而构造出几何图形,把代数问题转化为几何问题来解决.增强问题的直观性,使问题的解答事半功倍。 例4:已知,则x 的取值范围是()

浅谈构造法解题在高中数学竞赛中的应用

学好构造法 妙解竞赛题 在数学竞赛辅导过程中,需要长期给学生进行有针对性的数学思想方法的训练。其中构造法解题的思想,就是一种值得推广的解题思想方法。通过构造,可以建立起各种数学知识之间的联系与相互转化,让学生在熟练掌握各种数学知识的前提下交互使用,融会贯通。 一、构造几何模型,使代数问题几何化。 代数运算虽然直接,但有时会比较抽象且运算复杂,构造合乎要求的几何图形,可以是所求解的问题变得直观明朗,从而找到一个全新的接替办法。 例一,设a 为实数,证明:以1,1,34222+++-+a a a a a 为边长可以构成一个三角形,且三角形的面积为定值。 分析:从题目给出的三个根式我们知道,当实数a 去互为相反的两数时,只是其中两式角色互换,实质一样,故只需争对非负实数a 展开讨论即可。 ()( ) ? ???-+=++????-+=+-+= +120cos 121160cos 12113 2342222222 22a a a a a a a a a a 构造合乎要求的几何图形如图所示: ? =∠?=∠======120601CBE DAB CD BE AB a BC DF AD 于是:()( ) 343 2,3,222 2+=+= = =a a EF AE a AF 1 120cos 121,1,160cos 121,1,2 2 2 222++=????-+===+-=????-+====a a a a CE BE a BC a a a a DB FC AB a AD 所以:以1,1,34222+++-+a a a a a 为边长可以构成一个三角形,即ECF ?。 则:AEF AECF ECF S S S ??-= ?60 F E D C B A ?30 ? 120a a a 1 1 1

初中数学方法大全之构造法

初中数学方法大全之构造法 构造法是数学中重要的解题方法,对于一些较繁难的数学问题时,用常规解法,或是无从下手,或是解题过程异常繁杂,这时,若能根据问题的特点,进行巧妙的换元,往往可以化繁为简,化难为易,收到事半功倍的功效。 一、以概念为框架构造 【例1】已知方程 20(0)ax bx c a ++=≠的两根之和为1S ,两根平方和为2S ,两根立方和为 2)x + 90 ,. ac bd B D Rt ABC Rt CDA AC CA Rt ABC Rt CDA a d b c =? ?∠=∠=???????=? ????==∽≌

三、从公式特征构造 【例3】已知x 、y 、z 、r 都为正数,且满足2222,x y z z x +==。 求证:xy=rz 。 【思路分析】此题中,题设222x y z +=与勾股定理的结论非常相似,故可以从构造勾股定理入手进行本题的研究。 证明:如图,构造Rt △ABC ,使AC =x ,BC =y ,斜边AB =z 。作CD ⊥AB 于D 。 由射影定理可知:2AC AD AB =?,则有: 性解决周长与面积的最大值,但这样一来,本题的计算量就很大,而且也较麻烦。换一个思路,以矩形的一组邻边所在的直线为坐标轴,利用函数思想来解决本题,会有意料之外的效果。 解:以AB 、AD 所在的直线为坐标轴,建立平面直 角坐标系xOy 。 根据题意有:(24,0),(0,12)P Q ,易得PQ 所在的直线解 析式为:1122 y x =-+。

设1(,12)(024)2M m m m - +≤≤,则136,602 MF m ME m =-=-。 ∴周长12()2(3660)1922 MF ME m m m =+=++-=-+ 面积211(36)(60)(6)217822MF ME m m m =?=+-=-++ ∴当m =0时,周长最大等于192m ; 当m =0时,面积最大等于2160m 2。 六、其它构造 【例6】在锐角三角形ABC 中,求作一个正方形DEFG ,使D 、E 都落在BC 边上,F 、G 分别落在AC 、AB 边上。 【思路分析】要想作出这样的正方形,确实有些困 难,我们可以把条件放宽:求作一个正方形,使其有三个 顶点落在两边上,这样的正方形就比较好作了,我们可以 马上作出一个这样的正方形1111D E FG 。 这个正方形可以成为本题的一个跳板吗?实际上,我们得到的这个正方形,可以利用位似去作出需要的正方形DEFG 。 解:(略) 在学习数学的过程中,我们会遇到很多这样的题:有些题目有着深厚的“几何背景”,这样的题我们可以恰当地构造出几何图形,以形助数;有些题目有着浓厚的“代数氛围”,我们可以适时地构造出代数模型,以数解形;有些题目有着深刻的“函数味道”,我们可以合理地以函数为框架进行构造。这样不但能够达到另辟蹊径,巧思妙解的目的,而且对培养创造性思维也有很大的帮助。

