文档库 最新最全的文档下载
当前位置:文档库 › 基于神经网络集中供热二次回水温度预测研究

基于神经网络集中供热二次回水温度预测研究

基于神经网络集中供热二次回水温度预测研究
基于神经网络集中供热二次回水温度预测研究

数学建模神经网络预测模型及程序

年份 (年) 1(1988) 2(1989) 3(1990) 4(1991) 5(1992) 6(1993) 7(1994) 8(1995) 实际值 (ERI) 年份 (年) 9(1996) 10(1997) 11(1998) 12(1999) 13(2000) 14(2001) 15(2002) 16(2003) 实际值 (ERI) BP 神经网络的训练过程为: 先用1988 年到2002 年的指标历史数据作为网络的输入,用1989 年到2003 年的指标历史数据作为网络的输出,组成训练集对网络进行训练,使之误差达到满意的程度,用这样训练好的网络进行预测. 采用滚动预测方法进行预测:滚动预测方法是通过一组历史数据预测未来某一时刻的值,然后把这一预测数据再视为历史数据继续预测下去,依次循环进行,逐步预测未来一段时期的值. 用1989 年到2003 年数据作为网络的输入,2004 年的预测值作为网络的输出. 接着用1990 年到2004 年的数据作为网络的输入,2005 年的预测值作为网络的输出.依次类推,这样就得到2010 年的预测值。 目前在BP 网络的应用中,多采用三层结构. 根据人工神经网络定理可知,只要用三层的BP 网络就可实现任意函数的逼近. 所以训练结果采用三层BP模型进行模拟预测. 模型训练误差为,隐层单元数选取8个,学习速率为,动态参数,Sigmoid参数,最大迭代次数3000.运行3000次后,样本拟合误差等于。 P=[。。。];输入T=[。。。];输出 % 创建一个新的前向神经网络 net_1=newff(minmax(P),[10,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值 inputWeights={1,1} inputbias={1} % 当前网络层权值和阈值 layerWeights={2,1} layerbias={2} % 设置训练参数 = 50; = ; = ; = 10000; = 1e-3;

前馈神经网络和反馈神经网络模型

前馈神经网络 前馈神经网络的结构一般包含输入层、输出层、及隐含层,隐含层可以是一层或多层。各神经元只接收前一层的输出作为自己的输入,并且将其输出给下一层,整个网络中没有反馈。每一个神经元都可以有任意多个输入,但只允许有一个输出。图1选择只含一个隐含层的前馈神经网络。其原理框图如图1所示。 图中,只有前向输出,各层神经元之间的连接用权值表示。设输入层有M 个输入信号,其中任一输入信号用i ()M i ,2,1 =表示;隐含层有N 个神经元,任一隐含层神经元用j ()N j ,2,1 =表示;输入层与隐含层间的连接权值为()n w ij , ()N j M i ,2,1;,2,1 ==;隐含层与输出层的连接权值为()n w j 。假定隐含层神 经元的输入为()n u j ,输出为()n v j ;输出层神经元的输入为()n o ,网络总输出为 ()n x ~。则此神经网络的状态方程可表示为: ()()()∑+-==M i ij j i n y n w n u 11 ()()[] ()()?? ? ???∑+-===M i ij j j i n y n w f n u f n v 11 ()()()∑==N j j j n v n w n o 1 ()()[]()()?? ????==∑=N j j j n v n w f n o f n x 1~ 图1 三层前馈神经网络结构图 输入层 隐含层 输出层 (y n (1y n -(1y n M -+

式中,()?f 表示隐含层、输出层的输入和输出之间的传递函数,也称为激励函数。 定义代价函数为瞬时均方误差: ()()()()[] ()()()2 12 2~?? ? ????? ????????-=-==∑=N j j j n v n w f n d n x n d n e n J 式中,()n d 为训练信号。 递归神经网络 对角递归神经网络 图2为典型的对角递归神经网络,它具有三层结构,分别为输入层,隐层和输出层,在隐层的权值叠加中,引入了输入的前一时刻的输出作为反馈控制信号。选用这种网络的优点是结构简单,易于实现,可以直观的体现反馈神经网络的结构模式和工作方式。 设输入层与隐层间的连接权值为()n w h ij ()k j m i ,2,1;,,1,0==,隐层与输 出层之间的权值为()n w o j ,递归层的权值为()n w d j 。设输入层的输入为()i n y -, 隐层的输入为()n u j ,输出为()n I j ,输出层的输入为()n v ,输出层的输出为()n x ~,则对角递归神经网络的状态方程为 ()()()()()10-+-=∑=n I n w i n y n w n u j d j m i h ij j 输入层 输出层 隐层 图2 对角递归神经网络的结构 ()y n ()1y n - ()1y n m -+ ()y n m - mj d