数列的几种构造法解题

数列几种构造法解题 数列的构造法,我这里仅仅表示的是n 1a 与+n a 之间的常见关系,还有很多需要补充的。 以下主要是以例题为主,表示不同类型的构造方法。 1-n 1-n 1n n 1n 2q a a 等比数列,a 2a ,1例=?==+. 1 -n 2d )1n (a a 等差数列,2a 2.a 例1n n 1n =-+=+=+ 1 2a 化简可得2)1a (1a 所以整体是等比数列1a ,所以1x 展开解得)x a (2x a 构造等比数列1 a 2a 。3例n n 1 -n 1n n n 1n n 1n -=+=++=+=++=++ 1-n n 011-n 1-n n n 1n n n n 1n n n n 110111 1n 1n n n n 1n n n n n 1 -n 1n n n n 1n 1n n n 1n 2n a 所以n 1)1-n (2a 2a 可以得到 12a 2a 得到 2同除以22a a )22-3a 化简即可得3 2)32()33a (33a 即整体是等比数列33a 。所以3x 展开解得)3a (32x 3a 构造13a 23a 可以得到 3首先同除以,间接构造 2解2-3a 所以2)3-a (3-a 所以1 x 展开解得) 3x a (23x a 构造,直接构造法: 1解32a a )1,4例n ?==?+==-+==-=-=---=+=++==?=-=+=++=++-----+++++n n n n n n n n n x

3n 327an 所以2)33a (33n a 即是等比数列, 3n 3a 所以3 t ,3m 展开解得), t mn a (2t )1n (m a 构造 n 3+2a =a ,5例1-n 1 -n 1n n n 1n n 1+n --?=?++=++++==++=+++?+ 综合例6的通项公式。a ,试求n 3a 2a ,2a 已知n n n 1n 1++==+ 1n -23a 所以22 )113-a (1n 3a 所以1y ,1x ,1m 展开化简依次可以解得)y xn 3m a (2y )1n (x 3m a 解:构造1n n n 1n 1n 11n n n n 1n 1n -+==?++=++-==-=+++=++++---++

数学人教版九年级上册旋转法构造全等三角形

典型例题: 已知:AC 是正方形ABCD 的对角线,∠EMF 的顶点在线段AC 上运动,∠EMF 绕点M 旋转,角的两边与CD 、BC 交于点F 、E.(点F 不与C 、D 重合). (1)当∠EMF=90°时,试探究ME 与MF 的数量关系并说明理由.探究CE 、CM 、CF 之间的数量关系,并说明理由. 变式1: (2)当点M 在直线AC 上运动,∠EMF 绕点M 旋转,当角的两边交CD 、CB 的延长线于点F 、E,其余条件不变,结论是否成立? 探究CE 、CM 、CF 之间的数量关系,并说明理由.. A A A 变式3: (4)当点M 在直线AC 上,当∠FME=∠ABC,其他条件不变,结论是否成立?并说明理由. 旋转法构造全等 学习目标: 题目中出现有一个公共端点的相等线段时,可试用旋转方法构造全等三角形. 活动一: 变式2: (3)将正方形ABCD 改为∠ABC=120°的菱形,当∠FME=120°结论是否成立?并说明理由.

分层练习: (A 层) 1. 把含15°角的三角板ABC ,绕点B 逆时针旋转90°到三角板DBE 位置(如图所示),则sin ∠ADE=_______。 (第1题) (第2题) (第3题) 2. 点p 是等边△ABC 内一点,若PA=13,PB=5,PC=12,∠BPA=_________. 3. 如图所示,把正方形ABCD 绕点A,按顺时针方向旋转得到正方形AEFG ,边FG 与 BC 交于点 H.(1)线段HG 与线段HB 相等吗?证明你的猜想.(2)若旋转角为30,HG 的长. (B 层) 1.如图,若把△ABC 绕点A 旋转一定角度得到△ADE ,那么对应边AB=___,BC=___,对应角∠CAB=____,∠B=____. (第1题) (第2题) (第3题) 2.已知:如图,在正方形ABCD 中,点E 在BC 上,将△DCE 绕点D 按顺时针方向旋转,与△DAF 重合,那么旋转角等于____度. 3. 在Rt △ABC 中,∠BAC=90°,如果将该三角形绕点A 按顺时针方向旋转到△ A ’ B ’ C ’的位置,点B ’恰好落在边BC 的中点处,则旋转角_____度.

初中数学不等式知识点

初中数学不等式知识点 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

不等式 性质 ①如果x>y,那么yy;() ②如果x>y,y>z,那么x>z;() ③如果x>y,而z为任意实数或,那么x+z>y+z;(,或叫同向不等式可加性) ④如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xzy,m>n,那么x+m>y+n;() ⑥如果x>y>0,m>n>0,那么xm>yn; ⑦如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n 次幂

不等式两边相加或相减同一个数或式子,不等号的方向不变。(移项要变号) 不等式两边相乘或相除同一个正数,不等号的方向不变。 不等式两边乘或除以同一个负数,不等号的方向改变。(×÷负数要变号) 解集 确定: ①比两个值都大,就比大的还大(同大取大); ②比两个值都小,就比小的还小(同小取小); ③比大的大,比小的小,无解(大大小小取不了); ④比小的大,比大的小,有解在中间(小大大小取中间)。 三个或三个以上成的不等式组,可以类推。 数轴法 把每个不等式的解集在上表示出来,数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集。有几个就要几个。注意实点与空点的区别。 在确定一元二次不等式时,a>0,Δ=b2-4ac>0时,不等式解集可用"大于取两边,小于取中间"求出。 证明方法 比较法 1.作差比较法:根据a-b>0a>b,欲证a>b,只需证a-b>0;

初中几何反证法专题(编辑)

初中几何反证法专题 学习要求 了解反证法的意义,懂得什么是反证法。 理解反证法的基本思路,并掌握反证法的一般证题步骤。 知识讲解 对于一个几何命题,当用直接证法比较困难时,则可采用间接证法,反证法就是一种间接证法,它不是直接去证明命题的结论成立,而是去证明命题结论的反面不能成立。从而推出命题的结论必然成立,它给我们提供了一种可供选择的新的证题途径,掌握这种方法,对于提高推理论证的能力、探索新知识的能力都是非常必要的。下面我们对反证法作一个简单介绍。 1.反证法的概念: 不直接从题设推出结论,而是从命题结论的反面出发,引出矛盾,从而证明命题成立,这样的证明方法叫做反证法。 2.反证法的基本思路: 首先假设所要证明的结论不成立,然后再在这个假定条件下进行一系列的正确逻辑推理,直至得出一个矛盾的结论来,并据此否定原先的假设,从而确认所要证明的结论成立。这里所说的矛盾是指与题目中所给的已知条件矛盾,或是与数学中已知定理、公理和定义相矛盾,还可以是与日常生活中的事实相矛盾,甚至还可以是从两个不同角度进行推理所得出的结论之间相互矛盾(即自相矛盾)。 3.反证法的一般步骤: (1)假设命题的结论不成立;

(2)从这个假设出发,经过推理论证得出矛盾; (3)由矛盾判定假设不正确,从而肯定命题的结论正 确 简而言之就是“反设-归谬-结论”三步曲。 例题: 例1.已知:AB、CD是⊙O内非直径的两弦(如图1),求证AB与CD不能互相平分。证明: 假设AB与CD互相平分于点M、则由已知条件AB、CD均非⊙O直径,可判定M不是圆心O,连结OA、OB、OM。 ∵OA=OB,M是AB中点 (1) ∴OM⊥AB (等腰三角形底边上的中线垂直于底边) 同理可得: OM⊥CD,从而过点M有两条直线AB、CD都垂直于OM 这与已知的定理相矛盾。 故AB与CD不能互相平分。 例2.已知:在四边形ABCD中,M、N分别是AB、DC的 中点,且MN=(AD+BC)。 求证:AD∥BC

高中数学解题方法之构造法(含答案)