自动化工程案例分析

《自动化工程案例分析》课程总结报告 时光如白驹过隙,转眼间,大学已经步入了第四年的光景。短暂的回眸,激荡起那一片片的涟漪,却才开始发现,案例分析,在我心中挥之不去,留下了难以磨灭的记忆。四位老师的倾情传授,为我们的大学生涯留下的不止是斑驳的光影,还有那一缕盘旋不去的温情。 四位老师给我们深入浅出地讲解了很多详细的实例,这些例子和我们所学的知识相互印证,加深了我们对专业知识的了解。也让我们对毕业后的工作方向有了一个更直观的认识,让我们更加有勇气,更加自信的面对即将到来的工作或者是研究生的学习生涯。 叶老师给我们演示的是“中石化某油库计量系统”。首先叶老师讲了背景:中国石化担负着保障国家能源安全的重要责任,一年的原油加工量约为亿吨,其中原油依赖进口,因此,如何降低原油的采购运输成本成为了影响企业生产经营效益的重要问题。原油运输大型化或者原油运输管道化已成为中国石化降低原油输送成本的主要手段。国外的油库管理中已经引入了先进的工业控制技术、网络技术、数据库技术等,对油库日常的收发油品作业、储油管理、油库监控系统等进行全方位的综合管理。而我国的油库自动化技术与国际先进水平相比还是有一定的差距。各种计量仪表的精度较低,稳定性较差,控制系统的控制精度比较低,信息化管理水平不够健全。我国的油库自动化控制和管理系统曾经历了一个较长的发展时期,各种系统操作方式各异,水平也参差不齐,其中还存在着许多人工开票、开阀、手动控泵的原始发油手段。这些系统一方面是可靠性不高,影响油库的经济效益另一方

面没有运用现代化信息技术使有关人员能够方便及时的了解现场的实时运行情况以及历史生产信息,不能为生产调度决策提供可靠的数据依据,同时也不利于提高整个企业的科学化管理水平。 自动化项目浏览: 油库监控自动化系统 原油调合自动化系统 选矿自动化系统 嵌入式项目浏览: 智能防溜系统 海关油气液体化工品物流监控系统 综合项目要求,从整个系统分析,我们需要: 自动化/嵌入式项目浏览 投标与方案 监控系统设计 监控系统调试 监控系统验收 项目管理 油库是储存和供应石油产品的专业性仓库,是协调原油生产和加工、成品油运输及供应的纽带。长期以来,我国油库数据采集工作中的许多操作都是采用人工作业的方式。一方面,不仅工作效率低,而且容易出现人为因素造成的失误另一方面,也不便于有关人员及时了解现场的实时运行情况,不利于提高企业的规范化管理水平。随着自动化

用matlab编BP神经网络预测程序

求用matlab编BP神经网络预测程序 求一用matlab编的程序 P=[。。。];输入T=[。。。];输出 % 创建一个新的前向神经网络 net_1=newff(minmax(P),[10,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值 inputWeights=net_1.IW{1,1} inputbias=net_1.b{1} % 当前网络层权值和阈值 layerWeights=net_1.LW{2,1} layerbias=net_1.b{2} % 设置训练参数 net_1.trainParam.show = 50; net_1.trainParam.lr = 0.05; net_1.trainParam.mc = 0.9; net_1.trainParam.epochs = 10000; net_1.trainParam.goal = 1e-3; % 调用 TRAINGDM 算法训练 BP 网络 [net_1,tr]=train(net_1,P,T); % 对 BP 网络进行仿真 A = sim(net_1,P); % 计算仿真误差 E = T - A; MSE=mse(E) x=[。。。]';%测试 sim(net_1,x) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 不可能啊我2009 28

对初学神经网络者的小提示 第二步:掌握如下算法: 2.最小均方误差,这个原理是下面提到的神经网络学习算法的理论核心,入门者要先看《高等数学》(高等教育出版社,同济大学版)第8章的第十节:“最小二乘法”。 3.在第2步的基础上看Hebb学习算法、SOM和K-近邻算法,上述算法都是在最小均方误差基础上的改进算法,参考书籍是《神经网络原理》(机械工业出版社,Simon Haykin著,中英文都有)、《人工神经网络与模拟进化计算》(清华大学出版社,阎平凡,张长水著)、《模式分类》(机械工业出版社,Richard O. Duda等著,中英文都有)、《神经网络设计》(机械工业出版社,Martin T. Hargan等著,中英文都有)。 4.ART(自适应谐振理论),该算法的最通俗易懂的读物就是《神经网络设计》(机械工业出版社,Martin T. Hargan等著,中英文都有)的第15和16章。若看理论分析较费劲可直接编程实现一下16.2.7节的ART1算法小节中的算法. 4.BP算法,初学者若对误差反传的分析过程理解吃力可先跳过理论分析和证明的内容,直接利用最后的学习规则编个小程序并测试,建议看《机器学习》(机械工业出版社,Tom M. Mitchell著,中英文都有)的第4章和《神经网络设计》(机械工业出版社,Martin T. Hargan等著,中英文都有)的第11章。 BP神经网络Matlab实例(1) 分类:Matlab实例 采用Matlab工具箱函数建立神经网络,对一些基本的神经网络参数进行了说明,深入了解参考Matlab帮助文档。 % 例1 采用动量梯度下降算法训练 BP 网络。 % 训练样本定义如下: % 输入矢量为 % p =[-1 -2 3 1 % -1 1 5 -3] % 目标矢量为 t = [-1 -1 1 1] close all clear clc