十、构造法 解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题用常规的思维 方式来寻求解题途径却比较困难,甚至无从着手。在这种情况下,经常要求我们改变思维方 向,换一个角度去思考从而找到一条绕过障碍的新途径。 历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构 造法”成功地解决过数学上的难题。数学是一门创造性的艺术,蕴含着丰富的美,而灵活、 巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。近几年来, 构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。 构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提, 根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带, 使解题另辟蹊径、水到渠成。 用构造法解题时,被构造的对象是多种多样的,按它的内容可分为数、式、函数、方程、 数列、复数、图形、图表、几何变换、对应、数学模型、反例等,从下面的例子可以看出这 些想法的实现是非常灵活的,没有固定的程序和模式,不可生搬硬套。但可以尝试从中总结 规律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二要弄清楚问题的特 点,以便依据特点确定方案,实现构造。 再现性题组 1、求证: 3 10910 22≥++=x x y (构造函数) 2、若x > 0, y > 0, x + y = 1,则4 2511≥???? ??+??? ??+ y y x x (构造函数) 3、已知01a <<,01b <<,求证: 22)1()1()1()1(22222222≥-+-+-+++-++b a b a b a b a (构造图形、复数) 4、求证:9)9(272≤-+x x ,并指出等号成立的条件。(构造向量) 5、已知:a>0、b>0、c>0 ,求证:222222c ac a c bc b b ab a ++≥+-++-当且仅当 c a b 111+=时取等号。(构造图形) 6 、求函数y = 再现性题组简解: 1、解:设)3(92 ≥+=t x t 则t t y t f 1)(2+==,用定义法可证:f (t )在),3[+∞上单调递增,令:3≤12t t < 则0)1)((11)()(2 1212122212121>--=+-+=-t t t t t t t t t t t f t f ∴310313)3(9 10322=+=≥++= f x x y

浙教版八年级数学下册反证法作业练习

4.6 反证法 ◆基础练习 1.“ab C.a=b D.a=b或a>b 2.用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设() A.a不垂直于c B.a,b都不垂直于c C.a⊥b D.a与b相交 3.用反证法证明命题“在一个三角形中,如果两条边不相等,那么它们所对的角也不相等” 时,应假设___________. 4.用反证法证明“若│a│<2,则a<4”时,应假设__________. 5.请说出下列结论的反面:(1)d是正数; (2)a≥0; (3)a<5. 6.如下左图,直线AB,CD相交,求证:AB,CD只有一个交点. 证明:假设AB,CD相交于两个交点O与O′,那么过O,O′两点就有_____条直线,这与“过两点_______”矛盾,所以假设不成立,则________. 7.完成下列证明. 如上右图,在△ABC中,若∠C是直角,那么∠B一定是锐角. 证明:假设结论不成立,则∠B是______或______. 当∠B是____时,则_________,这与________矛盾; 当∠B是____时,则_________,这与________矛盾. 综上所述,假设不成立. ∴∠B一定是锐角.

8.如图,已知AB∥CD,求证:∠B+∠D+∠E=360°. 9.请举一个在日常生活中应用反证法的实际例子. ◆综合提高 10.用反证法证明“三角形中至少有一个内角不小于60°”,?应先假设这个三角形中( ) A .有一个内角小于60° B.每一个内角都小于60° C .有一个内角大于60° D.每一个内角都大于60° 11.若用反证法证明命题“在直角三角形中,至少有一个锐角不大于45 °”时,应假设______________. 12.用反证法证明:两直线平行,同旁内角互补. 132是一个无理数.(说明:任何一个有理数均可表示成 b a 的形式,且a ,b 互质) 14、试写出下列命题的反面: (1)a 大于2 _____________;(2)a⊥b _______________. 15、用反证法证明“若22a b ≠,则a b ≠”的第一步是______________. 16、填空:在△ABC 中,若∠C 是直角,那么∠B 一定是锐角. 证明:假设结论不成立的,则∠B 是__________或_________. ①当∠B 是_______时,则__________,这与____________________矛盾; ②当∠B 是_______时,则__________,这与____________________矛盾.

(完整版)人教版初中数学知识结构

【人教版初中数学知识结构图】 1、有理数(正数与负数) 2、数轴 6、有理数的概念3、相反数 4、绝对值 5、有理数从大到小的比较 7、有理数的加法、加法运算律 17、有理数8、有理数的减法 9、有理数的加减混合运算 10、有理数的乘法、乘法运算律 16、有理数的运算11、有理数的除法、倒数 12、有理数的乘方 13、有理数的混合运算 21、代数式14、科学记数法、近似数与有效数字 22、列代数式15、用计算器进行简单的数的运算 23、代数式的值18、单项式 27、整式的加减20、整式的概念19、多项式 24、合并同类项 25、去括号与添括号 26、整式的加减法 28、等式及其基本性质 29、方程和方程的解、解方程 198 32、一元一次方程30、一元一次方程及其解法 初31、一元一次方程的应用33、代入(消元)法 中35、二元一次方程组的解法34、加减(消元)法 数193 36、相关概念及性质 学数39、二元一次方程组37、三元一次方程组及其解法举例 与38、一元方程组的应用40、一元一次不等式及其解法 代45、一元一次不等式43、一元一次不等式41、不等式的解集 数和一元一次不等式组44、一元一次不等式组42、不等式和它的基本性质 46、同底数幂的乘法、单项式的乘法 47、幂的乘方、积的乘方 51、整式的乘法48、单项式与多项式相乘 49、多项式的乘法 56、整式的乘除50、平方差与完全平方公式 52、多项式除以单项式 55、整式的除法53、单项式除以单项式 54、同底数幂的除法 57、提取公因式法 61、方法58、运用公式法 63、因式分解59、分组分解法 62、意义60、其他分解法66、含字母系数的一元 65、分式的乘除法——64、分式的乘除运算一次方程 72、分式69、可化为一元一次方程的分式方程及其应用67、分式方程解法、 70、分式的意义和性质增根 71、分式的加减法68、分式方程的应用 75、数的开方73、平方根与立方根 74、实数 86、二次根式的意义76、最简二次根式 79、二次根式的乘除法77、二次根式的除法

(六)数学归纳法

(六)数学归纳法 一、知识要点 1.一般地,当要证明一个命题对于不小于某正整数0n 的所有正整数n 都成立时,可以用数学归纳法。 2.数学归纳法的证明步骤: (1)证明0n n =时命题成立; (2)假设),(0n k N k k n ≥∈=+时命题成立,证明1+=k n 时命题也成立。 由(1)、(2)两步可得,所证命题成立。 二、例题解析 例1.用数学归纳法证明: ))(12()2()12(4321222222+∈+-=--++-+-N n n n n n . 例2.如果x 是实数,且n x x ,0,1≠->为大于1的自然数,证明:nx x n +>+1)1(.

例3.平面上有n 条直线,其中任意两条都相交,任意三条不共点,这些直线把平面分成多少 个区域?证明你的结论。 例4.证明:当)1(3221+++?+?=n n a n (n 是正整数)时,不等式 2 )1(2)1(2 +<<+n a n n n . 【点评】 利用数学归纳法证明不等式的关键是由k n =到1+=k n 的变形,为了达到目标,往往要采用“放缩”等手段。 知识检测

1.用数学归纳法证明不等式),2)((1 2131211+∈≥<-++++N n n n f n 的过程中,由k n =到1+=k n 时,左边增加了( ) A.1 项 B.k 项 C.12+k 项 D.k 2 项 2.某个命题与正整数n 有关,如果当)(+∈=N k k n 时命题成立,那么可推得当1+=k n 时,命题也成立。现已知当5=n 时命题不成立,那么可推得( ) A.当6=n 时该命题不成立 B.当6=n 时该命题成立 C.当4=n 时该命题不成立 D.当4=n 时该命题成立 3.证明不等式θθsin sin n n ≤(+∈N n ) 4.证明:1131211)321(2-+≥??? ??++++ ++++n n n n (2,>∈n N n ). 5.证明: n n n 113121222-<+++ (1,>∈n N n ).

中考数学解题方法反证法专题

中考数学解题方法反证法专题 在初中数学题目的求解过程中,当直接证明一个命题比较复杂麻烦,甚至不能证明时,我们可以采用反证法.反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法.反证法可以分为归谬 反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种). 用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论.反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大于/不大于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n-1)个;至多有一个/至少有两个;唯一/至少有两个. 归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水.推理必须严谨.导出的矛盾有如下几种类型:与已知

条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾. 至于什么问题宜用反证法?这是很难确切回答的问题.下面我们就结合实例归纳几种常使用反证法的 情况. 一、基本定理或初始命题的证明 在数学中,许多基本定理是使用反证法来证明的,例如“过直线外一点只有该直线的一条平行线”,“过平面外一点只有平面的一条垂线”.因为在证明这种基本定理时,由于除已经学过的公理及其推论外,在此之前所导出的定理不多或者与此命题相关的定理不多. 例1在同一平面内,两条直线a,b都和直线c垂直.求证:a与b平行. 证明假设命题的结论不成立,即“直线a与b相交”. 不妨设直线a,b的交点为M,a,b与c的交点分别为P,Q,如图1所示,则∠PMQ>0°. 这样,△MPQ的内角和=∠PMQ+∠MPQ+∠PQM=∠PMQ+90°+90°>180°. 这与定理“三角形的内角和等于180°”相矛盾.说明假设不成立.