神经网络模型预测控制器

神经网络模型预测控制器 摘要:本文将神经网络控制器应用于受限非线性系统的优化模型预测控制中,控制规则用一个神经网络函数逼近器来表示,该网络是通过最小化一个与控制相关的代价函数来训练的。本文提出的方法可以用于构造任意结构的控制器,如减速优化控制器和分散控制器。 关键字:模型预测控制、神经网络、非线性控制 1.介绍 由于非线性控制问题的复杂性,通常用逼近方法来获得近似解。在本文中,提出了一种广泛应用的方法即模型预测控制(MPC),这可用于解决在线优化问题,另一种方法是函数逼近器,如人工神经网络,这可用于离线的优化控制规则。 在模型预测控制中,控制信号取决于在每个采样时刻时的想要在线最小化的代价函数,它已经广泛地应用于受限的多变量系统和非线性过程等工业控制中[3,11,22]。MPC方法一个潜在的弱点是优化问题必须能严格地按要求推算,尤其是在非线性系统中。模型预测控制已经广泛地应用于线性MPC问题中[5],但为了减小在线计算时的计算量,该部分的计算为离线。一个非常强大的函数逼近器为神经网络,它能很好地用于表示非线性模型或控制器,如文献[4,13,14]。基于模型跟踪控制的方法已经普遍地应用在神经网络控制,这种方法的一个局限性是它不适合于不稳定地逆系统,基此本文研究了基于优化控制技术的方法。 许多基于神经网络的方法已经提出了应用在优化控制问题方面,该优化控制的目标是最小化一个与控制相关的代价函数。一个方法是用一个神经网络来逼近与优化控制问题相关联的动态程式方程的解[6]。一个更直接地方法是模仿MPC方法,用通过最小化预测代价函数来训练神经网络控制器。为了达到精确的MPC技术,用神经网络来逼近模型预测控制策略,且通过离线计算[1,7.9,19]。用一个交替且更直接的方法即直接最小化代价函数训练网络控制器代替通过训练一个神经网络来逼近一个优化模型预测控制策略。这种方法目前已有许多版本,Parisini[20]和Zoppoli[24]等人研究了随机优化控制问题,其中控制器作为神经网络逼近器的输入输出的一个函数。Seong和Widrow[23]研究了一个初始状态为随机分配的优化控制问题,控制器为反馈状态,用一个神经网络来表示。在以上的研究中,应用了一个随机逼近器算法来训练网络。Al-dajani[2]和Nayeri等人[15]提出了一种相似的方法,即用最速下降法来训练神经网络控制器。 在许多应用中,设计一个控制器都涉及到一个特殊的结构。对于复杂的系统如减速控制器或分散控制系统,都需要许多输入与输出。在模型预测控制中,模型是用于预测系统未来的运动轨迹,优化控制信号是系统模型的系统的函数。因此,模型预测控制不能用于定结构控制问题。不同的是,基于神经网络函数逼近器的控制器可以应用于优化定结构控制问题。 在本文中,主要研究的是应用于非线性优化控制问题的结构受限的MPC类型[20,2,24,23,15]。控制规则用神经网络逼近器表示,最小化一个与控制相关的代价函数来离线训练神经网络。通过将神经网络控制的输入适当特殊化来完成优化低阶控制器的设计,分散和其它定结构神经网络控制器是通过对网络结构加入合适的限制构成的。通过一个数据例子来评价神经网络控制器的性能并与优化模型预测控制器进行比较。 2.问题表述 考虑一个离散非线性控制系统: 其中为控制器的输出,为输入,为状态矢量。控制