初中数学知识点及结构图

七年级数学(上)知识点 人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容. 第一章 有理数 一. 知识框架 二.知识概念 1.有理数: (1)凡能写成)0p q ,p (p q ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正 分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数; (2)有理数的分类: ① ??? ? ????? ????负分数负整数负有理数零正分数正整数 正有理数有理数 ② ???????????????负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ? a+b=0 ? a 、b 互为相反数. 4.绝对值: (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(2) 绝对值可表示为:?????<-=>=) 0a (a )0a (0) 0a (a a 或???<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远 比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0. 6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是 a 1 ;若ab=1? a 、b 互为倒数;若ab=-1? a 、b 互为负倒数. 7. 有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律: (1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则: (1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零; (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac . 12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, 无意义即0 a . 13.有理数乘方的法则: (1)正数的任何次幂都是正数; (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 14.乘方的定义: (1)求相同因式积的运算,叫做乘方; (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; 15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法. 16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位. 17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似

初中解题技巧之构造法专题

初中解题方法之构造法专题 在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。 一 真题链接 1.(2012 青海)若m,n 为实数,且2012),08212n m n m n m +=--+-+则(的值为 2.(2012 莆田) 3.(2012?铁岭)如果021=-++y x ,那么xy= 4.(2012?佛山)如图,已知AB=DC ,DB=AC (1)求证:∠ABD=∠DCA .注:证明过程要求给出每一步结论成立的依据. (2)在(1)的证明过程中,需要作辅助线,它的意图是什么? 5. (2012?佳木斯)国务院总理温家宝2011年11月16日主持召开国务院常务会议,会议决定建立青海三江源国家生态保护综合实验区.现要把 228吨物资从某地运往青海甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如表: (1)求这两种货车各用多少辆? (2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a 辆,前往甲、乙两地的总运费为w 元,求出w 与 a 的函数关系式(写出自变量的取值范围); (3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.

二.名词释义 所谓构造法就是根据题设条件或结论所具有的特征和性质,构造满足条件或结论的数学对象,并借助该对象来解决数学问题的思想方法。构造法是一种富有创造性的数学思想方法。运用构造法解决问题,关键在于构造什么和怎么构造。充分地挖掘题设与结论的内在联系,把问题与某个熟知的概念、公式、定理、图形联系起来,进行构造,往往能促使问题转化,使问题中原来蕴涵不清的关系和性质清晰地展现出来,从而恰当地构造数学模型,进而谋求解决题目的途径。下面介绍几种数学中的构造法: 一.某些题目根据条件、仔细观察其特点,构造一个“方程”求解,从而获得问题解决。 例1:如果关于x的方程ax+b=2(2x+7)+1有无数多个解,那么a、b的值分别是多少? 解:原方程整理得(a-4)x=15-b ∵此方程有无数多解,∴a-4=0且15-b=0 分别解得a=4,b=15 二.构建几何图形 对于条件和结论之间联系较隐蔽问题,要善于发掘题设条件中的几何意义,可以通过构造适当的图形把其两者联系起来,从而构造出几何图形,把代数问题转化为几何问题来解决.增强问题的直观性,使问题的解答事半功倍。 例2:已知,则x 的取值范围是() A 1≤≤5 B ≤1 C 1<<5 D ≥5 分析:根据绝对值的几何意义可知:表示数轴上到1与5的距离之和等于4的所有点所表示的数。如图3,只要表示数的点落在1和5之间(包括1和5),那么它到1与5的距离之和都等于4,所以1≤≤5,故选A. 三、构造函数模型,解数学实际问题

数学归纳法经典例题及答案

数学归纳法(2016.4.21) 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 11 1 31 21 1++++++k k 1 1 1211 2+++=++

相关文档
相关文档 最新文档