基于神经网络的专家系统

基于神经网络的专家系统 摘要:人工神经网络与专家系统,作为人工智能应用的两大分支,在实际应用中都有许多成功的范例,但作为单个系统来讲,二者都存在很大的局限性。主要是专家系统知识获取的“瓶颈问题”和神经网络知识表达的“黑箱结构”。为解决这个问题,本文提出将专家系统与神经网络技术集成,达到优势互补的目的。利用神经网络优良的自组织、自学习和自适应能力来解决令家系统知识获取的困难,同时用专家系统良好的解释机能来弥补神经网络中知识表达的缺陷。论文提出了基于神经网络专家系统的结构模型,知识表示方式以及推理机制等。 关键词:专家系统;神经网络;系统集成; 0 引言 专家系统(Expert System)是一种设计用来对人类专家的问题求解能力建模的计算机程序。专家系统是一个智能计算机程序,其内部含有大量的某个领域专家水平的知识和经验,能够利用人类专家的知识和解决问题的方法来处理该领域问题。一个专家系统应具有以下三个基本特征:启发性——不仅能使用逻辑性知识还能使用启发性知识;透明性——能向用户解释它们的推理过程,还能回答用户的一些问题;灵活性——系统中的知识应便于修改和扩充;推理性——系统中的知识必然是一个漫长的测试,修改和完善过程。专家系统是基于知识的系统。它由如图1所示的5个基本的部分组成[1,2,3]。 知识库存储从专家那里得到的特定领域的知识,这些知识包括逻辑性的知识和启发性知识两类。数据库用于存放专家系统运行过程中所需要和产生的信息。推理机的作用是按照一定的控制策略,根据用户提出的问题和输入的有关数据或信息,按专家的意图选择利用知识库的知识,并进行推理,以得到问题的解答,它是专家系统的核心部分。人机接口部分的功能是解释系统的结论,回答用户的问题,它是连接用户与专家系统之间的桥梁。知识的获取是为修改知识库原有的知识和扩充知识提供的手段。 1 传统专家系统存在的问题 传统专家系统是基于知识的处理的系统,将领域知识整理后形式化为一系列系统所能接受并能存储的形式,利用其进行推理实现问题的求解。尽管与人类专家相比,专家系统具有很大的优越性。但是,随着专家系统应用的日益广泛及所处理问题的难度和复杂度的不断扩大和提高,专家系统在某些方面已不能满足是实际工作中的需求,具体体现在以下一个方面[1,2]:(1)知识获取的“瓶颈”问题。(2)知识获取的“窄台阶”。(3)缺乏联想功能、推理能力弱。(4)智能水平低、更谈不上创造性的知识。(5)系统层次少。(6)实用性差。 2 神经网络与传统专家系统的集成 神经网络是基于输入\输出的一种直觉性反射,适用于进行浅层次的经验推理,其特点是通过数值计算实现推理;专家系统是基于知识匹配的逻辑推理,是深层次的符号推理。将两者科学的结合形成神经网络专家系统,可以取长补短。根据侧重点的不同,神经网络与专家系统的集成有三种模式[2]:(1)神经网络支持专家系统。以传统的专家系统为主,以神经网络的有关技术为辅。 (2)专家系统支持神经网络。以神经网络的有关技术为核心,建立相应领域的专家系统,采用专家系统的相关技术完成解释等方面的工作。 (3)协同式的神经网络专家系统。针对大的复杂问题,将其分解为若干子问题,针对每个子问题的特点,选择用神经网络或专家系统加以实现,在神经网络和专家系统之间建立一种耦合关系。

bp神经网络及matlab实现讲解学习

b p神经网络及m a t l a b实现

图1. 人工神经元模型 图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值 ( threshold ),或称为偏置( bias )。则神经元i的输出与输入的关系表示为: 图中 yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数 ( Transfer Function ) ,net称为净激活(net activation)。若将阈值看成是神经元i的一个输入x0的权重wi0,则上面的式子可以简化为: 若用X表示输入向量,用W表示权重向量,即: X = [ x0 , x1 , x2 , ....... , xn ]

则神经元的输出可以表示为向量相乘的形式: 若神经元的净激活net为正,称该神经元处于激活状态或兴奋状态(fire),若净激活net为负,则称神经元处于抑制状态。 图1中的这种“阈值加权和”的神经元模型称为M-P模型 ( McCulloch-Pitts Model ),也称为神经网络的一个处理单元( PE, Processing Element )。 2. 常用激活函数 激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的激活函数。 (1) 线性函数 ( Liner Function ) (2) 斜面函数 ( Ramp Function ) (3) 阈值函数 ( Threshold Function ) 以上3个激活函数都属于线性函数,下面介绍两个常用的非线性激活函数。 (4) S形函数 ( Sigmoid Function ) 该函数的导函数:

关于学习神经网络监督(学习)控制的一点心得

关于学习神经网络监督(学习)控制的一点心得 神经网络控制是一种基本上不依赖于精确数学模型的先进控制方法,比较适用于那些具有不确定性或高度非线性的控制对象,并具有较强的适应和学习能力。[1] 人工神经元网络是在生物神经元模型基础上发展而来的。生物神经元模型的基本组成单元是单个的神经元,它有着接受、传导信息的功能。其中最重要的一点是生物神经元能接受多个神经元传递的信息,并能将其往下传递给多个神经元。根据其特点抽象出的最典型的人工神经元模型如下图所示: 从图中易知其数学模型为: ∑∑===-=n i i ji j n i i ji j x w f x w f y 01)()(θ ,( 100-==j j w x ,θ) 式中,j θ是阈值, ji w 是连接权系数;f (·)为输出变换函数。 人工神经网络是由多个人工神经元组成,每个神经元有多个输入连接通路,但只有一个单一的输出,但是它可以连接到很多其他的神经元。经过多个神经元的串、并连接,就可以构成神经网络。依据神经元的图形模型和数学模型可以知道神经网络具有如下性质: 1) 对于每个节点有一个状态变量j x ; 2) 节点i 到节点 j 有一个连接权系数ji w ; 3) 对于每一个节点有一个阈值j θ; 4) 对于每个节点定义一个变换函数f j [x i ,w ji ,j θ( i ≠j )]。[1] 单个神经元的输出乘以连接权系数即是下一个神经元的输入。对于一个神经网络,当确定了各节点的输出变换函数后,连接权值将作为变量,神经网络的学习功能旨在通过调整连接权值以达到给定输入下得到目标输出的目的,但实际情况只能是接近目标输出。 神经网络的学习基本方式如下:通过给定的输入得到实际输出值,然后记录到目标输出与实际输出的差值,想减小综合差值的方向调整连接权值,这样依次进行下去,最后得到一组最优的连接权集合。当神经网络的节点越多,其能识别的模式也越多,但训练的运算量也相应的增加,这就对训练样本的选择提出更高的要求。 神经元网络监督控制系统的基本系统框图如下:

基于神经网络专家系统的研究与应用

摘要 现代化的建设需要信息技术的支持,专家系统是一种智能化的信息技术,它的应用改变了过去社会各领域生产基层领导者决策的盲目性和主观性,缓解了我国各领域技术推广人员不足的矛盾,促进了社会的持续发展。但传统专家系统只能处理显性的表面的知识,存在推理能力弱,智能水平低等缺点,所以本文引入了神经网络技术来克服传统专家系统的不足,来试图解决专家系统中存在的关系复杂、边界模糊等难于用规则或数学模型严格描述的问题。本文采用神经网络进行大部分的知识获取及推理功能,将网络输出结果转换成专家系统推理机能接受的形式,由专家系统的推理机得到问题的最后结果。最后,根据论文中的理论建造了棉铃虫害预测的专家系统,能够准确预测棉铃虫的发病程度,并能给用户提出防治建议及措施。有力地说明了本论文中所建造的专家系统在一定程度上解决了传统专家系统在知识获取上的“瓶颈”问题,实现了神经网络的并行推理,神经网络在专家系统中的应用具有较好的发展前景。 关键词神经网络专家系统推理机面向对象知识获取

Abstract Modern construction needs the support of IT, expert system is the IT of a kind of intelligence, its application has changed past social each field production subjectivity and the blindness of grass-roots leader decision-making, have alleviated the contradiction that each field technical popularization of our country has insufficient people, the continued development that has promoted society. But traditional expert system can only handle the surface of dominance knowledge, existence has weak inference ability, intelligent level is low, so this paper has led into artificial neural network technology to surmount the deficiency of traditional expert system, attempt the relation that solution has in expert system complex, boundary is fuzzy etc. are hard to describe strictly with regular or mathematics model. This paper carries out the most of knowledge with neural network to get and infer function , changes network output as a result into expert system, inference function the form of accepting , the inference machine from expert system gets the final result of problem. Finally, have built the expert system of the cotton bell forecast of insect pest according to the theory in this thesis, can accurate forecast cotton bell insect become sick degree, and can make prevention suggestion and measure to user. Have proved on certain degree the expert system built using this tool have solved traditional expert system in knowledge the problem of " bottleneck " that gotten , the parallel inference that has realized neural network, Neural network in expert system application has the better prospect for development. Key words Neural network Expert system Reasoning engine Object-orientation Knowledge acquisition

基于神经网络输出反馈的动态矩阵控制研究

clear all; close all; xite=0.50; alfa=0.05; w2=rand(6,1); w2_1=w2;w2_2=w2; w1=rand(2,6); w1_1=w1;w1_2=w1; dw1=0*w1; x=[0,0]'; u_1=0; y_1=0; I=[0,0,0,0,0,0]'; Iout=[0,0,0,0,0,0]'; FI=[0,0,0,0,0,0]'; ts=0.001; for k=1:1:1000 time(k)=k*ts; u(k)=0.50*sin(3*2*pi*k*ts); a(k)=1.2*(1-0.8*exp(-0.1*k)); y(k)=a(k)*y_1/(1+y_1^2)+u_1; for j=1:1:6 I(j)=x'*w1(:,j); Iout(j)=1/(1+exp(-I(j))); end yn(k)=w2'*Iout; e(k)=y(k)-yn(k); w2=w2_1+(xite*e(k))*Iout+alfa*(w2_1-w2_2); for j=1:1:6 FI(j)=exp(-I(j))/(1+exp(-I(j)))^2; end

for i=1:1:2 for j=1:1:6 dw1(i,j)=e(k)*xite*FI(j)*w2(j)*x(i); end end w1=w1_1+dw1+alfa*(w1_1-w1_2); x(1)=u(k); x(2)=y(k); w1_2=w1_1;w1_1=w1; w2_2=w2_1;w2_1=w2; u_1=u(k); y_1=y(k); end figure(1); plot(time,y,'r',time,yn,'b'); xlabel('times');ylabel('y and yn'); grid on ts=0.1; for k=1:1:200 time(k)=k*ts; u(k)=1; a(k)=1.2*(1-0.8*exp(-0.1*k)); y(k)=a(k)*y_1/(1+y_1^2)+u_1; for j=1:1:6 I(j)=x'*w1(:,j); Iout(j)=1/(1+exp(-I(j))); end yn(k)=w2'*Iout; e(k)=y(k)-yn(k); w2=w2_1+(xite*e(k))*Iout+alfa*(w2_1-w2_2); for j=1:1:6 FI(j)=exp(-I(j))/(1+exp(-I(j)))^2; end for i=1:1:2

模糊神经网络的预测算法在嘉陵江水质评测中的应用2

模糊神经网络的预测算法 ——嘉陵江水质评价 一、案例背景 1、模糊数学简介 模糊数学是用来描述、研究和处理事物所具有的模糊特征的数学,“模糊”是指他的研究对象,而“数学”是指他的研究方法。 模糊数学中最基本的概念是隶属度和模糊隶属度函数。其中,隶属度是指元素μ属于模糊子集f的隶属程度,用μf(u)表示,他是一个在[0,1]之间的数。μf(u)越接近于0,表示μ属于模糊子集f的程度越小;越接近于1,表示μ属于f的程度越大。 模糊隶属度函数是用于定量计算元素隶属度的函数,模糊隶属度函数一般包括三角函数、梯形函数和正态函数。 2、T-S模糊模型 T-S模糊系统是一种自适应能力很强的模糊系统,该模型不仅能自动更新,还能不断修正模糊子集的隶属函数。T-S模糊系统用如下的“if-then”规则形式来定义,在规则为R i 的情况下,模糊推理如下: R i:If x i isA1i,x2isA2i,…x k isA k i then y i =p0i+p1i x+…+p k i x k 其中,A i j为模糊系统的模糊集;P i j(j=1,2,…,k)为模糊参数;y i为根据模糊规则得到的输出,输出部分(即if部分)是模糊的,输出部分(即then部分)是确定的,该模糊推理表示输出为输入的线性组合。 假设对于输入量x=[x1,x2,…,x k],首先根据模糊规则计算各输入变量Xj的隶属度。 μA i j=exp(-(x j-c i j)/b i j)j=1,2,…,k;i=1,2,…,n式中,C i j,b i j分别为隶属度函数的中心和宽度;k为输入参数数;n为模糊子集数。 将各隶属度进行模糊计算,采用模糊算子为连乘算子。 ωi=μA1j(x1)*μA2j(x2)*…*μA k j i=1,2,…,n 根据模糊计算结果计算模糊型的输出值y i。 Y I=∑n i=1ωi(P i0+P i1x1+…+P i k xk)/ ∑n i=1ωi 3、T-S模糊神经网络模型 T-S模糊神经网络分为输入层、模糊化层、模糊规则计划层和输出层四层。输入层与输入向量X I连接,节点数与输入向量的维数相同。模糊化层采用隶属度函数对输入值进行模

BP神经网络matlab源程序代码

close all clear echo on clc % NEWFF——生成一个新的前向神经网络 % TRAIN——对 BP 神经网络进行训练 % SIM——对 BP 神经网络进行仿真 % 定义训练样本 % P为输入矢量 P=[0.7317 0.6790 0.5710 0.5673 0.5948;0.6790 0.5710 0.5673 0.5948 0.6292; ... 0.5710 0.5673 0.5948 0.6292 0.6488;0.5673 0.5948 0.6292 0.6488 0.6130; ... 0.5948 0.6292 0.6488 0.6130 0.5654; 0.6292 0.6488 0.6130 0.5654 0.5567; ... 0.6488 0.6130 0.5654 0.5567 0.5673;0.6130 0.5654 0.5567 0.5673 0.5976; ... 0.5654 0.5567 0.5673 0.5976 0.6269;0.5567 0.5673 0.5976 0.6269 0.6274; ... 0.5673 0.5976 0.6269 0.6274 0.6301;0.5976 0.6269 0.6274 0.6301 0.5803; ... 0.6269 0.6274 0.6301 0.5803 0.6668;0.6274 0.6301 0.5803 0.6668 0.6896; ... 0.6301 0.5803 0.6668 0.6896 0.7497]; % T为目标矢量 T=[0.6292 0.6488 0.6130 0.5654 0.5567 0.5673 0.5976 ... 0.6269 0.6274 0.6301 0.5803 0.6668 0.6896 0.7497 0.8094]; % Ptest为测试输入矢量 Ptest=[0.5803 0.6668 0.6896 0.7497 0.8094;0.6668 0.6896 0.7497 0.8094 0.8722; ... 0.6896 0.7497 0.8094 0.8722 0.9096]; % Ttest为测试目标矢量 Ttest=[0.8722 0.9096 1.0000]; % 创建一个新的前向神经网络 net=newff(minmax(P'),[12,1],{'logsig','purelin'},'traingdm'); % 设置训练参数 net.trainParam.show = 50; net.trainParam.lr = 0.05; net.trainParam.mc = 0.9; net.trainParam.epochs = 5000; net.trainParam.goal = 0.001; % 调用TRAINGDM算法训练 BP 网络 [net,tr]=train(net,P',T); % 对BP网络进行仿真 A=sim(net,P'); figure; plot((1993:2007),T,'-*',(1993:2007),A,'-o'); title('网络的实际输出和仿真输出结果,*为真实值,o为预测值'); xlabel('年份'); ylabel('客运量'); % 对BP网络进行测试 A1=sim(net,Ptest');

Workbench高级工程实例分析培训

Workbench高级工程实例分析培训 第1例:齿轮动态接触分析 该实例系统讲解模型的导入,接触设置,齿轮实现转动的方法和原理解释,并给学员演示空载荷负载作用下的齿轮结构的应力计算比较。 图1 斜齿轮接触的有限元模型 图2 动态接触过程中某一时刻的等效应力云图(空载)

图3 动态接触过程中某一时刻的等效应力云图(负载200N.m) 第2例:过盈装配结构分析 该实例会系统讲解过盈装配结构的应力分析方法。不同设置过盈量的计算结果比较和讨论设置过盈量的合理方法,摩擦系数,旋转速度对过盈装配应力的影响。 图4 过盈量为0.00005m时的等效应力(转速=0)图5 过盈量为0.00005m时的接触应力(转速=0)

图6 过盈量为0.00005m 时的等效应力(转速=4000) 图7 过盈量为0.00005m 时的接触应力(转速=4000) 第3例:液压阀结构的分析 该实例会讲解施加随空间变化的压力载荷和系统分析接触设置对求解的影响,并给出如何合理选取接触参数来实现较为准确的求解。 图8 变化压力载荷分布云图 图9 接触压力云图(摩擦系数=0.1,增强拉格朗日算法) 第4例:发动机活塞机构的多体动力学分析 该实例会讲解如何为多体设置驱动力和约束多体之间的运动关系的方法,并讲解柔性体的多体动力学分析和刚-柔耦合的多体动力学分析。

图10 0.12s时刻的等效应力云图(柔性体)图11 1.17s时刻的等效应力云图(柔性体) 图12 0.12s时刻的等效应力云图(刚-柔耦合)图13 1.17s时刻的等效应力云图(刚-柔耦合)第5例:薄壁结构的非线性屈曲分析 该实例会讲解如何在Workbench环境下完成薄壁结构的非线性屈曲分析并获得非线性屈曲载荷的方法,研究不同初始缺陷,弹塑性对非线性屈曲载荷的影响。

神经网络预测控制综述

神经网络预测控制综述 摘要:近年来,神经网络预测控制在工业过程控制中不仅得到广泛的应用,而且其理论研究也取得了很大进展。对当前各种神经刚络预测控制方法的现状及其工业应用进行了较深入地分析,并对其存在的问题和今后可能的发展趋势作了进一步探讨。 关键词:神经网络;预测控制:非线性系统;工业过程控制 Abstract: In recent years, neural network predictive control has not only been widely used in industrial process control, but also has made great progress in theoretical research. The current status of various neural network prediction control methods and their industrial applications are analyzed in depth, and the existing question and possible future development trends are further discussed. Keywords: neural network; predictive control: nonlinear system; industrial process control

20世纪70年代以来,人们从工业过程的特点出发,寻找对模型精度要去不高而同样能实现高质量控制性能的方法,预测控制就是在这种背景下发展起的[1]。预测控制技术最初山Richalet和Cutler提出[2],具有多步预测、滚动优化、反馈校正等机理,因此能够克服过程模型的不确定性,体现出优良的控制性能,在工业过程控制中取得了成功的应用。如Shell公司、Honeywell公司、Centum 公司,都在它们的分布式控制系统DCS上装备了商业化的预测控制软件包.并广泛地将其应用于石油、化工、冶金等工业过程中[3]。但是,预测函数控制是以被控对象的基函数的输出响应可以叠加为前提的,因而只适用于线性动态系统控制。对于实际中大量的复杂的非线性工业过程。不能取得理想的控制效果。而神经网络具有分布存储、并行处理、联想记忆、自组织和自学习等功能,以神经元组成的神经网络可以逼近任意的:线性系统。使控制系统具有智能化、鲁棒性和适应性,能处理高维数、非线性、干扰强、难建模的复杂工业过程。因此,将神经网络应用于预测控制,既是实际应用的需要,同时也为预测控制理论的发展开辟了广阔的前景。本文对基于神经网络的预测控制的研究现状进行总结,并展望未来的发展趋势。 l神经网络预测控制的基本算法的发展[4] 实际中的控制对象都带有一定的菲线性,大多数具有弱非线性的对象可用线性化模型近似,并应用已有的线性控制理论的研究成果来获得较好的控制效果。而对具有强非线性的系统的控制则一直是控制界研究的热点和难点。 就预测控制的基本原理而言,只要从被控对象能够抽取出满足要求的预测模型,它便可以应用于任何类型的系统,包括线性和非线性系统。 由于神经网络理论在求解非线性方面的巨大优势,很快被应用于非线性预测控制中。其主要设计思想是:利用一个或多个神经刚络,对非线性系统的过程信息进行前向多步预测,然后通过优化一个含有这些预测信息的多步优化目标函数,获得非线性预测控制律。在实际应用与理论研究中形成了许多不同的算法。如神经网络的内模控制、神经网络的增量型模型算法控制等,近来一些学者对有约束神经网络的预测控制也作了相应的研究。文献[5]设计了多层前馈神经网络,使控制律离线求解。文献[6]采用两个网络进行预测,但结构复杂,距离实际应用还有一定的距离,文献[7]利用递阶遗传算法,经训练得出离线神经网络模型.经多步预测得出对象的预测模型,给出了具有时延的非线性系统的优化预测控制。将神经网络用于GPC的研究成果有利用Tank.Hopfield网络处理GPC矩阵求逆的算法,基于神经网络误差修正的GPC算法、利用小脑模型进行提前计算的GPC 算法、基于GPC的对角递归神经网络控制方法以及用神经网络处理约束情形的预

BP网络用于催化剂配方建模--MATLAB实例

BP 网络用于催化剂配方建模--MATLAB 实例 本例是《人工神经网络理论、设计及应用》(第二版)中BP 网络应用与设计的例子,现用MATLABF 仿真。 介绍:理论上已经证明,三层前馈神经网络可以任意精度逼近任意连续函数。本例采用BP 神经网络对脂肪醇催化剂配方的实验数据进行学习,以训练后的网络作为数学模型映射配方与优化指标之间的复杂非线形关系,获得了较高的精度。网络设计方法与建模效果如下: (1)网络结构设计与训练首先利用正交表安排实验,得到一批准确的实验数据作为神经网络的学习样本。根据配方的因素个数和优化指标的个数设计神经网络的结构,然后用实验数据对神经网络进行训练。完成训练之后的多层前馈神经网络,其输入与输出之间形成了一种能够映射配方与优化指标内在联系的连接关系,可作为仿真实验的数学模型。图3.28给出针对五因素、三指标配方的实验数据建立的三层前馈神经网络。五维输入向量与配方组成因素相对应,三维输出向量与三个待优化指标[脂肪酸甲脂转化率TR(%)、脂肪醇产率Y (%)和脂肪醇选择性S (%)]相对应。通过试验确定隐层结点数为4。正交表安排了18OH OH 组实验,从而得到18对训练样本。训练时采用了改进BP 算法: ) 1()(??+=?t W X t W αηδ(2)BP 网络模型与回归方程仿真结果的对比表3.3给出BP 网络配方模型与回归方程建立的配方模型的仿真结果对比。其中回归方程为经二次多元逐步回归分析,在一定置信水平下经过F 检验而确定的最优回归方程。从表中可以看出,采用BP 算法训练的多层前馈神经网络具有较高的仿真精度。

表3.3注:下标1表示实测结果,下标2表示神经网络输出结果,下标3表示回归方程 以下是具体操作: 编号A/Cu Z n/C u B/Cu C/Cu Mn/Cu T R1/% 1 T R2/% T R3/% Y OH 1/%Y OH 2/% Y OH 3/% S OH 1/% S OH 2/% S OH 3/% 10.050.130.080.140.0494.594.62 83.8396.3 96.56 95.9897.8 97.24 102.8320.0650.070.120.160.0288.05 88.0592.4375.575.97 76.5 86.586.68 79.6530.08 0.190.080.060.060.25 60.4382.0340.2141.4344.8796.2595.3681.9240.0950.110.060.160.0493.05 93.1194.3197.3196.29105.4399.3 99.39 103.0850.11 0.050.020.060.0294.65 94.7285.7988.5588.0677.8995.297.49 87.1260.1250.170.00.140.096.05 95.9697.0895.5 96.69 105.4399.599.52 104.7170.14 0.090.160.040.0461.00 61.1365.3959.7258.954.76 67.3569.1 73.52 80.1550.030.120.140.0270.40 70.3980.4437.5 41.83 46.3652.2551.3871.4590.17 0.150.10.040.083.383.32 70.2282.8580.4659.5 99.2 96.53 74.3 100.050.070.060.120.0584.585.27 70.2290.9 90.46 91.5195.997.87 92.75110.0650.190.040.020.0369.569.45 80.7761.865.03 55.2288.292.41 98.44120.08 0.130.00.120.0194.55 95.694.75 97.695.74 92.4499.697.93 101.65130.0950.050.160.020.0570.95 69.5192.8862.5460.452.5 60.162.63 68.12140.11 0.170.140.10.0387.287.16 78.6491.0 89.19 76.9299.899.36 92.22150.1250.110.10.00.0164.264.08 69.5958.359.12 54.0258.960.22 72.5 160.14 0.030.080.10.0586.15 86.1582.4 75.65 61.4329.9386.578.07 79.28170.1550.150.040.00.0377.15 77.1775.2371.971.72 83.9491.891.74 94.2318 0.17 0.090.020.080.0196.05 96 87.05 94.60 94.62 94.61 98.00 99.12 90.35

相关文档